
RASTI 000, 1–17 (2024) Preprint 14 May 2024 Compiled using rasti LATEX style file v3.0

A complete framework for cosmological emulation and inference with
CosmoPower

H. T. Jense,1𝐿 I. Harrison,1 E. Calabrese,1 A. Spurio Mancini,2,3 B. Bolliet,4,5 J. Dunkley,6,7 J. C. Hill8
1
School of Physics and Astronomy, Cardi! University, The Parade, Cardi!, Wales CF24 3AA, UK

2
Department of Physics, Royal Holloway, University of London, Egham Hill, Egham, UK

3
Mullard Space Science Laboratory, University College London, Dorking, RH 5 6NT, UK

4
Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA

5
DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

6
Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ, USA 08544

7
Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ USA 08544

8
Department of Physics, Columbia University, New York, NY 10027, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We present a coherent, re-usable python framework which further builds on the cosmological emulator code CosmoPower. In
the current era of high-precision cosmology, we require high-accuracy calculations of cosmological observables with Einstein-
Boltzmann codes. For detailed statistical analyses, such codes often incur high costs in terms of computing power, making
parameter space exploration costly, especially for beyond-ωCDM analyses. Machine learning-enabled emulators of Einstein-
Boltzmann codes have emerged as a solution to this problem and have become a common way to perform fast cosmological
analyses. With the goal of enabling generation, sharing and use of emulators for inference, we define standards for robustly
describing, packaging and distributing them, and present software for easily performing these tasks in an automated and replicable
manner. We provide examples and guidelines for generating your own su!ciently accurate emulators and wrappers for using
them in popular cosmological inference codes. We demonstrate our framework by presenting a suite of high-accuracy emulators
for the CAMB code’s calculations of CMB 𝑀𝐿 , 𝑁(𝑂), background evolution, and derived parameter quantities. We show that these
emulators are accurate enough for both ωCDM analysis and a set of single- and two-parameter extension models (including 𝑃e! ,∑
𝑄𝑀 and 𝑅0𝑅𝑁 cosmologies) with stage-IV observatories, recovering the original high-accuracy Einstein-Boltzmann spectra

to tolerances well within the cosmic variance uncertainties across the full range of parameters considered. We also use our
emulators to recover cosmological parameters in a simulated cosmic-variance limited experiment, finding results well within
0.1𝑆 of the input cosmology, while requiring typically ↭ 1/50 of the evaluation time than for the full Einstein-Boltzmann
computation.

Key words: methods: statistical – cosmic background radiation – large-scale structure of the universe

1 INTRODUCTION

In the last two decades, cosmological observations have become a
continuous source of ever-tightening constraints on models of the
expansion and composition of the Universe. Bounds on cosmolog-
ical parameters now come from a variety of measurements. Cos-
mic Microwave Background (CMB) temperature, polarisation and
lensing data from satellite and ground-based experiments – from
e.g., Planck

1 (Planck Collaboration VI 2020), the Atacama Cos-
mology Telescope2 (ACT, Aiola et al. 2020; Choi et al. 2020; Mad-
havacheril et al. 2024; Qu et al. 2024b) and the South Pole Telescope3

𝐿 E-mail: jenseh@cardi".ac.uk
1 https://www.cosmos.esa.int/web/planck/pla
2 https://act.princeton.edu/
3 https://pole.uchicago.edu/public/Home.html

(SPT, Balkenhol et al. 2022; Pan et al. 2023) – yield percent-level
limits on the parameters of both the standard ωCDM cosmological
model and some of its possible extensions. Tests of this model will be-
come even more stringent in the next decade with the new, upcoming
CMB observatories such as the Simons Observatory4 (SO, Simons
Observatory Collaboration 2019) and CMB-S45 (CMB-S4 Collab-
oration 2016). In addition, statistics of the late-time distribution of
matter such as galaxy lensing and clustering add information on cos-
mological parameters which track the growth of structures caused by
the matter and dark energy fields in the local Universe. These come
from a number of large-scale-structure surveys – including the Dark

4 https://simonsobservatory.org/
5 https://cmb-s4.org/

© 2024 The Authors

ar
X

iv
:2

40
5.

07
90

3v
1

 [a
st

ro
-p

h.
C

O
]

13
 M

ay
 2

02
4

https://www.cosmos.esa.int/web/planck/pla
https://act.princeton.edu/
https://pole.uchicago.edu/public/Home.html
https://simonsobservatory.org/
https://cmb-s4.org/

2 Jense et al.

Energy Survey6 (DES, Abbott et al. 2022), the Kilo-Degree Survey7

(KiDS, Heymans et al. 2021), the Hyper Suprime-Cam Survey8

(HSC, More et al. 2023; Miyatake et al. 2023; Sugiyama et al. 2023)
– which will soon be overtaken by major new experiments such as
the Vera C. Rubin Observatory’s Legacy Survey of Space and Time9

(LSST, Mandelbaum et al. 2018), the Euclid satellite10 (Scaramella
et al. 2022), the Nancy Grace Roman Space Telescope11 (Eifler et al.
2021) and the SPHEREx Observatory12 (Doré et al. 2014). Finally,
the imprint of cosmic perturbations on the baryonic matter is mapped
by spectroscopic galaxy surveys – from the Baryon Oscillation Spec-
troscopic Survey (BOSS, Alam et al. 2021) to the new Dark Energy
Spectroscopic Instrument (DESI, Aghamousa et al. 2016; Adame
et al. 2024).

The high precision available from these experiments sets strong de-
mands on the accuracy of theoretical modelling of their data vectors,
in particular for the upcoming next-generation of surveys, usually
labelled as Stage-IV experiments. Higher levels of physical and nu-
merical accuracy in the codes which predict observables in a given
cosmological model typically come at the expense of longer evalua-
tion times. Full cosmological exploitation of the data relies on many
such evaluations of this ‘forward model’ when calculating likelihood
values (and subsequent posterior estimates) and the total amount of
time required can easily become intractable.

Various works (see e.g., Spurio Mancini et al. 2022 and references
therein) presented methods to speed up this process by means of
emulating the Einstein-Boltzmann codes (typically CAMB13, Lewis
et al. 2000, orclass14, Lesgourgues 2011; Blas et al. 2011, which are
commonly used to accurately compute linear-theory cosmological
power spectra and background evolution quantities).

However, at present, each study typically generates its own emula-
tor, tailored and limited to the specific need of the analysis performed.
This means that there is limited general use for the wide variety of
emulators currently existing, due to the lack of standardisation and
cross-platform support for them. Aside from applicability and redun-
dancy issues, the ad-hoc use emulators could also be a potential cause
of inconsistencies between di"erent analyses, and a limitation for
model comparisons and for data combinations. There are many com-
pelling reasons to expect that further advances in our understanding
of cosmology will necessarily come from cross-correlation analyses
between di"erent experiments. Such analyses maximise both statisti-
cal constraining power and robustness to instrument and astrophysical
systematics. They also require the possibility to analyse the di"erent
data using a single unified theoretical framework, in order to make
consistent predictions for the di"erent data types during inference.
Though packages such as Cobaya15(Torrado & Lewis 2019, 2021),
CosmoSIS16 (Zuntz et al. 2015) and MontePython (Brinckmann &
Lesgourgues 2019; Audren et al. 2013) exist to enable this, there are
still gaps which prevent data combinations which would otherwise be
fruitful. By making emulators portable across platforms and frame-

6 https://www.darkenergysurvey.org/
7 https://kids.strw.leidenuniv.nl/
8 https://hsc.mtk.nao.ac.jp/ssp/survey/
9 https://www.lsstdesc.org/
10 https://www.euclid-ec.org/
11 https://roman.gsfc.nasa.gov/
12 https://www.jpl.nasa.gov/missions/spherex
13 https://github.com/cmbant/CAMB
14 https://github.com/lesgourg/class_public
15 https://github.com/CobayaSampler/cobaya
16 https://github.com/joezuntz/cosmosis

works, the work presented here will enable novel data combinations
much more easily.

Lack of consistency across emulators also limits the ability to de-
ploy these techniques for other applications. For example, a further
use for emulators of Einstein-Boltzmann codes lies in the possibility
of autodi!erentiation (autodi!.), a computational method of quickly
evaluating partial derivatives of the outputs with respect to their in-
puts. When these derivatives are known, more e"ective sampling
methods such as Hamiltonian Monte Carlo (HMC), which requires
accurately knowing the derivatives of often complex relations, be-
come trivial to include. As an example, Campagne et al. (2023)
presented a computational framework to autodi"erentiate forward
models for various cosmological observables. In their paper, they
showed how using a specific implementation of HMC known as a No
U-Turn Sampler (NUTS) can lead to statistical constraints similar to
classical MCMC algorithms in 1/5th of the time. While for classical
Einstein-Boltzmann codes, finding these derivatives is a complicated
if not impossible task, this becomes a trivial option when using em-
ulators such as neural networks, in which the computational models
used to map between inputs and outputs consist of multiple trivially
di"erentiable units. This means commonly-used software libraries
from the recent machine learning revolution, such as tensorflow
or jax, are intrinsically able to take advantage of autodi". Piras &
Spurio Mancini (2023) also recently presented an example of the ad-
vantages of combining autodi"erentiable emulators with HMC pos-
terior sampling, achieving speed ups 𝑇 (103) relative to traditional
Boltzmann codes combined with nested sampling methods.

In this paper we address the need of standardisation and main-
tenance of cosmological emulators by devising and releasing a
framework which allows one to generate, re-use, and deploy em-
ulators within the major infrastructure tools used by the cosmo-
logical community. Our work builds on, and expands, the initial
CosmoPower (Spurio Mancini et al. 2022) software17 and on the
development of Stage-IV emulators started in Bolliet et al. (2023).
We make use of CosmoPower because of its wide range of existing
applications (Spurio Mancini & Pourtsidou 2022; Burger et al. 2023;
Heydenreich et al. 2023; Linke et al. 2023; Balkenhol et al. 2022;
Spurio Mancini & Bose 2023; Moretti et al. 2023; Reeves et al. 2024;
Burger et al. 2024; Farren et al. 2023; Carrion et al. 2024; Giardiello
et al. 2024; Qu et al. 2024a), but the type of packaging and interfaces
applied here could also be used with other emulators of Einstein-
Boltzmann codes (e.g. Aricò et al. 2021; Mootoovaloo et al. 2022;
Nygaard et al. 2023; Bonici et al. 2023; Mauland et al. 2023) or other
parts of astrophysical forward models.

In Bolliet et al. (2023), some of us presented high-accuracy emu-
lators for class18. These emulators are capable of reproducing the
CMB primary and lensing power spectrum to precision levels < 10%
of the statistical error bars expected from Stage-IV CMB analyses.
Bolliet et al. (2023) also released emulators for both the linear and
non-linear matter power spectrum, as well as background-evolving
quantities – validated using DES-Y1 and BAO analysis likelihoods.
In this manuscript, as well as building the framework for community
use of these emulators, we present an equivalent suite for CAMB that
are accurate enough for Stage-IV analysis and beyond, demonstrating
the emulators for cosmic-variance-limited datasets. We release a full
software suite for python that allows easy creation, testing, and us-
age of CosmoPower emulators, alongside extensive documentation

17 https://alessiospuriomancini.github.io/cosmopower/
18 Similar emulators for SPT CMB analyses were presented in Balkenhol
et al. (2022).

RASTI 000, 1–17 (2024)

https://www.darkenergysurvey.org/
https://kids.strw.leidenuniv.nl/
https://hsc.mtk.nao.ac.jp/ssp/survey/
https://www.lsstdesc.org/
https://www.euclid-ec.org/
https://roman.gsfc.nasa.gov/
https://www.jpl.nasa.gov/missions/spherex
https://github.com/cmbant/CAMB
https://github.com/lesgourg/class_public
https://github.com/CobayaSampler/cobaya
https://github.com/joezuntz/cosmosis
https://alessiospuriomancini.github.io/cosmopower/

Framework for cosmology emulation and inference. 3

Package Prescription

§2.1

Generate Training Data

§2.3, 3.1

Boltzmann code

Train Emulators

§2.4, 3.2

Emulator Files Accuracy Validation

§2.5, 3.3

Wrapper

§4

Sampling SoftwareSampling Configuration MCMC Chain

Cosmological data

Cosmological constraints

§5

Emulator creation

Emulator usage

Figure 1. An overview of the workflow with CosmoPower: To create a new emulator (top blue box), we write a packaging prescription, use that to generate

training data, and from that train emulators which outputs several emulator files, for which we can easily generate plots which validate the accuracy of the
emulators. This packaging prescription and set of emulator files are then shared with the end-user (red arrows), who wants to use the emulators (bottom blue
box): the prescription is put inside the sampling configuration file, which is given to our software wrappers, which provide the user with an MCMC chain that
can be used to find cosmological constraints. The various labels refer to the sections where these individual steps are described in this paper.

and example notebooks. This allows the use of our CAMB and class
emulators, as well as any future extensions or equivalents, within
Cobaya and CosmoSIS, which are some of the most commonly used
frameworks for Bayesian inference in cosmology.

A schematic summary of the new aspects introduced in this paper
and how they map into di"erent sections is presented in Figure 1.
More specifically:
• In Section 2 we include the details of the Einstein-Boltzmann

emulators presented in this work: our models considered, param-
eter ranges, emulated observables, network structure, and training
parameters. We also present the accuracy of these emulators in
recovering power spectra.

• In Section 3 we give an overview of the packaging scheme and
python interface we have developed for Machine Learning emu-
lators. We give details of the specification of pre-trained emula-
tors, and how these are exposed to the software. We also provide
examples and guidance for others to create emulators using this
framework.

• In Section 4 we present our wrappers for the CosmoSIS and
Cobaya sampling software with a brief user guide.

• In Section 5 we use these wrappers to run Monte Carlo posterior
estimation chains which shows our emulators recover cosmology
at the observable level well within the forecast noise ranges of
Stage-IV experiments.

• In Section 6 we summarise and conclude.

2 EMULATORS

In this section we describe the details of our emulators: what is
emulated and with which inputs, how an emulation is performed and
how the emulators are validated. This serves both as a full description
of the emulators released with this manuscript and as guidelines on
the creation of new emulators packaged and usable in the same way

(e.g. for extended cosmological models). By emulator we mean a
‘black box’ code which is capable of ingesting a set of cosmological
parameters →𝑈 and outputting a set of predictions for the summary
statistics of a set of observables { →𝑉1 (→𝑈), →𝑉2 (→𝑈), . . . , →𝑉𝑂 (→𝑈)}which are
indistinguishable (within a given tolerance) from the set which would
have been produced by a code which explicitly implements numerical
models of the physics relating the →𝑉 and →𝑈. As the emulation works
e"ectively as an interpolation of the quantities →𝑉 between known
points, we rely on the fact that the →𝑉 vary smoothly with respect to
the input parameters.

2.1 Emulated Quantities

In Table 1 we show the full list of quantities output by the Einstein-
Boltzmann code (CAMB v.1.5.0) which we focus on emulating in this
work. As output observables we generate the CMB temperature,
polarisation and lensing potential angular power spectra; linear and
non-linear matter power spectra (and their ratio); and a limited set
of background expansion and derived perturbation quantities also
output by the Einstein-Boltzmann code.

We compute the CMB angular power spectra in the multipole
range 2 ↑ 𝑊 ↑ 10000 in each of TT, TE, EE, and BB combina-
tions for di"erent cosmological models. In the basic configurations,
we use as inputs for our emulators the six cosmological parameters
of the standard ωCDM model: the baryon density ε𝑃𝑋

2, the dark
matter density ε𝑄𝑋2, the amplitude and spectral index of scalar per-
turbations ln(1010𝑌𝑅) and 𝑍𝑅 , the optical depth to reionization 𝑎reio,
and the Hubble constant 𝑏0 in units of km/s/Mpc. We add addi-
tional model parameters to these for separate emulators for ωCDM
extension models as explained below. When not explicitly varied,
neutrinos are described by fixing 𝑃e! = 3.044, corresponding to the
contribution from the three Standard Model neutrino species, with
one of them carrying a total 0.06 eV mass.

We also emulate the CMB lensing potential 𝑐𝑐 power spectrum in

RASTI 000, 1–17 (2024)

4 Jense et al.

Quantity Range Emulator

𝑆𝑀𝑀
𝑁 2 ↑ 𝐿 ↑ 10000 NN of log-spectra

𝑆𝑀𝑂
𝑁 2 ↑ 𝐿 ↑ 10000 NN+PCA of spectra

𝑆𝑂𝑂
𝑁 2 ↑ 𝐿 ↑ 10000 NN of log-spectra

𝑆𝑃𝑃
𝑁 2 ↑ 𝐿 ↑ 10000 NN of log-spectra

𝑆𝑄𝑄
𝑁 2 ↑ 𝐿 ↑ 10000 NN+PCA of log-spectra

𝑇lin (𝑈, 𝑉) 10↓4 ↑ 𝑈 ↑ 50 NN of log-spectra
𝑇NL (𝑈, 𝑉) 10↓4 ↑ 𝑈 ↑ 50 NN of log-spectra

𝑇NL/𝑇lin (𝑈, 𝑉) 10↓4 ↑ 𝑈 ↑ 50 NN of spectra ratio
𝑊 (𝑉) 0 ↑ 𝑉 ↑ 20 NN of evolution
𝑋8 (𝑉) 0 ↑ 𝑉 ↑ 20 NN of evolution
𝑌𝑅 (𝑉) 0 ↑ 𝑉 ↑ 20 NN of evolution

derived parameters – NN of value of derived parameters

Table 1. Emulated quantities, ranges of scales covered and type of emulator
employed for each of them.

the same multipole range. For this we use the same parameter inputs
except for the optical depth to reionization, given that the lensing
potential power spectrum does not depend on it.

For the matter power spectrum 𝑁(𝑂 , 𝑑), we compute the linear mat-
ter power spectrum 𝑁lin (𝑂) for five input parameters: ε𝑃𝑋

2, ε𝑄𝑋2,
ln(1010𝑌𝑅), 𝑍𝑅 , and 𝑏0, plus again the extra parameters for the ex-
tension models. For all matter power spectra we also treat the redshift
𝑑 as an input parameter, resulting in an emulator function which acts
as 𝑁lin (𝑂 , →𝑈), where →𝑈 includes the redshift. For the non-linear matter
power spectrum, we emulate both the 𝑁NL (𝑂) spectrum itself and
the non-linear boost 𝑁NL/𝑁lin (𝑂) ↓ 1. For the emulators included
in this paper, we emulate the 2020 version of HMCode described
in Mead et al. (2021). We sample the wavenumber 𝑂 at 500 points
in the range 10↓4 ↑ 𝑂 ↑ 50 Mpc↓1 with logarithmic spacing. Note
that we compute 𝑁(𝑂) up to 𝑂 = 100 Mpc↓1 for improved accuracy.

For background evolution quantities, we use redshift in the
range 0 ↑ 𝑑 ↑ 20, sampled at 5000 equally-spaced points, as
the modes along which we evaluate the redshift-evolution of the
Hubble parameter 𝑏 (𝑑), the angular diameter distance 𝑒𝑍(𝑑), and
the clustering 𝑆8 (𝑑) for the five input parameters ε𝑃𝑋

2, ε𝑄𝑋2,
ln(1010𝑌𝑅), 𝑍𝑅 , and 𝑏0, plus the extension model parameters
where relevant. Adding these background quantities to our emulator
packages allows for additional cosmological constraints from e.g.,
BAO measurements. Additional background quantities, such as
𝑓 𝑆8 (𝑑) ↔ ↓(1 + 𝑑)d𝑆8/d𝑑, can also be easily computed from these
quantities with minimal overhead or loss of accuracy.

We also compute ten derived parameters, namely:

(i) The angular acoustic scale 𝑈↗ at the surface of last scattering;
(ii) The matter clustering parameter 𝑆8;
(iii) The primordial helium fraction 𝑔He;
(iv) The redshift 𝑑reio of reionization, defined as the midpoint of

reionization described by a simple hyperbolic tangent;
(v) The optical depth 𝑎𝑎 ,end at the end of recombination;
(vi) The redshift 𝑑↗ at the surface of last scattering;
(vii) The sound horizon scale 𝑕↗ at the surface of last scattering;
(viii) The redshift 𝑑𝑏 at the baryon drag epoch;
(ix) The sound horizon scale 𝑕𝑏 at the baryon drag epoch;
(x) The e"ective number of relativistic species 𝑃e! .

It is common to use 𝑈↗, the angular scale when optical depth is
unity, or the approximate parameter 𝑈MC, as a sampled parameter in
MCMC analyses of CMB data due to its lower level of covariance

with other parameters than 𝑏0
19. As we also noted in Bolliet et al.

(2023) however, CAMB and class use di"erent points at which to
evaluate the angular scale (with class defining 𝑈𝑅 as the angular
scale at maximum visibility, which is close to but not the same as
𝑈↗, which is used in CAMB). To maintain cross-compatibility between
our emulators, and to remain consistent with our earlier work, we
therefore use 𝑏0 as an input, and not 𝑈↗. Including these derived
parameters as emulators allow us to recover the posterior distribu-
tions on these quantities, either directly storing their computed values
while sampling the chain, or afterwards by post-processing a con-
verged MCMC chain.

2.2 Cosmological Models

We provide emulators for the ωCDM model with parameters
{ε𝑃𝑋

2,ε𝑄𝑋2, ln(1010𝑌𝑅), 𝑍𝑅 ,𝑏0, 𝑎reio} defined above as well as the
following four extended models:

(i) ωCDM+𝑃e! : varying the e"ective number of relativistic
species 𝑃e! ;

(ii) ωCDM+ϑ𝑄𝑀 : varying the sum of neutrino masses ϑ𝑄𝑀 ;
(iii) ωCDM+𝑃e!ϑ𝑄𝑀 : varying both the number and mass sum of

neutrinos;
(iv) ωCDM+𝑅0𝑅𝑁: varying the dark energy equation of state de-

scribed with two parameters 𝑅0 and 𝑅𝑁 .

Each of these four extension models is emulated separately, with
the extension parameters used as additional inputs. We chose to emu-
late +𝑃e! and +ϑ𝑄𝑀 separately, and the combination +𝑃e! +ϑ𝑄𝑀 to
explore the relation between model complexity and emulator accu-
racy. While, as we show later, our emulator for the full combination
+𝑃e!+ϑ𝑄𝑀 is accurate enough for cosmological analysis, we release
the single parameter-extension model emulators as they o"er greater
accuracy over the higher-dimensional models.

For the non-linear 𝑁𝑂𝑐 (𝑂 , 𝑑) and non-linear boost
𝑁𝑂𝑐/𝑁𝑐 (𝑂 , 𝑑) ↓ 1 emulators, we include the baryonic feedback
parameters 𝑌𝑃 , 𝑖𝑃 , and log𝑗AGN that appear in HMCode (Mead
et al. 2021) and are otherwise fixed at their default CAMB values
in the other emulators. For the remaining model choices, we set
a primordial helium fraction set from BBN consistency using
PRIMAT (Pitrou et al. 2018), recombination from the CosmoRec
code (Chluba & Thomas 2010; Chluba et al. 2010), and reionization
modeled with a simple hyperbolic tangent with a redshift width
ϖ𝑑 = 0.5. Most of these options are the default settings in CAMB.
We only changed the recombination code to CosmoRec, whereas the
CAMB default is to use the older RECFAST code.

2.3 Training Data

Training of emulators involves creating a set of output data →𝑉 at
a finite sample of known parameter values →𝑈 using the code to be
emulated (i.e. the Einstein-Boltzmann code here). These data will
then subsequently be used in Section 2.4 for the neural network to
learn an approximate (but high accuracy) mapping between input and
output. Training data must be generated at a high enough resolution
in the input parameters that we can smoothly interpolate between
outputs. The training data only need to be generated once, to train the
emulator, and do not need to be generated using the computationally
intensive numerical code again in any subsequent inference.

Following Spurio Mancini et al. (2022) and Bolliet et al. (2023),

19 see note at https://cosmologist.info/cosmomc/readme.html

RASTI 000, 1–17 (2024)

https://cosmologist.info/cosmomc/readme.html

Framework for cosmology emulation and inference. 5

Parameter Range Default Value

ε𝑆𝑑
2 [0.015, 0.03] –

ε𝑇𝑑2 [0.09, 0.15] –
ln(1010𝑍𝑈) [2.5, 3.5] –

𝑒𝑈 [0.85, 1.05] –
𝑓reio [0.02, 0.20] –

𝑊0 [km/s/Mpc] [40, 100] –

𝑉pk [0, 5] –
𝑍𝑆 [2, 4] 3.13
𝑔𝑆 [0.5, 1.0] 0.603

log𝑕AGN [7.3, 8.3] 7.8

𝑂e! [1.5, 5.5] 3.044
ϑ𝑖𝑉 [eV] [0, 0.5] 0.06

𝑗0 [↓2, 0] -1.0
𝑗𝑊 [↓2, 2] 0.0

Table 2. Table of parameter ranges over which we trained our emulators.
Compare this with the textual specification in Figure 7. The top section of
the table refers to the background cosmology parameters used in almost all
emulators. The middle section of the table contains the redshift and baryonic
feedback parameters used only in the 𝑇 (𝑈) emulators, with their default
values from CAMB used in the CMB and background evolution emulators. The
bottom section of the table shows the ranges of the single-/two-parameter
extension model emulators, and their default values taken in the base ωCDM
case. Each emulator takes in the first six parameters, and one or two extension
parameters, with the exception for 𝑆𝑄𝑄

𝑁 , and background quantities, which
do not rely on 𝑓reio.

we generate 𝑃𝑘 = 105 sets of output spectra as training data, of
which 20% will be used for validating the network accuracy, and the
rest for training. Our parameter space is shown in Table 2. We em-
ploy Latin Hypercube (LHC) sampling for ensuring our parameter
space is evenly sampled. For extended models, we choose to gener-
ate slightly more spectra at 𝑃𝑘 = 1.2 ↘ 105, to compensate for the
expanded parameter space. To demonstrate the need for this and to
provide some guidance on how to select 𝑃𝑘 , we show a comparison
of the mean prediction error versus the size of the training dataset
in Figure 2, for a varying number of input parameters. The figure
shows that there is not a simple linear scaling with the number of
parameters. Although increasing the number of parameters always
requires a larger training set to reach the desired target accuracy,
the physical nature and range of variation of the specific additional
parameter will impact the results. For example, if we extend ωCDM
varying 𝑃e! or ϑ𝑄𝑀 , we observe di"erent behaviours, even if in both
cases it is only one additional input parameter (7 input parameters
compared to 6 for ωCDM). We explain this by noting that cosmo-
logical observables have di"erent responses to di"erent parameters,
according to the physics signature they are tracking. For example,
the CMB 𝑀𝑕𝑕

𝐿 spectrum will exhibit a strong dependence on 𝑃e!
– changing both the peak position and amplitude at all scales, but
less so on ϑ𝑄𝑀 which will primarily appear at scales dominated
by lensing. Hence in Figure 2 the ωCDM+𝑃e! case requires more
training than ωCDM+ϑ𝑄𝑀 . When we expand further the model to
ωCDM+𝑃e!ϑ𝑄𝑀 (8 input parameters compared to 6 for ωCDM),
we observe a very similar behaviour to the 7-parameter case ωCDM
+𝑃e! , because we have already covered most of the strongly-varying
training region. We conclude that to achieve the desired convergence
of the emulators, the user will need to monitor the behaviour of their
specific model and perform some exploratory studies of how the
emulators depend on the model parameters.

To meet the requirements for Stage-IV analyses, we use the CAMB
accuracy settings suggested by McCarthy et al. (2022); Hill et al.

Figure 2. An overview of the accuracy reached by a trained 𝑆𝑀𝑀
𝑁 emula-

tor given the number of training spectra used to train the emulator, for an
increasing number of input parameters. The solid coloured lines and point
represent the 68% error of a 𝑆𝑀𝑀

𝑁 emulator trained with 𝑂𝑋 samples (the
dotted shaded lines and points show the similar behaviour observed at 99%),
averaged over the entire 𝐿-range. We show the full-size emulators generated
with 𝑂𝑋 = 100000 for ωCDM and 𝑂𝑋 = 120000 for extended models, as
well as emulators with a smaller training set to show how accuracy scales
with 𝑂𝑋 and input parameters. We train emulators for ωCDM (6 parame-
ters, blue), +ϑ𝑖𝑉 (7 parameters, orange), and +𝑂e! + ϑ𝑖𝑉 (8 parameters,
green), each on a random smaller subset of the full training dataset, scaling
the training batch size proportional to the size of the subset. We show how the
mean emulation error decreases as the number of training spectra increases,
and increases as we increase the complexity of the parameter space. We note,
however, that scaling of emulators accuracy with number of input parameters
is non linear, the nature and impact on the emulated quantity of the specific
parameter will matter for this behaviour.

1 lmax: 10000
2 kmax: 10.0
3 k_per_logint: 130
4 nonlinear: True
5 lens_potential_accuracy: 8
6 lens_margin: 2050
7 lAccuracyBoost: 1.2
8 min_l_logl_sampling: 6000
9 DoLateRadTruncation: False
10 recombination_model: CosmoRec

Figure 3. Accuracy settings for CAMB, based on the settings earlier suggested
in McCarthy et al. (2022); Hill et al. (2022). For an example of a full yaml
file, see Appendix A.

(2022) as adequate for convergence of the likelihood value obtained
from data with this level of precision, summarised in Figure 3.

We iterate over each of the 𝑃𝑘 samples in our LHC, computing the
CMB, lensing, and matter power spectra, as well as background quan-
tities, and derived parameters with CAMB (see Table 1 for a summary
of the outputs and their ranges), and store the results in a structured
data file containing appropriate metadata (see Appendix B). Because
of our choices of parameter limits as a hypercube, a small fraction
(≃ 1%) of our samples are in unphysical parts of parameter space
and can cause issues in computations from CAMB. Because this num-
ber is small, these samples are simply discarded and ignored for
future processing.

RASTI 000, 1–17 (2024)

6 Jense et al.

2.4 Network Design and Training

Following Spurio Mancini et al. (2022), we implement the emula-
tors as dense neural networks, with four hidden layers of 512 neu-
rons each. Each emulator takes the normalised parameters as input,
and maps it to normalised spectra. We use the activation function
from Spurio Mancini et al. (2022):

𝑓 (→𝑘) =
[
→𝑙 +

(
1 + 𝑚↓ →𝑙⇐ →𝑚

)↓1
⇐ (1 ↓ →𝑙)

]
⇐ →𝑘, (1)

where ⇐ is the element-wise product. For the optimizer, we re-use
the Adam optimizer. The input and output quantities are normalised
with respect to mean and standard deviations of the respective ranges.
For most quantities, as detailed in Table 1 we emulate the logarithm
of the spectrum, as the high dynamic range of these values makes it
easier for the emulator to reconstruct the log-values. We employ the
same method for the background quantities 𝑏 (𝑑), 𝑆8 (𝑑), and 𝑒𝑍(𝑑),
where we reconstruct the logarithm of the redshift evolution.

For the 𝑀𝑕𝑛
𝐿 emulator, the resulting raw spectra include zero-

crossings which make emulating the log-spectra impossible. Because
the unscaled spectra still contain a high dynamic range in values, we
follow Spurio Mancini et al. (2022) in first decomposing the spectra
with a Principal Component Analysis (PCA) and then subsequently
emulating the sets of PCs. Similar to before, we decompose the 𝑀𝑕𝑛

𝐿
spectra into 512 PCs. Even though they remain completely positive,
we also decompose the 𝑀𝑜𝑜

𝐿 spectra into 64 PCs. We find that this is
more e"ective at emulating the 𝑐𝑐 spectra, which we explain with the
reduced dimensionality of the information contained in the 𝑐𝑐 spec-
tra. We introduce the procedure of constructing scree plots, showing
the eigenvalues associated with each PC in the decomposition, to
identify the “elbow” at which higher PC numbers no longer carry
significant weight and can be discarded. For more details regarding
this and for guidance on decisions regarding PCA see Appendix C.
With this setup, our emulator design for the CMB spectra remains
fully consistent with the original emulators from Spurio Mancini
et al. (2022).

For the matter power spectra 𝑁lin (𝑂 , 𝑑pk) and 𝑁NL (𝑂 , 𝑑pk),
we choose to emulate log 𝑁lin (𝑂 , 𝑑pk) and the non-linear boost
𝑁NL/𝑁lin (𝑂 , 𝑑pk) ↓ 1 for best performance. These quantities are
functions of two parameters, the wavenumber 𝑂 and redshift 𝑑pk.
Similar to previous emulators we have developed, we use 𝑂 as the
one-dimensional grid along which we sample our spectra, and use
𝑑pk as an additional input for our 𝑁(𝑂) emulators.

The time it takes to train an emulator depends on many factors,
including the size of the dataset, the number of inputs and outputs of
the network, the hardware performance, as well as some inherently
stochastic factors in the training process. At 105 training samples for
a network, we find it takes 𝑇 (1𝑋) to train a 𝑀𝐿 network on a GPU.
If no GPU hardware or the required software is available, then the
emulators can alternatively be trained on a CPU, which for the same
case still only takes 𝑇 (10𝑋) to perform.

2.5 Accuracy of Emulated Observables

To assess the accuracy of our emulators we perform a number of
comparisons between the observables emulated and those calculated
directly with CAMB. This allows us to understand if we have reached
the theoretical calculation accuracy required for Stage-IV analyses.
This functionality is now fully built into our released software as
described later in Section 3.3.

In Figure 4 we report the di"erence between direct CAMB out-

puts and emulated observables, showing contours corresponding to
the fraction of our training spectra (across the full parameter space)
which lie within a given level of agreement with the emulated values.
All the CMB spectra reach sub-percent accuracy (note that the TE
higher values are numerical artefacts due to diving for a signal cross-
ing zero, see Figure 5 for more details); the matter power spectrum
is accurate at the few percent level relative to the CAMB prediction for
very large range of wave numbers.

For the CMB observables, as done in previous works we can
also compute the di"erence relative to (or ‘in units of’) a specific
experiment’s sensitivity which tracks the noise for each observable
𝑃𝑝𝑞
𝐿 with

𝑆𝑝𝑞
𝐿 = (2)√

1
𝑓sky (2𝑊 + 1)

[
(𝑀𝑝𝑝

𝐿 + 𝑃𝑝𝑝
𝐿) (𝑀𝑞𝑞

𝐿 + 𝑃𝑞𝑞
𝐿) + (𝑀𝑝𝑞

𝐿 + 𝑃𝑝𝑞
𝐿)2

]
,

where, for the cosmic variance limit, 𝑓sky = 1 and 𝑃𝑝𝑞
𝐿 = 0 for all

𝑛𝑔 .
We show this accuracy of our emulators relative to the cosmic

variance-limited experimental noise for ωCDM in Figure 6 and ex-
tended models are shown in Appendix E in Figures E1 to E4 (for
ωCDM +𝑃e! , +ϑ𝑄𝑀 , +𝑃e!ϑ𝑄𝑀 , and +𝑅0𝑅𝑁 respectively).

All our emulators remain well within 10% of a cosmic variance-
limited experimental uncertainty range. The only exception to this is
our 𝑅0𝑅𝑁 emulator (see Figure E4), for which some outliers at small
scales in the CMB emulators can reach about 80% of this uncertainty.
We attribute this e"ect to the parameter degeneracy of the model, as
well as the complexity of this model and the relatively wide range of
parameters we chose. However, in the absence of CMB sensitivity to
the mechanics of dark energy, and in the interest of the recent results
from DESI (DESI Collaboration 2024), we are still including this
emulator.

3 PACKAGING DESCRIPTION

As part of this release, alongside new emulators we build a packaging
prescription for CosmoPower emulators. This prescription is both
human- and machine-readable and serves as a description of what
the emulator is capable of and its full design specifications. The
CosmoPower software package20 has been updated to include a full
parser for the packaging prescription.

To create and train a new emulator, the packaging prescription
is designed to guide both the author and a later user through the
process of considering what quantities are emulated, how, and to
what accuracy.

In this section, we describe the main steps of creating an emula-
tor, namely: (1) describing the input parameters and output data, and
generating the training spectra with the Einstein-Boltzmann code,
(2) detailing the specifications of the emulator and the training pa-
rameters, and performing the training process, and (3) testing the
validation of emulators. We follow the creation of the emulators we
specified in Section 2, and describe how the packaging prescription
of these emulators is setup, as well as alternative options and choices
available for the user.

We also create and release packaging for the emulators for the
class Einstein-Boltzmann code presented in Bolliet et al. (2023)

20 https://github.com/alessiospuriomancini/cosmopower

RASTI 000, 1–17 (2024)

https://github.com/alessiospuriomancini/cosmopower

Framework for cosmology emulation and inference. 7

(a) TT (b) TE

(c) EE (d) BB

(e) 𝑜𝑜 (f) 𝑇 (𝑈)

Figure 4. A validation graph generated from our trained networks for ωCDM. We show the error in the reconstructed CMB power spectrum in 𝑆𝑀𝑀
𝑁 (blue,

top-left), 𝑆𝑀𝑂
𝑁 (orange, top-right), 𝑆𝑂𝑂

𝑁 (green, centre-left), 𝑆𝑃𝑃
𝑁 (red, centre-left), 𝑆𝑄𝑄

𝑁 (purple, bottom-left), and linear 𝑇lin (𝑈) (brown, bottom-right)
relative to the CAMB theory curve. The bands show the 68/95/99% contours (from darkest to lightest shades). Note the di"erent scale for TE, for which errors
get blown up due to the zero-crossings of the input power spectrum.

which also achieve Stage-IV-level accuracy, consistent with the CAMB
emulators in this work. With our included packaging, these emulators
can likewise be used in the inference frameworks with the same level
of convenience and robustness.

3.1 Generating Training Data

In this subsection, we discuss the required prescription of the input
parameters for emulators, and for the output of quantities that are
desired to be emulated.

As mentioned above, CosmoPower uses LHC sampling, which al-
lows for an evenly spaced grid of sampling points that are su!ciently
distributed that the entire parameter space is covered with minimal
variation in sampling density. In Figure 7 we show how to specify
the LHC grid in the prescription file.

The emulated_code block of the packaging contains information
about the Einstein-Boltzmann code being emulated, in particular

the name and version number. If a customized version of a code
is used, it is possible to manually specify the import path with the
boltzmann_path keyword. Theinputs keyword is the list of named
parameters which will be varied as inputs to the Einstein-Boltzmann
code. extra_args contains code parameters which embody any
model choices or approximation and accuracy settings.

The samples block specifies the Ntraining training spectra to
be generated. The packaging prescription recognises four di"erent
types of parameters in the parameters block:

(i) Sampled parameters, these are the parameters that the LHC is
created over, and are defined with a minimum-maximum pair
for the range over which the LHC is sampled, e.g. ombh2:
[0.015, 0.03];

(ii) Derived parameters, these are parameters that are trivially de-
rived from other sampled parameters, and are defined with
a text string prescribing a python lambda function equation

RASTI 000, 1–17 (2024)

8 Jense et al.

Figure 5. A direct comparison of the error in the 𝑆𝑀𝑂
𝑁 emulator as measured

in fractional error with respect to the training spectrum (top and as in Fig-
ure 4), and as relative error with respect to a cosmic variance-limited noise
curve (bottom and as in Figure 6 with more details in Section 2.5). The peaks
in the top figure are due to the zero-crossings of the 𝑆𝑀𝑂

𝑁 power spectrum,
which “blow up” any errors in the emulator. Using a cosmic variance limit
noise curve provides a more realistic error measure, as shown in the bottom
figure, where the inclusion of the 𝑆𝑀𝑀

𝑁 and 𝑆𝑂𝑂
𝑁 terms in the error wash out

these zeroes and provide a more reasonable assessment for the error.

to derive them directly, e.g. As: "lambda logA: 1.e-10 *
np.exp(logA)";

(iii) Fixed parameters, these are simply defined by writing a single
numerical value that the parameter is set to, e.g. mnu: 0.06;

(iv) Computed parameters, these are parameters that we cannot
easily compute ourselves, but the Boltzmann code can, and
these are defined by simply leaving an empty tag in the pa-
rameter list. These parameters are specified by variable names
available to CosmoPower at the spectra generation stage via
the python interfaces of the Einstein-Boltzmann codes being
emulated, e.g. “YHe: ” for 𝑔He.

Any of these types of parameters can be used as an input to a
network, and any of the first three types can be used as an input for
the Einstein-Boltzmann code. It is for example possible to create an
LHC over a range of Hubble parameter 𝑏0, while using the angular
scale 𝑈↗, as computed by the Einstein-Boltzmann code, as an input
for the emulators.

The networks block specifies the neural networks to be created
using the training data. It is possible to specify multiple networks,
each under a quantity heading, which each have their own set of
network properties specified as further blocks and keywords. When
creating CosmoPower networks, the current list of quantities to which
can emulated is defined and described as follows:

• Cl/xy: referring to (lensed) CMB angular power spectra 𝑀𝑝𝑞
𝐿

with 𝑛 ,𝑔 any combination of T/E/B (𝑀𝑕𝑕
𝐿 , 𝑀𝑕𝑛

𝐿 , 𝑀𝑛𝑛
𝐿 , 𝑀𝑕𝑟

𝐿 ,
𝑀𝑛𝑟
𝐿 , and 𝑀𝑟𝑟

𝐿);
• Cl/pp: CMB lensing potential spectrum for 𝑀𝑜𝑜

𝐿 , there are also
options available for cross-spectra with primary CMB via Cl/pt,
Cl/pe, and Cl/pb;

• Pk/lin and Pk/nonlin: Matter power spectrum for linear
𝑁lin (𝑂 , 𝑑) and non-linear 𝑁nl (𝑂 , 𝑑);

• Pk/nlboost: The non-linear boost (𝑁NL/𝑁lin ↓ 1) (𝑂 , 𝑑) defined
as the non-linear boost to the linear matter power spectrum;

• Hubble, Omegab, Omegac, Omegam, sigma8 and DA: The redshift-
evolving quantities 𝑏 (𝑑), ε𝑃 (𝑑), ε𝑄 (𝑑), ε𝑖 (𝑑), 𝑆8 (𝑑), and
𝑒𝑍(𝑑).

It is also possible to specify derived quantities. This network
will automatically use all parameters from the parameter block
that are computed by the Einstein-Boltzmann code as outputs. So,
when we specify a derived network in our emulators similar to our
𝑀𝑕𝑕
𝐿 emulator, we create an emulator that emulates the computation

of the nine quantities mentioned in Section 2.1 (which are the nine
parameters we listed in Figure 7).

In Figure 8 we show an example for the network block of an
emulator trained on primary CMB 𝑀𝑕𝑕

𝐿 data for 2 ↑ 𝑊 ↑ 10000. We
discuss the choices made in this block in more detail in Section 3.2.

Once the packaging file has been set up with the sections specified
above, it becomes easy to generate training data for networks by
calling:

python -m cosmopower generate <yamlfile>

In addition, the --resume flag can be used to increase more sam-
ples for an already existing set of data points, if it is found afterwards
that the training set size is not large enough for training to result in
good recovery of spectra from the emulator. When resuming the gen-
eration of samples, any pre-existing LHC will be used (if compatible
with the given prescription) and any pre-existing samples are not re-
generated. This can be used for continuing a run that was cancelled
or stopped before, adding new quantities that were not computed
earlier, or increasing the number of samples beyond the LHC that
was generated beforehand.

We store the generated training data in hdf5 files, which are opti-
mised for large, table-like datasets, and allow for both fast read-write
access and good data compression. We also include the option to
automatically split the data into multiple files, to prevent memory
issues from opening a too large a single file at once. For our ωCDM
emulators, this means that we generate about 4 GB worth of training
spectra per emulator, split across ten files.

3.2 Network Specification and Training

The networks block contains information on which emulator is to
be trained, and how the network is designed; it contains:

(i) The type of emulator, either NN for a neural network emulating
the spectra directly, or PCAplusNN for a NN emulating the
PCA of the quantity;

(ii) The list of inputs used for the network, these can be di"erent
from the inputs to the Boltzmann code, and hence may need
to be specified again;

(iii) Whether the network should be trained on log-spectra;
(iv) The range of modes (sampling points) over which the output

spectrum is computed, and a text label for them (i.e. 𝑊s for
𝑀𝐿 spectra, 𝑂 for 𝑁(𝑂) spectra, and redshifts 𝑑 for background
quantities);

(v) The specification for traits of the Neural Network emulator. For
a dense neural network, the traits should contain the number
of nodes per hidden layer. For a network that employs a PCA,
the number of retained PCs must be given.

(vi) The specification for the steps taken when training the emulator
(see below for details).

After the training data has been generated, training a network is
done via a similar command:

python -m cosmopower train <yamlfile>

Training depends on a variety of parameters, which are set in
the training block of the networks prescription. These parameters
(explained below) are:

RASTI 000, 1–17 (2024)

Framework for cosmology emulation and inference. 9

(a) TT (b) TE

(c) EE (d) BB

(e) 𝑜𝑜 (f) 𝑇 (𝑈)

Figure 6. A validation graph generated from our trained networks for ωCDM. We show the recovered CMB power spectrum 𝑆𝑀𝑀
𝑁 (blue, top-left), 𝑆𝑀𝑂

𝑁 (orange,
top-right), 𝑆𝑂𝑂

𝑁 (green, center-left), 𝑆𝑃𝑃
𝑁 (red, center-right), 𝑆𝑄𝑄

𝑁 (purple, bottom-left), and linear 𝑇lin (𝑈) (brown, bottom-right), with respect to the cosmic
variance limit for 𝑆𝑁 ’s, and as a fractional di"erence for 𝑇 (𝑈) . The bands show the 68/95/99% contours (from darkest to lightest shades).

(i) The learning rate, which controls the size of steps taken at each
learning epoch;

(ii) A batch size, which controls the size of a batch over which a
learning step is averaged;

(iii) The validation split, which controls how many spectra are kept
aside of validation calculation;

(iv) The number of steps used for gradient accumulation;
(v) A patience value, which controls how long a network allows

itself to be “stuck” at a loss value before continuing to the next
learning iteration;

(vi) The maximum number of epochs in each learning iteration.

Each of these values can be set to either a single number or a list of
length 𝑃𝑐 , which indicates the number of learning iterations used.
If a value is set to a single number, it is kept fixed over the course
of each learning step, otherwise CosmoPower will iterate over the
values in the list when training. If multiple values are to be iterated
over, these lists need to be of the same length.
CosmoPower will train a network by iterating over these learn-

ing iterations, each of which consists of a number of epochs

set by the max_epoch value. A fraction of samples equal to the
validation_split is set aside each learning iteration, and the re-
mainder is used as the training set. The training set is then grouped
into batches determined by the batch_size value. Every epoch,
each batch is passed through the emulator, and the trainable hyper-
parameters of the emulator are updated to reduce the loss function
of the network. If a number of gradient_accumulation_steps
𝑜 > 1 is given, then 𝑜 consecutive steps are used to compute the total
derivative of the loss function with respect to the hyperparameters
as well, which can give a better learning rate, especially when using
a GPU for increased computation of these derivatives. CosmoPower
uses the Adam optimiser to determine how to tweak the hyperparam-
eters, and the learning step size is multiplied by the learning_rate
of this iteration. After going through a full epoch, the validation
set is passed through the emulator and its loss is computed. If the
validation loss has improved throughout this iteration, then the new
hyperparameters are kept. If the max_epoch value is reached, or if

RASTI 000, 1–17 (2024)

10 Jense et al.

1 emulated_code:
2 name: camb
3 version: "1.5.0"
4 inputs: [ombh2, omch2, As, ns, H0, tau]
5 extra_args:
6 <...>
7

8 samples:
9 Ntraining: 100000
10 parameters:
11 ombh2: [0.015,0.03]
12 omch2: [0.09,0.15]
13 # We want to sample on log(10^10 As), but our
14 # Boltzmann code takes As as an input.
15 logA: [2.5,3.5]
16 As: "lambda logA: 1.e-10 * np.exp(logA)"
17 tau: [0.02, 0.20]
18 ns: [0.85, 1.05]
19 H0: [40.0, 100.0]
20 # Parameters computed by the Boltzmann code
21 thetastar:
22 sigma8:
23 YHe:
24 zrei:
25 taurend:
26 zstar:
27 rstar:
28 zdrag:
29 rdrag:
30 Neff:

Figure 7. Code snippet for sampling and parameters block, compare this
with Table 2. In the example here, we setup the aforementioned six parameters
to sample over, add an intermediate parameter 𝑍𝑈 , and add the nine parameters
which are derived directly from the Boltzmann code, in this case CAMB. Note
that CAMB expects the primordial amplitude 𝑍𝑈 to be provided, but it is far
more common to sample over ln(1010𝑍𝑈) instead. By defining the logA
parameter and marking the As parameter as a derived parameter from that,
we can perfectly accomplish this. At the bottom we show the nine parameters
we derive from the Boltzmann code - in this case, they are computed by
CAMB. It is possible to use any of the parameters defined in this block as an
input to the networks, including the parameters derived from the Boltzmann
code. The extra_args block would include any accuracy settings, as seen
in Figure 3.

the validation loss has not improved over patience_values epochs
in a row, then the emulator will go to the next learning iteration.

Because of the large amount of freedom in choosing these values, it
can be hard to determine what settings are optimal for a good training
pass. In addition, the impact of certain decisions can wildly vary from
either minimal to substantial. As a result, we cannot provide clear
guidance on what settings to use but there are a few rules of thumb
that can be used when determining the training settings which we
recommend:

• The validation split should be about 10-20%;
• Each iteration, the learning rate should go down and the batch size

should go up;
• If a learning iteration reaches the maximum number of epochs

instead of a patience value, that means it could have learned for
longer, and it hasn’t fully optimised yet - try to increase the batch
size or learning rate for this iteration or an earlier one.

CosmoPower keeps track of the validation loss for every epoch, and
saves this to a plain text file for post-training analysis and diagnosis
of training issues.

1 networks:
2 - quantity: "Cl/tt"
3 inputs: [ombh2, omch2, logA, ns, H0, tau]
4 type: NN
5 log: True
6 modes:
7 label: l
8 range: [2,10000]
9 n_traits:
10 n_hidden: [512, 512, 512, 512]
11 training:
12 validation_split: 0.1
13 learning_rates: [1.e-2, 1.e-3, 1.e-4, 1.e-5,

1.e-6, 1.e-7]
14 batch_sizes: [1000, 2000, 5000, 10000,

20000, 50000]
15 gradient_accumulation_steps: 1
16 patience_values: 100
17 max_epochs: 1000

Figure 8. Code snippet for network block. We setup a network
that emulates log10 (𝑆𝑀𝑀

𝑁) (→𝑠) with our six input parameters →𝑠 ={
ε𝑆𝑑

2,ε𝑇𝑑2, log(1010𝑍𝑈) , 𝑒𝑈 , 𝑑, 𝑓
}

and 𝐿 between 2 and 10000. The
network is a fully connected dense neural network with 4 hidden layers of
512 neurons each. Our training block defines the fraction of example spectra
used for validation estimation, the learning rates of each learning step, the
batch size over which we average, any gradient accumulation steps, patience
values, and maximum number of training epochs.

3.3 Assessing Accuracy

The validation loss for the emulators is only one quantity to evalu-
ate the accuracy, but it is important to explicitly evaluate the accu-
racy of the output emulator quantities. We include functionality to
generate accuracy plots, that show the average di"erence between
the emulated quantity and the original quantity as computed by the
Einstein-Boltzmann code, relative to (‘in units of’) an observable
error.

For a trained emulator, one can evaluate the accuracy of the emu-
lator by invoking the command:

python -m cosmopower show-validation <yamlfile>

This command will pass a fraction of all original samples through
the each trained emulator and plot the emulator error. The accuracy
of the emulated observables can be defined as either the fractional
di"erence to the true value, or relative to some observational error, as
defined in e.g. Section 2.5. There are options to use either the public
Simons Observatory noise curves noise curves, presented in The
Simons Observatory collaboration (2019), or a cosmic variance-
limited uncertainty.

4 WRAPPER DESCRIPTION

As an additional component for our CosmoPower extension, we pro-
vide wrapper functionality that interfaces the basic CosmoPower
functionality with the inference software packages CosmoSIS and
Cobaya. Because most of the emulator specification will be present
in the packaging prescription file, interfacing these emulators with
the sampling software is as simple as pointing the wrapper to a
packaging file. The remaining interfacing is then provided for with
these wrappers. We will show here how to interface the emulators
with CosmoSIS and Cobaya, and show that these wrappers, with
the emulators we have described in the previous section, can recover

RASTI 000, 1–17 (2024)

Framework for cosmology emulation and inference. 11

parameter constraints equivalent to those recovered with the original
Einstein-Boltzmann code.

4.1 CosmoSIS

The wrapper for using CosmoPower in CosmoSIS inference pipelines
involves specifying the CosmoPower module in the usual way in the
ini file:

1 [cosmopower]
2 file = path/to/interface/cosmopower_interface.py
3 package_file = /path/to/packaging/

package_prescription.yaml
4 extra_renames = {’cosmosis_parameter_name’ :
5 ’network_parameter_name’}

The options available and their default values for the module are
specified in its associated module.yaml. In particular we note that
care should be taken with parameter naming conventions, with any
necessary translations specified using the extra_renames keyword.
The CosmoSIS wrapper allows for the use of CosmoPower to com-
pute CMB and matter power spectra, and the background evolution
and derived quantities also described in Section 2.1. If desired, it is
also possible to use CosmoPower only to perform the computation
of spectra from the perturbations, and the native Einstein-Boltzmann
code for the (relatively) faster background calculations (e.g. by only
requesting the CMB from CosmoPower and including a CAMB mod-
ule with mode = background). Here we note that caution should
be taken to not generate inconsistent results through inconsistent
choices of CAMB parameters when running in this mode.

4.2 Cobaya

When CosmoPower is installed, the wrapper for using it in Cobaya
can be used by simply adding the cosmopower block to the Cobaya
configuration file. This is similar to how one normally adds CAMB or
class as their Einstein-Boltzmann code. Due to the new interface
using the packaging prescription, the CosmoPower wrapper requires
minimal settings, and a full block can look as simple as:

1 cosmopower:
2 root_dir: /path/to/packaging
3 package_file: package_prescription.yaml

Here, the (optional) root_dir keyword points the wrapper to
the root directory where the packaging file is saved, and the
package_file option points to the packaging prescription file that
you want to load in. From this point, the wrapper parses the pack-
aging prescription, interfaces with Cobaya, loads in the emulators
that are required to compute all desired quantities, and provides the
likelihoods with the computed quantities during the chain sampling.

4.3 Fall through to native Einstein-Boltzmann code

In order to increase the robustness of the use of CosmoPower emu-
lators, we also include a feature which allows a given evaluation to
‘fall through’ to the native Einstein-Boltzmann code, in a limited and
configurable set of circumstances. By specifying the fall_through
= True option in the wrapper being used, CosmoPower will check
that a python module corresponding to the emulated_code and
version can be imported. If so, then if a set of parameters is re-
quested by the sampler which is outside of the trained range of the
emulator specified in the parameters block (e.g. if the prior being
used is wider than the training range) then CosmoPower will give a

Parameter Fiducial Value

ε𝑆𝑑
2 2.2383 ↘ 10↓2

ε𝑇𝑑2 12.011 ↘ 10↓2

𝑊0 67.32 km/s/Mpc
𝑒𝑈 0.966

log(1010𝑍𝑈) 3.0448
𝑓 5.43 ↘ 10↓2

𝑍𝑆 3.13
𝑔𝑆 0.603

log𝑕AGN 7.8

ϑ𝑖𝑉 0.12eV

Table 3. The fiducial parameters used for generating the smooth data vector.
The first six parameters refer to the cosmology, while the middle three are the
baryonic feedback parameters used in the non-linear model of CAMB. The last
parameter is specific for the extension model we tested, with a neutrino mass
for the inverted hierarchy to ensure that we could recover a closed posterior
for our +ϑ𝑖𝑉 emulators. The remaining accuracy settings are the same as
in Figure 3.

warning, but also calculate the requested quantities using the native
Einstein-Boltzmann code. Whilst this may be desirable in a limited
set of circumstances, care should be taken that the expected compu-
tational cost does not overwhelm that of augmenting the training set
with a broader range of parameters and re-training the emulator.

5 COMPARISON OF RECOVERED COSMOLOGY

We now demonstrate that we can use our emulators in parameter
inference analysis, generating posterior samples using Monte Carlo
chains with each of the Cobaya and CosmoSISwrappers above using
the same packaged network. In order to utilise all of the output quanti-
ties we do this for a set of observables: primary CMB, CMB lensing,
galaxy weak lensing, and galaxy clustering. Note that this allows
for quick and easy cross-validation of the results from using di"er-
ent Einstein-Boltzmann codes between di"erent inference packages
(e.g., class in CosmoSIS and CAMB in Cobaya). This is particularly
important because leading cosmology collaborations adopt di"erent
combinations of these codes while releasing results which we want
to compare and combine.

5.1 Simulated data vectors

For full validation, it is important to check that not only the emulators
recover the cosmological observables to high accuracy, but also that
there is no inherent bias when using our emulators for estimation
of the final cosmological parameters. To do this, we can generate
simulated data for the observables we emulate with a theoretical
covariance matrix and perform a parameter inference analysis on
them using the wrappers described above.

5.1.1 Cosmic-variance-limited CMB data

For our testing purposes, we generate a smooth data vector with
cosmic-variance-limited noise (such that our conclusions apply to
all current and future experiments). This data vector contains data
from a fiducial cosmology (see Table 3) for the CMB power spectra
𝑀𝑕𝑕
𝐿 ,𝑀𝑕𝑛

𝐿 , and𝑀𝑛𝑛
𝐿 , as well as the lensing potential spectrum𝑀𝑜𝑜

𝐿 .
For the CMB data vector, the cosmic-variance-limited noise model
is similar to Section 2.5, with 𝑃𝑝𝑝

𝐿 = 𝑃𝑝𝑞
𝐿 = 0 for all combinations

RASTI 000, 1–17 (2024)

12 Jense et al.

of 𝑛𝑛 and 𝑛𝑔 . We constrain our analysis to the multipole range 2 ↑
𝑊 ↑ 6000. To explore the parameter space we add a log-likelihood
function as a simple Gaussian chi-square distribution:

logL = ↓1
2

∑
𝐿

,-
.
𝑀pred
𝐿 ↓ 𝑀data

𝐿

𝑆𝐿

/

2

. (3)

Since the data vector is smooth, we expect to recover the exact
input parameters with a final 𝑝2 = 0.

5.1.2 Stage-IV-like 3x2pt LSS data

We also simulate a Large Scale Structure dataset for demonstrat-
ing and validating the 𝑁(𝑂) emulators. This consists of 3x2pt
data for cosmic shear, galaxy clustering and galaxy-galaxy lens-
ing, as is typically constrained by experiments such as DES, HSC
and KiDS+BOSS+2dFLens. Here we approximate the constraining
power of a Stage-IV LSS survey (such as LSST or Euclid), with a
number of caveats. In order to be able to make use of existing the-
oretical modelling and likelihoods which are implemented in both

Cobaya and CosmoSIS we use real space data rather than power
spectra and set up the redshift and angular binning of the data to be
the same as the DES-Y1 configuration, as described in Abbott et al.
(2018). Likewise, we both simulate and model the data using the
DES-Y1 model for Intrinsic Alignments, linear galaxy bias, shear
and redshift calibration biases etc. For a covariance matrix we create
a Gaussian covariance using the save_2pt module of CosmoSIS.
We do not contend such a model will be accurate for describing
real Stage-IV data; here we are seeking to understand if di"erences
between the calculation of 𝑁(𝑂) with either CosmoPower or CAMB
can be detected when 3x2pt statistics are measured with Stage-IV
precision. To that end we assume a sky fraction, redshift distribution,
total galaxy number density and shape noise as appropriate for an
LSST-Y10 3x2pt survey (as specified in the LSST-SRDC by Man-
delbaum et al. 2018) when simulating and analysing the data. Full
details of the configuration are given in Appendix D.

5.2 Results

Figure 9 shows the recovered contours of Cobaya+CosmoPower
and CosmoSIS+CosmoPower versus the Cobaya+CAMB and
CosmoSIS+CAMB posteriors from a CMB cosmic-variance-limited
dataset. We show that we can reproduce the CAMB best-fit cosmology
and posterior distribution to < 0.1𝑆 of the cosmic variance limit
error bars in both inference codes. Figure 10 shows the same re-
sult within Cobaya for the +∑𝑄𝑀 emulator as an example for an
extended model.

The main advantage from running CosmoPower is the speed in-
crease over CAMB. For a simple ωCDM model and the cosmic-
variance-limited CMB data, we found that a CAMB chain took ⇒
10 hours, while for CosmoPower it takes only ⇒ 20 minutes to run
to convergence. Most of this speed-up comes from the fact that at
this level of accuracy, an evaluation of a CAMB power spectrum takes
⇒ 20𝑞 to compute, while the same computation takes CosmoPower
⇒ 0.1𝑞, at which point computing any non-trivial likelihood function
becomes the limiting factor. When going to beyond-ωCDM models,
the time it takes to run a CAMB chain will go up due to the increased
complexity or accuracy requirements from the computations. For
CosmoPower however, the pre-trained emulators do not require more
complicated computation when running these chains, and as such

the time it takes a CosmoPower chain to converge will only increase
slightly due to the larger parameter space that needs to be explored.

Similarly for the Stage-IV-like LSS data we find times for each
individual likelihood evaluation with the CosmoPower CosmoSIS
module to be ⇒ 0.5 seconds, compared to ⇒ 42 seconds for the CAMB
CosmoSISmodule. In this case the need for Limber integration dom-
inates the likelihood evaluation time for CosmoSIS (⇒ 2 seconds)
when the Boltzmann emulator is used. Rather than expending sig-
nificant computational expense on a fully converged CAMB chain, in
Figure 11 we show the log Posterior values calculated in a short
chain using both CAMB and CosmoPower within CosmoSIS for the
LSS data set described in Section 5.1.2. As can be seen the rel-
ative di"erences in log Posterior between the numerical code and
the emulator are less than 0.005%, representing an indistinguishable
di"erence in estimates of posterior credible intervals and summary
statistics. See Figure D1 for full estimated posteriors showing the
parameter constraining power of this data set.

6 CONCLUSIONS

We have presented a coherent framework for specifying, creat-
ing, packaging and utilising emulators of cosmological Einstein-
Boltzmann codes, building on the CosmoPower package. These em-
ulators can speed up by orders of magnitude the estimation of pos-
teriors on cosmological and nuisance parameters from experimental
data and hence enable investigation of models which extend the fidu-
cial ωCDM cosmology and the checking of the robustness of any
conclusions made to a plethora of modelling choices. By creating a
specification for packaging and distributing such emulators and pro-
viding wrappers for their use in popular inference packages we hope
to improve e!ciency and reproducibility in cosmological studies, by
allowing appropriate emulators to be widely used by many di"er-
ent studies once they have been trained. This kind of reproducibility
across platforms will also assist in combining di"erent data sets to
improve statistical constraining power and investigate more models
in more detail.

We have used the framework to produce a suite of emulators of
quantities calculated by CAMB v1.5.0: CMB primary angular power
spectra 𝑀𝑕𝑕

𝐿 ,𝑀𝑕𝑛
𝐿 ,𝑀𝑛𝑛

𝐿 ,𝑀𝑟𝑟
𝐿 ; CMB lensing power spectra 𝑀𝑜𝑜

𝐿 ;
linear and non-linear matter power 𝑁(𝑂)lin, 𝑁(𝑂)NL and a variety of
background and derived quantities. We have demonstrated the accu-
racy of the emulators at both the spectrum level and the parameter-
recovery level to accuracy appropriate for Stage-IV data (and beyond
to the cosmic variance limit for the CMB spectra).

In principle, this standardisation of emulator packaging extends
in scope beyond Einstein-Boltzmann codes to other numerically-
intensive codes amenable to emulation, such as Interstellar Medium
models (e.g. Palud et al. 2023), supernova radiative transfer (e.g.
Kerzendorf et al. 2021), early-Universe re-ionisation models (e.g.
Schmit & Pritchard 2018) and others.

The framework described here will form a new re-
lease of the CosmoPower code, with the website https:
//alessiospuriomancini.github.io/cosmopower/ providing
full API documentation and extensive demo scripts and tutorial note-
books.

ACKNOWLEDGEMENTS

HTJ, IH and EC acknowledge support from the European Research
Council (ERC) under the European Union’s Horizon 2020 research

RASTI 000, 1–17 (2024)

https://alessiospuriomancini.github.io/cosmopower/
https://alessiospuriomancini.github.io/cosmopower/

Framework for cosmology emulation and inference. 13

0.02238

�bh2

0.050

0.054

0.058

�

67.2

67.4

H
0

0.964

0.966

0.968

n
s

3.04

3.05

lo
g

10
1
0
A

s

0.1196

0.1200

0.1204

0.1208

�
c
h
2

0.12

�ch2

3.04 3.05

log 1010As

0.96460.9673

ns

67.2 67.4

H0

0.050 0.058

�

cobaya

Cosmopower

CAMB

0.02238

�bh2

0.050

0.054

0.058

�

67.2

67.4

H
0

0.964

0.966

0.968

n
s

3.04

3.05

lo
g

10
1
0
A

s

0.1196

0.1200

0.1204

0.1208

�
c
h
2

0.12

�ch2

3.04 3.05

log 1010As

0.964 0.968

ns

67.2 67.4

H0

0.050 0.058

�

CosmoSIS

Cosmopower

CAMB

Figure 9. To illustrate that we can estimate posteriors in both Cobaya and CosmoSIS we show the same 68% and 95% confidence levels for ωCDM parameters
from CMB cosmic-variance-limited power spectra, obtained from a full MCMC run done either with the Cobaya wrapper for CosmoPower (blue) or with the
CAMB (red) on the left for Cobaya and right for CosmoSIS. This Figure also demonstrates the correct recovery of the cosmological likelihood in each case (note
that for Cobaya two separate sets of posterior samples are taken, whilst for CosmoSIS we re-evaluate the likelihood at the same posterior samples, resulting in
visually identical contours).

0.02238

�bh2

0.05

0.10

0.15

�
m

�

0.050

0.054

0.058

�

67

68

H
0

0.964

0.966

0.968

n
s

3.04

3.05

lo
g

10
1
0
A

s

0.119

0.120

0.121

�
c
h
2

0.12

�ch2

3.043.05

log 1010As

0.966

ns

67 68

H0

0.050 0.057

�

0.06 0.14

�m�

cobaya

Cosmopower

CAMB

Figure 10. Similar to Figure 9 but for ωCDM +ϑ𝑖𝑉 : Left: 68% and 95%
confidence levels for ωCDM parameters from CMB cosmic-variance-limited
power spectra, obtained from a full MCMC run done either with the Cobaya
wrapper for CosmoPower (blue) or with the existing CAMBwrapper for Cobaya
(red). The dotted lines show the fiducial value of the input data vector, and
both posterior distributions recovered this fiducial value within < 0.1𝑋.
The CosmoPower sampler converged within ⇒ 100 minutes, while the CAMB
sampler converged after ⇒ 28 hours.

Figure 11. Log Posterior di"erences for the Stage-IV-like 3x2pt LSS data set
described in Section 5.1.2 between estimations made using the original CAMB
Boltzmann code and the CosmoPower emulator.

and innovation programme (Grant agreement No. 849169). ASM
acknowledges support from the MSSL STFC Consolidated Grant
ST/W001136/1. We acknowledge the support of the Supercomputing
Wales project, which is part-funded by the European Regional De-
velopment Fund (ERDF) via Welsh Government. We thank Antony
Lewis for input on precision parameters and support with Cobaya;
Jens Chluba and Yacine Ali-Haïmoud for discussions on recombi-
nation codes; and Joe Zuntz for discussions on CosmoSIS. In ad-
dition to the references in the main text we thank the authors and
maintainers of public software codes including NumPy (Harris et al.

RASTI 000, 1–17 (2024)

14 Jense et al.

2020), SciPy (Virtanen et al. 2020), matplotlib (Hunter 2007),
TensorFlow (Abadi et al. 2015), and GetDist (Lewis 2019).

Author contributions

We list here the roles and contributions of the authors according to
the Contributor Roles Taxonomy (CRediT)21.
Hidde T. Jense: Conceptualization (equal), Investigation (equal),
Methodology (equal), Software (lead), Validation (equal), Visual-
ization (lead), Writing - original draft (equal). Ian Harrison: Con-
ceptualization (equal), Investigation (equal), Methodology (equal),
Software (supporting), Supervision (supporting), Validation (equal),
Visualization (supporting), Writing - original draft (equal). Erminia
Calabrese: Conceptualization (equal), Methodology (supporting),
Supervision (lead), Visualization (supporting), Writing - original
draft (equal). Alessio Spurio Mancini: Conceptualization (equal),
Methodology (equal), Writing - original draft (supporting). Boris
Bolliet: Conceptualization (equal), Writing - original draft (support-
ing). Jo Dunkley: Writing - original draft (supporting). J. Colin Hill:
Conceptualization (supporting), Writing - original draft (supporting).

REFERENCES

Abadi M., et al. 2015, TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems, https://www.tensorflow.org/

Abbott T. M. C., et al., 2018, Phys. Rev. D, 98, 043526
Abbott T. M. C., et al., 2022, Phys. Rev. D, 105, 023520
Adame A. G., et al., 2024, preprint (arXiv:2404.03002)
Aghamousa A., et al., 2016, preprint (arXiv:1611.00036)
Aiola S., et al. 2020, Journal of Cosmology and Astroparticle Physics, 2020,

047–047
Alam S., et al., 2021, Phys. Rev. D, 103, 083533
Aricò G., Angulo R. E., Zennaro M., 2021, preprint (arXiv:2104.14568)
Audren B., et al. 2013, JCAP, 1302, 001
Balkenhol L., et al., 2022, preprint (arXiv:2212.05642)
Blas D., Lesgourgues J., Tram T., 2011, Journal of Cosmology and Astropar-

ticle Physics, 2011, 034
Bolliet B., et al. 2023, preprint (arXiv:2303.01591)
Bonici M., Bianchini F., Ruiz-Zapatero J., 2023, preprint

(arXiv:2307.14339)
Brinckmann T., Lesgourgues J., 2019, Phys. Dark Univ., 24, 100260
Burger P. A., et al., 2023, Astron. Astrophys., 669, A69
Burger P. A., et al. 2024, Astronomy & Astrophysics, 683, A103
CMB-S4 Collaboration 2016, preprint (arXiv:1610.02743)
Campagne J.-E., et al. 2023, The Open Journal of Astrophysics, 6
Carrion K., et al. 2024, preprint (arXiv:2402.18562)
Chluba J., Thomas R. M., 2010, Monthly Notices of the Royal Astronomical

Society, pp no–no
Chluba J., Vasil G. M., Dursi L. J., 2010, Monthly Notices of the Royal

Astronomical Society, 407, 599–612
Choi S. K., et al., 2020, JCAP, 12, 045
DESI Collaboration 2024, preprint (arXiv:2404.03002)
Doré O., et al., 2014, preprint (arXiv:1412.4872)
Eifler T., et al., 2021, Mon. Not. Roy. Astron. Soc., 507, 1746
Farren G. S., et al. 2023, preprint (arXiv:2311.04213)
Giardiello S., et al., 2024, preprint (arXiv:2403.05242)
Harris C. R., et al., 2020, Array Programming with NumPy,

doi:10.1038/s41586-020-2649-2, https://arxiv.org/abs/2006.
10256v1

Heydenreich S., et al. 2023, Astron. Astrophys., 672, A44
Heymans C., et al., 2021, Astron. Astrophys., 646, A140
Hill J. C., et al. 2022, Phys. Rev. D, 105, 123536

21 https://credit.niso.org/

Hunter J. D., 2007, Computing in Science and Engineering, 9, 90
Kerzendorf W. E., et al. 2021, ApJ, 910, L23
Lesgourgues J., 2011, preprint (arXiv:1104.2932)
Lewis A., 2019, preprint (arXiv:1910.13970)
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
Linke L., et al. 2023, Astron. Astrophys., 672, A185
Madhavacheril M. S., et al., 2024, Astrophys. J., 962, 113
Mandelbaum R., et al., 2018, preprint (arXiv:1809.01669)
Mauland R., Winther H. A., Ruan C.-Z., 2023, preprint (arXiv:2309.13295)
McCarthy F., Hill J. C., Madhavacheril M. S., 2022, Phys. Rev. D, 105,

023517
Mead A. J., et al. 2021, Monthly Notices of the Royal Astronomical Society,

502, 1401–1422
Miyatake H., et al., 2023, Phys. Rev. D, 108, 123517
Mootoovaloo A., et al. 2022, Astron. Comput., 38, 100508
More S., et al., 2023, Phys. Rev. D, 108, 123520
Moretti C., et al. 2023, JCAP, 12, 025
Nygaard A., et al. 2023, JCAP, 05, 025
Palud P., et al. 2023, A&A, 678, A198
Pan Z., et al., 2023, Phys. Rev. D, 108, 122005
Piras D., Spurio Mancini A., 2023, arXiv e-Prints
Pitrou C., et al. 2018, Submitted to Phys. Rept.
Planck Collaboration VI 2020, A&A, 641, A6
Qu F. J., et al. 2024a, preprint (arXiv:2404.16805)
Qu F. J., et al., 2024b, Astrophys. J., 962, 112
Reeves A., et al. 2024, JCAP, 01, 042
Scaramella R., et al., 2022, Astron. Astrophys., 662, A112
Schmit C. J., Pritchard J. R., 2018, Mon. Not. Roy. Astron. Soc., 475, 1213
Simons Observatory Collaboration 2019, Journal of Cosmology and As-

troparticle Physics, 2019, 056–056
Spurio Mancini A., Bose B., 2023, preprint (arXiv:2305.06350)
Spurio Mancini A., Pourtsidou A., 2022, Mon. Not. Roy. Astron. Soc., 512,

L44
Spurio Mancini A., et al. 2022, Monthly Notices of the Royal Astronomical

Society, 511, 1771
Sugiyama S., et al., 2023, Phys. Rev. D, 108, 123521
The Simons Observatory collaboration 2019, Journal of Cosmology and As-

troparticle Physics, 2019, 056
Torrado J., Lewis A., 2019, Cobaya: Bayesian analysis in cosmology

([ascl:1910.019]), https://ascl.net/1910.019
Torrado J., Lewis A., 2021, Journal of Cosmology and Astroparticle Physics,

2021, 057
Virtanen P., et al., 2020, Nature Methods, 17, 261
Zuntz J., et al. 2015, Astron. Comput., 12, 45

APPENDIX A: FULL ωCDM EMULATOR PRESCRIPTION

Here we present the full yaml prescription for our ωCDM emulators.

1 network_name: jense_2023_camb_lcdm
2 path: jense_2023_camb_lcdm
3

4 # Details on the boltzmann code we emulate
5 emulated_code:
6 name: camb
7 version: "1.5.0"
8 inputs: [ombh2, omch2, As, ns, H0, tau]
9 extra_args:
10 lens_potential_accuracy: 8
11 kmax: 10.0
12 k_per_logint: 130
13 lens_margin: 2050
14 AccuracyBoost: 1.0
15 lAccuracyBoost: 1.2
16 lSampleBoost: 1.0
17 DoLateRadTruncation: false
18 min_l_logl_sampling: 6000

RASTI 000, 1–17 (2024)

https://www.tensorflow.org/
http://dx.doi.org/10.1103/PhysRevD.98.043526
http://dx.doi.org/10.1103/PhysRevD.105.023520
http://arxiv.org/abs/2404.03002
http://arxiv.org/abs/1611.00036
http://dx.doi.org/10.1088/1475-7516/2020/12/047
http://dx.doi.org/10.1103/PhysRevD.103.083533
http://arxiv.org/abs/2104.14568
http://dx.doi.org/10.1088/1475-7516/2013/02/001
http://arxiv.org/abs/2212.05642
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://arxiv.org/abs/2303.01591
http://arxiv.org/abs/2307.14339
http://dx.doi.org/10.1016/j.dark.2018.100260
http://dx.doi.org/10.1051/0004-6361/202244673
http://dx.doi.org/10.1051/0004-6361/202347986
http://arxiv.org/abs/1610.02743
http://dx.doi.org/10.21105/astro.2302.05163
http://arxiv.org/abs/2402.18562
http://dx.doi.org/10.1111/j.1365-2966.2010.17940.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17940.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16940.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16940.x
http://dx.doi.org/10.1088/1475-7516/2020/12/045
http://arxiv.org/abs/2404.03002
http://arxiv.org/abs/1412.4872
http://dx.doi.org/10.1093/mnras/stab1762
http://arxiv.org/abs/2311.04213
http://arxiv.org/abs/2403.05242
http://dx.doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/2006.10256v1
https://arxiv.org/abs/2006.10256v1
http://dx.doi.org/10.1051/0004-6361/202244820
http://dx.doi.org/10.1051/0004-6361/202039063
http://dx.doi.org/10.1103/PhysRevD.105.123536
https://credit.niso.org/
http://dx.doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H
http://dx.doi.org/10.3847/2041-8213/abeb1b
https://ui.adsabs.harvard.edu/abs/2021ApJ...910L..23K
http://arxiv.org/abs/1104.2932
http://arxiv.org/abs/1910.13970
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1051/0004-6361/202245652
http://dx.doi.org/10.3847/1538-4357/acff5f
http://arxiv.org/abs/1809.01669
http://arxiv.org/abs/2309.13295
http://dx.doi.org/10.1103/PhysRevD.105.023517
http://dx.doi.org/10.1093/mnras/stab082
http://dx.doi.org/10.1103/PhysRevD.108.123517
http://dx.doi.org/10.1016/j.ascom.2021.100508
http://dx.doi.org/10.1103/PhysRevD.108.123520
http://dx.doi.org/10.1088/1475-7516/2023/12/025
http://dx.doi.org/10.1088/1475-7516/2023/05/025
http://dx.doi.org/10.1051/0004-6361/202347074
https://ui.adsabs.harvard.edu/abs/2023A&A...678A.198P
http://dx.doi.org/10.1103/PhysRevD.108.122005
http://dx.doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/2404.16805
http://dx.doi.org/10.3847/1538-4357/acfe06
http://dx.doi.org/10.1088/1475-7516/2024/01/042
http://dx.doi.org/10.1051/0004-6361/202141938
http://dx.doi.org/10.1093/mnras/stx3292
http://dx.doi.org/10.1088/1475-7516/2019/02/056
http://dx.doi.org/10.1088/1475-7516/2019/02/056
http://arxiv.org/abs/2305.06350
http://dx.doi.org/10.1093/mnrasl/slac019
http://dx.doi.org/10.1093/mnras/stac064
http://dx.doi.org/10.1093/mnras/stac064
http://dx.doi.org/10.1103/PhysRevD.108.123521
http://dx.doi.org/10.1088/1475-7516/2019/02/056
http://dx.doi.org/10.1088/1475-7516/2019/02/056
https://ascl.net/1910.019
http://dx.doi.org/10.1088/1475-7516/2021/05/057
http://dx.doi.org/10.1038/s41592-019-0686-2
https://rdcu.be/b08Wh
http://dx.doi.org/10.1016/j.ascom.2015.05.005

Framework for cosmology emulation and inference. 15

19 recombination_model: CosmoRec
20

21 # Details on the parameters we sample and derive.
22 samples:
23 Ntraining: 100000
24

25 parameters:
26 # Our latin hypercube
27 ombh2: [0.015,0.030]
28 omch2: [0.09,0.15]
29 logA: [2.5,3.5]
30 tau: [0.02, 0.20]
31 ns: [0.85, 1.05]
32 h: [0.4,1.0]
33 # Parameters derived directly from our LHC
34 H0: "lambda h: h * 100.0"
35 As: "lambda logA: 1.e-10 * np.exp(logA)"
36 # Parameters computed by our boltzmann code
37 thetastar:
38 sigma8:
39 YHe:
40 zrei:
41 taurend:
42 zstar:
43 rstar:
44 zdrag:
45 rdrag:
46 N_eff:
47

48 # Details on each of the emulators we want to
create.

49 networks:
50 - quantity: "derived"
51 type: NN
52 n_traits:
53 n_hidden: [512, 512, 512, 512]
54 training:
55 validation_split: 0.1
56 learning_rates: [1.e-2, 1.e-3, 1.e-4, 1.e

-5, 1.e-6, 1.e-7]
57 batch_sizes: [1000, 2000, 5000, 10000,

20000, 50000]
58 gradient_accumulation_steps: [1, 1, 1, 1,

1, 1]
59 patience_values: [100, 100, 100, 100, 100,

100]
60 max_epochs: [1000, 1000, 1000, 1000, 1000,

1000]
61

62 - quantity: "Cl/tt"
63 type: NN
64 log: True
65 modes:
66 label: l
67 range: [2,10000]
68 n_traits:
69 n_hidden: [512, 512, 512, 512]
70 training:
71 validation_split: 0.1
72 learning_rates: [1.e-2, 1.e-3, 1.e-4, 1.e

-5, 1.e-6, 1.e-7]
73 batch_sizes: [1000, 2000, 5000, 10000,

20000, 50000]
74 gradient_accumulation_steps: [1, 1, 1, 1,

1, 1]
75 patience_values: [100, 100, 100, 100, 100,

100]

76 max_epochs: [1000, 1000, 1000, 1000, 1000,
1000]

77

78 - quantity: "Cl/te"
79 type: PCAplusNN
80 modes:
81 label: l
82 range: [2,10000]
83 p_traits:
84 n_pcas: 512
85 n_batches: 10
86 n_traits:
87 n_hidden: [512, 512, 512, 512]
88 training:
89 validation_split: 0.1
90 learning_rates: [1.e-2, 1.e-3, 1.e-4, 1.e

-5, 1.e-6, 1.e-7]
91 batch_sizes: [1000, 2000, 5000, 10000,

20000, 50000]
92 gradient_accumulation_steps: [1, 1, 1, 1,

1, 1]
93 patience_values: [100, 100, 100, 100, 100,

100]
94 max_epochs: [1000, 1000, 1000, 1000, 1000,

1000]
95

96 - quantity: "Cl/ee"
97 type: NN
98 log: True
99 modes:
100 label: l
101 range: [2,10000]
102 n_traits:
103 n_hidden: [512, 512, 512, 512]
104 training:
105 validation_split: 0.1
106 learning_rates: [1.e-2, 1.e-3, 1.e-4, 1.e

-5, 1.e-6, 1.e-7]
107 batch_sizes: [1000, 2000, 5000, 10000,

20000, 50000]
108 gradient_accumulation_steps: [1, 1, 1, 1,

1, 1]
109 patience_values: [100, 100, 100, 100, 100,

100]
110 max_epochs: [1000, 1000, 1000, 1000, 1000,

1000]
111

112 - quantity: "Cl/bb"
113 type: NN
114 log: True
115 modes:
116 label: l
117 range: [2,10000]
118 n_traits:
119 n_hidden: [512, 512, 512, 512]
120 training:
121 validation_split: 0.1
122 learning_rates: [1.e-2, 1.e-3, 1.e-4, 1.e

-5, 1.e-6, 1.e-7]
123 batch_sizes: [1000, 2000, 5000, 10000,

20000, 50000]
124 gradient_accumulation_steps: [1, 1, 1, 1,

1, 1]
125 patience_values: [100, 100, 100, 100, 100,

100]
126 max_epochs: [1000, 1000, 1000, 1000, 1000,

1000]
127

RASTI 000, 1–17 (2024)

16 Jense et al.

128 - quantity: "Cl/pp"
129 inputs: [ombh2, omch2, logA, ns, h]
130 type: PCAplusNN
131 log: True
132 modes:
133 label: l
134 range: [2,10000]
135 p_traits:
136 n_pcas: 64
137 n_batches: 10
138 n_traits:
139 n_hidden: [512, 512, 512, 512]
140 training:
141 validation_split: 0.1
142 learning_rates: [1.e-2, 1.e-3, 1.e-4, 1.e

-5, 1.e-6, 1.e-7]
143 batch_sizes: [1000, 2000, 5000, 10000,

20000, 50000]
144 gradient_accumulation_steps: [1, 1, 1, 1,

1, 1]
145 patience_values: [100, 100, 100, 100, 100,

100]
146 max_epochs: [1000, 1000, 1000, 1000, 1000,

1000]

APPENDIX B: DATASET FILE STRUCTURE

We opted to standardise the dataset file structure for CosmoPower, as
a way to streamline the emulator building process for the end-user.
At the python-interface side, we included a cosmpower.Dataset
class that wraps around the file structure easily and handles the file
parsing in a safe manner.

The main file format we settled on is Hierarchical Data Format
revision 5 (HDF5), which is a file format designed to handle large
datasets of tabular nature, something that lends itself specially well
for this issue. Via the h5py library in python, HDF5 is also a rel-
atively fast and memory-e!cient read/write access, o"ering both
good compression for hard drive storage and decompression rates for
RAM access during runtime.

The training data needs to accurately match the →𝑉 (→𝑈) mapping
of our emulators well, while also being robust against potentially
missing datapoints and multi-threaded reading access. We opted to
split this mapping into two di"erent files, a parameters file which
contains the main LHC of the dataset and is only used for spectra
generation, and a (set of) files for the computed observable quantities,
which are named as Cl_tt.0.hdf5, Cl_tt.1.hdf5, etc. for e.g.
𝑀𝑕𝑕
𝐿 . The quantity files are split into several files, to allow multi-

threaded write access without having to worry about data races, and
to prevent issues when opening data files which are larger than a
device’s available RAM.

The parameters file contains a header and a main body. The
header contains an ordered list of strings for the 𝑟 parameters that
are to be passed on to the Boltzmann code. The main body contains
a 𝑟 ↘ 𝑃 table of 𝑃 samples from the LHC. Because the LHC is
relatively small in size and quick to generate, this file never needs
to be written to in di"erent threads and can be kept as one file. It is
stored separately from the main dataset in case a spectra generation
run is interrupted and needs to be resumed at a later stage, in which
case it can be ensured that new spectra are sampled from the same
LHC as before.

Each quantity file also contains a header and a main body. The
header contains a list of 𝑠 modes for the quantity, the names of the
parameters that are to be used for the emulator. In the main body,

Figure C1. A scree plot, showing the unexplained variance of a PCA com-
pression for the various CMB quantities, as a function of the number of
retained principal components. The “scree” of each line is the flat plateau
of each line. We observed that for 𝑆𝑄𝑄

𝑁 , this scree lies around 64 principal
components (vertical red line), and hence a PCA compression of 64 retained
components is e"ective for a 𝑆𝑄𝑄

𝑁 emulator. Conversely, however, observing
the scree for𝑆𝑃𝑃

𝑁 at around 100 principal components, we expected the same
to see for this quantity. We attribute the lack of an improvement in emulation
for this quantity to the presence of important features which shift in 𝐿-space
for that quantity, which would not be retained by our implementation of PCA.

there is a 𝑟 ↘ 𝑃 array of input parameters for each spectra, and a
𝑠 ↘ 𝑃 array where each 𝑠-length spectrum is stored. In addition,
there is a 𝑃-array of indices stored, the entries of which refer to
the indices of the parameters file that each sample was computed
from. Because quantity files are pre-allocated before they are filled,
an index of -1 indicates that a spectrum has not been computed yet.

APPENDIX C: PRINCIPAL COMPONENT ANALYSIS

The use of Principal Component Analysis (PCA) can be worthwhile
in improving the accuracy of the emulator by compressing the full
data into a smaller number of free components. While the reduction
in freedom in the output is reduced and has therefore less capacity to
accurately recover the original spectra, the reduced dimensionality of
the output vector means that the emulator can more e!ciently train
on this reproduction.

The choice of whether or not to use PCA is not trivial, and there is
no simple test that can conclusively show that the use of PCA com-
pression is guaranteed to be beneficial before training an emulator.
While for some cases, like 𝑀𝑕𝑛

𝐿 , the use of a PCA is needed due to
the zero-crossing of the observed quantity, it may not be obvious a

priori that the use of a PCA can improve it for other quantities as
well.

It was observed in Spurio Mancini et al. (2022) that the 𝑀𝑜𝑜
𝐿

emulator improved in accuracy when employing PCA compression.
We observed that this can be explained by making a scree plot, which
is a line plot of the eigenvalues of all retained PCA components.
We show a scree plot of the training data for our ωCDM emulators
in Figure C1. By observing where this line flattens out (the “scree”
of the line), one can estimate the amount of components that need
to be retained in the PCA. For the 𝑀𝑜𝑜

𝐿 spectra, we found that
this scree appears around 60 components, which means around 64
components should be su!cient to accurately decompose the 10000
𝑊 modes of the spectra without loss of information. Similarly, a scree

RASTI 000, 1–17 (2024)

Framework for cosmology emulation and inference. 17

plot showed that a few hundred components should be su!cient for
𝑀𝑕𝑛
𝐿 .

However, a scree plot is not necessarily conclusive. We observed
that the 𝑀𝑟𝑟

𝐿 are also dense enough that about 200 PCA components
should be capable of accurately recovering them. Upon training such
an emulator however, we found that direct emulation of 𝑀𝑟𝑟

𝐿 was
more accurate than one that employed PCA compression. We think
this is due to the fact that the BB spectra contain features which vary
in 𝑊 under certain parameter variations, and hence cannot be properly
accounted for in PCA compression. Since our regular emulators were
shown to be more than accurate for physical analysis, we did not
do an in-depth analysis of this discrepancy. Further investigation,
or a di"erent type of information compaction that does allow for
horizontal shifts in 𝑊-space, can perhaps allow for more accurate
emulators in the future.

APPENDIX D: SPECIFICATION OF STAGE-IV-LIKE
3X2PT DATA

For assessing the accuracy of our emulation of 𝑁(𝑂) at Stage-IV
levels of precision on LSS data, we create a data set containing angu-
lar correlation functions for galaxy clustering 𝑅(𝑈), galaxy-galaxy
lensing 𝑙𝑡 (𝑈), and cosmic shear 𝑡±(𝑈). In addition to the fiducial
cosmological model and parameters for ωCDM shown in Table 3,
we include linear galaxy bias parameters for the lens galaxies, a two-
parameter NLA model for galaxy intrinsic alignments, one-parameter
per tomographic bin central shift parameters for redshift distributions
of the sources and lenses, and one parameter per tomographic bin
for multiplicative shear bias calibration of the sources. Following the
LSST-SRDC (Mandelbaum et al. 2018) specification for LSST-Y10
we assume a redshift distribution for both sources and lenses given by
𝑍(𝑑) ⇑ 𝑑2 exp [↓(𝑑/𝑑0)𝑢] with 𝑢 = 0.783, 𝑑0 = 0.176 and convolve
this with a Gaussian of width 𝑆𝑉 = 0.05(1 + 𝑑). Sources are placed
into four tomographic bins and lenses placed into five tomographic
bins, all equally populated with the total number density of galaxies
𝑍gal = 27 [arcmin↓2] (note that this tomographic binning is not the
one expected for the LSST analysis, but matches the DES-Y1 model).
When modelling the covariance we assume a 𝑆𝑣 = 0.26 and a sky
area of 14, 300 deg2. In Figure 11 we show the ωCDM model con-
straints from this data set (using CosmoPower), alongside the o!cal
Dark Energy Survey Y1 results from Abbott et al. (2018) (which
use the same model and likelihood pipeline) to give a sense of the
relative power.

APPENDIX E: ACCURACY PLOTS FOR EXTENSION
MODEL EMULATORS

Here we reproduce Figure 6 for the extended models we consider be-
yond ωCDM, with all models showing acceptable levels of accuracy
as discussed in Section 2.5.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure D1. The ωCDM model constraining power of the Stage-IV-like 3x2pt
Large Scale Structure data set used to benchmark the trained 𝑇 (𝑈) emulator.
For scale we show the o!cial DES-Y1 (Abbott et al. 2018) chain, which use
the exact same likelihood pipeline but with their real data.

RASTI 000, 1–17 (2024)

18 Jense et al.

(a) TT (b) TE

(c) EE (d) BB

(e) 𝑜𝑜 (f) 𝑇 (𝑈)

Figure E1. Same as Figure 6 but for ωCDM + 𝑂e! .

RASTI 000, 1–17 (2024)

Framework for cosmology emulation and inference. 19

(a) TT (b) TE

(c) EE (d) BB

(e) 𝑜𝑜 (f) 𝑇 (𝑈)

Figure E2. Same as Figure 6 but for ωCDM + ϑ𝑖𝑉 .

RASTI 000, 1–17 (2024)

20 Jense et al.

(a) TT (b) TE

(c) EE (d) BB

(e) 𝑜𝑜 (f) 𝑇 (𝑈)

Figure E3. Same as Figure 6 but for ωCDM + 𝑂e! + ϑ𝑖𝑉 .

RASTI 000, 1–17 (2024)

Framework for cosmology emulation and inference. 21

(a) TT (b) TE

(c) EE (d) BB

Figure E4. Same as Figure 6 but for ωCDM + 𝑗0𝑗𝑊 .

RASTI 000, 1–17 (2024)

	Introduction
	Emulators
	Emulated Quantities
	Cosmological Models
	Training Data
	Network Design and Training
	Accuracy of Emulated Observables

	Packaging Description
	Generating Training Data
	Network Specification and Training
	Assessing Accuracy

	Wrapper Description
	CosmoSIS
	Cobaya
	Fall through to native Einstein-Boltzmann code

	Comparison of Recovered Cosmology
	Simulated data vectors
	Results

	Conclusions
	Full CDM Emulator Prescription
	Dataset file structure
	Principal Component Analysis
	Specification of Stage-IV-like 3x2pt data
	Accuracy plots for Extension model emulators

