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ABSTRACT Multi-view discriminant analysis (MvDA) achieves cross-view recognition by maximizing
global class separation, but fails when class boundaries are closely positioned– a critical limitation for
real-world applications like distinguishing similar facial expressions or robotic trajectories. We propose
Locally Enhanced Multi-view Discriminant Analysis (LE-MvDA), which achieves up to 97.7% accuracy on
RoboMNIST (6.3% improvement over state-of-the-art) by fundamentally reimagining how discriminative
subspaces preserve local structure. Unlike MvDA’s homogeneous treatment of data, LE-MvDA introduces a
supervised affinity matrix with adaptive local scaling factors (ωk = →xk ↑ x(K)

k →) that dynamically adjusts to
neighborhood density, ensuring samples from the same class remain cohesive while maximizing inter-class
margins. This class-aware locality preservation is integrated directly into the discriminative objective through
a unified generalized eigenvalue problem, eliminating the traditional trade-off between discrimination and
structure preservation. Extensive experiments demonstrate LE-MvDA’s superiority: 92.8% on Multi-PIE
(3.4% improvement), 91.9% on ORL (9.9% improvement), and competitive performance against deep
learning models (97.7% vs 98.1% for TimeSformer) while requiring 100↓ fewer parameters (30K vs 3M+
for TimeSformer) and achieving 40↓ faster inference (0.04ms vs 1.64ms for TimeSformer). LE-MvDA is
particularly valuable for resource-constrained deployments requiring both high accuracy and interpretability.
Its explicit projection matrices enable direct feature importance analysis, contrasting with the black-box
nature of deep learning alternatives.Nonetheless, deep learning remains advantageous for large-scale datasets
or tasks requiring end-to-end representation learning.

INDEX TERMS Affinity matrix, cross-view recognition, dimensionality reduction, LE-MvDA, locality
preserving projection, multi-view classification, multi-view discriminant analysis, multi-view subspace
learning, neighborhood preservation, robot action recognition.

I. INTRODUCTION

Multi-view learning faces a fundamental challenge when
existing methods like Multi-view Discriminant Analysis
(MvDA) fail to handle closely positioned class boundaries in
feature space, a common scenario in real-world applications
[1]. Such difficulties arise in tasks like distinguishing between
similar facial expressions (e.g., neutral vs. slight smile) or
robotic trajectories for drawing similar digits (e.g., 0 vs.
8), where patterns share curved shapes but differ in subtle
execution details. These cases expose the critical limitation
of global optimization approaches that treat all inter-class
relationships uniformly. Multi-view learning [2]–[5] has thus
become a central research domain, motivated by the com-
plementary nature of multiple perspectives: while individual

views capture partial characteristics, integrating them yields
a more comprehensive representation. However, this rich-
ness comes at the cost of higher dimensionality, leading to
the ‘curse of dimensionality’—reduced efficiency, increased
model complexity, and sparsity. Dimensionality reduction
techniques address this by projecting multi-view data into
compact, discriminative subspaces.
Classical single-view dimensionality reduction meth-
ods—including principal component analysis (PCA) [6],
linear discriminant analysis (LDA) [7], and locality pre-
serving projections (LPP) [8]—established foundations by
maximizing variance, discriminative separation, or local
structure preservation. Recent extensions of these techniques
using two-dimensional formulations [9], [10] have further
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improved recognition performance. Extending these ideas,
multi-view subspace learning (MvSL) methods—from early
approaches like Canonical Correlation Analysis (CCA) [11]
and Multi-view CCA (MCCA) [12] to recent advances [13]–
[17]—align diverse views into shared subspaces.

Supervised variants—including Generalized Multi-view
Analysis (GMA) [18] and Multi-view Discriminant Analysis
(MvDA) [2]—further exploit label information for classifi-
cation, with MvDA emerging as a leading approach due to
its joint optimization of view alignment and class separa-
bility. Yet, its global centroid-based separation proves inad-
equate for classes that are inherently close or overlapping,
as it ignores crucial fine-grained neighborhood structures.
Concurrently, while LPP preserves local geometry, its unsu-
pervised formulation leaves inter-class overlaps unresolved.
To address these complementary shortcomings, we propose
Locally Enhanced Multi-view Discriminant Analysis (LE-
MvDA). Unlike conventional approaches that separately ad-
dress discriminative learning and local structure preservation,
LE-MvDA introduces an adaptive affinity matrix with local
scaling factors (ωk = →xk ↑ x(K)

k → [19]) that dynamically
adjusts to neighborhood density within each class. This uni-
fied formulation, solved through a single generalized eigen-
value problem, preserves intrinsic neighborhood structures in
the learned subspace while maintaining strong discrimina-
tive power. By strategically maximizing between-class vari-
ations across both inter- and intra-view perspectives while
concurrently minimizing within-class variations, LE-MvDA
eliminates the traditional trade-off between local and global
objectives, achieving clearer class boundaries and improved
classification performance. Our main contributions can be
summarized as follows:

• Adaptive Local Discrimination:We introduce a super-
vised affinity matrix with adaptive local scaling, achiev-
ing up to 9.9% accuracy improvement over the strongest
baseline by better separating closely positioned classes,
while naturally handling heterogeneous class distribu-
tions.

• Unified Mathematical Framework: LE-MvDA em-
beds locality preservation into the discriminative ob-
jective within a single generalized eigenvalue problem,
simultaneously optimizing neighborhood preservation
and class separation in a unified formulation.

• Superior Performance Across Domains: LE-MvDA
consistently outperforms classical multi-view methods,
achieving up to 9.9% accuracy gain on benchmark
datasets. It also achieves accuracy within 0.4% of
TimeSformer while requiring 100↓ fewer parameters,
underscoring its efficiency.

• Interpretability and Efficiency: Unlike black-box
deep models, LE-MvDA offers transparent projection
matrices for feature analysis and delivers 0.04ms in-
ference latency, over 40↓ faster than TimeSformer,
enabling real-time deployment on resource-constrained
devices.

LE-MvDA offers a computationally efficient and inter-
pretable alternative to deep learning, ideal for small- to
medium-scale datasets and resource-constrained deploy-
ments. To establish LE-MvDA’s effectiveness against deep
learning approaches, we benchmark against representa-
tive architectures including Convolutional Neural Networks
(CNNs) [20], [21] and Transformers [22], as well as state-of-
the-art video understanding models (SlowFast [23], TimeS-
former [24]). This comparison highlights the trade-offs be-
tween end-to-end learning and modular approaches, demon-
strating LE-MvDA’s competitive performance while main-
taining significant advantages in computational efficiency
and interpretability for multi-view temporal data analysis.
It is worth noting that recent advances in efficient deep
learning architectures—such as DPNet [25] and Efficient-
Former [26]—demonstrate ongoing efforts to balance ac-
curacy and computational efficiency within the deep learn-
ing paradigm. While such optimizations represent valuable
improvements within deep learning frameworks, LE-MvDA
offers a fundamentally different approach through shallow
subspace learning, providing distinct advantages in mathe-
matical interpretability and extreme computational efficiency
that complement rather than compete with deep learning
efficiency innovations.
The remainder of this paper is organized as follows: Sec-
tion II reviews related work, Section III presents LE-MvDA’s
formulation, Section IV provides experimental validation,
Section V discusses limitations and future work, and Sec-
tion VI concludes the paper. Implementation is available at:
https://github.com/SiamiLab/LE-MvDA.git.

II. BACKGROUND ON MULTI-VIEW LEARNING AND
PRELIMINARIES
This section establishes the theoretical foundations for un-
derstanding our proposed approach. We introduce the math-
ematical notation used throughout this paper, then review
three fundamental methods that form the basis of our work:
FDA [27] for supervised dimensionality reduction, LPP [8]
for neighborhood structure preservation, and MvDA [2]
for multi-view discriminative learning. Understanding these
methods—their formulations and limitations—provides es-
sential context for our proposed LE-MvDA framework, which
integrates discriminative power with local structure preserva-
tion in multi-view settings.

A. NOTATIONS
In this paper, scalars are represented by lowercase italic
letters (e.g., x), vectors by lowercase boldface letters (e.g.,
x), matrices by uppercase boldface letters (e.g., X), and sets
by uppercase calligraphic letters (e.g., X ). Furthermore, tr(·)
denotes the trace operator, det(·) represents the determinant,
and the transpose of a matrix or vector is indicated by the
superscript →.
Additionally, to enhance the clarity of our presentation, we
define common notations forMvSL-based methods. Let xk ↔
Rd↑1 for k = 1, 2, . . . , n represent d-dimensional samples,
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where yk ↔ {1, 2, . . . , c} denotes the associated class labels.
Here, n represents the total number of samples, and c indicates
the number of distinct classes. The number of samples in class
i is denoted by ni, satisfying the condition:

c∑

i=1

ni = n.

The matrixX, composed of all the samples, is defined as:

X = (x1 |x2 | · · · |xn) ↔ Rd↑n.

We aim to project the high-dimensional data xk into a lower-
dimensional space, resulting in representations zk ↔ Rr↑1,
with 1 ↗ r ↗ d , where r is the dimensionality of the target
embedding space. Typically, d is large, while r is small. We
assume a linear dimensionality reduction framework, where
the transformation matrix T ↔ Rd↑r maps the data to the
lower-dimensional space:

zk = T→xk .

To formally establish the multi-view subspace learning
framework used in this study, we define the structure and
notation of samples across views. Specifically, we consider
the set of samples from the jth view as

Xj = {xijk | i = 1, . . . , c; k = 1, . . . , nij}.

where xijk ↔ Rd represents the kth sample from the jth view
of the ith class. Here, c denotes the number of classes, and nij
is the number of samples from the jth view corresponding to
the ith class. The samples from the v views are then projected
into the common space using the v linear transformations,
expressed as Z = {zijk = T→

j xijk | i = 1, . . . , c; j =
1, . . . , v; k = 1, . . . , nij}.
To further clarify, we define the mean of the low-dimensional
embeddings within each class. Specifically, let µi =
1
ni

∑v
j=1

∑nij
k=1 zijk represent themean of the low-dimensional

embeddings within the ith class, where ni denotes the total
number of samples in that class. Similarly, the overall mean
of all low-dimensional embeddings, denoted by µ, is given by

µ =
1

n

c∑

i=1

v∑

j=1

nij∑

k=1

zijk .

To clarify, these definitions of the mean are specific to the
context of low-dimensional embeddings within the MvDA
and LE-MvDA methods. Any alternative definitions used
elsewhere in this paper are explicitly specified. For ease of
reference, key notations are summarized in Table 1.

B. FDA
One of the most widely used techniques for dimensionality
reduction is FDA [27]. In this section, we briefly outline
the definition of FDA. Let SB and SW represent the within-
class scatter matrix and the between-class scatter matrix,
respectively:

SW =
c∑

i=1

∑

k:yk=i

(xk ↑ µi)(xk ↑ µi)
→,

TABLE 1. Descriptions of Notations.

Notations Descriptions
v Number of views
c Number of classes
n Total samples from all views and classes
ni Number of samples for all views in one class
nij Number of samples per class per view
d , r Original and reduced data dimensions
K Number of neighbors for affinity matrix construction
kclf Number of neighbors used in kNN classifier
T → Rd→r Projection matrix
A → Rn→n Affinity matrix
xk → Rd→1 Data point in original space
X → Rd→n Data matrix in original space
zk → Rr→1 Data point in target space
Z → Rr→n Data matrix in target space
yk → Rc→1 Class labels

SB =
c∑

i=1

ni(µi ↑ µ)(µi ↑ µ)→.

where
∑

k:yk=i indicates the sum over all k such that yk = i,
µi represents the mean of the samples in class i, and µ denotes
the overall mean of all samples:

µi =
1

ni

∑

k:yk=i

xk ,

µ =
1

n

n∑

k=1

xk =
1

n

c∑

i=1

niµi.

We assume that SW has full rank. The FDA transformation
matrix TFDA is defined as follows:

TFDA = argmax
T↓Rd→r

[
det

(
T→SBT

)

det (T→SWT)

]
.

FDA aims to find a transformation matrix T that maxi-
mizes the between-class scatter while minimizing the within-
class scatter. In the formulation above, it is implicitly assumed
that T→SWT is invertible. Consequently, the optimization is
subject to the constraint:

rank(T) = r .

Let {ωm}
d
m=1 represent the generalized eigenvectors corre-

sponding to the generalized eigenvalues ε1 ↘ ε2 ↘ · · · ↘

εd , as determined by the following generalized eigenvalue
problem:

SBω = εSWω.

The analytical solution to the above maximization problem
for TFDA is given by

TFDA = (ω1|ω2| · · · |ωr).
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C. LPP
PCA and LDA are designed to preserve the global structure of
data. However, in many practical scenarios, maintaining the
local structure is more critical. LPP [8] is an algorithm that
addresses this by learning a subspace that preserves local data
relationships. It focuses on preserve the intrinsic geometry
of the data, ensuring that samples close to each other in the
original space remain close in the projected space. The LPP
transformation matrix TLPP is defined as follows:

TLPP = argmin
T↓Rd→r



1

2

n∑

k,l=1

Ak,l→T
→xk ↑T→xl→

2



 ,

subject to T→XDX→T = Ir .

(1)

Here,D is an n-dimensional diagonal matrix, with the k-th
diagonal element defined asDk,l . LetA be an affinity matrix,
an n↓nmatrix where the (k, l)-th elementAk,l quantifies the
affinity between samples xk and xl . We assume that Ak,l ↔

[0, 1], where Ak,l is large when xk and xl are ‘‘close’’ and
small when they are ‘‘far apart.’’ There are various methods
to define the affinity matrix A, including approaches based
on the Heat Kernel, Euclidean Distance, Nearest Neighbor,
and Local Scaling.

Dk,k ≃

n∑

l=1

Ak,l .

Equation 1 indicates that LPP aims to find a transformation
matrixT that ensures data pairs close together in the original
spaceRd remain close in the embedding space. The constraint
in Equation 1 is introduced to avoid degenerate solutions. Let
{εk}

d
m=1 represent the generalized eigenvectors associated

with the generalized eigenvalues ϑ1 ↘ ϑ2 ↘ · · · ↘ ϑd ,
satisfying the following generalized eigenvalue problem:

XLX→ε = ϑXDX→ε,

where
L = D↑A.

In spectral graph theory [28], L is referred to as the graph-
Laplacian matrix, with A being the adjacency matrix of the
graph. The solution can be expressed as

TLPP = (εd |εd↔1 | · · · |εd↔r+1).

D. MVDA
MvDA [2], an extension of LDA designed for multi-view
problems, was developed to jointly capture view correlation,
intra-view discriminability, and inter-view discriminability.
MvDA aims to determine a set of linear transformations,
T1,T2, . . . ,Tv, that project samples from v distinct views
into a shared discriminative space. The optimal projection
matricesTv are obtained by maximizing the ratio of between-
class scatter to within-class scatter, ensuring that projected
data in the lower-dimensional space achieves maximum class
separability across all views.

In this shared space, MvDA’s objective is to maximize
the between-class scatter, SBZ , while minimizing the within-
class scatter, SWZ . This objective is effectively formulated as
a generalized Rayleigh quotient, framing the problem as an
optimization task. Letting Tv represent the projection matrix
for view v, the MvDA objective can be expressed as:

TMvDA = argmax
T1,...,Tv

tr(SBZ)
tr(SWZ )

. (2)

where the within-class scatter matrix SWZ accounts for vari-
ability within each class across views, and the between-class
scatter matrix SBZ captures the separability between different
classes. Specifically, these matrices are defined as:

SWZ =
c∑

i=1

v∑

j=1

nij∑

k=1

(zijk ↑ µi) (zijk ↑ µi)
T , (3)

SBZ =
c∑

i=1

ni (µi ↑ µ) (µi ↑ µ)T . (4)

Here, zijk denotes the projected samples, µi the class mean
for class i, and µ the global mean across all classes, enabling
MvDA to achieve an optimal discriminative structure within
the reduced-dimensional space.

III. LOCALLY ENHANCED MULTI-VIEW DISCRIMINANT
ANALYSIS
In this section, we present LE-MvDA, a supervised multi-
view classification approach that enhances traditional dis-
criminant analysis for high-dimensional data. Building on the
MvDA method, LE-MvDA incorporates local data structures
to improve discriminative power. The optimization objective
to determine the projection matrices is formulated as

TLE↔MvDA = argmax
T1,...,Tv

tr(TT S̃BZT)

tr(TT S̃WZT)
. (5)

where S̃BZ and S̃WZ denote the local between-class and
within-class scatter matrices, respectively. Formally, the local
within-class scatter matrix for the low-dimensional embed-
dings in the common space can be formulated as shown
below. For a detailed derivation, please refer to Appendix :

S̃WZ =
[
T1

→ T2
→ . . . Tv

→
]





S11 S12 . . . S1v
S21 S22 . . . S2v
...

...
. . .

...
Sv1 Sv2 . . . Svv









T1

T2
...

Tv




,

=
∑

j,r

Tj
→SjrTr.

with T =
[
T1

→,T2
→, . . . ,Tv

→
]→

and Sjr defined as fol-
lows:

Sjr =






∑c
i=1

∑
k:yk=i

∑
l:yl=iA

T
k,l


xijkx→

ijk

↑
∑c

i=1

∑
k,l:yk ,yl=iA

T
k,lxijlx

→
irk , j = r

↑
∑c

i=1

∑
k,l:yk ,yl=iA

T
k,lxijlx

→
irk . j ⇐= r

(6)
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Algorithm 1 The algorithm of LE-MvDA for dimensionality
reduction and Classification
Require: X ↔ Rd↑n: Data matrix of training samples,

yk ↔ {1, 2, . . . , c}: class labels,
A ↔ Rn↑n: Affinity matrix,
nij: Number of samples for class i and view j,
c: Number of classes,
v: Number of views,
kPCA: Number of principal components,
K : Number of neighbors for affinity matrix construction,
kclf: Number of neighbors used in final kNN classifier,
d , r : Original and reduced data dimensions
ε: Regularization parameter.

Ensure: T ↔ Rd↑r : Dimensionality reduction matrix
1: Compute sample totals:

ni =
v∑

j=1

nij, n =
c∑

i=1

ni

2: Center the data, compute covariance matrix, extract top
kPCA eigenvectors, and project to PCA subspace

3: Compute the mean matrix µij for each class i and view j
4: Compute local scaling factors ωk ,ωl for affinity matrix

construction based on K -nearest neighbors, as defined in
Equation (8).

5: Compute affinity values via a Gaussian kernel with local
scaling using Equation (7)

6: Compute the within-class scatter matrix Sjr using Equa-
tion (6)

7: Compute the between-class scatter matrix Djr by Equa-
tion (9)

8: Reshape Sjr andDjr from 4D tensors to 2Dmatrices S2D
jr

and D2D
jr

9: Regularize the within-class scatter matrix:

S2D
jr ⇒ S2D

jr + εI

10: Solve the generalized eigenvalue problem to obtain
eigenvectors T and eigenvalues D:

D2D
jr w = εS2D

jr w

11: Sort eigenvalues in descending order and retain the top r
eigenvectors to form the projection matrix T .

12: Project the data onto the learned LE-MvDA subspace:

Ztrain = T→Xtrain, Ztest = T→Xtest

13: Perform cross-validation to select the optimal number of
neighbors kcls for k-Nearest Neighbors (kNN) classifica-
tion

The weight matrixAT
k,l encodes the affinity between sam-

ples and is given by:

AT
k,l =






exp

↑

↗xk↔xl↗2

ωkωl



ni
if yk = yl = i,

0 if yk ⇐= yl .

(7)

where ωk and ωl are local scaling parameters, following the
self-tuning method proposed in [19]. Specifically, each local
scale is computed based on the distance to the K -th nearest
neighbor:

ωk = →xk ↑ x(K)
k →, ωl = →xl ↑ x(K)

l →. (8)

where x(K)
k and x(K)

l denote the K -th nearest neighbors of xk
and xl , respectively.
This adaptive local scaling ensures that the affinity weights
better reflect the underlying geometry of the data. This ap-
proach automatically adapts to local density variations, with
smaller ω values in dense regions and larger ω values in
sparse regions, making the affinity construction robust across
different data distributions.

S̃BZ =
[
T1

→ T2
→ . . . Tv

→
]





D11 D12 . . . D1v
D21 D22 . . . D2v
...

...
. . .

...
Dv1 Dv2 . . . Dvv









T1

T2
...

Tv




,

=
∑

j,r

Tj
→DjrTr.

where Djr is defined below. Here, µ(x)
ij = 1

nij

∑nij
k=1 xijk de-

notes the mean of the samples in the original feature space
corresponding to the i-th class and the j-th view.

Djr =

(
c∑

i=1

nijnir
ni

µ(x)
ij µ(x)↑

ir

)
↔

1

n

(
c∑

i=1

nijµ
(x)
ij

)(
c∑

i=1

nirµ
(x)
ir

)↑

. (9)

Algorithm 1 summarizes the complete LE-MvDA dimension-
ality reduction and classification process.
As noted in [29], the objective function in (5) is structured

as a trace ratio, which prevents the existence of a closed-
form solution. To facilitate a more tractable approach, we
reformulate it as a ratio trace, as shown below:

TLE↔MvDA = arg max
T1,...,Tv

tr


TT S̃BZT

TT S̃WZT


. (10)

which can be addressed analytically via generalized eigen-
value decomposition.

1) Computational Complexity

The overall training cost of LE-MvDA can be summarized as
follows:

• Affinity matrix construction:O(n2d) for pairwise dis-
tance computation and O(n2 log k) for k-nearest neigh-
bor search.

• Within-class scatter matrices: O(n2d2) due to pair-
wise operations and matrix multiplications.

• Generalized eigenvalue problem: O(d3) for eigen-
decomposition, assuming a small number of views v.

• Between-class scatter: O(cv2d2), which is negligible
compared to the above terms, where c is the number of
classes.
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Total training complexity: O(n2d2 + d3), which is asymp-
totically comparable to MvDA’s O(n2d2), with an addi-
tional O(d3) term for eigen-decomposition. In practice, the
O(n2d2) term dominates for large n.

A. LIMITATIONS OF EXISTING APPROACHES AND
LE-MVDA’S THEORETICAL DISTINCTIONS
While several attempts have been made to incorporate lo-
cal structures into multi-view learning, existing approaches
face fundamental limitations. Locality-preserving variants of
Canonical Correlation Analysis focus on correlation max-
imization rather than discriminant analysis, limiting their
applicability to supervised classification tasks. Local multi-
view clustering methods typically address unsupervised
learning scenarios and fail to leverage class label informa-
tion for enhanced discrimination. Among supervised multi-
view methods, MvDA represents a significant advancement
by combining multi-view learning with discriminant analy-
sis principles. However, MvDA faces limitations in certain
scenarios where it may not identify the most class-separable
space. This challenge arises from its focus on maximizing
class separation from the global mean, which can overlook the
distinctions between closely related class pairs [1]. Although
MvDA has proven effective in still image recognition tasks,
its application to video-based recognition remains unex-
plored. Additionally, MvDA does not explicitly enforce sepa-
ration of class centers, potentially reducing its discriminative
capability [1]. To overcome the identified challenges, LE-
MvDA introduces a supervised locality preservation mecha-
nism specifically designed for multi-view discriminant anal-
ysis through its class-aware affinity construction and unified
optimization formulation. The weight matrixAT

k,l , defined in
Equation (7), plays a central role in LE-MvDA by encoding
the class-aware local affinity between samples. This matrix
is constructed to preserve local neighborhood information
only within the same class, thereby enhancing intra-class
compactness without affecting inter-class separability. Un-
like unsupervised locality-preserving methods (e.g., LPP or
standard graph Laplacians), our affinity matrix is explicitly
supervised: entries are nonzero only when both samples xk
and xl belong to the same class. Furthermore, to avoid fixed-
scale kernel sensitivity and to better adapt to local density
variations, the similarity between samples is scaled using
local scale parameters ωk and ωl computed via the self-tuning
method in [19]. Each ω reflects the distance to the K -th
nearest neighbor of a sample, enabling the affinity structure
to automatically adapt to varying sample distributions. This
local scaling significantly improves robustness in heteroge-
neous or high-dimensional feature spaces. By integrating a
class-aware, adaptively scaled affinity matrix directly into
the multi-view discriminant objective, LE-MvDA unifies lo-
cal geometric structure and discriminative learning within
a single optimization framework—a key advancement over
prior methods that address these aspects independently. This
integration gives rise to what we term ‘‘discriminative lo-
cal neighborhoods,’’ where the simultaneous optimization of

both objectives leads to synergistic, rather than additive, gains
in classification performance.

IV. EXPERIMENTAL EVALUATION AND BENCHMARKING
In this section, we compare the classification accuracy of
LE-MvDA against several established methods, including
MCCA, MvDA, pc-MvDA, and MvDA-vc. The proposed
LE-MvDA is evaluated on three real-world datasets using
a system equipped with 32GB of RAM, an Intel Core i9-
12900HCPU (2.50GHz, 14 cores), and an NVIDIA GeForce
RTX 3080 GPU.
The remainder of this section introduces the datasets used
in our study, outlines the experimental setup and evalua-
tion framework, and presents detailed results comparing LE-
MvDA with the baseline methods.

A. DATASETS
1) Multi-PIE

The CMU Multi-PIE dataset [30] provides over 750, 000
face images of 337 individuals under varying viewpoints,
lighting conditions, and expressions. It includes 13 head-level
camera views spaced at 15° intervals from -90° to 90°, along
with two overhead views simulating surveillance angles. For
our study, we selected a subset of 62, 400 images from 240
subjects, each captured in 13 poses with 20 samples per pose,
focusing on neutral expressions for consistency. All images
were cropped to 56↓ 46 pixels. Figure 1 illustrates examples
of two individuals from different viewpoints.

2) ORL

The ORL dataset [31] comprises 400 images of 40 subjects,
with 10 images per subject captured from different angles
over two years under varying lighting conditions, facial ex-
pressions, and facial features. Each image has a resolution
of 92 ↓ 112 pixels with 256 grayscale levels. Following the
feature extraction strategy in [32], we created three views for
each image: the original grayscale image, features extracted
using Fast Fourier Transform (FFT) [33], and features ex-
tracted using Canny edge detection [34]. Thismulti-view con-
figuration enables a fair comparison of LE-MvDA with other
multi-view learning methods. Figure 2 shows examples of
two subjects from the original view, while Figure 3 illustrates
all three feature representations.

3) RoboMNIST

RoboMNIST [35] is a multimodal dataset designed for multi-
robot activity recognition (MRAR), integrating synchronized
data from three cameras (video), three WiFi sniffers (CSI),
and three microphones (audio). It features two Franka Emika
robotic arms performing 10 distinct activities—drawing dig-
its 0 through 9—at three velocity levels (high, medium, low),
resulting in 60 unique combinations with 32 repetitions each.
Recordings are 15 seconds long at 30 Hz, providing RGB
video from three camera angles at 2560↓720 resolution. Fig-
ure 4 illustrates the end effector’s positions for each activity,
providing a visual representation of the different trajectories
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FIGURE 1. Example from the Multi-PIE dataset: Two individuals shown with neutral facial expressions from different viewpoints.

FIGURE 2. Example from the ORL Dataset: Two individuals shown with neutral facial expressions.

FIGURE 3. Representative samples from the ORL dataset. The first
column shows the original grayscale images (Feature Set 1), the second
column presents frequency-domain features extracted using FFT
(Feature Set 2), and the third column depicts edge-based features
obtained with the Canny edge detector (Feature Set 3).

across the activities.
For this study, we selected a subset comprising one robotic
arm, three cameras positioned to capture different viewpoints,
operation at low velocity, and 30 repetitions per class. This
configuration results in a data tensor with dimensions 450↓
10↓ 3↓ 30, where 450 corresponds to the number of frames
per sample (30 frames per second over 15 seconds), 10 repre-
sents the number of activity classes, 3 denotes the number of
camera views, and 30 indicates the number of repetitions per
class.
While this study focuses on single-robot scenarios, the
dataset’s multi-robot architecture demonstrates LE-MvDA’s
potential scalability to complex coordination tasks. In multi-
robot settings, LE-MvDA’s tensor-based formulation can nat-
urally accommodate multiple robots as additional ’views,’

FIGURE 4. Example from the RoboMNIST dataset: The robotic arm
draws numbers 0 through 9 on a vertical imaginary plane, representing
10 distinct activity classes. The plot shows the end effector trajectories
for these numbers, with initial and final positioning phases omitted for
clarity, and the robotic arm and background removed.

FIGURE 5. Pose detection example from the RoboMNIST dataset
showing two key points annotated on the robotic arm: Key Point 1
(base of the arm, highlighted in red) and Key Point 2 (end effector,
highlighted in purple).

where each robot’s sensor data (end-effector positions) con-
tributes to coordinated action recognition. The class-aware
affinity matrix construction can capture synchronized be-
haviors across robot teams, enabling discrimination between
different coordinated actions.
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FIGURE 6. Visualization of the robotic arm’s end-effector trajectories,
extracted via pose detection, for two classes (class 0: top row; class 8:
bottom row) across three camera viewpoints (columns). Differences in
curvature and thickness reflect perspective variations, highlighting the
challenges of multi-view representation. The x- and y-axes denote pixel
positions, and the class numbers are highlighted for clarity.

B. EXPERIMENTAL SETUP AND VALIDATION FRAMEWORK
This section details the experiments conducted on three real-
world datasets to assess the effectiveness of the proposed LE-
MvDA in multi-view classification tasks. We benchmark LE-
MvDA against four established baseline methods: MCCA,
MvDA, pc-MvDA, andMvDA-vc. These baselines were cho-
sen as they represent both foundational and enhanced variants
of multi-view discriminant analysis. MCCA serves as an un-
supervised correlation-based baseline, while MvDA provides
a supervised framework that maximizes inter-class separabil-
ity across views. pc-MvDA and MvDA-vc build upon MvDA
by incorporating pairwise class-center constraints and view-
consistency regularization, respectively.
To mitigate the effects of high dimensionality and address
the Small Sample Size (SSS) problem [36], we applied PCA
as a preprocessing step for all methods. This ensures a fair
and consistent dimensionality reduction strategy across ex-
periments.
Building on this setup, we implement a two-phase framework
for multi-view classification. The first phase involves learn-
ing a shared subspace from multi-view training data, while
the second phase uses the learned representation to classify
unseen test samples.

1) Learning Phase

Given v views, the learning phase involves three key steps:
Feature Extraction:

• Multi-PIE and ORL Datasets: For the Multi-PIE
dataset, no additional feature extraction techniques were
required, as the raw pixel values provided sufficient
information for analysis. Similarly, in the case of the
ORL dataset, the raw pixel values were used for the
original view, while FFT and Canny edge detection were
applied to generate features for the other two views.

• RoboMNIST Dataset: In the RoboMNIST dataset,
training videos were processed using DeepLabCut [37]

for pose detection.We extracted 20 frames per video and
annotated two key points: the base of the robotic arm
and the end effector, as shown in Figure 5. DeepLabCut
employs a ResNet-50 [38] model pre-trained on Ima-
geNet [39] and fine-tuned for our task. The resulting
trajectories illustrate the end effector’s movement over a
15-second period, captured at 450 timestamps from three
distinct viewpoints. Figure 6 shows the pose detection
results for two distinct classes (0 and 8), which represent
an example of closely positioned class boundaries where
the curved movement patterns share similar shapes but
differ in subtle execution details, with data from three
camera views (columns labeled as View 1, View 2, and
View 3). Each subplot visualizes the trajectory of the end
effector, which is extracted using deep learning-based
pose detection and serves as a feature vector capturing
the movement dynamics across frames for further anal-
ysis. The x-axis represents the horizontal position in pix-
els, while the y-axis indicates the vertical position in pix-
els. The color coding shown in the legend below the plots
differentiates between bodypart1 (purple) and bodypart2
(red) in the detection process, providing insights into
how different body parts contribute to movement dy-
namics across the three camera views. The numbers 0
and 8 are highlighted in red for visual clarity. The full
pipeline, where the trajectory of the end-effector’s poses
is constructed and used as a feature vector, is illustrated
in Figure 7.

Common Space Construction: In this step, a common
feature space is built where training samples from the same
class are projected close to one another, even if captured from
different viewpoints. This is achieved by deriving v linear
transformation matrices, T , from the reduced training set
using each of the aforementioned methods. These matrices
are then applied to project the training samples from each
view into a low-dimensional subspace.
Building the Classifier: Once the v transformations are
learned, the features projected into the common space from
each view are used to train a single predictive model, ϑ, such
as a k-Nearest Neighbors (k-NN) classifier. The classifier is
constructed based on the projected training data, where each
sample is labeled according to its corresponding class. To
optimize performance, the number of neighbors (K ) is tuned
by varying K between 1 and 10, using majority voting among
the K nearest neighbors.

2) Prediction Phase

The prediction phase consists of two stages:
Feature Extraction: For the testing sample xijk from the j-
th view, features are extracted and subsequently projected
into a reduced-dimensional subspace using the corresponding
transformation matrix Tj. The projected feature vector is
expressed as zijk = T→

j xijk .
Class Prediction: The classifier ϑ(zijk) processes the pro-
jected feature zijk , and assigns the appropriate action label
based on the classifier’s output.
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FIGURE 7. Multi-view Robot Activity Classification Pipeline. The framework consists of three main stages: (1) Pose estimation is performed using
DeepLabCut with a ResNet-50 backbone, extracting keypoints from videos captured by three synchronized cameras observing robotic actions. The
extracted features are converted into view-specific time-series data, each encoding the motion dynamics from a different viewpoint. (2) These time-series
sequences are mapped from their original feature spaces into a shared subspace using linear transformation matrices T1, T2, and T3, one per view. (3)
Classification is then performed in the common subspace, where samples from different views are projected close together based on class similarity.
Shapes indicate different views (circle, square, triangle), and colors represent distinct activity classes (0–9), enabling consistent recognition across views.

FIGURE 8. Heatmap visualization of cross-view recognition accuracy of MvDA on the Multi-PIE dataset, reported as mean ± standard deviation over five
folds. Each cell indicates the rank-1 classification accuracy (%) across all pairwise combinations of camera views.

C. EXPERIMENTAL RESULTS
1) Experimental results on Multi-PIE dataset

Face recognition across different poses is evaluated using
both pairwise and multi-view approaches on the Multi-PIE
dataset, inspired by the general evaluation methodology pre-
sented in [2]. In the pairwise approach, the model is trained on
one view and tested on a different view. Since the Multi-PIE
dataset includes 13 distinct views, this results in 13 ↓ 12 =
156 pairwise evaluations, with rank-1 recognition accuracy
for each pair visualized in the heatmaps shown in Figures 8
and 9. As illustrated in these heatmaps, each cell reports the
percentage of correct rank-1 recognition for its respective
test and train view combination. Diagonal entries represent
cases where the model is trained and tested on the same
view, showing the highest performance (red colors indicating
high accuracy). Off-diagonal values reflect cross-view perfor-
mance, where the model is tested on a view different from the
one it was trained on. From Figure 8, we observe that MvDA

exhibits a clear dependency on viewpoint, with better perfor-
mance when the training and testing views are closer in angle,
as evidenced by the warmer (red) regions near the diagonal.
Performance decreases significantly as the angular difference
increases, shown by the cooler (blue) regions further from the
diagonal. In contrast, Figure 9 demonstrates that LE-MvDA
shows stronger cross-view generalization than MvDA, with
consistently warmer colors across the off-diagonal entries.
For instance, training on -90° and testing on -75° yields 92.2%
accuracy for LE-MvDA, compared to 88.3% for MvDA. The
heatmap visualization clearly illustrates LE-MvDA’s superior
ability to handle cross-view variations, with higher recog-
nition rates across various angular shifts, making it a more
robust solution for multi-view face recognition.
Additionally, we evaluated LE-MvDA in a multi-view sce-
nario, where for each experiment, samples from all views
except one are used for training, and the excluded view serves
as the test set. The results, presented in Figure 10, show
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FIGURE 9. Heatmap visualization of cross-view recognition accuracy of LE-MvDA on the Multi-PIE dataset, reported as mean ± standard deviation over
five folds. Each cell indicates the rank-1 classification accuracy (%) across all pairwise combinations of camera views.
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FIGURE 10. Heatmap visualization of classification accuracy for LE-MvDA
and baseline methods across various testing view angles on the Multi-PIE
dataset. Each column represents a method, and each row corresponds to
a test view. For each row, the model is trained on all views except the one
being tested, enabling evaluation of cross-view generalization. Results
are reported as mean ± standard deviation over five folds.

that MvDA-vc outperforms other methods. However, our pro-
posed LE-MvDA method achieves up to an 8.5% improve-
ment over MvDA-vc, demonstrating its ability to find a more
discriminative common space for feature representation. In
Figure 11(a), the affinity matrix for the Multi-PIE dataset
(comprising 240 classes, 13 views, and 20 samples per class,
totaling 62, 400 samples) exhibits a prominent diagonal struc-
ture segmented into smaller blocks. Each block along the di-
agonal corresponds to samples from the same class and view,

showing high similarity due to strong intra-class and intra-
view coherence. These bright yellow blocks indicate high
affinity values (close to 1), suggesting that samples within
each block are highly similar in the feature space. Conversely,
the off-diagonal regions appear mostly dark blue, represent-
ing low similarity between samples from different classes
or views. This sharp contrast between high and low affin-
ity regions highlights the ability of the locality-preserving
construction to capture both global and local neighborhood
structures. The affinity matrix is constructed within the LE-
MvDA framework using local scaling [19], which adapts
the affinity values based on neighborhood density, thereby
enhancing the matrix’s ability to reflect both global and local
data structures. This construction plays a key role in guiding
the discriminative projection learning process.
As shown in Table 8, both MvDA-vc and LE-MvDA out-
perform the other methods when evaluated on the entire
dataset using a conventional 70% training and 30% testing
split, rather than in pairwise or view-specific settings. For
creating the training and testing splits, 70% of the images
for each subject and pose (i.e., 14 samples per subject per
pose, totaling 240↓13↓14 images) were randomly selected
for the training set, while the remaining 30% (i.e., 6 samples
per subject per pose, totaling 240 ↓ 13 ↓ 6 images) were
reserved for the test set. Notably, LE-MvDA achieves a 3.4%
improvement over MvDA-vc, underscoring its effectiveness
in learning robust representations across the full multi-view
distribution.

2) Experimental results on ORL dataset

To further assess the effectiveness of multi-view learning
under both pairwise and multi-representation scenarios, we
conducted experiments on the ORL dataset. Several baseline
methods were evaluated alongside our proposed approach to
highlight its advantages and quantify performance improve-
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FIGURE 11. Affinity matrices of three datasets, illustrating the block-diagonal structure that indicates high intra-class and intra-view similarity, while
off-diagonal elements reflect weaker affinities across different classes and views. (a) Multi-PIE dataset, comprising 240 classes, 13 views, and 20 samples
per class, for a total of 62, 400 samples. (b) ORL dataset, comprising 40 classes, 3 views, and 20 samples per class, totaling 1, 200 samples. (c) RoboMNIST
dataset, containing 10 classes, 3 views, and 30 samples per class, for a total of 900 samples.
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FIGURE 12. Classification accuracy for each action label on the RoboMNIST dataset, comparing the proposed LE-MvDA with baseline methods. Error bars
denote the standard deviation over 10 repetitions, reflecting performance consistency. The x-axis indicates action labels, and the y-axis shows accuracy
(%).

TABLE 2. Rank-1 recognition accuracy (%) of MvDA on the ORL dataset,
evaluated across all pairwise combinations of feature representations.
Results are reported as mean ± standard deviation over five folds.

Test Train
Original view FFT Canny Edges

Original view 100.0± 0.0% 60.5± 1.1% 64.9± 1.9%
FFT 59.5± 1.4% 100.0± 0.0% 57.0± 1.3%

Canny Edges 56.5± 1.2% 55.0± 1.8% 100.0± 0.0%

TABLE 3. Rank-1 recognition accuracy (%) of LE-MvDA on the ORL
dataset, evaluated across all pairwise combinations of feature
representations. Results are reported as mean ± standard deviation over
five folds.

Test Train
Original view FFT Canny Edges

Original view 100.0± 0.0% 68.7± 0.8% 67.9± 1.0%
FFT 75.0± 1.1% 100.0± 0.0% 63.7± 0.9%

Canny Edges 75.0± 1.3% 59.6± 1.6% 100.0± 0.0%

ments in multi-representation learning. The results are pre-
sented in Tables 2, 3, and 4. Table 2 shows that while MvDA
achieves 100% recognition when trained and tested on the
same feature representation (or equivalently, the same view),

its performance declines substantially in cross-representation
settings. Table 3 demonstrates that LE-MvDA consistently
outperforms MvDA, particularly in cross-view scenarios,
with stronger generalization and consistently higher recogni-
tion rates, while still achieving 100% recognition on the same
feature representation. Beyond pairwise comparisons, Table 4
compares LE-MvDA with other baseline methods across var-
ious training and testing feature representation combinations
on the ORL dataset. The results confirm that LE-MvDA con-
sistently outperforms all baseline methods, achieving up to
89.7% accuracy and underscoring its superior generalization
capability and robust performance.
Figure 11(b) presents the affinity matrix for the ORL dataset
(with 40 classes, 3 views, and 20 samples per class), which
also demonstrates a clear block-diagonal pattern. As dis-
cussed in Figure 11(a), the diagonal blocks reflect high intra-
class and intra-view similarity, while the darker off-diagonal
areas confirm low cross-class and cross-view affinity. Despite
the smaller scale of ORL compared toMulti-PIE, the locality-
preserving affinity structure remains effective, capturing the
essential class-level relationships required for subspace learn-
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TABLE 4. Comparison of classification performance between LE-MvDA and baseline methods across different feature representation pairs on the ORL
dataset. Results are reported as rank-1 recognition accuracy (%) in the form of mean ± standard deviation over five folds for each test view.

Train FFT, Canny Edges Original View, Canny Edges Original View, FFT
Test Original View FFT Canny Edges

MCCA 66.5± 1.9% 60.0± 2.1% 68.8± 1.7%
MvDA 70.2± 2.3% 65.5± 1.8% 71.0± 2.0%

pc-MvDA 83.5± 1.4% 78.0± 2.2% 82.4± 1.5%
MvDA-vc 76.0± 1.6% 72.5± 2.0% 75.9± 1.9%
LE-MvDA 89.7± 1.2% 85.0± 1.7% 87.5± 1.4%

TABLE 5. Rank-1 recognition accuracy (%) of MvDA on the RoboMNIST
dataset, evaluated across all pairwise combinations of camera views.
Results are reported as mean ± standard deviation over five folds.

Test Train
View 1 View 2 View 3

View 1 100.0± 0.0% 84.8± 1.4% 60.0± 1.6%
View 2 78.0± 0.8% 100.0± 0.0% 68.5± 1.9%
View 3 75.0± 1.1% 55.5± 1.5% 100.0± 0.0%

TABLE 6. Rank-1 recognition accuracy (%) of LE-MvDA on the RoboMNIST
dataset, evaluated across all pairwise combinations of camera views.
Results are reported as mean ± standard deviation over five folds.

Test Train
View 1 View 2 View 3

View 1 100.0± 0.0% 95.0± 1.2% 94.7± 1.1%
View 2 95.7± 0.6% 100.0± 0.0% 92.3± 0.9%
View 3 95.0± 0.9% 91.0± 1.4% 100.0± 0.0%

TABLE 7. Comparison of classification accuracy between LE-MvDA and
baseline methods across various training and testing view angle
combinations on the RoboMNIST dataset. Results are reported as rank-1
recognition accuracy (%) in the format mean ± standard deviation over
five folds.

Train View 1, View 2 View 1, View 3 View 2, View 3
Test View 3 View 2 View 1

MCCA 70.5± 1.3% 71.0± 1.1% 73.0± 1.8%
MvDA 77.0± 1.3% 78.5± 1.6% 80.0± 0.8%

pc-MvDA 80.0± 1.9% 81.5± 1.0% 81.5± 1.4%
MvDA-vc 78.5± 1.7% 79.0± 0.9% 80.1± 1.0%
LE-MvDA 95.3± 0.6% 94.7± 1.5% 97.0± 1.2%

TABLE 8. Overall classification performance of LE-MvDA and baseline
methods on each benchmark dataset using a 70%/30% train–test split,
averaged over 5-fold cross-validation. Results are reported as mean ±
standard deviation.

Dataset MCCA MvDA pc-MvDA MvDA-vc LE-MvDA
Multi-PIE 79.9±1.2% 84.9±1.5% 85.8±1.3% 89.4±1.1% 92.8±0.9%

ORL 72.1±1.6% 74.0±1.3% 82.0±1.1% 80.4±1.0% 91.9±0.7%
RoboMNIST 75.9±1.4% 81.6±1.2% 91.4±0.9% 90.2±0.8% 97.7±0.5%

ing.
As shown in Table 8, both pc-MvDA and LE-MvDA outper-
form the other methods when evaluated on the entire ORL
dataset using a conventional 70% training and 30% testing
split. Notably, LE-MvDA achieves a 9.9% improvement over
pc-MvDA, demonstrating its superior ability to learn robust
representations across different feature transformations.

3) Experimental results on RoboMNIST dataset

a: Comparison with Multi-View Subspace Learning Methods
To evaluate the effectiveness of traditional multi-view learn-
ing techniques, including both pairwise and multi-view ap-

proaches, we apply baseline methods to the RoboMNIST
dataset. Tables 5, 6, and 7 present the rank-1 recognition rates
for MvDA pairwise evaluation, LE-MvDA pairwise evalua-
tion, and a comprehensivemulti-view comparison of all meth-
ods, respectively. Notably, as shown in Table 7, LE-MvDA
consistently outperforms all baselines, achieving up to 97.0%
accuracy in multi-view training scenarios—representing a
15.5% absolute improvement over the best baseline (pc-
MvDA)—and demonstrating superior generalization across
the RoboMNIST dataset.
Table 8 reports overall accuracy on the whole dataset using
a 70%/30% train–test split. For RoboMNIST, LE-MvDA
achieves 97.7% accuracy, surpassing the best baseline by
6.3% and demonstrating strong generalization across the en-
tire dataset.
Figure 11(c) presents the affinity matrix visualization for
the RoboMNIST dataset, which comprises 10 classes and 3
views per class, yielding a total of 900 samples. The matrix
reveals a clear block-diagonal structure, where each larger
diagonal block corresponds to a distinct class, and the three
smaller sub-blockswithin each represent different views. This
visually confirms that samples from the same class and view
are highly similar in the learned space, while those from
different classes or views remain dissimilar. The dark blue
off-diagonal regions signify low affinity values, reinforcing
the matrix’s ability to preserve strong intra-class and intra-
view coherence while minimizing inter-class and inter-view
similarities.
In a separate analysis, we compare the classification ac-
curacy of five baseline methods across ten action labels
in the RoboMNIST dataset, as shown in Figure 12. The
x-axis represents the action labels (0–9), while the y-axis
shows the classification accuracy in percentage. Each ac-
tion label is associated with five colored bars, representing
the accuracy achieved by each method. The performance
comparison reveals that LE-MvDA consistently outperforms
the other methods, achieving high accuracy, often exceeding
90% across most action labels. MvDA-vc and pc-MvDA also
exhibit strong performance, though they fall slightly behind
LE-MvDA in some cases. In contrast, MCCA consistently
performs the worst among the methods, with significantly
lower accuracy, particularly for certain action labels.
In summary, LE-MvDA consistently outperforms all other
methods, demonstrating strong robustness across various
datasets. While pc-MvDA and MvDA-vc show competitive
performance, they still lag slightly behind, with MCCA being
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the least effective method overall. Notably, on the RoboM-
NIST dataset, the performance gap between LE-MvDA and
the other methods is even more pronounced compared to
other datasets. This is likely due to LE-MvDA’s superior
handling of temporal data, such as video sequences, where
it significantly outperforms the other approaches.

b: Comparison with Deep Learning Methods.
To contextualize the effectiveness of LE-MvDA, it is impor-
tant to compare it against modern deep learning approaches
for multi-view data. This comprehensive evaluation high-
lights the strengths and weaknesses of both LE-MvDA (a
shallow subspace method) and deep learning models in multi-
view scenarios through a dual-level comparison strategy.
Our evaluation encompasses both paradigm-level baseline
comparisons and state-of-the-art video understanding model
comparisons to provide comprehensive insights. Initially, we
compare LE-MvDA against vanilla CNN and Transformer
models with the same preprocessing pipeline to establish
fundamental baseline comparisons between shallow subspace
learning methods and deep learning paradigms. These rep-
resentative architectures demonstrate the inherent trade-offs
between mathematically interpretable shallow methods and
deep learning, providing valuable insights into scenarios
where shallow methods offer advantages in interpretability,
and computational efficiency. To provide a more rigorous
evaluation, we further extend our comparison to include state-
of-the-art end-to-end video understanding models such as
SlowFast [23] and TimeSformer [24]. This dual-level com-
parison strategy allows us to demonstrate both the funda-
mental paradigmatic advantages of LE-MvDA and its com-
petitive performance against current deep learning state-of-
the-art, ensuring a balanced and comprehensive evaluation.
All these models, alongside our proposed LE-MvDAmethod,
were applied to the RoboMNIST dataset for comprehensive
performance assessment.
For the baseline comparison, we selected widely adopted
CNN and Transformer architectures which continue to serve
as strong baselines in contemporary research. To ensure fair
comparison, a consistent processing pipeline was adopted
where motion data from the robotic arm was recorded as
video sequences, analyzed using a pre-trained ResNet-50
model through DeepLabCut to extract high-level spatial pose
representations, as detailed in Section IV-B. The resulting
time-series pose data was used as input to both the CNN and
Transformer models for classification, as well as to the LE-
MvDA method for dimensionality reduction and classifica-
tion, ensuring uniform evaluation criteria.
The evaluation focuses on several key performance metrics,
including classification accuracy, model complexity, training
runtime, and inference speed—defined as the time required
to classify a single test sample. In the context of LE-MvDA,
model complexity is quantified by the number of parameters
in the learned projection matrix, training time reflects the
computation for constructing scatter matrices and solving the
generalized eigenvalue problem, and inference speed mea-

sures the time for subspace projection and k-NN classifi-
cation. Notably, While training requires O(n2) memory for
affinity matrix construction, inference only requires storing
the projection matrices and training samples.
As illustrated in Figure 13, the CNN model features two 1-D
convolutional layers with a kernel size of 3, using 32 and 64
filters, respectively. Each is followed by max-pooling (pool
size of 2) to downsample and extract key temporal features,
with a 0.1 dropout applied after the second pooling layer to
reduce overfitting. The output is flattened and passed through
a dense layer with 128 neurons activated by the Rectified
Linear Unit (ReLU) function, followed by a softmax layer for
classification.The model was trained for 50 epochs.
We employed a Transformer-based model comprising four
attention heads, a point-wise feedforward network with a
depth of 64, and three Transformer encoder blocks, followed
by a Multi-Layer Perceptron (MLP) classification head with
two dense layers of 128 and 64 units. The feedforward net-
work uses ReLU activation function. Additionally, a Global-
AveragePooling1D layer aggregates the output tensor from
the Transformer encoders. The model was trained within
200 epochs, without extensive hyperparameter tuning. An
overview of the architecture is presented in Figure 14.
As shown in the baseline comparison in Table 9, while the
CNN achieves the highest accuracy (99.6%), LE-MvDA of-
fers a compelling balance between accuracy and efficiency,
attaining 97.7% accuracy with dramatically fewer parameters
(30Kvs. 917K for the CNN) andminimal training time (0.002
seconds vs. 934.08 seconds for CNN), making it highly suit-
able for resource-constrained applications.
Beyond the baseline comparison, we evaluate LE-MvDA
against sophisticated video understanding models including
SlowFast [23] and TimeSformer [24]. Unlike the vanilla CNN
and Transformer models which served as paradigm-level
baselines, these models represent current state-of-the-art in
video analysis. SlowFast employs dual-pathway architecture
to capture both spatial details and temporal dynamics, while
TimeSformer applies self-attention across both spatial and
temporal dimensions for video understanding. Both models
were fine-tuned for our multi-view robotic motion classifica-
tion task, using raw video sequences as input for end-to-end
learning—unlike LE-MvDA, which relies on a pose-based
pipeline. As shown in Table 10, TimeSformer achieves the
highest accuracy (98.1%), while SlowFast reaches 97.2%.
Remarkably, LE-MvDA delivers competitive performance
(97.7%) that falls between these two state-of-the-art models
while requiring 100↓ fewer parameters and achieving over
250, 000↓ faster training with 40↓ faster inference than
TimeSformer. This demonstrates that LE-MvDA provides an
excellent accuracy-efficiency trade-off, making it particularly
valuable for applications where computational efficiency is
paramount.
These results highlight the complementary nature of both
approaches: deep learning models may be more suitable
when maximum accuracy, large training datasets, complex
non-linear modeling, or end-to-end learning from raw data
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FIGURE 13. Architecture of the CNN model for action recognition, illustrating the processing pipeline from multi-view input frames through a ResNet-50
feature extractor and convolutional layers to final action classification.

FIGURE 14. Architecture of the Transformer-based model for action recognition, illustrating the processing pipeline from multi-view input frames through
a ResNet-50 feature extractor and Transformer encoder blocks to the final action classification.

TABLE 9. Classification accuracy (%) of LE-MvDA, CNN, and Transformer
models on RoboMNIST using a 70%/30% train–test split, averaged over
5-fold cross-validation. Results are reported as mean ± standard
deviation

Model Acc. # Param Train Time Infer Time
CNN 99.6± 0.2% 917,162 934.08 s 19.09 ms

Transformer 97.0± 1.7% 84,526 1800.50 s 60.04 ms
LE-MvDA 97.7± 0.5% 30,000† 0.002 s 0.040 ms

†Calculated as 100↑ 300, where 100 is the PCA-reduced input dimension
(kPCA) and 300 is the subspace dimension (r).

are prioritized. Conversely, shallow subspace methods like
LE-MvDA offer superior advantages for small-to-medium
datasets, where competitive performance at minimal compu-
tational cost, along with efficiency, and interpretability are
critical considerations.
Additionally, LE-MvDA offers better interpretability through
its explicit projection matrices, which allow direct analysis of
feature importance by examining projection weights, enable
visualization of which original features contribute most to
class separation across different views, and provide math-
ematical transparency in how the dimensionality reduction
process transforms the data. This contrasts with deep learning
models where feature transformations occur through multiple
non-linear layers that are difficult to interpret directly.

D. ABLATION STUDIES AND PARAMETER ANALYSIS
To comprehensively evaluate the design choices and param-
eter sensitivity of LE-MvDA, we conduct a comprehensive
ablation study focusing on three aspects: different affinity

TABLE 10. Classification accuracy (%) of LE-MvDA and state-of-the-art
end-to-end deep learning models on RoboMNIST using a 70%/30%
train–test split, averaged over 5-fold cross-validation. Results are
reported as mean ± standard deviation.

Model Acc. # Param Train Time Infer Time
SlowFast 97.2± 0.4% 956,290 1824.25 s 3.17 ms

TimeSformer 98.1± 1.3% 3,060,128 517 s 1.64 ms
LE-MvDA 97.7± 0.5% 30,000† 0.002 s 0.04 ms

†Calculated as 100↑ 300, where 100 is the PCA-reduced input dimension
(kPCA) and 300 is the subspace dimension (r).

TABLE 11. Classification accuracy (%) across different affinity matrix
construction methods on Multi-PIE, ORL, and RoboMNIST datasets.

Affinity Construction Method Multi-PIE ORL RoboMNIST
Locally Scaled Gaussian (Proposed) [19] 92.8 91.9 97.7
Standard Heat Kernel (ω = 1.0) [40] 89.4 88.4 95.1
Sparse Heat Kernel (K = 7, ω = 1.0) [41] 89.5 89.0 92.9
Binary K-NN (K = 7) [41] 90.6 90.1 91.3

matrix constructions methods, the number of nearest neigh-
borsK , and the effect of PCA dimensionality on classification
performance. These studies provide insights into themethod’s
robustness and guide optimal parameter selection across dif-
ferent datasets.

a: Affinity Matrix Construction Analysis
We compare four commonly used graph construction strate-
gies in subspace learning:

• Locally ScaledGaussianKernel (Proposed): Employs
adaptive local scaling parameters ωi computed from
the distance to the K -th nearest neighbor, as defined
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FIGURE 15. Sensitivity analysis of the K parameter in k-nearest neighbor
affinity matrix construction for LE-MvDA. Classification accuracy is
evaluated as a function of neighborhood size across three benchmark
datasets. Filled markers indicate optimal K values achieving peak
performance.

FIGURE 16. Impact of PCA dimensionality on LE-MvDA classification
performance. Accuracy trends are shown as a function of retained
principal components across three benchmark datasets, illustrating the
trade-off between dimensionality reduction and information preservation.

in Equation (8). This approach adapts to local density
variations in the feature space [19].

• Standard Heat Kernel: Utilizes a fixed global band-
width parameter ω shared across all data samples, fol-
lowing the conventional Gaussian kernel formulation
exp(↑→xi ↑ xj→2/2ω2) [40].

• Sparse Heat Kernel: Combines k-nearest neighbor
sparsification with Gaussian weighting, applying the
heat kernel only to the K nearest neighbors while setting
all other connections to zero [41].

• Binary K-NN Graph: Uses binary connectivity
weights, assigning unit weight to the K nearest neigh-
bors and zero otherwise, representing the simplest graph
construction approach [41].

Table 11 presents the classification performance of the

affinity matrix construction methods across all three datasets.
The locally scaled Gaussian kernel consistently achieves the
highest accuracy, demonstrating its effectiveness in capturing
meaningful local neighborhood structures across diverse data
distributions.

b: K-Nearest Neighbor Parameter Sensitivity
We further investigate the impact of the K parameter in the
affinity matrix by evaluating LE-MvDA performance across a
range of K values (Figure 15). Accuracy peaks around K = 7
for all three datasets, with RoboMNIST reaching 97.7%,
Multi-PIE 92.8%, and ORL 91.9%. These values represent
the highest observed performance and are highlighted in Fig-
ure 15. Beyond K ⇑ 15, performance stabilizes, indicating
convergence and robustness to this hyperparameter. These re-
sults suggest that K = 7 offers an effective trade-off between
classification accuracy and computational efficiency.

c: Impact of PCA Dimensionality
Figure 16 examines how PCA dimensionality affects LE-
MvDA performance across datasets. RoboMNIST demon-
strates consistent accuracy above 95% regardless of com-
ponent count, indicating that temporal motion patterns are
efficiently captured in lower dimensions. Conversely, facial
recognition datasets (Multi-PIE and ORL) show substantial
improvement with increased dimensionality: Multi-PIE rises
from 71.1% to 92.8% and ORL from 67.7% to 91.9% when
expanding from 10 to 100 components. These findings sug-
gest that while RoboMNIST’s temporal dynamics are effec-
tively captured in lower-dimensional spaces, the spatial com-
plexity of face recognition tasks in ORL and Multi-PIE ne-
cessitates higher-dimensional embeddings to retain discrim-
inative information. Overall, the results establish 100 PCA
components as the optimal configuration, offering a strong
trade-off between computational efficiency and classification
performance in the LE-MvDA framework.

V. LIMITATIONS AND FUTURE DIRECTIONS
While LE-MvDA demonstrates significant advantages in
computational efficiency and competitive accuracy, it also
presents several methodological limitations. One notable lim-
itation is the need to tune hyperparameters, such as the num-
ber of neighbors K and the PCA dimension kPCA, via cross-
validation, which may increase computational cost and sensi-
tivity to dataset-specific characteristics. More critically, LE-
MvDA’s main limitation is the O(n2) memory requirement
during training due to affinity matrix construction, where n
represents the total number of samples. This quadratic scaling
in both memory and computation becomes prohibitive for
large datasets—particularly in high-dimensional spaces—and
limits scalability to datasets with hundreds of thousands of
samples. The primary computational bottleneck lies in com-
puting pairwise distances between samples. To address these
limitations, future extensions could incorporate techniques
such as approximate nearest neighbor search, sparse affinity
graphs, or mini-batch affinity updates to improve scalability.
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Additionally, several research directions could broaden the
applicability of LE-MvDA. Another promising direction is to
adapt LE-MvDA to semi-supervised or unsupervised learn-
ing settings, where labeled data is scarce. Techniques such
as pseudo-labeling, view-consistent regularization, or graph-
based label propagation could be integrated into the affinity-
based formulation to support label-efficient learning. More-
over, developing online variants of LE-MvDA would enable
real-time adaptation to streaming multi-view data. Another
valuable extension involves applying the method to more
diverse domains, such as multimodal sensing or cross-view
retrieval, to further evaluate its generalization and robustness
in practical applications.

A. SCOPE OF APPLICABILITY
When to use LE-MvDA:

• Small-to-medium datasets (n < 100K samples)
• Real-time inference requirements (< 1ms)
• Need for model interpretability
• Limited computational resources (edge devices)
When to prefer deep learning:
• Large-scale datasets (n > 1M)
• Raw sensory input without feature extraction
• End-to-end learning requirements
• Sufficient computational resources

VI. CONCLUSION
This paper introduced Locally Enhanced Multi-view Dis-
criminant Analysis (LE-MvDA), a supervised dimensionality
reduction method for multi-view classification that com-
bines the discriminative power of MvDA with the structure-
preserving properties of LPP. By leveraging adaptive affinity
matrix construction, LE-MvDApreserves local neighborhood
relationships while enhancing class separability, particularly
for closely positioned classes.

Comprehensive experimental validation across three
benchmark datasets confirms the effectiveness of our ap-
proach. LE-MvDA demonstrates substantial performance
improvements, achieving 92.8% on Multi-PIE (3.4% im-
provement), 91.9% on ORL (9.9% improvement), and 97.7%
accuracy on RoboMNIST (6.3% improvement). Unlike most
existing multi-view methods that focus primarily on static
data, our approach successfully captures temporal patterns in
multi-view video sequences, making it particularly suitable
for dynamic recognition tasks.
Comparative analysis with baseline deep learning models
(CNN and Transformer) and state-of-the-art video under-
standing models (TimeSformer and SlowFast) highlights
complementary strengths. While deep learning approaches
may achieve slightly higher accuracy, LE-MvDA provides
significant advantages in computational efficiency, including
substantially fewer parameters, faster training and inference,
and minimal hardware requirements. These features make
it especially suitable for resource-constrained or real-time

applications. Moreover, LE-MvDA offers enhanced inter-
pretability through its explicit projection matrices, enabling
direct analysis of feature importance and visualization of
class separation across different views.
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where ωk and ωl are local scaling parameters defined based
on the distance to the K -th nearest neighbor, as described in
Section III following [19].
Similarly, the between-class scatter matrix S̃BZ [2] for the low-
dimensional embedding from multiple views is formulated as
follows:
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