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Abstract 

T he Pf am protein f amilies database is a comprehensiv e collection of protein domains and f amilies used f or genome annotation and protein 
str uct ure and function analysis ( https:// www.ebi.ac.uk/ interpro/ ). This update describes major developments in Pfam since 2020, including de- 
commissioning the Pfam website and integration with InterPro, harmonization with the ECOD str uct ural classi�cation, and expanded curation 
of metagenomic, microprotein and repeat-containing families. We highlight how AlphaFold str uct ure predictions are being le v eraged to re�ne 
domain boundaries and identify new domains. New families discovered through large-scale sequence similarity analysis of AlphaFold models 
are described. We also detail the de v elopment of Pfam-N, which uses deep learning to expand family coverage, achieving an 8.8% increase in 
UniP rotKB co v erage compared to standard Pf am. We discuss plans f or more frequent Pf am releases integrated with InterP ro and the potential 
for arti�cial intelligence to further assist curation. Despite recent adv ances, man y protein f amilies remain to be classi�ed, and Pfam continues 
w orking to w ard comprehensiv e co v erage of the protein univ erse. 
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Introduction 

Pfam is a comprehensive database of protein families and do- 
mains that is widely used for the analysis of novel genomes 
and metagenomes. It serves as a crucial tool for guiding exper- 
imental research on speci�c proteins and systems. Each family 
entry within the Pfam database contains a seed alignment con- 
taining a representative set of sequences, from which a pro�le 
hidden Markov model (HMM) is generated. This HMM is 
then used to search against a sequence database called pfam- 
seq (containing sequences from the UniProtKB reference pro- 
teomes [RPs]) using the HMMER software ( http://hmmer. 
org/) ( 1 ). Sequence regions that meet a family-speci�c curated 
threshold, known as the gathering threshold, are aligned to the 
pro�le HMM to create a full alignment. Pfam entries are an- 
notated by our curators with functional information sourced 
from the literature, where available. 

Although the underlying sequence database used to build 
Pfam alignments is based on the UniProtKB RP, all the pro- 
�le HMMs are also searched against the whole of UniPro- 
tKB, and the resulting matches are made available on the In- 
terPro website ( https:// www.ebi.ac.uk/ interpro ) and in �at �le 
format on the Pfam ftp ( https:// ftp.ebi.ac.uk/ pub/ databases/ 
Pfam/releases ). 

When a Pfam entry is created or updated, we search it 
against pfamseq, trying to identify more distant homologs. 
Pfam entries are designed to avoid overlaps, ensuring that the 
same region of a sequence does not match more than one fam- 
ily. This non-overlap rule is an important quality control mea- 
sure, helping to prevent the inclusion of false positive matches 
within a family. However, since Pfam 28.0, we relaxed this 
rule to allow small overlaps between families, as resolving all 
overlaps during each Pfamseq update has become increasingly 
time-consuming ( 2 ). There are many situations, such as in- 
correct gene predictions due to skipped exons or fusions of 
adjacent genes that cause overlapping of models, that are ex- 
tremely dif�cult to resolve. 

Sets of Pfam entries that are believed to be evolutionarily re- 
lated are grouped into clans ( 3 ). Relationships between entries 
are identi�ed through sequence similarity, structural similar- 
ity , functional similarity , and / or pro�le-pro�le comparisons 
using software such as HHsearch ( 4 ). Where possible, a single, 
comprehensive pro�le HMM is built to detect all members of a 
family. For some of the larger superfamilies, where this is not 
feasible, multiple-pro�le HMMs are built and placed within 
the same clan. Since families within a clan are evolutionarily 
related, they are allowed to overlap with other members of the 
same clan. 

The development of advanced structure prediction meth- 
ods has profoundly impacted the construction of Pfam en- 
tries. High-accuracy structure predictions, particularly those 
generated by tools such as AlphaFold ( 5 ), have signi�cantly 
enhanced our ability to identify and characterize protein fam- 
ilies. These predictions provide crucial insights into the 3D 

conformations of proteins, which in turn inform the delin- 
eation of evolutionary relationships and functional annota- 
tions. By incorporating structural data, we can more accu- 
rately de�ne domain boundaries, detect distant homologs and 
resolve ambiguities that arise from sequence-based analyses 
alone. 

Here, we describe the work undertaken since Pfam release 
33.1, including the decommissioning of the Pfam website, our 
collaboration with the ECOD database ( 6 ), the utilization of 
structure predictions to construct new Pfam entries and en- 

hance existing ones, and some of the family updates imple- 
mented in Pfam release 37.0. We also detail the development 
of Pfam-N, which uses deep learning to expand the coverage 
of Pfam families. 

Decommission of the Pfam website 

In 2022, we took the decision to retire the Pfam website. 
The Pfam website codebase was �rst released over 20 years 
ago, and although it has been updated from time to time, 
some of its core functionality still dates to its origins. The 
Perl codebase represented a signi�cant technical debt, and it 
was becoming progressively harder to maintain. Additionally, 
the most time-consuming part of the Pfam release pipeline 
was the generation of data exclusively related to the web- 
site rather than the core data of Pfam, i.e. its alignments 
and models. To address this issue, we decided to use the In- 
terPro website as the primary way to view Pfam data. This 
would mean that European Molecular Biology Laboratory, 
European Bioinformatics Institute (EMBL-EBI), hosted a sin- 
gle website for protein family-related information rather than 
two. The InterPro website ( https:// www.ebi.ac.uk/ interpro ) 
has been redesigned using up-to-date technologies, includ- 
ing a modern framework (React) ( 7 ), and Pfam data and 
different viewing features are now available on the InterPro 
website. 

The decommission was carried out over the course of a year. 
The �rst step consisted of expanding the InterPro website to 
incorporate several features from the Pfam website that were 
lacking, including a compact protein domain view with a set 
of non-overlapping representative domains for each protein. 
This work is detailed in the paper describing InterPro in this 
issue (Blum et al ., 2025). The second phase consisted of an- 
nouncing the decommission to encourage Pfam users to start 
their transition to the InterPro website. Multiple announce- 
ments were made on the Pfam website, Pfam blog and social 
media platforms. We also ran a webinar highlighting where 
to �nd Pfam data on the InterPro website (Figure 1 ) to allow 

a smooth transition of Pfam users toward using the InterPro 
website. 

With the decommission of the Pfam website, we have also 
slightly changed the MySQL database schema, as some tables 
were only used by the Pfam website. The change has been 
made from Pfam release 36.0 onward. 

Although we tried to carefully explain our approach to 
users, there has been a persistent misunderstanding that be- 
cause the Pfam website was being shut down, the Pfam 

database itself was being terminated. As Mark Twain said af- 
ter erroneous press reports of his death, ‘The report of my 
death was an exaggeration’. We hope that this paper will help 
to quell the exaggerated rumors of our demise. 

Update of the Pfam documentation and online 

training materials 

With the decommissioning of the Pfam website, we have un- 
dertaken an extensive update of the Pfam documentation 
( https:// pfam-docs.readthedocs.io/ en/ latest/ index.html ) to as- 
sist users in locating relevant information on the Inter- 
Pro website. Additionally, we have revised the Pfam on- 
line training materials ( https:// pfam-docs.readthedocs.io/ en/ 
latest/training.html ), providing an important resource for 
users to become familiar with the concepts of Pfam and to 
�nd relevant information. 
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Figure 1. Example of a Pfam family page for the Ras domain (Pfam: PF0 0 071) on the Pfam legacy website ( A ) and on the InterPro website ( B ). 

From Pfam release 33.1 to release 37.0 

Since 2020 and the release of Pfam version 33.1, we have had 
four new releases of Pfam. Despite the growth of the UniPro- 
tKB RP, which has almost doubled in size, Pfam has been able 
not only to maintain its sequence coverage but has even in- 
creased it by 0.8% since Pfam release 33.1 (Table 1 ). We also 
see that the residue coverage has decreased by 0.5%, presum- 
ably due to an increase in the number of eukaryotic proteomes 
available that overall have a lower residue coverage. 

In the following sections, we describe some of the efforts to 
increase the content of Pfam in several important areas. 

Metagenomic protein families 

To increase the Pfam coverage of metagenomic sequence 
space, we have created 710 metagenomic protein families. 
These families were built by co-clustering the MGnify ( 8 ) and 
UniProtKB ( 9 ) protein sequences and generating candidate 
pro�le-HMMs for potential inclusion in Pfam. This pipeline 
used MMseqs2 ( 10 ) to carry out the clustering of MGnify and 

UniProtKB, which generated a set of 434 651 340 clusters. 
We kept clusters with at least 1 UniProtKB and 1 MGnify se- 
quence for which no Pfam had previously been assigned and 
automatically generated 10,000 candidate Pfam families that 
were put forward for curation. In general, our approach is to 
select the largest families after searching the HMMs against 
UniProtKB RP. We found there are still many large families in 
metagenomics data that are poorly represented in UniProt. As 
UniProt’s representation of genomics data improves, we will 
likely revisit building further families with this strategy. 

Harmonizing the Pfam and ECOD classi�cations 

With the production of AlphaFold models for essentially 
the entirety of UniProtKB ( 5 ), the goals and scope of both 
sequence and structure classi�cation have essentially con- 
verged. Whereas historically, databases like ECOD (Evolu- 
tionary Classi�cation of Protein Domains) and CATH (Class 
(C), Architecture (A), Topology (T), and Homologous Super- 
family (H)) have focused only on structures from the PDB, 
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Table 1. Summary of Pfam release content and UniProtKB Reference Proteome (RP) coverage 

Pfam 

Release 
Total number 
of families 

Total number 
of clans 

Number of 
new families 

Number of 
new clans 

UniProtKB RP 
size (number of 

sequences) 

UniProtKB RP 
sequence co ver age 

by Pfam 

UniProtKB RP 
residue co ver age 

by Pfam 

33.1 18 259 635 355 8 47 million 75.1% 49.3% 

34.0 19 179 645 935 11 57 million 74.5% 48.8% 

35.0 19 632 657 460 12 61 million 75.2% 48.7% 

36.0 20 795 660 1191 5 75 million 76.2% 48.6% 

37.0 21 979 709 1196 50 81 million 76.3% 48.8% 

they are now beginning to classify proteins where only struc- 
ture predictions are available. Given this background, we saw 

an opportunity to collaborate more closely. We work with the 
ECOD team to harmonize the Pfam and ECOD classi�cations. 
We developed a method to identify inconsistencies between 
the Pfam and ECOD classi�cations, detect missing Pfam fam- 
ilies, identify incorrect domain boundaries in Pfam, which led 
to splitting or merging existing Pfam entries, and assign clan 
membership to existing Pfams. In Pfam 36.0, we built 638 new 

Pfam entries to cover PDB entries which didn’t have a Pfam 

annotation but had an ECOD annotation. Based on this work, 
the ECOD database replaced its ECODf collection of HMMs 
with Pfam HMMs. This work is described in the paper de- 
scribing ECOD in this issue (Schaeffer et al ., 2025). Creating 
new Pfam families based on the ECOD classi�cation means we 
can easily identify relationships between existing families and 
the new ones, grouping them together into clans. This greatly 
facilitates the addition of families to existing clans or the 
creation of new ones. For example, we created the THUMP 
clan based on ECOD (THioUridine synthases, RNA Methy- 
lases and Pseudouridine synthases CL0747), which in Pfam 

36.0 included three families: the existing THUMP domain 
(Pfam: PF02926), the THUMP domain of eukaryotic Pus10 
(such as human Pus10 Q3MIT2 included in Pfam: PF21237) 
and the Ribosomal RNA large subunit methyltransferase M, 
THUMP-like domain (Pfam: PF21239). The THUMP domain 
is involved in RNA metabolism and is present in enzymes in- 
volved in at least three unrelated types of RNA-modi�cation. 

AlphaFold-driven curation 

AlphaFold has transformed the �elds of protein structure and 
classi�cation. Since its initial release, we have used AlphaFold- 
predicted structures to determine functions for previously un- 
characterized domains, identify missing domains and re�ne 
the boundaries of Pfam domains. An example of AlphaFold- 
guided re�nement of boundaries of Pfam entries is PF04762, 
which includes the Elongator complex protein 1 (ELP1, 
UniProtKB: O95163) from humans and its homologs. This 
Pfam model covered 70% of ELP1’s length and, from the 
AlphaFold prediction for this sequence, it was possible to 
split the model and create new entries to represent each 
of the domains in this group of proteins, which consist of 
two β-propellers at the N-terminus followed by a long, he- 
lical C-terminal dimerization domain. In Figure 2 A, the Al- 
phaFold prediction for ELP1 is displayed with the old match 
of PF04762 highlighted in green. Figure 2 B shows the repre- 
sentation of the domains after the re�nement of boundaries, 
including the newly created ones, which will be available in the 
next Pfam release. The annotations for the C-terminal dimer- 
ization domains of ELP1 (PF23925, PF23878 and PF23936) 
were also supported by ( 11 ). 

In collaboration with ECOD using their Domain Parser 
for AlphaFold Models (DPAMs) ( 12 ), we have been able to 
generate missing Pfam domains and re�ne the boundaries of 
existing domains. As a result, 114 new Pfam families were 
created up to Pfam release 37.0. For example, in the case 
of the NSUN5 28S rRNA (cytosine-C(5))-methyltransferase 
(UniProtKB: Q96P11), the methyltransferase domain existed 
(Pfam: PF01189), but the N-terminal (Pfam: PF21153) and 
middle (Pfam: PF21148) domains were missing Pfam annota- 
tions (Figure 3 ). 

New families and folds in the natural protein 

uni ver se 

We collaborated with members of the University of Basel / SIB 

who carried out a large-scale sequence similarity analysis of 
UniProt representatives with high-con�dence AlphaFold mod- 
els. The aim was to identify, prioritize and annotate novel pro- 
tein families, superfamilies and folds ( 13 ). A key aspect of this 
work was the creation of a sequence similarity network, which 
allowed us to examine clusters of functionally ‘dark’ proteins 
and discover 146 new Pfam families. A signi�cant fraction 
(133) of these newly identi�ed families are domains of un- 
known function. Nonetheless, within these ‘dark’ families, we 
identi�ed many intriguing cases, some of which are detailed 
below. 

DUF6919 (PF21897) 

One interesting �nding was DUF6919, which is found as 
a standalone domain in bacteria. Its function is unknown, 
but it has a detectable similarity to the C-terminal S- 
adenosylmethionine (SAM)-binding regulatory domain of 
5,10-methylenetetrahydrofolate reductase (MTHFR, Pfam: 
PF21895). The regulatory domain of MTHFR follows the 
catalytic domain, and this two-domain architecture is typi- 
cal only for eukaryotes. In MTHFR, this domain binds SAM, 
but its fold is topologically distinct from the classical SAM- 
dependent methyltransferases and non-methyltransferases 
( 14 ,15 ). Members of DUF6919 are predicted to share these 
unique topological features, comprising two antiparallel 
side-by-side-arranged β-sheets elaborated with α-helices. Be- 
sides the common structural core, DUF6919 and MTHFR 

are likely to have commonality in function, given the 
strict conservation of residues within the DUF6919 fam- 
ily that are also found in equivalent positions to residues 
constituting the eukaryotic MTHFR SAM-binding site 
(Figure 4 A). 

DUF6994 (PF22507) 

Another example discovered during the collaboration is 
DUF6994 (Pfam: PF22507), which is predicted to share 
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Figure 2. Re�nement of boundaries for Pfam entry PF04762 using AlphaFold prediction for human ELP1 (UniProtKB: O95163). ( A ) The AlphaFold model 

of ELP1 colored by pLDDT score (left) and by the original incorrect domain boundaries of Pfam entry PF04762. ( B ) Representation of the new boundaries 

for PF04762 and new Pfam entries for the additional domains of this protein (PF23797, PF32925, PF23878, and PF23936). 

Figure 3. The NSUN5 protein (UniProtKB: Q96P11) with enhanced Pfam domain coverage. ( A ) AlphaFold str uct ure prediction with the three domains 

highlighted: N-terminal, middle, and C-terminal. ( B ) Pfam annotations before (top) and after (bottom) the AlphaFold str uct ure prediction. Two additional 

domains ha v e been annotated: N-terminal (Pf am: PF21153) and middle (Pf am: PF21148) domains. 
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Figure 4. ( A ) Left: Superposition of the crystal str uct ure of the C-terminal SAM-binding regulatory domain of human MTHFR reductase bound to 

S-adenosylhomocysteine (SAH) (PDB: 6fcx, pink) and the AlphaFold2 model of an uncharacterized protein from Streptomyces candidus (UniProtKB: 

A0A7 × 0HLX8, light blue), a member of DUF6919. Right: Close view of the SAM-binding site of MTHFR. Residues conserved in eukaryotic MTHFR and 

in the DUF6919 SEED alignment are shown in sticks. SAH is shown in yellow. ( B ) Left: Superposition of the HNH minimal β- β- α str uct ural core of the 

AlphaFold model of uncharacterized protein from Arthrobacter sp. (UniProtKB: A0A1S9MJR2, orange) and the crystal str uct ures of the rare-cutting HNH 

restriction endonuclease PacI (PDB: 3m7k, light blue) and the CRISPR-associated Cas9 endonuclease from Acidothermus cellulolyticus (PDB: 8d2k, 

green). Metal ions are shown in pink. Right: Close view of the A0A1S9MJR2 putative active site. The invariant putative metal coordinating (D74 and 

N122) and catalytic (D23 and D25) residues are shown in sticks. ( C ) A side-b y -side comparison of the left: the AlphaFold2 model of uncharacterized 

protein YfjM from Bacillus subtilis (UniProtKB: O31547), a member of DUF6884 and the right: the crystal str uct ure of DNA-binding protein YaaA from E. 

coli (PDB: 5caj). Both str uct ures are rendered in cartoon format and colored in a rainbow gradient (blue to red, indicating N- to C-terminal end), 

highlighting str uct ure similarities. ( D ) L eft: AlphaFold3 model of YfjM bound to a DNA-RNA h ybrid (vie w from the top after a ∼90 ◦ rotation around the 

x -axis compared to the str uct ure shown in (C), left). Right: Close view of the putative YfjM active site with a cytosine, �ipped and positioned near its 

conserved constituent residues. The latter are shown in sticks. The �gures were rendered using ChimeraX ( 16 ). 

common structural features with type IV restriction en- 
donucleases and members of the HNH domain superfam- 
ily, demonstrating another interesting evolutionary �nding. 
The HNH protein domains are found in Cas9, BrxU and 
related proteins, which are part of bacterial defense sys- 
tems. The active sites of these enzymes are built around a 
minimal β- β- α fold that coordinates a catalytic metal ion. 
A typical feature is the so-called ‘omega loop’ ( 17 ), con- 
necting the β-strands, which could vary in size but still re- 
tain a very distinct ‘omega-like’ conformation. This unique 
minimal β- β- α fold was identi�ed in DUF6994 (Figure 4 B, 
left). The conservation of the putative active site residues in 
DUF6994 is not strict, particularly the position of the cat- 
alytic histidine, which is replaced by alanine. The presence 
of two invariant aspartate residues that point toward the pu- 
tative active site suggests that these proteins may still func- 
tion as enzymes but probably via a somewhat different cat- 
alytic mechanism (Figure 4 B, right). They may still retain 
their catalytic activity by employing these conserved aspar- 
tates, which in the predicted AlphaFold2 models are well 
positioned to undertake a role in a potential nucleophilic 
attack. 

DUF6884 (PF21 81 8) 

DUF6884, found either as a standalone protein or in com- 
bination with other domains, contains two highly conserved 
CxxxK and LSAxxG sequence motifs that may constitute a 
part of an active site. DUF6884 is distantly related to the 
YaaA protein from Esc heric hia coli (Pfam: PF03883), a DNA- 
binding protein that is a key player in the oxidative stress 
response ( 18 ). Besides a common structural core compris- 
ing a distinct α/ β ‘cantaloupe’ fold, DUF6884 and YaaA 

share a common positively charged cleft that is probably 
involved in DNA-binding and recognition (Figure 4 C and 
Supplementary Figure S1 ). In addition, a member of 
DUF6884, YfjM from Bacillus subtilis , has been recently iden- 
ti�ed among several interactors of DNA damage lesions (aba- 
sic and RNA base), suggesting that this protein could be in- 
volved in DNA repair ( 19 ). This hypothesis is supported by a 
high-con�dence AlphaFold3 prediction (ipTM 0.83), in which 
YfjM recognizes the base-pair mismatch and �ips a nucleotide 
into its putative active site (Figure 4 D). The model of the pre- 
dicted YfjM and DNA-RNA hybrid complex is available in 
ModelArchive at https:// www.modelarchive.org/ doi/ 10.5452/ 
ma-ddli5 . 
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Annotation of microproteins 

A microprotein is a small protein comprising 100 amino acids 
or fewer, encoded by a small open reading frame (smORF). 
Microproteins have diverse functions but are not well repre- 
sented in Pfam for several reasons: �rst, they are frequently 
overlooked by gene prediction methods; second, their short 
length poses challenges in identifying homologs due to low 

signal-to-noise ratios; and third, their experimental isolation 
and characterization can be challenging. To address this un- 
derrepresentation, two strategies were employed. First, mi- 
croproteins were identi�ed within the UniProtKB Swiss-Prot 
dataset. Second, the EuropePMC API was queried using a 
range of �lters to locate relevant information in the scien- 
ti�c literature. As a result, we identi�ed 119 families of mi- 
croproteins not previously represented in Pfam. Notable ex- 
amples include microproteins involved in the regulation of 
larger proteins, such as Mitoregulin, which enhances fatty 
acid β-oxidation (Pfam: PF22002) ( 20 ), and the MgtS pro- 
tein, which increases intracellular magnesium levels (Pfam: 
PF22865) ( 21 ,22 ). 

Update on Pfam-B 

In addition to our HMM-based Pfam entries (Pfam-A), we 
provide a set of unannotated, computationally generated mul- 
tiple sequence alignments called Pfam-B. It was created by the 
same pipeline that has been used since release 33.1, which uses 
MMSeqs2 ( 10 ) run with the cluster option and bidirectional 
coverage mode. It contains domain families with at least 20 
member sequences, for which multiple sequence alignments 
were generated with FAMSA ( 23 ). This resulted in 177 011 
Pfam-B families that, on average, contain 125 sequences (max- 
imum 35 574) and are 432 amino acids in length (maximum 

27 820). As previously, Pfam-B is only released as alignments 
in a tar archive on the Pfam FTP site (�le Pfam-B.tgz). The 
pipeline prunes and prioritizes the families such that the �rst 
entries are the most conserved and largest alignments, which 
have the highest chance of representing useful novel domain 
families that may be turned into Pfam-A entries. 

Increasing the coverage of repeats in Pfam 

The evolutionary history of proteins has been dominated by 
the processes of duplication and divergence of sequence. When 
these duplications occur within a protein, it leads to the phe- 
nomenon of protein repeats. Repeats are extremely common 
in proteins, both at the level of sequence and even more so 
at the level of protein structure. Understanding the repeat 
structure of a protein can help better understand its func- 
tion, structure and evolution. Many of the largest Pfam clans, 
such as the β-propeller (CL0186) and TPR (Tetratricopeptide- 
like repeats, CL0020), contain repeats, showing the evolution- 
ary success of repetitive regions. However, repeat families also 
present signi�cant challenges to create, meaning that the cov- 
erage of repetitive proteins in Pfam is not as good as it could 
be. This was addressed through two collaborative projects de- 
tailed below. 

Collaboration with RepeatsDB 

RepeatsDB is a database providing information about tan- 
dem repeats in protein structures ( 24 ) and provides an excel- 
lent resource to better understand the coverage and quality of 
Pfam repeat annotation. RepeatsDB provides detailed anno- 

tation of the span of individual repeats within known struc- 
tures. In the earliest days of Pfam, we tried to build HMM 

models that could detect individual repeats of short repeats, 
such as TPRs and β-propeller blades. Some of these mod- 
els still exist. However, we have progressively moved toward 
having models that represent multiple repeats because these 
models are simply more sensitive and able to retrieve many 
more homologs. However, this is at the expense of the ability 
to identify individual repeats. The comparison of RepeatsDB 

and Pfam allows for cross-validation, improving annotations 
with orthogonal information to increase the robustness of our 
annotation. 

When comparing Pfam and RepeatsDB, ideally, both an- 
notations should match, i.e., a given type of structural repeat 
should have its own HMM, and a given Pfam domain known 
to be repeated should produce its own structural repeat. De- 
spite the effort produced by both resources, this is still not 
true. Cross-validation of Pfam domains and repeat regions in 
RepeatsDB starts with the de�nition of coverage. Coverage 
describes the fraction of overlapping residues between the re- 
peat annotations of Pfam and RepeatsDB on a given protein 
sequence, with either database providing the reference. 

If the ideal setting applies, we would expect the coverage 
of Pfam domains in RepeatsDB regions to be very high, pos- 
sibly reaching 100%. Regions with low coverage are worth 
investigating, as they might mean that a Pfam or RepeatsDB 

annotation is not correct or that there is some missing data 
that needs to be included. Either case can potentially expand 
the information held in both databases. 

The results of our analysis are shown in Figure 5 B. The hor- 
izontal axis represents the coverage of any Pfam domain on 
each manually curated region in RepeatsDB in bins of 10%. 
RepeatsDB class 3 (elongated repeats) is shown in blue, and 
class 4 (closed repeats) is shown in green. Elongated Repeats 
are made of 5 to 40 residues where multiple tandem repeat 
units are required for the stable structure of the protein, while 
closed repeats are made of 30–60 residues where a relatively 
�xed number of repeat units are needed to form a stable do- 
main structure. These repeats are generally arranged in a cir- 
cular manner; they are the most representative classes in Re- 
peatsDB ( 24 ). The vertical axis represents the number of pro- 
teins found in each bin. The distribution for closed repeats is 
skewed for high Pfam coverage, indicating that the latter cap- 
tures them well. However, for both classes, there are a large 
number of proteins where the overlap is 10% or less, indicat- 
ing that some RepeatsDB regions are poorly covered by Pfam 

and are worth investigating. Among the regions poorly cov- 
ered by Pfam, the repeated units of PDB 3dad chain B are cor- 
rectly identi�ed in RepeatsDB, as shown in Figure 5 C. How- 
ever, the region is poorly covered by Pfam PF18382, identi- 
�ed as matching on the same protein structure through SIFTS 
( 25 ), which covers only 9% of the repeated region, as shown 
in Figure 5 A. To resolve these discrepancies, PF18382 should 
be truncated at the C-terminus to end before the repeated re- 
gion, and a new Pfam entry should be created to cover the 
repeated region. 

Our analysis also identi�ed large Pfam domains, which 
have a large coverage of multiple different entries in Re- 
peatsDB. In these cases, the Pfam entry contains multiple do- 
mains, indicating that it should be split into multiple entries. 
This type of adjustment was made in Pfam 37.0. for the WD40 
domain on PDB 5nzu chain A, mapped to UniProtKB entry 
Q8CIE6 through SIFTS. 
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Figure 5. Co v erage of Pf am domains on R epeatsDB regions. ( A ) Sequence annotation o v ervie w f or human FH1 / FH2 domain-containing protein 1 

o v erlaid with the RepeatsDB (�rst line) and Pfam (third line) annotations. Pfam only annotates the N-terminal region, roughly corresponding to the �rst 

repeat unit. ( B ) Histogram showing the coverage of the protein sequence by Pfam in bins of 10% for elongated (class 3) and closed repeats (class 4) in 

R epeatsDB. ( C ) T he str uct ure of human FH1 / FH2 domain-containing protein 1 (UniProtKB: Q9Y613) is shown with alternating coloring of the RepeatsDB 

repeat units. 

These examples prove the utility of a cross-validation pro- 
cess involving Pfam and RepeatsDB databases to analyze pro- 
teins from two different perspectives. The process is applica- 
ble to future releases of either Pfam or RepeatsDB, allowing 
increased coordination of the data. 

REFRACT project 

Pfam was a partner in the REFRACT (Repeat protein Func- 
tion, Re�nement, Annotation and Classi�cation of Topolo- 
gies) project. This was a collaborative initiative between Eu- 
ropean and Latin American institutions, funded by the Marie 
Skłodowska-Curie Horizon 2020 program of the European 
Union. The project aimed to improve the understanding of 
tandem repeat proteins and establish a standardized classi�- 
cation and best practices for these proteins. 

As part of this international consortium, EMBL-EBI hosted 
ten interns between 2019 and 2024; six of them contributed 
signi�cantly to the curation of Pfam, focusing on improving 
and expanding the annotations of repeat-containing proteins. 
During this period, a total of 185 new Pfam entries were cre- 
ated, 73 of which were classi�ed as repeats, with β-propellers 
and TPRs being the most common (29 and 20 entries, respec- 
tively). Most of these new entries will be included in the up- 
coming Pfam release. 

The primary focus of the interns was the re�nement of 
beta-propeller annotations. By adopting the approach that 
builds functional domains consisting of multiple repeats in- 
stead of individual repeat units, Pfam models are more consis- 
tent and accurate, reducing false positives and providing more 
functional annotations for related proteins. For example, the 

DDB1- and CUL4-associated factor 12-like protein 2 from 

humans (UniProtKB: Q5VW00) was initially represented by 
only one repeat in Pfam PF00400. Given that PF00400 is a 
large entry, encompassing over 750 000 sequences (includ- 
ing 2000 Swiss-Prot sequences), improving its annotation pre- 
sented a signi�cant challenge. To address this, new Pfam en- 
tries were created to encapsulate the entire β-propeller do- 
main WD40 (Figure 6 ), allowing the annotation of more 
closely related proteins and offering more speci�c and useful 
information for the scienti�c community. 

Using Deep Learning to expand Pfam (Pfam-N) 

In 2019, Dr Lucy Colwell’s team released a preprint detail- 
ing a novel deep learning approach that was trained on Pfam 

data and improved upon it, which enhanced the performance 
of the HMMER software. Since 2020, we have collaborated 
with Dr Lucy Colwell’s research team at Google DeepMind to 
expand the Pfam coverage through deep learning techniques. 
This research has resulted in the creation of Pfam-N (N de- 
noting network). 

Pfam-N version 1 

An ensemble model called ProtENN (ENN for Ensemble of 
Neural Networks) was developed. The model was trained on 
a set of sequences with known Pfam protein family hits. From 

what was learned by the convolutional neural network, the 
model was able to predict Pfam protein families hits for se- 
quence regions not found in the training set. However, the 
method required being given a domain-sized region of a se- 
quence because the method could only predict a single Pfam 
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Figure 6. ( A ) P re vious annotations for Q5VW00 in InterPro, where PF00400 co v ered only one repeat. ( B ) Pfam coverage for Q5VW00, PF00400 on the 

left, and new Pfam coverage for PF23760 on the right. 

label per sequence. Additional Pfam protein families hits were 
identi�ed by looking at sub-threshold hits from the HMMER 

package against UniProt sequences and scoring them against 
ProtENN. After applying the model to the statistically in- 
signi�cant hits of Pfam HMMs, Pfam-N was released for the 
hits that ProtENN con�dently assigned a domain to ( 26 ). This 
�rst iteration of Pfam using deep learning led to an increased 
coverage of the UniProtKB RP 2020_06 by 4.2% compared 
to Pfam 34.0. 

Pfam-N version 2 

In 2022, following the release of Pfam 35.0, ProtENN was 
retrained, leading to an increased coverage of 8.5% of the 
UniProtKB RP compared to Pfam 35.0 coverage ( https: 
// tinyurl.com/ protenn2 ). The model’s training methodology 
was adapted from the Pfam-N version 1 approach, with a 
key modi�cation in the prediction method. Instead of using 
HMMs to identify a ginel Pfam family hit for a sequence, the 
network employed a residue-level classi�cation strategy. This 
approach assigned probabilities to each individual amino acid 
residue, indicating its likelihood of belonging to any of the 19 
632 Pfam families or 655 clans in the database. When a con- 
tiguous length of 20 residues or more is predicted to belong 
to the same family, a domain call for that family is ‘called’ by 
the neural network. We found that many false positives from 

the network were removed by suppressing predictions from 

overlapping non-homologous families (i.e. families in differ- 
ent clans). 

Pfam-N version 3 

In 2023, the Google Research team developed an end-to-end 
transformer-based segmentation model inspired by the com- 
puter vision literature, showing an important increase in per- 
formance, signi�cantly enhancing the accuracy of the pre- 
dictions and coverage. The new model, called InterPro-N, is 
trained on the 13 member databases of InterPro, which en- 
ables the model to learn the relationships between them, im- 
proving consistency. The model is inspired by Maskformer 
( 27 ), widely used in computer vision for segmentation tasks. 
The Pfam-N data that have been released corresponds to the 
Pfam predictions only. The new method, initially trained on 
InterPro 96.0, including Pfam 36.0, has achieved a coverage 
of 85.7% of UniProtKB 2024_03, a gain of 8.9% compared 
to Pfam 36.0. Following the release of InterPro 100.0 and 
Pfam 37.0, the model was retrained and has achieved a cov- 
erage of 85.8% of UniProtKB 2024_04, a gain of 8.8% com- 
pared to Pfam 37.0. In comparison, the previous version of 
Pfam-N showed a coverage increase of 7% compared to Pfam 

35.0 (Figure 7 ). Additionally, the new method leads to a gain 
of > 15% in precision and recall calculated at the family level 
on a random sample of sequences ( Supplementary Table S1 ). 
Pfam-N annotated 22.8 million protein sequences that pre- 
viously had no Pfam annotations, among which > 10 million 
had no annotations from any InterPro member database. Out 
of > 10,000 Swiss-Prot sequences with new Pfam-N matches, 
> 1400 are human proteins. 

Pfam-N annotations can be visualized under the ‘Other 
features’ section of the protein sequence viewer in pro- 
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Figure 7. Comparison of the sequence co v erage of UniProtKB between Pfam, Pfam-N versions 1 and 2 (Convolutional neural network) and Pfam 

versions 3 and 4 (Maskformer). 

tein pages on the InterPro website and accessible program- 
matically through the InterPro API ( https://www.ebi.ac.uk/ 
interpro/ api/ ). All the Pfam-N matches can be downloaded 
through the extra.xml.gz �le available on the InterPro ftp 
( https:// ftp.ebi.ac.uk/ pub/ databases/ interpro/ releases/ ). 

Discovery of new S. pombe orthologs of human 

and S. cerevisiae proteins using Pfam-N 

Identifying novel distant orthologs between model species is 
invaluable, as it can enable the exchange of functional infor- 
mation between proteins that were previously unrecognized 
as related or provide speci�c, experimentally testable func- 
tional predictions for previously unstudied proteins ( 28 ). The 
manual curation of orthologs between Sc hizosacc haromyces 
pombe ( S. pombe ) and Saccharomyces cerevisiae and between 
S. pombe and humans at the model organism database Pom- 
Base focuses on identifying distant orthologs that are missed 
by automated prediction methods ( 29 ). This approach com- 
bines automated predictions, biological insights such as co- 
complex membership, and distant detection methods to create 
a consensus ortholog dataset with high coverage. 

As part of this approach, Pfam-N hits for 94 
Sc hizosacc haromyces -speci�c proteins lacking a known 
Pfam domain were manually evaluated to uncover additional 
potential orthologs. Con�rmation was based on various crite- 
ria: (i) proteins were expected to be conserved; (ii) validation 
by JackHMMER ( 1 ) or Foldseek ( 30 ), (iii) similarities in 
protein features and protein length; (iv) available experi- 
mental data, including phenotypes, similar cellular locations, 
and co-complex membership. This review con�rmed the 

identi�cation of four human proteins and �ve S. cerevisiae 
proteins as true one-to-one orthologs of S. pombe proteins. 
Among the orthologs identi�ed were the missing peroxisomal 
proteins S. cerevisiae PEX15 (human PEX26), S. cerevisiae 
PEX22, and the missing Mon1-Ccz1 GEF complex subunit 
(S. cerevisiae CCZ1 and human CCZ1). Of the remaining 
88 Pfam-N assignments, 16 con�rmed previously identi�ed 
orthologs, 5 con�rmed family membership, and 13 provided 
novel protein family assignments. 

Pfam-N also offers the potential to identify further con- 
nections between proteins in existing families. For exam- 
ple, the cytochrome c oxidase assembly protein Coa2 (Pfam: 
PF17051) was determined to be human NDUFA3 (Pfam: 
PF14987). Since Respiratory Complex I is absent for �ssion 
yeast and budding yeast, but assembly factors are conserved, 
this makes human NDUF3 likely to be an additional assembly 
factor rather than a core subunit. 

Discussion 

The advent of accurate protein structure predictions has 
been transformational for protein family classi�cation. Hav- 
ing these structural models has been like ‘turning the lights 
on’, so now we can easily see the extent of individual pro- 
tein domains and their likely evolutionary relationships. Of 
course, much of Pfam was created in the dark ages, when 
experimentally determined structures were few and far be- 
tween. Thus, we have many legacy entries that require some 
cleaning up to improve domain boundaries or identify further 
homologs. 
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We have seen the power of arti�cial intelligence (AI) also 
improving our ability to identify further homologs for families 
using deep learning methodology. It seems likely that in the 
coming years, these models will supplant pro�le-HMMs as 
the dominant technology for homolog detection. However, at 
present, the �eld is developing rapidly, and no single model or 
technology appears to be an obvious choice to select. Thus, we 
have already seen three different approaches used to calculate 
Pfam-N in as many years. 

AI, particularly large language models, has the potential to 
revolutionize the creation of Pfam entries. These technologies 
can signi�cantly enhance the ef�ciency and accuracy of gen- 
erating scienti�cally current descriptions for entries. For in- 
stance, we are currently investigating how AI can streamline 
the creation of entry descriptions, making the process more 
time-ef�cient while ensuring the inclusion of the latest scien- 
ti�c �ndings. Despite promising initial steps, we are only at 
the beginning of exploring AI’s capabilities. Substantial fur- 
ther work is required to fully leverage AI’s power in assist- 
ing the curation process within Pfam, including re�ning AI 
models to better understand and interpret complex biological 
data and integrating these tools seamlessly into our existing 
work�ows. 

Switching off the Pfam website was the �rst step in a process 
to reduce the technical debt of the Pfam resource. In the future, 
our aim is to release Pfam updates more frequently than our 
current yearly release and to make Pfam simpler and easier to 
maintain. Our intention is to continue to curate Pfam using 
the same codebase but to migrate most of our release proce- 
dures to become part of the InterPro production cycle. The 
Pfam updates would then happen at the same time as Inter- 
Pro releases, every two months. We hope this will bene�t the 
scienti�c community, as new and updated Pfam entries will be 
made publicly available more frequently. To achieve this, the 
underlying version of the UniProtKB RP won’t be updated for 
every Pfam release; that update process is a time-consuming 
step of the Pfam release process, and the matches to the whole 
of UniProtKB will only be calculated during the InterPro re- 
lease cycle. We hope that these planned changes will enable 
increased ef�ciency in Pfam and help it remain a sustainable 
prospect for the future. Despite all the developments we have 
seen over the last few years, there remain many protein do- 
main families that are not available in Pfam or any other 
resource. We hope that the coming years will see signi�cant 
steps towards a complete and accurate classi�cation of protein 
families. 

Data availability 

Pfam data are accessible through the InterPro website 
( https:// www.ebi.ac.uk/ interpro ) and downloadable program- 
matically through the InterPro API ( https://www.ebi.ac.uk/ 
interpro/ api/ entry/ pfam ) or the Pfam ftp ( https://ftp.ebi.ac. 
uk/ pub/ databases/ Pfam/ ). The former Pfam website ( https: 
//pfam.xfam.org ) now hosts a static page that replicates the 
appearance of the old home page, with its features (search, 
browse, etc.) redirecting to the corresponding pages on the 
InterPro website. 

Pfam-N matches can be downloaded through the ex- 
tra.xml.gz �le available on the InterPro ftp ( https://ftp.ebi.ac. 
uk/ pub/ databases/ interpro/ releases/ ). 

Supplementary data 

Supplementary Data are available at NAR Online. 
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