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Abstract—This article presents a task-oriented computational
framework to enhance visual-inertial navigation (VIN) in robots,
addressing challenges such as limited time and energy resources.
The framework strategically selects visual features using a mean
squared error (MSE)-based, nonsubmodular objective function
and a simplified dynamic anticipation model. To address the
NP-hardness of this problem, we introduce four polynomial-
time approximation algorithms: a classic greedy method with
constant-factor guarantees; a low-rank greedy variant that signif-
icantly reduces computational complexity; a randomized greedy
sampler that balances efficiency and solution quality; and a
linearization-based selector based on a first-order Taylor expansion
for near-constant-time execution. We establish rigorous perfor-
mance bounds by leveraging submodularity ratios, curvature, and
elementwise curvature analyses. Extensive experiments on both
standardized benchmarks and a custom control-aware platform
validate our theoretical results, demonstrating that these methods
achieve strong approximation guarantees while enabling real-time
deployment.

Index Terms—Autonomous agents, greedy-based algorithms,
localization, nonsubmodularity, visual-based navigation.

I. INTRODUCTION

CHIEVING efficient navigation in unpredictable environ-

ments remains a significant challenge in robotics. Re-
cent advancements in computing devices have opened up new
possibilities, propelling substantial progress in this research
area [1]. These advancements enable near-real-time resolution
of estimation and planning tasks in specific applications. How-
ever, navigating robots in rapidly changing environments still
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faces computational complexities. Despite the availability of
high-performance computational units, the increasing demand
for agility and autonomy necessitates more efficient onboard
processing to ensure timely decision-making and execution in
dynamic conditions.

One of the key challenges in robot navigation is achieving
accurate visual odometry while minimizing computational re-
source usage. Many researchers have focused on the issue of
selecting visual features (e.g., [2], [3], [4], [5], [6], [7]). The core
idea is that, based on the robot’s current state and its planned
future motion (i.e., the task at hand), tracking specific features
over a time horizon can provide more valuable information than
tracking others. Essentially, some visual features may require
greater attention than others.

In this context, Davison [8] employed a greedy approach to
select a subset of preidentified visual features, thereby stream-
lining the robot’s pose estimation. Strasdat et al. [9] combined si-
multaneous localization and mapping (SLAM) using unscented
Kalman filtering with reinforcement learning to create policies
for feature selection. Mu et al. [4] proposed a two-stage method-
ology for measurement planning, where the initial stage involves
selecting a subset of landmarks for observation, followed by
determining observation times for each feature. Additionally,
in [3], a task-aware approach is investigated to select a subset of
features with the goal of minimizing an uncertainty metric.

Related sparsification problems are explored in other contexts.
For example, the authors in [10] and [11] addressed optimiz-
ing feedback interconnections in linear consensus networks,
while the authors in [12] and [13] focused on selecting sparse
sets of sensors or actuators to preserve system observability and
controllability. However, these frameworks are not directly ap-
plicable to the motion-aware feature selection problem discussed
here, as they focus on dyads rather than selecting a limited
number of positive semidefinite (PSD) matrices.

Prior works such as [5] and [6] showed that feature selection
for robot navigation can be framed as maximizing a nonnegative
monotone submodular function under a matroid constraint, with
the greedy algorithm achieving an optimal approximation of
1 —1/e ~ 0.632 for cardinality constraints [14]. This process
accelerates with lazy evaluations [15] and further optimizes with
randomization for linear time complexity [16]. Recently, Buch-
binder and Feldman [17] proposed a deterministic nonoblivious
local search algorithm witha 1 — 1/e —  (for any € > 0) guar-
antee. However, these methods are not applicable to our problem,
since mean squared error, our primary performance metric, is not
submodular.

The most closely related prior work to the present study is
conducted by [5] and [6]. In [5], the focus is on visual-inertial
navigation (VIN), in which the design variable is the selection
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of features to track over a fixed time horizon. The authors use
convex relaxations and a greedy method for feature selection,
providing a quantitative assessment of performance guarantees
for the quality of the resulting state estimations. They evaluate
the effectiveness of the greedy heuristic using the submodularity
ratio from [18]. However, calculating the submodularity ratio
for the proposed set functions is computationally challenging
due to the combinatorial complexity involved in its defini-
tion [19]. Additionally, the complexity of a simple semidefinite
programming (SDP) convex relaxation scales cubically with the
number of detected features, making it infeasible for real-time
implementation. Moreover, their measures used to quantify the
confidence ellipsoid of the forward predictor are not explicitly
related to MSE, which is often the performance metric of interest
for estimation problems [20].

A recent study detailed in [21] also tackles the challenge
of reducing latency in visual odometry (VO)/Visual SLAM
(VSLAM) systems by identifying and matching a subset of
features deemed most valuable for pose estimation. While their
focus lies in optimizing feature matching latency using the
Max-logDet metric, our work concentrates on selecting infor-
mative features that minimize MSE under motion-aware dy-
namics, providing theoretical guarantees under nonsubmodular
objectives.

Mousavi and Motee [6] proposed a randomized sampling
algorithm for feature selection instead of using the greedy
method or convex relaxations. In their approach, a sampling
probability (a number between zero and one) is assigned to
each available feature, with these probabilities interpreted as
measures of informativeness during the sampling process. This
procedure provides a performance guarantee compared to using
all visual features, rather than the optimal set, for arange of VIN
measures, including MSE. This is achieved by approximating
the complete spectrum of the information matrix. However,
for some measures, such as the worst-case error, this approach
imposes unnecessary computational burden because we only
need to approximate the minimum eigenvalue of the information
matrix, rather than the full spectrum. Additionally, the proposed
approach requires sampling O((37 + 3)log(3T + 3)/¢?) fea-
tures, where 7' is the forward time horizon and € € (0, 1) is
an approximation parameter, to guarantee the proposed perfor-
mance bounds. We observe that this requirement for the number
of sampled features is significant and, in practical scenarios,
necessitates sampling all features extracted in the estimation
problems.

Pandey et al. [7] later addressed the problem of sparse feature
selection for localizing a team of agents, where they exchange
relative measurements leading to a graphical network. Com-
pared to [6], they improve the probabilistic bound of the random-
ized feature selection algorithm, although the related problems
mentioned in the previous paragraph still exist.

VIN methods are broadly categorized into filtering-based
approaches, fixed-lag smoothing, and full smoothing. Filter-
ing methods, such as the extended Kalman filter-based and
its variants analyzed in [22], offer real-time performance by
sequentially processing data. However, they typically underuti-
lize cross-time correlations, which may limit estimation accu-
racy in complex scenarios.

Fixed-lag smoothers [23], [24] enhance estimation accuracy
via sliding-window optimization. Specifically, [23] integrates
visual and inertial data in a keyframe-based bundle adjustment
framework for visual-inertial SLAM. In contrast, Sibley et al.
[24] employed a constant-time sliding-window filter using stereo

imagery for real-time relative pose estimation durinEg Blanetary
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landing. While both methods retain recent poses and marginalize
older ones, their objectives and sensing modalities differ.

Full smoothing methods [25], [26] jointly optimize over all
past states using nonlinear optimization. The first achieves ef-
ficient maximume-a-posteriori estimation through IMU preinte-
gration on manifolds, while the second handles high-dynamic
motion without requiring prior state initialization. These meth-
ods offer increased accuracy but incur higher computational
complexity due to global optimization.

More recently, ORB-SLAM3 [27] has emerged as a leading
keyframe-based SLAM system that integrates visual and inertial
data vialocal bundle adjustment and global pose graph optimiza-
tion. While it does not implement full smoothing over all states,
its flexibility and support for multiple sensor configurations
make it a strong practical baseline. This article focuses on the
complementary task of selecting informative visual measure-
ments, which can enhance the front-end performance of VIN
systems across all categories.

Our contributions to address the existing issues, in this work
are as follows.

1) Using a similar simplified model for forward simulation
of robot dynamics as [5], we formulate the task of feature
selection as maximizing a monotone nonsubmodular ob-
jective function directly related to the mean-square state
estimation error.

2) We propose constant factor approximation bounds for the
greedy algorithm based on recent concepts of submodu-
larity ratio and curvature [28]. We derive bounds on these
values according to the spectrum of the information matri-
ces, eliminating the need for combinatorial search. These
bounds suggest an easy-to-obtain performance guarantee
for the greedy approach.

3) We exploit the low-rank structure of the landmark infor-
mation matrices to significantly reduce the computational
cost of matrix inversion in each greedy iteration. This leads
to a fast version of the greedy algorithm that maintains the
same approximation guarantees as the standard approach,
while offering substantial practical speedups.

4) Inspired by [29], we include a randomization step in a sim-
ple greedy procedure to increase computational efficiency
and practicality for scenarios with numerous detected
features or longer prediction horizons. This randomized
greedy framework is supported by a performance bound
based on the elementwise curvature concept.

5) We transform the problem into an efficient modular maxi-
mization by using a first-order Taylor series approximation
of the VIN performance measure. In this form, the greedy
selection method guarantees an optimal solution.

6) We validate the proposed selectors in two complementary
experiments. First, multiple EuRoC sequences [30] allow
direct comparison with prior work. Because EuRoC lacks
control inputs for horizon prediction, we also run a full
visual-inertial experiment on the QCar platform [31],
where stereo images, IMU data, and control commands are
all available. This two-pronged evaluation demonstrates
both benchmark accuracy and real-world applicability.

Unlike [6], all proposed performance bounds character-
ize proximity to the optimal visual feature set. We pro-
vide some of the proofs in Appendix B, to keep the main
text focused on the discussion of the problem and proposed
solutions.

Fig. 1 provides a comprehensive overview of the visual
attention mechanism investigated in this article. This mecha-
nism functions as a critical subblock in the front-end, where
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Detailed illustration of the visual attention mechanism as the front-end’s filtering block. Image features extracted from each keyframe are combined

with motion priors provided by the IMU to form a baseline information estimate. For every candidate feature, the mechanism projects the feature into predicted
future poses to simulate its visibility and then computes its expected reduction in estimation error. Features are then ranked by this information-gain metric, and
only the highest-value features are forwarded to the back-end optimizer for state estimation. This selective process reduces computational load while maintaining

high-accuracy pose estimates.

it processes inputs such as extracted features from keyframes
and motion-related parameters obtained, for example, from an
IMU. The primary objective of the visual attention mechanism
is to determine which features should be selected for back-end
optimization. This selection process is guided by evaluating both
the quality of the features and their potential impactin decreasing
uncertainties based on robot dynamics. By effectively filtering
and prioritizing features, the visual attention mechanism ensures
that the back-end optimization process operates with the most
relevant and high-quality data, thereby enhancing the overall
performance and accuracy of the system.

II. PRELIMINARIES AND PROBLEM DEFINITION

A. Notations

Integers are denoted by Z and real numbers by R. The set
of integers (respectively, real numbers) greater than or equal
to a € R is denoted by Z-, (respectively R-,). Given any
integer n € Z>1, we define [n] = {1,...,n}. Finite sets are
denoted by sans-serif fonts (e.g., A). The cardinality of a finite

set A is denoted by |A|. I denotes an identity matrix, with its
dimension inferred from context. The transpose and rank of a
matrix X are denoted by X " and rank(X), respectively. The
set of positive definite (PD) (respectively, PSD) matrices of
size n is denoted by S’} , (respectively S’!). The symbol || - ||
denotes the Euclidean norm when applied to vectors and the
spectral norm when applied to matrices. The symbol || - ||»
denotes the Frobenius norm for matrices. For vector z, diag x
is a diagonal matrix with the elements of x orderly sitting on
its diagonal. NV (i, 33) denotes a normal (Gaussian) distribution
with mean (average) i and covariance X..

B. Forward-Simulation Optimization

The forward-simulation model considered in this article de-
pends on the anticipated future motion of the robot, as we will
later show that the inertial measurement unit (IMU) and vision
models are functions of the robot’s predicted future poses. An-
ticipation is a key element of our approach: the feature selection
mechanism is aware of the robot’s immediate future intended
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motion and selects features that remain in the field of view longer
given these intentions [5].

In typical VIN pipelines, the primary objective is to estimate
the state of the robot at each frame. Let k denote the time frame
for estimation, where our focus is on selecting a limited number
of features. Let z:(k) represent the state of the robot at time k. For
now, readers can consider (k) to include the pose and velocity
of the robot at time instant k, as well as the IMU biases. We
denote

Pk:k+T)2[3T(k) 2T (k+1) T (k+1)]"
as the future state estimates within the horizon 7". Moreover, we
denote P as the covariance matrix of our estimate Z(k : k + T),

and Q £ P! as the corresponding Fisher information matrix.
The error variance for the MSE estimator Z(k : k + T') can then
be obtained by summing the variances of its individual scalar
components, i.e.,

E|x(k:k+T)—2(k:k+T)|5=TraceQ ™t (1)

where z(k : k + T) is the stacked vector of actual values of the
state vectors over the horizon 7.

Let U, with |U| = N, denote the set of all available features at
time frame k. Our goal is to select a limited number of Kk < N
features that maximize

max f(S) subjectto |S| <k
Scu

(2)
with  f(S) £ Trace); ! — TraceQg', Qs £ Qy+ >, s Ay
where € is the information matrix of the estimate when no
features are selected, and 4\ is the information matrix associated
with the selection of the /th visual feature.

It is evident that the maximization problem (2) aims to min-
imize the MSE of the estimate as defined in (1). Furthermore,
we incorporate the term TraceQV} Lin the objective of (2) to
ensure the normalization of the objective, such that it returns
zero for empty sets. It is important to note that the MSE-based
objective f is not necessarily submodular, as demonstrated by
counterexamples in [32]. We note that similar criteria have been
developed in [29], [33], and [34], for sparse sensing purposes.

At first glance, the problem definition in (2) may appear
similar to the often-studied sensor selection problem for Kalman
filtering, such as in[29], [34], or [35]. However, the contribution
of each visual feature to the information matrix, i.e., the 24\,
matrices, as we will see, is PSD and typically of higher rank.
In contrast, each sensor’s contribution to the information matrix
of Kalman state estimation is generally a rank-one matrix, often
in the form of dyads. This key difference in the structure of the
information matrices imposes challenges that preclude directly
applying similar algorithms from sensor selection contexts to
the visual feature selection problem.

Remark 1: Buchbinder and Feldman [17] have recently de-
veloped a significant advancement in submodular maximization
under a matroid constraint, introducing a deterministic nonobliv-
ious local search algorithm with an approximation guarantee of
1 —1/e — e (for any ¢ > 0). This approach effectively bridges
the gap between deterministic and randomized algorithms for
such problems. However, their method is specifically designed
for submodular functions. Since our problem (2) involves the
MSE measure, which is nonsubmodular, their deterministic
algorithm cannot be directly applied to achieve the desired
optimization in our context.
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In the subsequent two sections, we discuss how the integration
of IMU and camera measurements can be utilized to determine
the information matrices €y and A; at each time frame.

C. IMU Model

There is often a significant discrepancy in measurement fre-
quencies, with the IMU operating at a much higher frequency
than the camera. Consequently, following the methodology
outlined in [5], we integrate a set of IMU measurements be-
tween two consecutive camera frames k and j, treating this
integrated measurement as a single measurement that constrains
the states (k) and z(j) using a linear measurement model.

Our simplified IMU model assumes that the accumulation
of rotation error through gyroscope integration over time is
negligible. Given this assumption of accurate rotation estimates
from the gyroscope, we reduce the state variables to the robot’s
position, linear velocity, and accelerometer bias.

The onboard accelerometer measures the acceleration a(k) of
the sensor with respect to the inertial frame. This measurement is
affected by additive white noise £(k) and a slowly varying sensor
bias b(k). Therefore, the measurement a(k) € R3 acquired by
the accelerometer at time k is given as

a(k) = R' (k) (a(k) — g) + b(k) + (k) 3)

where g is the gravity vector expressed in the inertial frame,
and R(k) denotes the attitude of the robot at time %, assumed to
be known from gyroscope integration over the horizon.

Using (3), we can show that the vector of IMU measurements
between frame k and the future frame j exhibits linear depen-
dence on the stack of state vectors z(k : k + T'). By applying
these linear models to all consecutive frames k and j within the
horizon, we can deduce the information matrix for the estimate
of (k : k + T') based on the IMU data.

Note that the information matrix obtained only from relative
measurements lacks a constraint anchoring the information to
a global reference, making it rank-deficient. To address this
deficiency, we integrate a prior on the state at time &k from the
VIN back-end into the information matrix. This incorporation
yields a positive definite (PD) information matrix 2y € 83_7;_4'9.
This PD matrix is essential for our problem definition in (2).

The derivation of the information matrix 2y follows the same
process as in [5, Sec. III-B1]. To avoid repetition, detailed
derivations are omitted in this article. For a comprehensive
derivation, please refer to the relevant section of the cited article.

D. Vision Model

We use a linearized version of the nonlinear perspective pro-
jection model as the vision model. In this approach, we represent
apixel measurement as a linear function of the unknown state we
aim to estimate. A calibrated pixel measurement of an external
3-D point (or feature) [ provides the 3-D bearing of the visual
feature in the camera frame.

Mathematically, let u; (k) be the unit vector corresponding to
the (calibrated) pixel observation of feature ! from the robot’s
pose at time k. This unit vector w; (k) satisfies the following
relation:

w(k) % ((Ra(R) " (= t9(k)) =05 @)
where x denotes the cross product between two vectors, p; is the

3-D position of visual feature [ in the world frame, and R, (k)
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camera frame at x(k + 2)
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R e R
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camera frame at x(k)

Fig.2. Forward propagation of a feature’s bearing vector from a 3-D object (a
stop sign) detected at frame k. Left: The robot’s positions and bearing vectors to
the stop sign features at time steps k£ + 1 and k + 2. Right: The corresponding
camera image planes at those time steps. Colored rectangles around each image
indicate whether the feature is visible (green) or not (red). In this example, the
predicted bearing at k + 2 falls outside the camera’s field of view, causing the
visibility check to fail. See Section IV-B for details.

and Y (k) are the rotation and translation describing the camera
pose at time k with respect to the world frame.

Since our state at each time step k includes the position,
velocity of the robot in the IMU frame, and accelerometer
bias, we reparametrize (4) to incorporate these variables. This
reparametrization uses the known extrinsic transformation be-
tween the camera and IMU obtained from calibration. It also
enables us to derive a linear model for the calibrated feature
pixel as a function of the state vector (k : k 4+ T') and p;, the
unknown position of feature /.

In the context of the obtained linear measurement model, our
objective is to determine the visibility of each feature [ at future
time points over the horizon 7'. The key idea is that if the [th
feature is expected to remain in view throughout the future
horizon, it will provide more information compared to a feature
that is anticipated to be quickly obscured. To achieve this, we
project the [th feature onto the image plane of the robot’s camera
at future time instances. Ultimately, our task is to verify whether
the feature [ will be visible in the forward predictions. Forward
simulation and visibility checking are illustrated in Fig. 2.

We then stack the linear measurement model for each ob-
servation pose from which feature [ is visible. It is important
to note that the stacked linear model cannot be directly used
to estimate our state vector x(k : k 4+ T') because it includes

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

the unknown position of feature, p;. To address this challenge,
we employ the Schur complement trick [36] to analytically
eliminate the 3-D point from the estimation process. To achieve
this, we first construct the information matrix for the joint state

vector [z(k: k+T)" p/] " using the stacked linear measure-
ment model

mwzrfﬂ

F B
ROT+D+3)x(UT+1)+3) (5
B E € 5)

E/E

For detailed definitions of the matrices F; and F;, we refer
interested readers to [5]. By applying the Schur complement
trick, we marginalize out the feature [ and obtain the information
matrix for our state z(k : k + T') given the measurements

Al AL FlT-Fl o -FZTEI (ElTEl)71 EZTE c RQ(T+1)X9(T+1).
(6)
This matrix A; represents the additive contribution to the infor-
mation matrix of our state estimate resulting from the measure-
ments of a single visual landmark /. It is a PSD matrix.

III. APPROXIMATION METHODS

The combinatorial problem in (2) is NP-hard by reduction to
the classical set cover problem; see, e.g., [29], [37], requiring
an exhaustive search over all selections of « features to find the
optimal solution. Therefore, in this section, we discuss various
polynomial-time greedy-based algorithms to approximate its
solution. We start with the more computationally expensive
algorithms and then move on to the less demanding ones.

Remark 2: The approximation algorithms proposed in this
article, along with their theoretical analyses and performance
guarantees, can be extended to alternative set function objec-
tives, such as the minimum eigenvalue or the log-determinant
criterion discussed in [5]. In this work, however, we focus on
the MSE objective due to its direct and interpretable connection
to estimation accuracy, making it particularly suitable for the
scenarios considered.

A. Greedy

In this section, we analytically demonstrate why a simple
greedy algorithm provides a reliable approximate solution to
problem (2). Our findings are based on recent literature on
submodularity and submodular maximization [28].

As previously defined, U represents the ground set containing
all extracted features, and f(-) denotes our set function as in (2).
We define the marginal gain of a feature set R C U in the context
ofasetS C Uas

fr(S) £ F(RUS) — f(S). )

For future analysis, we may use the shorthand notation / and f;(-)
for {1} and f(;,(-), respectively.
Definition 1: A set function
D f: 2V s R is called submodular if for all subsets R C
S C U and all elements [ ¢ S, it holds that

JRUA{L}) = f(R) = F(SU{L}) = f(S).  (®

A set function is supermodular if the reversed inequality
in (8) holds, and is modular if (8) holds with equality;

2) is monotone nondecreasing if for all R C U and [ € U,
FRUALL}) = f(R);

3) is normalized if f(()) = 0.
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Algorithm 1 Simple Greedy Algorithm.
Input: Qy, A; foralll € U, and k
Output: subset S C U with |S| = &
S« 10

while |S| < x do

S + SuU{argmaxjcy\s[f(SU{l}) — f(S)]}
end while

SARAI R

Submodularity intuitively reflects the diminishing returns
property: adding an element to a smaller set yields a greater
benefit than adding it to a larger set. This principle is used to de-
rive constant-factor approximation guarantees, specifically (1 —
1/e), for the greedy algorithm when applied to submodular
maximization problems with cardinality constraints [14].

Algorithm 1 operates by iteratively selecting the feature that
provides the maximum marginal gain in reducing the estimation
error, as defined by the objective function f(S). Ateach iteration,
the feature that contributes most to decreasing the MSE is added
to the current subset, until the cardinality constraint x is met.
However, since the set function f(-) is not submodular [28],
a quantitative assessment of solutions using the simple greedy
procedure (Algorithm 1) requires further elaboration. To address
this, we need the following two technical definitions from [28].

Definition 2. (Curvature, «): The curvature of any nonnega-
tive set function f(-) is the smallest scalar @ € R that satisfies

Ji(SM{I}UR) > (1 —a)- fi(S\{l}) )

for all subsets R and S of U, and for all [ € S\R.

For a nondecreasing set function f(+), the curvature « satis-
fies a € [0, 1]. The function f(-) is supermodular if and only
ifa=0.

Definition 3. (Submodularity ratio, v): The submodularity
ratio of any nonnegative set function f (-) is the largest scalar y €
R0 such that

> FilS) =y [r(S)

1eR\S

(10)

forall R,S C U.

For a nondecreasing set function f(-), the submodularity
condition holds if and only if v = 1. However, in general, ~y
lies within the interval [0, 1].

Proposition 1. (Approximate nonsubmodular maximiza-
tion [28]): Let f be a nonnegative, nondecreasing, normalized
set function with submodularity ratio v € [0, 1] and curvature
a € [0,1]. Then, Algorithm 1, when applied to problem (2),
provides the following approximation guarantee:

f(Sgreedy) > é (1—e*7) f(Sopr)

where Sgreeqy 18 the subset returned by Algorithm 1 and Sopr is
the optimal solution to problem (2).

To apply the results from Proposition 1 to our feature selection
problem, we must demonstrate that the objective function in (2)
satisfies the conditions specified in the lemma. This verification
is provided in Lemma 1.

Let n =97 4 9 denote the dimension of the information
matrices in the VIN problem. It is easy to see that s = Qy +
> 1es Ay is a symmetric PD matrix. This allows for factoriza-

tionas V diag [A1(Qs) An(Qs)] Ty, according to the

an

6049

eigendecomposition. Consequently, one can derive Trace()g 1 -
Yot mo

Lemma 1: The objective of (2) is nonnegative, monotone
increasing, and normalized.

Proof: The nonnegativity follows from ) being PD and
A, for all [ being PSD. It is also straightforward to confirm
that f (@) = 0, thus ensuring normalization. To demonstrate that
the objective in (2) is monotone nondecreasing, we need to
show that for all [ € U \ S, the inequality f(SU {l}) — f(S) >
0 holds. This is established as follows: f(SU{i}) — f(S) =
Z?:l[ﬁ — m] > 0, due to the Cauchy interlacing

inequality for singular values. (|

Lemma 1 confirms that the constant-factor approximation
bound of Proposition 1 applies to our VIN problem. The chal-
lenge, however, lies in the intractability of computing the sub-
modularity ratio and curvature for a given set function due
to the combinatorial number of constraints (of the order of
22lY0y in (9) and (10), respectively. This difficulty is akin to the
exhaustive search required for solving problem (2). Nonetheless,
establishing a positive lower bound on the submodularity ratio
and an upper bound on the curvature for f justifies the use of
the greedy algorithm for problem (2) via Proposition 1. Our
objective is to derive such bounds for f corresponding to the
nonsubmodular objective in (2).

Theorem 1: The Greedy Algorithm 1 provides the following
approximation guarantee for the feature selection problem (2):

(1 =) f(Sorr) > = (1 - ¢™™) f(Sopr)

(12)
where & and v are the upper bound on the curvature and the
lower bound on the submodularity ratio of the objective in (2),
respectively. These bounds can be obtained using the spectrum of
the information matrices at each time frame of the VIN pipeline
as follows:

Q| =

f(Sgreedy) >

- )"min(QV))
)Lmax(QU) : ()\max(QU) - Xmin(QQ))
13)
where € is the information matrix of the estimate when no fea-
tures are selected, €y is the information matrix when all features
are utilized, and ¢ is a positive number such that TraceA; > §
foralll € U.

Proof: See Appendix B. ]

Carlone and Karaman [5] utilized the concept of the submod-
ularity ratio, as proposed by [18], to evaluate the effectiveness
of a simple greedy heuristic in addressing a problem similar to
problem (2). However, determining the submodularity ratio for
a given set function remains intractable due to the combinato-
rial number of constraints inherent in the definition presented
by [18]. In our results, as shown in Theorem 1, we also incorpo-
rate the notion of curvature to derive an improved constant-factor
approximation. To avoid the combinatorial search required for
obtaining these quantities, we present a set of computable
bounds on the submodularity ratio and curvature.

In our analysis, we establish the relationship oo =1 — .
This correlation arises from the conservative approach taken in
formulating these bounds. However, it is important to emphasize
that this connection is specific to the derived values and does
not generalize to the broader context of submodularity ratio
and curvature values. For instance, for a submodular function,
the submodularity ratio (y) is equal to 1. However, this does

a=1l—-vy=1-
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not imply that the curvature (o) is necessarily a <1 —1 = 0.
Such an implication would hold true only if the function were
also supermodular and, consequently, modular. Despite the con-
servative nature of these bounds, their existence is promising
and aligns with empirical observations regarding the effective-
ness of the greedy algorithm in optimizing nonsubmodular set
functions.

It is worth emphasizing that the values of curvature and
submodularity ratio are not intrinsic properties of the set function
alone, as they also depend on the choice of ground set and
the budget parameter ~. In other words, even for a fixed func-
tion f(-), the computed values of « and v may vary depending
on the context in which they are evaluated. This implies that the
approximation guarantee given in Proposition 1 is meaningful
only after verifying that v > 0 for the particular setup at hand. In
practice, this can often be assessed numerically, as we demon-
strate in our empirical results [e.g., Fig. 5(a)], where a nonzero
submodularity ratio validates the use of the greedy algorithm in
our VIN pipeline.

In greedy Algorithm 1, we iteratively examine all fea-
ture candidates and find the one whose addition will en-
hance the estimation quality the most. This method requires
O(kNT?) operations, implying that the complexity of com-
putation grows quadratically with the number of available
features if, in the worst-case, x = O(N), and cubically with
the length of the time horizon. Therefore, the greedy algo-
rithm may be less practical in scenarios where the number of
detected features or the length of the considered horizon is
substantial.

After marginalizing out the 3-D position of landmark [, the
expression in (6) can be rewritten in a structured, low-rank form

A=FQF, Q2I-E(EE) B (4
where F; € R3*9(T+1) and E; € R3*3, Here, n, denotes
the number of frames in which landmark 1 is observed, which
is readily available via visibility checks (see [5] for details).
This decomposition enables a computational shortcut: instead of
recomputing the matrix inverse (Qs + A;) ! at each iteration,
we maintain Qg ! and apply the Kailath variant of the Woodbury
identity. Since the update cost scales with rank(A;)? - n rather
than n?3, this yields a practical “fast greedy” algorithm with a per-
iteration complexity of approximately O(kNn?T), compared
to the original O(xNT?). The next section details this efficient
implementation.

B. Fast Low-Rank Greedy

Selecting the top s landmarks from a set of IV candidates is
appealing in theory, but quickly becomes computationally in-
feasible in practice. Even for a modest time horizon 7' = 20, the
matrix dimension becomes n = 9(7" + 1) = 189, and inverting
a dense 189 x 189 matrix for each candidate landmark at every
greedy step entails a cost of O(n3) ~ 7 x 10° flops. This makes
real-time decision-making impractical when N is large.

To overcome this bottleneck, we leverage the low-rank struc-
ture of each landmark update A; derived in (14). By applying
the Kailath variant of the Woodbury identity and maintaining
the inverse (g ! throughout the algorithm, each matrix inverse
can be updated efficiently with complexity O(n - n?), where n,
is the number of frames in which landmark [ is observed.
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Algorithm 2 Fast Low-Rank Greedy.

1: Input: Qy, {F;,Q;} foralll € U, and x
Output: subset S C U with [S| = &, and Qg
S« 0, Q' <t
while |S| < k do
for each/ € U\ S do
W, I+ QRO F
f1(S) + Trace (' F, W, ' QF1 Q™)
end for
Jj + argmaxcy\s f1(S)
10 S« SuU{j}
1: Qg « Q' — QS FI W Q, Fi0gt
12: end while

R AN Al

The efficient update for a candidate [ ¢ S proceeds by com-
puting

Qs +A) "' =0 =B (I + QRS ') QiR Q!

(15)
where Q; = I — E;(E, E;)"'E;. Substituting (15) into the
objective function, the marginal information gain f(S U {l}) —
f(S) becomes

Trace (' F)' (I + QEQ'F ) 'QuEQsY) . (16)

offering a substantial reduction in runtime compared to full
inversion.

Algorithm 2 presents the full greedy selection method based
on the Kailath/Woodbury-based update (15) and the marginal
gain computation (16). This version of the greedy algorithm
maintains the same theoretical guarantees as the classic method
but reduces each iteration’s computational cost from O(Nn?)
to O(Nnn2).

Although this method significantly reduces the cubic depen-
dence on 7', the overall complexity still scales linearly with «,
the number of selected landmarks. To further enhance efficiency,
we draw inspiration from the randomized greedy strategy in-
troduced in [29]. This approach samples a random subset of
candidates at each iteration, which reduces the evaluation cost
without severely degrading performance. While it is possible
to apply the low-rank Kailath/Woodbury update within this
randomized framework, we opt not to combine the two here
in order to keep the conceptual contributions clearly delineated.

C. Randomized Greedy

The complexity associated with the greedy algorithm for
feature selection can become prohibitive. To address this, we
have devised a computationally efficient randomized greedy
algorithm, inspired by the techniques introduced in[16] and [29].
This algorithm, detailed in Algorithm 3, is accompanied by a
comprehensive explanation of its performance guarantees in this
section.

Algorithm 3 performs the task of feature selection as follows.
At each iteration, a subset V of size r is sampled uniformly
at random and without replacement from the set of available
features at the given time frame. The marginal gain provided by
each of these r features to the objective function f(-) in (2) is
computed, and the feature yielding the highest marginal gain is
added to the set of selected features. This procedure is repeated
K times.
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Algorithm 3 Randomized Greedy Algorithm

Algorithm 4 Linearization-Based Algorithm.

1: Input: Qy, A; foralll € U, k,and e € [e ", 1]
2:  Output: subset S C U with [S| = &

3: S«
4. for j =1tok do
5:  sample subset V with r = & log(1) features

uniformly from U \ S

S « SU {arg max;ev[f(SU{l}) — f(S)]}
end for

2

The parameter ¢ € [e”", 1] in Algorithm 3, which determines
the size of the uniformly sampled features at each iteration,
represents a predefined constant selected to achieve a desired
tradeoff between performance and complexity. When ¢ = e¢™",
each iteration involves all nonselected features in U, reducing
Algorithm 3 to the simple greedy scheme of Algorithm 1. Con-
versely, as € approaches 1, the size of V and, consequently, the
overall computational complexity decrease. However, as we will
see, this reduction in complexity comes at the cost of decreased
performance.

Definition 4: The elementwise curvature «; of a monotone

nondecreasing function f is defined as o; £ max L(R)

(S;R.1)en, f105)”

where
N, ={(S,R,1)|SCRcU,leU\R,|R\S| =4 |U =N}

The maximum elementwise curvature is denoted by apax =
max; ;.

A set function is submodular if and only if apax < 1. In
the following theoretical analysis, we evaluate Algorithm 3 and
establish a bound on its performance when used to approximate
a solution to problem (2).

Theorem 2: Let apa.x be the maximum elementwise cur-
vature of the VIN performance measure (2), Syna denote the
subset of features selected by Algorithm 3, and Sppr be the
optimal solution to Problem (2). Then, in expectation, f(S;unq) is
a constant multiplicative factor away from f(Sopr), specifically

e

E[f(Srana)] > (1 —e e C) f(Sopr) (17)

where

¢ =max{max, 1}, €e€le ™ 1], and n=1+
max{0 1

2N T 2(N-m) I-

Proof: The pﬁoof is a straightforward variation of the proof
of [29, Th. 2] and is not repeated here. U

Theorem 2 demonstrates that Algorithm 3 identifies a subset
of visual features that, on average, achieves a VIN objective
within a constant multiplicative factor of the objective obtained
by the optimal set.

Drawing from the classical analysis in [14], we can estab-
lish that the approximation factor for the greedy algorithm is
1 — e~/¢, Thus, the term " /cin the multiplicative factorin (17)
quantifies the gap between the performance of the proposed ran-
domized greedy algorithm and the traditional greedy approach
of Algorithm 1.

Notice that the multiplicative factor in (17) decreases with
both ¢ and e. While c is entirely dependent on the objective,
reducing e increases the multiplicative factor, leading to a better
approximation. However, reducing € also means approaching the
conventional greedy algorithm, thereby increasing complexity.

Input: Qy, A; foralll € U, and k

Output: subset S C U with |S| = &

S« 0

compute Trace(€2,?A) forall [ € U

select the indices of the « largest elements to form S

A AT

Observe that line 6 in Algorithm 3 has a computational
cost of O(XT31og(L)), due to the requirement to evaluate
N og (L) marginal gains, each necessitating O(7*) operations.
With « such iterations, the overall computational complexity of
Algorithm 3 is O(NT? log(1/¢)). Here, N represents the total
number of extracted features at the current time frame, and 7T’
denotes the forward horizon estimation. Consequently, this ap-
proach results in a significant complexity reduction, by a factor
of x/log(1/¢). This efficiency gain is particularly beneficial in
practical applications with a large number of detected features
and extended forward horizons.

D. Linearization-Based Greedy

This approach relies on a first-order (linear) approximation
of the MSE objective (1). The approximation is valid when the
Frobenius norms of the candidate information increments A\;
(I € U) are sufficiently small relative to the baseline matrix €.
The next result derives the Taylor expansion of p by evaluating
its directional derivative.

Lemma 2. (First-order Taylor expansion of p): Let p:
S, — R be defined by p(A) = Trace(A™!), i.e., the mean-

squared-error objective in (1). Fix €2y € S”! | and define As e

ZlES A; with A € Si
If pis differentiable at 2, then for any sufficiently small ¢ > 0

p(+eAs) = p(Qy) + eTrace(Vp(Qy) As) + O(€?).

(18)

Proof: The differentiability of p at € (established later)

allows us to write its first-order Taylor expansion in the direction
As. For sufficiently small € > 0

p(Q +eAs) = p() + eDp() [As] + O(e?)

where Dp(§)y)[-] denotes the directional derivative of p at €.

On the space S™ of symmetric matrices equipped with
the trace inner product (X,Y) £ Trace(XY), this directional
derivative can be expressed through the gradient matrix V p(y)
as

Dp() [As] = (Vp(), As) = Trace(Vp(S) As).

Substituting this representation into the expansion yields (18),
completing the proof. (]

Given (18) and the monotonicity of the performance measure
p, if the norms of the information matrices associated with
the candidate features are sufficiently small, then the original
problem (2) can be approximated by

— j < K.
max ZEZSTrace(Vp(Q@)AI) subjectto |S| < k. (19)

We now show that the MSE performance measure p is differ-
entiable and derive its directional derivative at €2 in the direction
of A 1.
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Let sort : R™ — R” denote the operator that rearranges a
vector’s components in nonincreasing order. A function f :
R™ — R is called symmetric if f(z) = f(sort(z)) for ev-
ery z € R"; that is, permuting the entries of x leaves the value
of f unchanged. When a symmetric function is applied to the
eigenvalues of a symmetric matrix, the resulting mapping is
referred to as a spectral function.

The MSE-based objective p:S%, = Rso, p(Q) =
Trace(Q7') with n =97 +9 is a spectral function whose
value depends solely on the eigenvalues of €. In particular,
we can write p as the composition of the eigenvalue map X
with the scalar function ¢: p(Q) = (¢ 0 1)(Q) = ¢(A(Q)),

with Q€ S7,. Here A(Q) = [A1(), 22(Q), ..., 2, (Q)]
is a vector in R% that collects the eigenvalues of €2, and
o(r) = >, % with 2 € RZ,. The next lemma is a
restatement of [38, Corollary 5.2.5].

Lemma 3. (Spectral differentiability): Let ¢ : R™ — R be
symmetric, closed, and convex. Then ¢ o A is differentiable at a
matrix X € S’ if and only if ¢ is differentiable at A (X).

Proposition 2: The MSE objective p(Q) = Trace(Q 1) =
Sy Tlﬂ)’ is differentiable at every Q € S, .

In the reminder of this section, we provide a closed-form
expression for the directional derivative of the MSE objective p.
We also establish an explicit bound on the quadratic remainder
term in its Taylor expansion, thereby identifying the regime in
which the linear approximation remains accurate.

Proposition 3. (Quadratic-order error bound): Let Qy €
S™ | be the base information matrix, and define As = >, ¢ A;
for any S C U with |S| < k. Assume each A; = 0 satisfies
IA;]][F < ¢, and choose € > 0 so that € ||Qm’1 As||2 < 1. Then

p() — €> ()

leS

+ € Trace(Q) As Q)" As ) + O(e?)

p(Q@ +e€ AS) =

£Rs(e)
(20)

wherer; (QF) = Trace(Q, 2 A}), is the leverage score of the [th
feature with respect to Q% (see [6] and the references therein for
acomplete definition of leverage score). Moreover, the quadratic
remainder Rs(e€) is nonnegative and satisfies

0 < Rs(e) < [ I31As]Z < 2513 (nc)z(.zl)

Implications for feature selection: Proposition 3 shows that
the leading-order term in the Taylor expansion of the MSE objec-
tive is the (negated) sum of leverage scores, — >, 71 (7).
which is precisely the modular objective maximized in Algo-
rithm 4. Because modular objectives admit an optimal greedy
solution, Algorithm 4 returns the exact maximiser of the lin-
ear surrogate (19). Using a heap to keep the current top
scores, the procedure runs in O (N T3 log /{) time, a reduction of
roughly x/ log x compared with the classical greedy algorithm.

Accuracy of the linear surrogate: The quadratic remain-

der Rs(e) = €2 Trace (QalAs Qq)—lAg (20_1), is always non-
negative and  satisfies the bound 0 < Rg(e) <
19113 1As]1% < € 12,1113 (15¢)*. Hence, when each in-
dividual information increment obeys || A|| p < ¢ < Amin ()
and at most x features are chosen, the total perturbation remains
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small (||As||z < k(). In this small-increment regime the
second-order term is O((nC )2) and is dominated by the linear
term for sufficiently small e.

We adopt the small-increment condition ¢ < Anyin(£2g) for
three reasons: 1) it guarantees €||€2; 'As||2 < 1, sothe Neumann
expansion in Proposition 3 is valid; 2) it bounds the quadratic
remainder by Rs(e) < €[ [[3(5¢)* = €2(k)A8, () <
€2(kC)A 3 (Qp), ensuring this term is negligible compared with
the linear one that scales as O(x(); and 3) it keeps Qy + €As
well conditioned and PD, so Qal remains a stable reference for
leverage scores. These points collectively justify the accuracy
of the linearized surrogate in the small-increment regime.

Guarantee: Consequently, the greedy subset returned by Al-
gorithm 4 incurs a true MSE cost that differs from the optimal
by at most €2 ||Q@’1||§ (k¢)?, a quantity that can be made ar-
bitrarily small by choosing ¢ proportional to the typical size
of the increments A;. Proposition 3 thus provides a rigorous
justification for replacing the original nonsubmodular objective
with its linearized surrogate and for employing Algorithm 4 as
an efficient, near-exact feature-selection strategy.

IV. EXPERIMENTS

The attention pipeline discussed in this article introduces three
main challenges for real-world deployment. First, the system
must integrate a feature extraction module to detect salient
features from each image frame. Second, it must incorporate real
onboard IMU measurements. Third, it must perform visibility
checks over a future time horizon, which requires predicting
landmark observability based on the robot’s dynamical model
and control inputs.

To evaluate the proposed selection methods under these chal-
lenges, we design two complementary sets of experiments.
The first set uses sequences from the EuRoC dataset [30]
and compares our methods against baseline approaches. This
dataset provides feature measurements and IMU data, enabling
a fair benchmarking against existing methods in the literature.
However, since control inputs are not available in EuRoC, the
visibility check is performed using ground-truth future poses
rather than predicted ones based on the robot dynamical model.

To address this limitation and evaluate the full attention
pipeline proposed in the article, we conduct a second set of
experiments using a 1/10-scale RC car equipped with onboard
stereo cameras and an IMU. In this setup, control inputs are
available, allowing us to implement visibility checks based
on predicted future horizons using the robot’s dynamics and
control commands. Various selection strategies are tested on
this platform to assess their practical performance.

The remainder of this section details the experimental setup
and evaluation results for both datasets.

A. Benchmark Evaluation and Comparison

For this study, we use multiple sequences from the EuRoC
benchmark dataset [30]. The visual-inertial state estimation
pipeline is based on VINS-Mono [39], excluding loop closure
(i.e., using full odometry), which provides both the front-end
and back-end processing modules. We modify the front-end to
incorporate the different feature selection strategies proposed in
this article. The EuRoC benchmarks were executed on a laptop
equipped with an Intel Core 19-12900H CPU (20 cores, 5.0
GHz), 32 GB of RAM, and an NVIDIA GeForce RTX 3080
Ti GPU.
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Fig. 3. Performance comparison of different feature selection methods on the MH_01_easy sequence from the EuRoC dataset. Each column corresponds to a

single randomly selected video frame. The top plot in each column shows the MSE values versus the number of selected features , while the lower plot presents
the computation time on a logarithmic scale to enhance visibility and highlight discrepancies. Methods compared include uniform random selection (“random”),
grid-based selection (““grid”), simple greedy (“simple”), fast low-rank greedy (“low-rank”), randomized greedy (‘“randomized”), and linearization-based greedy
(“linearized”). For randomized methods, each experiment was repeated 20 times, and the mean values are reported. The prediction horizon 7 is set to 13 for the
information-aware selection methods, and the hyperparameter ¢ in the randomized greedy algorithm is set to 0.5. Note that MSE values and feature counts vary
across frames, so results are presented for three representative frames without averaging across the sequence.

The EuRoC dataset was collected using an AscTec Firefly
hex-rotor UAV equipped with a stereo visual-inertial sensor
suite. The stereo camera captures images at a resolution of
752 x 480 pixels and a frame rate of 20 Hz, while the IMU
measurements are recorded at 200 Hz. In our experiments, the
measurement noise parameters, along with the intrinsic and
extrinsic calibrations, are set to exactly match those provided
in the dataset.

In the front-end, we employ OpenCV’s implementation of the
Shi-Tomasi method [40] for feature detection and the Lucas—
Kanade method [41] for feature tracking. The feature extractor
detects up to N = 150 features per frame. From this set, our
selection algorithms retain at most x < N features, which are
then passed to the back-end for state estimation.

In practice, future pose estimates along the prediction horizon
can be obtained by integrating the vehicle’s dynamics using
control inputs. However, since the EuRoC dataset does not
provide control inputs, we approximate future poses by apply-
ing ground-truth motion increments to the current pose esti-
mate. The feature selector operates over a prediction horizon of
length T', set to 7' = 13 in all plots in this section. This value re-
flects the longest horizon that allows efficient simulation without
incurring significant computational overhead. In general, larger
values of T increase the computational cost for all selection
methods. Later in this section, we provide further analysis and
plots illustrating the impact of 7" on both performance and
runtime.

We compare various VIN approaches designed to minimize
the MSE and alternative objectives over the forward prediction
horizon. When the algorithm is limited by a selection budget «,
and r features are successfully tracked from the previous frame,

only k —r new features are selected in the current frame.
However, this preselection mechanism is disabled for per-frame
experiments, such as the one shown in Fig. 3. For completeness,
we initially considered including the lazy greedy algorithm [5,
Algorithm 1]), known for its computational efficiency. However,
it is excluded from our evaluation because it requires a lower
bound (in the case of minimization) on the cost function f;(S)
for each candidate feature [ at every iteration. Existing bounds
in the literature for MSE-based objectives are known to be
loose, causing the lazy greedy algorithm to converge to the
same performance as standard greedy, thus offering no practical
advantage in this setting.

We evaluate four greedy algorithms proposed in this arti-
cle: simple greedy (Algorithm 1), fast low-rank greedy (Algo-
rithm 2), randomized greedy (Algorithm 3), and linearization-
based greedy (Algorithm 4), which are labeled in the figures
as “simple,” “low-rank,” “randomized,” and “linearized,” re-
spectively. For comparison, we also include two baseline meth-
ods. The first is a purely random selection algorithm, labeled
“random,” which uniformly samples features without regard to
spatial or informational structure. The second, labeled “grid,”
divides each frame into a 15 x 12 grid and selects an equal
number of features from each cell, promoting spatially uniform
coverage across the image. For easier interpretation, we use the
same color for each method consistently across all plots in this
section.

Fig. 3 presents the performance of the six selection methods
on the MH_01_easy sequence from the EuRoC dataset. Each
column corresponds to a single video frame. In each column,
the top subplot shows the MSE values (vertical axis), and the
bottom subplot shows the computation time on a logarithmic
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scale to enhance visibility (vertical axis), both plotted against the
number of selected features « (horizontal axis). The MSE values
vary significantly across frames due to changes in the robot’s
location along the trajectory, making it difficult to meaning-
fully report average values across all frames (note the differing
MSE scales in each column). Additionally, the total number of
features detected by the extractor varies from frame to frame,
which prevents consistent plotting of mean performance curves
across methods for a fixed range of k. Therefore, we report
results for three randomly selected frames to provide repre-
sentative comparisons without aggregating over inconsistent
conditions.

Ineach curve shown in the figure, every point on the horizontal
axis corresponds to a selection budget x enforced for the given
frame. For methods involving randomization, each experiment
is repeated 20 times, and the average performance is reported.
The hyperparameter € in the randomized greedy algorithm is set
to 0.5 for this figure.

The performance of all algorithms improves as x increases.
The uniform random and spatially gridded methods, while
computationally efficient, underperform in terms of estima-
tion accuracy. The randomized greedy algorithm performs bet-
ter than these two, particularly at small x, but still lags be-
hind the three greedy-based strategies proposed in this arti-
cle. Although randomized greedy is relatively fast, its run-
time remains higher than that of the linearization-based greedy
method.

Notably, the performance of the randomized greedy method
begins to converge to that of uniform random as x increases.
This is a result of using a fixed e: as x grows, the number of
candidates sampled in line 5 of Algorithm 3 becomes a smaller
fraction of the total, causing the method to behave increasingly
like a random selector. Similarly, the observed fluctuations in
the runtime of randomized greedy stem from this fixed e: al-
though increasing x generally raises cost, smaller sample sizes
at larger ~ can offset this, producing nonmonotonic trends.
Nevertheless, the overall time complexity remains stable and
approximately constant.

As expected, the fast low-rank greedy algorithm (Algo-
rithm 2) closely tracks the performance of the simple greedy
algorithm (Algorithm 1) while executing significantly faster. In-
terestingly, the linearization-based greedy method (Algorithm 4)
also achieves nearly identical estimation performance, but at
a fraction of the computational cost, with a runtime that is
effectively constant across x, outperforming all other methods
except for the spatially gridded baseline.

These results highlight that the choice of feature selection
method should be guided by the specific requirements of the
application. When computational resources are limited and fast
decision-making is crucial, for instance in onboard processing on
micro aerial vehicles, the linearization-based greedy algorithm
emerges as the most practical option. It provides near-optimal
accuracy at a fraction of the cost, with virtually constant runtime.
In contrast, if achieving the lowest possible estimation error is
the primary goal and computational constraints are relaxed, the
fast low-rank greedy algorithm offers the best tradeoff: it main-
tains the performance of full greedy selection while significantly
reducing runtime. For offline evaluation or small-scale problems
where cost is not a limiting factor, the simple greedy method
remains a reliable, though expensive, benchmark. When ap-
proximate results are acceptable and further speedup is desired,
randomized greedy presents a balanced middle ground that is

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

=——e— optimal =e= simple == randomized == linearized

Fig.4. Performance comparison of the proposed feature selection methods on
the MH_01_easy sequence from the EuRoC dataset. The evaluation considers
selecting k = 1, ..., 10 features from a pool of 10 candidates, allowing com-
parison against the optimal solution obtained via exhaustive search. The results
show that the greedy algorithm achieves identical performance to the optimal
method, despite the MSE-based objective not being submodular. The linearized
method closely matches this performance with minimal deviation, while the
randomized approach exhibits slight fluctuations due to the fixed ¢, yet follows
a similar overall trend.

especially effective at smaller selection budgets, though it may
degrade as x grows unless ¢ is adaptively tuned. Finally, in
extreme low-power scenarios, such as onboard deployment with
severe runtime limits, uniform random or spatially gridded meth-
ods are the cheapest alternatives, though they should be avoided
if accuracy is a priority. Overall, these findings enable practi-
tioners to make informed choices based on the performance—
efficiency tradeoffs relevant to their robotics pipeline.

Fig. 4 presents a numerical evaluation comparing various
selection methods proposed in this article against the opti-
mal solution, thereby highlighting their relative performance
bounds. To make exhaustive combinatorial search tractable, the
experiment is limited to selecting from the top 10 candidate
features, screened through a quality check, for a single frame of
the MH_O1_easy sequence. All other hyperparameters used in
this experiment are identical to those in Fig. 3. Interestingly,
the greedy and optimal results are identical. This is notable
because the MSE-based VIN objective in (1) is not generally
submodular, and the greedy algorithm typically offers weaker
theoretical guarantees, as characterized in (11). Nonetheless, this
observation is consistent with findings from prior work [5] and
related studies in other domains [34], [42].

With only minor fluctuations, the linearized algorithm closely
tracks the performance of both the greedy and optimal solutions.
This supports our conclusion that, although linearization pro-
vides a surrogate for the MSE objective, it yields nearly identical
performance while being significantly faster. As expected, the
randomized greedy algorithm, despite some variability due to
the fixed e, follows the same general trend as the optimal, albeit
with slightly reduced accuracy.

The curvature () and submodularity ratio () for the greedy
selection shown in Fig. 4 were calculated via exhaustive search
using their respective definitions provided in (9) and (10). These
values are then utilized to obtain the performance bound sug-
gested by Theorem 1. The values of v and +y as functions of « are
presented in Fig. 5(a), while the corresponding calculated per-
formance bound using these parameters is displayed in Fig. 5(b).
Notably, for our nonsubmodular MSE-based VIN performance
function (1), the submodularity ratio «y for the greedy selection
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Fig. 5. (a) Curvature (o) and submodularity ratio () as functions of . (b)
Performance bound calculated using « and  values.

over this specific set remains consistently equal to one for
all values of «, indicating submodularlike behavior. However,
nonsubmodular functions can exhibit submodular behavior in
certain regions or under specific conditions. For instance, the
marginal gains for some particular subsets may exhibit sub-
modular characteristics, even if the function globally violates
submodularity.

The calculated bound for this greedy feature selection shows
that the performance objective of the subset obtained by the
greedy algorithm exceeds 80% of the optimal performance ob-
jective. This result perfectly explains why, in Fig. 4, the objective
of the greedy selection closely matches that of the optimal action.

Fig. 6 presents the L1, Lo, and L, norms of the translational
error (in meters) between the ground-truth and estimated UAV
trajectories, computed over the entire flight path. To this end, the
estimated and ground-truth trajectories are first aligned using
the procedure described in [43]. Then, at each time step, the
Euclidean distance between corresponding aligned positions is
calculated. The overall error is summarized using the L, Lo,
and L., norms over the resulting sequence of distances. Each
bar in the figure represents one of the selection methods from
Fig. 3; the simple greedy method includes both the standard and
low-rank variants, which yield identical results.

A closer look at the three panels yields several key ob-
servations. The linearization-based greedy algorithm achieves
nearly identical performance to simple greedy in terms of both
cumulative error (L) and root-mean-square error (Lo) across
the full trajectory. Interestingly, the L., plot shows that lin-
earized greedy achieves slightly lower worst-case deviation from
ground-truth compared to simple greedy. While this does not
imply improved robustness in a strict sense, it suggests that the
linear surrogate may better regulate error accumulation in certain
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Fig. 6. Translational error (in meters) between the ground-truth and estimated
UAV trajectories on the MH_01_easy sequence from the EuRoC dataset. Ateach
time step, the Euclidean distance between corresponding positions, computed
after applying a rigid transformation for alignment, is calculated. The overall
error is then summarized using the L1, L2, and L, norms over the sequence
of these distances. The feature selection budget is fixed at x = 70 for this
experiment, and the selection methods correspond to those shown in Fig. 3.

trajectories. In addition, randomized greedy shows comparable
performance to both simple and linearization-based greedy in L
and Lo, and even outperforms them in terms of L.,. This
indicates that a modest degree of random sampling can, at times,
match or even exceed the performance of more computationally
intensive methods. Finally, both uniform random and grid-based
baselines remain the least accurate across all error metrics,
reinforcing their limited suitability for precision-sensitive ap-
plications.

These insights refine our practical guidelines: when accuracy
is the top priority and computational resources allow, simple (or
fast low-rank) greedy remains the most reliable choice. For sce-
narios with tight runtime constraints, linearization-based greedy
offers an attractive balance between accuracy and efficiency.
Meanwhile, randomized greedy may be favored when both
computational efficiency and robustness to worst-case errors
are important, as it achieves competitive performance in L4
and Lo, and attains the lowest L., error among all methods,
making it suitable for scenarios where large deviations must
be minimized. Simpler heuristics such as uniform random or
grid-based selection should be reserved for the most constrained
applications, where runtime dominates and estimation precision
is less critical.

Fig. 7 compares the performance of greedy feature selection
when using two different objective functions: MSE and log-det.
This comparison highlights how the choice of objective influ-
ences the quality of the solution in practice. The left subfigure
presents the relative translational error (RTE) across various
values of « for both objectives, while the right subfigure shows
the absolute translational error (ATE) for the same settings.
Both RTE and ATE are computed following the definitions
provided in [43]. In most cases, the MSE-based objective yields
lower errors, consistently outperforming the log-det approach.
This is expected, as MSE directly quantifies estimation error,
whereas the log-det objective serves as a surrogate for overall
uncertainty, capturing the volume of the estimation covariance
ellipsoid but not directly minimizing specific error metrics
like MSE.

Importantly, the log-det function is known to be submod-
ular [5], which allows for the use of greedy algorithms with
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Fig. 7. Comparison between greedy feature selection using MSE and log-

det objectives across different values of x. Left: (RTE. Right: ATE. The
MH_01_easy sequence from the EuRoC dataset is used for evaluation.

a worst-case approximation guarantee of (1 — 1/e) ~ 63% of
the optimal. While this provides a strong theoretical guarantee,
it does not always result in better empirical performance. In
contrast, the MSE objective is not submodular. However, this
article provides a constant-factor approximation guarantee for
greedy selection under the MSE objective, despite its nonsub-
modularity. As shown in Fig. 5, our proposed approximation
bound is tighter in practice, demonstrating that the greedy so-
lution under the MSE objective performs within 80% of the
optimal solution even in the worst case. Notably, the bound
developed in this article is general and can also be applied to the
log-det objective, potentially yielding tighter guarantees than the
standard (1 — 1/e) bound.

To further analyze and visually assess the performance of the
greedy algorithm, Fig. 8 presents the estimated UAV trajecto-
ries alongside the ground-truth over the entire flight path. For
computational efficiency, the fast low-rank variant of greedy is
used. The top subplot shows the estimated trajectory from the
low-rank greedy method compared to the ground-truth, while
the bottom subplot includes the trajectory obtained from the
linearization-based greedy method. This method was included
due to its comparable performance and significantly lower run-
time, as demonstrated in earlier experiments.

The results shown in this figure support the earlier obser-
vations: both the fast low-rank greedy and linearization-based
greedy methods follow the ground-truth trajectory closely, and
the distance between their estimates and the ground-truth re-
mains consistently small throughout the entire sequence. This
explains why their translational error metrics (L1, L, and L)
in Fig. 6 are nearly identical. For this experiment, the selection
budget « is set to 70.To exploit more deeply the EuRoC dataset
for more meaningful results, Table I presents the performance of
different feature selection strategies on three sequences from this
benchmark, covering a range of difficulty levels. Challenging
datasets such as MH_05_difficult involve fast motion and rapid
viewpoint changes. All results are reported under a strict feature
budget of k = 70 features per frame. This constraint ensures
fair comparison across methods and highlights the ability of
each selection strategy to operate effectively under limited visual
information.
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Fig.8.  Visual comparison of the trajectories obtained using different selection
techniques on the MH_01_easy sequence from the EuRoC dataset. The top
subplot shows the estimated trajectory of the UAV using the fast low-rank greedy
algorithm (in green), and the bottom subplot shows the trajectory estimated
by the linearization-based greedy algorithm (Algorithm 4), in brown. The
ground-truth trajectory is shown in black in both plots for baseline comparison.
Both methods follow the ground-truth trajectory closely and maintain a similar
distance from it over the entire flight path, which explains their nearly identical
translational error norms in Fig. 6. For this experiment, the selection budget « is
set to 70 and the prediction horizon 7" is set to 13. (a) Estimated trajectory using
fast low-rank greedy (green) vs. ground truth (black). (b) Estimated trajectory
using linearization-based greedy (brown) vs. ground truth (black).

We include a simple baseline method, denoted “quality,”
which selects the « features with the highest Shi-Tomasi scores
using the goodFeaturesToTrack functionin OpenCV. This
method is commonly used in VIN pipelines and only accounts
for the appearance quality of the visual feature. Table I reports
the RTE for all approaches, with the ATE also included for
completeness. As before, both RTE and ATE are computed
following the definitions provided in [43].

The results confirm the trends observed earlier. On the easier
sequence (MH_01_easy), the simple greedy method achieves the
lowest error, with randomized and linearization-based greedy
methods performing nearly as well. The “quality” baseline
performs competitively on this sequence, which is expected
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TABLE I
EUROC RESULTS WITH 70 FEATURES AND MSE

Sequence Method RTE [m] ATE [m]
quality  0.3843+0.076  0.2323 + 0.114
random  0.4437 +0.085  0.2621 + 0.127
MEH O eas grid 0.4491 +0.088  0.2767 + 0.133
01_easy simple  0.3561+0.080 0.2176 + 0.110
randomized  0.3613 +0.064  0.2187 + 0.105
linearized 0.3664 £ 0.073 0.2142 4+ 0.10
quality  0.4753+0.197  0.2923 + 0.137
random  0.8184 +0.284  0.3300 + 0.143
. grid 0.5366 + 0.195  0.3302 + 0.142
MH_03_medium 0 1o 05392+ 0.203  0.3197 + 0.154
randomized  0.4971 4+ 0.187  0.3066 + 0.135
lincarized  0.4825 +0.192  0.2947 + 0.132
quality  0.7011+0.214  0.3150 + 0.075
random  0.6655+0.172  0.3005 + 0.091
. grid 0.6482 +0.166  0.3091 + 0.084
MH_03_difficult — lle 07204+ 0.220  0.3189 + 0.091
randomized  0.6623 +0.168  0.3173 + 0.078
lincarized  0.6606 +0.200  0.3039 + 0.074

given its moderate motion and stable feature tracks. How-
ever, on more dynamic sequences such as MH_03_medium
and MH_05_difficult, methods that incorporate motion-aware
criteria (such as greedy, randomized, and linearized) consistently
outperform the quality-based, random, and grid-based baselines.

In MH_05_difficult, where motion is more aggressive, the
linearization-based method achieves the lowest ATE and RTE
among all strategies, except for one baseline in each case. This
result suggests that its surrogate objective, despite being an
approximation of MSE, remains effective even in challenging
settings. Randomized greedy also performs well across all se-
quences, striking a good balance between computational cost
and accuracy, especially in medium-difficulty settings.

These results further emphasize that appearance-based meth-
ods alone (e.g., “quality”’) may suffice for simple scenes but
quickly degrade in more dynamic environments. In contrast,
strategies that account for motion dynamics, such as the pro-
posed greedy-based methods, offer more consistent and robust
performance across a range of operating conditions.

Several existing feature selection approaches, such as [21]
and [44], employ a similar idea but are limited to a one-step
prediction horizon (7" = 1). To examine the effect of increasing
the prediction horizon 7' on both performance and computa-
tional cost, we conducted an experiment using the MH_01_easy
sequence from the EuRoC dataset. In this experiment, we ap-
plied the simple greedy algorithm to an MSE-based objective
function.

Fig. 9 summarizes the results. The top plot shows the scaled
MSE performance, measured as the trace of the inverse infor-
mation matrix, as a function of the horizon 7'. Since the size of
the information matrix increases with (7" + 1), we normalize the
MSE by 1/(T + 1) to enable a fair comparison across different
horizon lengths. The bottom plot presents the corresponding
computational time (on alogarithmic scale) versus 7". Each curve
corresponds to a different feature budget .

Two main observations can be made from the Fig. 9. First,
for a fixed value of 7', larger feature budgets ~ lead to better
MSE performance but also higher computational cost. Second,
increasing the horizon 7" consistently improves performance up
to a point. This improvement occurs because a longer horizon
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Fig. 9. Effect of prediction horizon 7" on estimation performance and compu-

tational cost for a single frame from the MH_01_easy sequence in the EuRoC
dataset. The simple greedy algorithm is applied to the MSE-based objective. Top:
Scaled MSE (trace of the inverse information matrix) as a function of horizon
length T°; performance improves with longer horizons until saturation. Bottom:
Computational time (log scale) versus 7'; runtime increases with horizon length.
Each curve represents a different feature budget «.

allows the algorithm to account for features that remain visible
over extended periods, which tend to be more informative and
reduce estimation error. However, once the horizon exceeds
the visibility duration of these features, the performance gain
saturates. Based on the figure, this saturation becomes evident
when T reaches around 23 or higher. Given that the EuRoC
camera operates at 20 Hz, a horizon of T' = 23 corresponds to
approximately one second into the future.

We verified that the same qualitative scaling trends with re-
spect to x and 7" hold for all algorithmic variants (low-rank, ran-
domized, and linearized greedy). Including every corresponding
plot would require multiple subfigures beyond the page limit;
therefore, we make the complete set of results available in the
accompanying project repository’.

The MSE in Fig. 9 is computed for a single frame based on pre-
dicted feature visibility and the corresponding information ma-
trix. Therefore, the MSE continues to improve with increasing 7'
until this additional visibility information is fully exploited. In
contrast, computational cost increases steadily with 7, as shown
in the bottom plot.

The MSE and computational cost reported in Fig. 9 are
computed for a single frame with the highest number of detected
features in the sequence, using precomputed feature visibility
and the corresponding information matrix. As the prediction
horizon 71" increases, the MSE improves until all available vis-
ibility information is fully exploited, while the computational
cost steadily increases, as shown in the bottom plot. The purpose
of this figure is to illustrate the trend in MSE and computational
time as a function of the prediction horizon 7', rather than to
evaluate the real-time applicability of the selection method.

Uhttps://github.com/SiamiLab/NonsubmodularVisual Attention The GitHub
repository provides access to the dataset, implementation code, and video
demonstrations associated with this work.
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The next subsection details the real-time implementation of
the proposed methods on a realistic QCar trajectory and presents
corresponding runtime results.

B. Experimental Case Study

While the EuRoC dataset serves as a valuable benchmark for
evaluating feature selection algorithms under diverse visual and
motion conditions, it does not include control input data. This
limitation prevents deployment of the full anticipation-based
feature selection pipeline proposed in this work, which relies
on forward simulation of robot dynamics for predicting future
feature visibility.

To overcome this limitation and evaluate the complete
pipeline, we conducted a complementary experiment using the
QCar platform, a 1/10-scale autonomous vehicle designed for
academic research in robotics and self-driving technologies [31].
This setup allows us to integrate control-aware future visibility
prediction into our feature selection strategy.

The QCar is equipped with a 9-axis IMU and a ZED stereo
camera. The IMU exhibits accelerometer and gyroscope noise
standard deviations of o, = 0.2 and o4 = 0.2, respectively,
with corresponding bias random walks o,, = 0.001 and o, =
0.001. IMU data is collected at 50 Hz, while the stereo camera
captures synchronized images at a resolution of 1280 x 720
pixels at 30 Hz.

In the experiment, the QCar follows a cancer-ribbon shaped
trajectory designed to introduce a range of headings. All sensor
data, including IMU measurements, stereo images, and control
commands, are recorded and formatted to align with the EuRoC
dataset structure'. Ground-truth trajectories are obtained using
a network of eight motion capture cameras (OptiTrack Prime
X) installed in a 6 x 6 m? indoor lab environment. The experi-
mental setup, comprising the QCar, the executed trajectory, and
a representative set of real-world objects, was presented earlier
in Fig. 1.

We extended the open-source VINS-Mono framework [39],
excluding loop closure (i.e., using full odometry), to incorpo-
rate our feature selection techniques. In the anticipation-based
approach, we simulate future motion using a discrete-time
kinematic bicycle model. This model propagates future states
based on the current pose estimate from the VIO backend and
recent control commands (linear velocity and steering angle).
Specifically, at each prediction step h, the heading 1, and
position t;, € R? are updated according to

cos Py,
the1 =ty +up | sinegy, | - At
0
Up,
Ype1 = Py + — tan gy, - At (22)

L

where w, and Jy, are the linear speed and steering angle at
step h, L is the vehicle’s wheelbase, and At is the integration
time step. The predicted trajectory {(tn, 1)} allows forward
visibility prediction and enables more informed feature selec-
tion. Although a constant velocity is assumed during propaga-
tion, small disturbances are naturally present in practice.

Zhttps://github.com/SiamiLab/NonsubmodularVisualAttention The GitHub
repository provides access to the dataset, implementation code, and video
demonstrations associated with this work.
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Fig. 10. Comparison of estimated trajectories under different feature budgets,

using MSE-based selection with the simple greedy algorithm. The ground-truth
trajectory from motion capture and the trajectory obtained without feature
selection (i.e., using all features) are shown for reference.

We adapted the open-source VINS-Mono framework [39] to
incorporate our feature selection methods. As in the EuRoC
experiment, we use OpenCV’s Shi-Tomasi [40] for feature
detection and Lucas—Kanade [41] for tracking, extracting up
to N = 150 features per frame. Our selection algorithms retain
at most k < N features, which are then used by the back-end
for state estimation.

As in the EuRoC experiments, the prediction horizon is set
to T'= 13. To evaluate the effect of the feature budget on
estimation accuracy, Fig. 10 shows estimated trajectories under
different values of x, the number of features selected for back-
end optimization. The simple greedy algorithm is applied to our
MSE-based objective for feature selection. For comparison, we
also show the ground-truth trajectory from the motion capture
system and the trajectory obtained without any feature selection
(i.e., using all extracted features at all times), labeled as “no se-
lection”. As expected, increasing the number of selected features
leads to more accurate estimates, with trajectories that deviate
less from the ground truth. Notably, the trajectory obtained under
a moderate selection budget of x = 70 achieves visual accuracy
comparable to the no selection case, demonstrating the efficiency
of the proposed selection method.

Quantitatively, the ATE computed for each trajectory follow-
ing [43] further supports this discussion. The “no selection”
case achieves 0.1681 + 0.069 m while the greedy selection with
k=50,70,90, and 110 yields 0.4966 + 0.248, 0.2394 + 0.094,
0.2400 +£ 0.091, and 0.1684 £ 0.060 m, respectively, confirm-
ing that budgets of x > 70 attain accuracy statistically compa-
rable to using all features.

The top plot in Fig. 11 shows the translational error (vertical
axis) between the estimated and ground-truth trajectories from
Fig. 10, plotted over time (horizontal axis). While the error
fluctuates along the trajectory due to changes in robot motion
and feature visibility, increasing the feature budget consistently
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Fig. 11.  Top: Translational error over time between the estimated and ground-

truth trajectories for different feature budgets, corresponding to Fig. 10. Feature
selection is performed using the simple greedy algorithm applied to the MSE-
based objective. As expected, increasing the number of selected features reduces
the estimation error. Bottom: Feature selection history over time for x = 90.
Each row represents a feature ID; green indicates selected features, red indicates
observed but unselected features, and white indicates features not visible. The
diagonal pattern reflects the short visibility window of each feature, and the
consistent reselection of visible features demonstrates the expected behavior of
the algorithm.

reduces the overall estimation error, as expected. The bottom plot
depicts the selection history of visual features over time when
selecting up to xk = 90 features per frame (from a maximum
of 150). The vertical axis corresponds to feature IDs. White
indicates the feature was not observed at that time, red indicates
it was observed but not selected, and green indicates it was
selected. The diagonal banding pattern reflects that features are
typically visible only for short durations as the robot moves.
Moreover, once a feature is selected, it tends to be consistently
reselected in subsequent frames until it leaves the field of view,
demonstrating the expected temporal consistency of the selec-
tion algorithm.

In addition, Fig. 12 presents a snapshot of the algorithm at a
specific point along the trajectory. At this moment, the predicted
future positions using the bicycle model (discussed earlier) over
a horizon of T' = 13 are shown alongside the actual observed
feature horizon. As illustrated, the predicted and actual horizons
closely align at this randomly selected point. This figure serves
as a demonstration of the accuracy of the motion prediction used
in the anticipation-based feature selection.

Table II presents the average per-frame runtime for different
feature selection strategies in the QCar experiment under a
fixed feature budget of x = 70. The “No Selection” baseline
uses all available features (up to 150 per frame) without any
filtering, requiring no runtime for selection but resulting in a
significantly higher optimization time in Ceres. In contrast, all
other methods apply selection before back-end optimization,
reducing the number of features passed to Ceres and therefore
improving its runtime. Notably, the linearized and randomized
methods achieve the lowest total runtime, with the linearized ap-
proach being the most efficient overall. The simple and low-rank
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Fig. 12. Comparison between the predicted future horizon generated by the

kinematic bicycle model and the ground-truth trajectory. The right panel shows
a zoomed-in view of the predicted horizon to highlight the alignment between
the simulated and actual motion.

TABLE II
RUNTIME COMPARISON FOR QCAR EXPERIMENT UNDER x = 70 FEATURE
BUDGET
Selector Selection [ms] Ceres [ms] Total [ms]
No Selection - 24.75 24.75
Simple 82.01 13.14 95.14
Low-rank 72.25 13.85 86.10
Randomized 11.18 13.18 24.36
Linearized 7.75 13.61 21.36

Times are averaged per frame over the full trajectory .

greedy methods, while more computationally intensive during
selection, still significantly reduce the cost of the optimization
stage.

It is important to note that the runtimes reported here differ
from those in Figs. 3 and 9, where the selection algorithms
were evaluated intentionally on frames containing the maximum
number of features (i.e., 150). In the QCar experiment, however,
the actual number of candidate features per frame is often
lower due to limited visibility and occlusion. Moreover, features
selected in previous frames are directly carried over to the next
frame if they remain visible. As a result, the number of new
features that need to be selected is reduced, contributing to the
lower selection times observed in this table.

In addition, the runtimes reported under the “Selection” col-
umn include the total computation required per frame, including
generating the forward prediction horizon, performing visibility
checks, constructing the information matrices, and applying
the selection algorithms. In contrast, the runtimes shown in
Figs. 3 and 9 reflect only the time required to apply the selection
algorithms, assuming all required inputs are already available.
The lower computation times in the table, especially for the lin-
earized method, highlight its suitability for real-time, on-the-fly
applications.

To further support this experiment, we conducted an addi-
tional analysis to provide insight into the per-frame runtime
of two contrasting selection methods: the computationally in-
tensive yet effective simple greedy method, and the efficient
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Fig. 13.  Per-frame runtime comparison between the simple greedy and lin-

earized selection methods in the QCar experiment with time horizon 7" = 13
and feature budget x = 70. The linearized method exhibits consistently lower
and more stable runtimes, highlighting its suitability for real-time applications.

and fast linearized method. Fig. 13 presents the per-frame
runtime (vertical axis) of the two methods over a sequence of
frames (horizontal axis) in the QCar experiment. As shown,
the linearized method consistently achieves significantly lower
runtime compared to the simple greedy method.

The observed variability in the runtime of the simple greedy
method is expected. This variability arises due to fluctuations in
the total number of visible features and, more importantly, the
number of features that need to be newly selected at each frame,
since some features are carried over from previous frames if
they remain visible. These factors directly impact the selection
time in greedy approaches. In contrast, the linearized method
avoids iterative selection and instead computes a single score
per feature based on the linear part of the objective, which is
the main computational step, regardless of how many features
are to be selected. It then selects the top-« features, making its
runtime largely insensitive to the number of features selected
in each frame. These results highlight the suitability of the
linearized method for real-time use. The experiment uses the
same time horizon and feature budget as Table II, with 7" = 13
and x = 70.

The QCar experiments demonstrate the feasibility of deploy-
ing our full anticipation-based feature selection pipeline in a
control-aware setting. Leveraging control inputs and a motion
prediction model enables forward visibility checks, which in-
form the selection process. Experimental results validate that
increasing the feature budget consistently enhances state esti-
mation accuracy, and runtime evaluations reveal practical trade-
offs among feature selection strategies. Overall, the proposed
anticipation-based selection methods offer a promising mecha-
nism for balancing feature usage, accuracy, and computational
cost in visual-inertial estimation tasks, and may generalize to
other multistep estimation frameworks.

V. CONCLUSION

We have presented and rigorously evaluated four practical
algorithms for task-aware feature selection in VIN across two
experimental settings. On the EuRoC MAV benchmark, chosen
for its standardized indoor sequences and wide adoption for fair
comparison, we showed that our fast low-rank greedy variant
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matches the classic greedy method in accuracy while reducing
computation time, and that our linearization-based approach
operates in real time with performance close to the greedy
baseline. On our custom QCar platform, designed to capture
control-aware navigation dynamics, we evaluated how each
method adapts under realistic motion and sensing conditions,
demonstrating reliable performance without relying on idealized
assumptions.

Despite these strengths, our study has two notable limitations.
First, the theoretical approximation bounds based on submod-
ularity ratio and curvature, while providing worst-case guaran-
tees, can be conservative and may not fully predict empirical
performance in all scenarios. Second, the randomized greedy
variant introduces sampling variability and may require careful
tuning of the randomization parameter to balance consistency
and computational load.

These results confirm that, depending on application con-
straints, one can choose maximum accuracy (fast low-rank
greedy), extreme speed (linearization-based greedy), or bal-
anced performance (randomized greedy), all with rigorous ap-
proximation guarantees. In particular, the real-time capabil-
ity of the linearization-based method makes it especially well
suited for onboard deployment on resource-constrained plat-
forms without sacrificing estimation quality.

Our work underlines both the theoretical depth and the prac-
tical breadth of task-aware sensor selection, demonstrating its
effectiveness from controlled benchmark scenarios to real-world
robotic systems. Looking forward, several promising directions
remain.

1) Multiagent extensions: Exploit cross-robot feature sharing
and cooperative information gains in teams operating in
dynamic environments.

2) New sensor modalities: Generalize the modular Taylor-
approximation framework to LiDAR, depth, or event-
camera measurements under richer noise and motion mod-
els.

3) Adaptive budgeting: Develop online schemes to adjust
the selection budget in response to scene complexity and
control objectives.

4) Tighter theoretical bounds: Incorporate higher-order ap-
proximations or stochastic batch selection to refine per-
formance guarantees.

5) Matrix-free strategies: Investigate ultralightweight selec-
tion schemes that eliminate matrix operations entirely,
enabling deployment on resource-constrained platforms
requiring extreme-speed decisions.

Addressing these open questions will further enhance the

applicability and impact of task-aware sensor selection across
diverse robotic applications.

APPENDIX

A. Background and Definitions

This section presents background material and definitions that
support the theoretical developments in the article.

Definition 5. (Closed function): Let f: R™ — R U {+o0}
be an extended-real-valued function, and define its (effective)
domainbydom f = {z € R"| f(z) < +00}.Thefunction f
is said to be closed if, for every € R, the sublevel set {x IS
dom f | f(x) < B}, is a closed subset of R™.
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Remark 3: 1If f is continuous on a closed domain, then f is
closed. When dom f is open, f is closed if and only if f(zx) —
+oo for every sequence {xy } that approaches a boundary point
of dom f [45].

B. Missing Proofs

This section presents the proofs that complement the theoret-
ical findings discussed in the main text of the article.

1) Proof of Theorem 1I: Recall that ’I‘raceﬂg1 =
Z?:l m, where n =97 +9. Let Qy = Qm + ZleU A
represent the information matrix considering all extracted
features at the given time frame.

In the first part of the proof, we establish a lower bound for
the submodularity ratio . Referring to Definition 3, this can be
achieved by finding a lower bound for the fraction

Dierys [1S)  Dieris S (SUAL}) — f(S)]
RS) f(RUS) — f(S) '
For the numerator of this fraction, we have

Y [F(SU{) — f(9)

leR\S

1
=2 Z ~ Mi(Qsupy)

I€R\S

ZZER\S Zz 1

(23)

Li(Qsuqy)
Q)

— )\i(QS)

max(
RS [Trace Qsq1y — Trace Qs]
max(QU)

(Qu) ZTraceA1>§ [IR\S| A
IER\S

_ 2
)‘max

Qu) (24

max(

where § £ minjey TraceA;. Analogously, for the denominator,
we have

n

- 1
RUS) =
f( ; )"z QS ]z:; )‘j(QSUR)
i n [R\S|
() 1 1
< > -y
i RS 2i(Qs) = 2 (Qsir)
1 1
<|R\S _
N | \ | ()‘min(Q@) )‘max(QU)>
max(QU> - min(Q(ﬂ)
l \ | mln(Q@) nnx(QU) (

where inequality (i) holds due to the interlacing inequality of
eigenvalues. The combination of (24) and (25) provides the first
part of the proof as

. 0+ Amin () —
B )Lmax(QU) : ()\max(QU) - )Lmin(Q(Z))) -

In the final part of the proof, we obtain the bound for the cur-
vature. To do this, we determine the bound for 1 — . Referring
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to (9), this task is equivalent to establishing a lower bound for

f(SUR) — f(S\ {I}UR)
ORNICN (20
For the numerator of this fraction, we have
F(SUR) = f(S\{I}UR)
Yy 1 - ,
- ; 2i(Qs\1yur) ; A;(QsuR) Z Ok (S0) - 27)

where we use a similar derivation as in (24). Let us now consider
the denominator

F(S) = FS\A)

n n

=2

=1

1
2 (Qs)

This can be upper-bounded using the Cauchy interlacing in-
equality as follows:

i QS\{I}

1 _ 1 )"max(QU) - )\'mln(Q@) (28)
)‘«min(QS\{l}) )‘max(QS) - )\min(Q@) . )‘«max<QU) ’
Combining (27) and (28) yields a lower bound on 1 — «
Lo [SUR) =S\ {1} UR)
f(S) = f(S\{1})
5 )\min (Q@)
)‘-max (QU) ()‘-max (QU) - )‘-min (QQ)) .
Consequently
< & 1 5)"min (QV]) (29)
a<a=1-
)‘-max (QU) ()\Inax (QU )\min (Q(D) )
which completes the proof.
2) Proof of Proposition 2: Define ¢(1) => " 1/x; for

all A € RZ,. The function ¢ is continuous, symmetric, and
convex. Its domain is open, and ¢(1) — +o00 as min; ; — 0t
by Remark 3, ¢ is therefore closed. Because ¢ is smooth on RZ ),
it is differentiable at every A € RY,. Lemma 3 then implies
that p = ¢ o A is differentiable at every 2 € S% |

3) Proof of Proposition 3: Set A = (), and B £ As, so
that A = 0 and B = 0. Under the assumption € ||[A™' Bz <
1, we expand A+eB = A(I—I—eA’lB), and apply the
Neumann-series to (I + ¢ A™'B) ™1

1

(I+eA'B)" =1 - €A 'B+ &(A'B)? + O().
Multiplying on the right by A~! gives
(A+eB)™t = A1 — cA'BA™!
+ € A'BATIBAT + O().
Taking the trace yields

Trace((A+€B) ') = Trace(A™') — eTrace(A 'BA™")
+ € Trace(A'BA™'BA™!) + O(¢%).

= Trace(X 1), we obtain

p(A) — eTrace(A*B)

+ € Trace(A'BA™'BA™!) + O(€%).

Since p(X)
p(A+¢€eB) =
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Notice that
Trace (A_QB) = Trace (QQTQ Z A]) = Z Trace (962A1)

leS 1leS
= ().
leS
This proves (20).
To bound the second-order term, define M 2

A YV2BAY2 g0 that M =0 and B = AY2M AY/2.
Then

Trace(A"'BA™'BA™)
= Trace(A /2 (A7V/2BA1/2) (A1/2BA1/2) A71/2)
= Trace (M2 A’l).
Because A~ = 0, we have
Trace(M*A™") < [[A7!||; Trace(M?) = [[A™"]2 | M]Z.
Moreover

|M||p = ||A2BAT?|

IN

_ 2 .
A2 1Blle = A 2 1As] .
Combining gives

Trace (A’lBA’1 BA’l)

IA

_ _ 2
A7 2 (1A 12 1 As ] F)
1AM (1A%

Since [|As||r <3 s [|AlllF < £¢, we obtain the bound
in (21). This completes the proof.
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