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Abstract. In this paper, we introduce a novel normative modeling app-
roach that incorporates focal loss and adversarial autoencoders (FAAE) 
for Alzheimer’s Disease (AD) diagnosis and biomarker identification. Our 
method is an end-to-end approach that embeds an adversarial focal loss 
discriminator within the autoencoder structure, specifically designed to 
effectively target and capture more complex and challenging cases. We 
first use the enhanced autoencoder to create a normative model based on 
data from healthy control (HC) individuals. We then apply this model to 
estimate total and regional neuroanatomical deviation in AD patients. 
Through extensive experiments on the OASIS-3 and ADNI datasets, 
our approach significantly outperforms previous state-of-the-art meth-
ods. This advancement not only streamlines the detection process but 
also provides a greater insight into the biomarker potential for AD. Our 
code can be found at https://github.com/soz223/FAAE. 

Keywords: Normative modeling · Focal loss · Adversarial learning · 
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1 Introduction 

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder character-
ized by brain dysfunction, presenting significant challenges in both diagnosis and 
treatment due to individual heterogeneity. Early and accurate detection of AD 
is crucial for effective patient management and treatment planning. Traditional 
diagnostic methods primarily rely on clinical assessments and neuroimaging tech-
niques, which can be time-consuming and subjective. To address these challenges, 
there is an increasing trend toward developing automated, data-driven methods 
for AD diagnosis and biomarker analysis. 
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Normative modeling is a powerful statistical framework for clinical assess-
ments that compares individual deviations against a normative range derived 
from a healthy control (HC) population [ 12]. This method captures variability 
by comparing with a standard reference model, elucidating disease heterogeneity 
and uncovering abnormalities. Given the imbalanced nature of medical data [ 23], 
where models often bias toward larger groups, normative modeling effectively 
avoids this by using only one group for training. Recent advancements in deep 
learning, especially autoencoders (AEs), have further advanced normative mod-
eling. Various methods have been proposed, such as [ 1, 2, 8, 10, 14, 15, 18, 21, 24]. 

Drawing on insights from previous studies [ 15, 21], we leverage recent devel-
opments in the use of adversarial autoencoders (AAEs) for normative modeling. 
Adversarial learning enhances AEs by aligning the aggregated posterior with the 
prior, thus minimizing divergence between the model’s prior and posterior for 
improved accuracy. Despite these advances, a notable challenge in existing mod-
els is their reduced effectiveness in learning from complex samples, particularly 
in contexts with uneven data distribution, where some data samples are inher-
ently easier for the model to learn, while others pose significant challenges due 
to their complexity. This discrepancy often leads to adversarial learning models 
focusing on simpler patterns that are easier to replicate, neglecting the intricate 
and complex patterns in the more difficult samples. Additionally, the emphasis 
on minimizing divergence between the model’s prior and posterior can result in 
reduced sensitivity to these nuanced variations, thereby affecting the model’s 
overall ability to adapt and generalize effectively across varied data samples. 
This situation highlights the critical need for innovative approaches that can 
effectively address these specific challenges in normative modeling. 

In this paper, we introduce a novel normative modeling approach that lever-
ages focal loss and adversarial autoencoders (FAAE) to enhance the detection of 
AD. By combining these elements, our approach effectively focuses training on 
challenging cases, preventing easy examples from dominating the training pro-
cess. We present the results of our extensive testing on the OASIS-3 and ADNI, 
which are comprehensive and widely used datasets in AD research. Our findings 
indicate that FAAE-based normative model significantly outperforms previous 
state-of-the-art methods in AD detection in terms of AUROC (Area Under the 
Receiver Operating Characteristic Curve score) and sensitivity scores. By ana-
lyzing the contrast in deviation plots for AD compared to HC, we can gain a 
deeper understanding of disease heterogeneity, offering a promising framework 
for clinical diagnosis and biomarker discovery. This strategic integration bridges 
the gap between existing methods and the untapped potential of focal loss in 
normative modeling, setting a new precedent in the field. 

2 Materials and Methods 

2.1 Dataset Collection and Processing 

In this study, we use fMRI data from Open Access Series of Imaging Studies 
3 (OASIS-3) [ 9] and Alzheimer’s Disease Neuroimaging Initiative (ADNI) [ 13]
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Fig. 1. An overview of our proposed FAAE. 

databases. OASIS-3 comprises a total of 1497 samples with 21 AD samples and 
1476 HC samples, and ADNI comprises a total of 579 samples with 141 AD 
samples and 438 HC samples. 

For both OASIS-3 and ADNI datasets, we follow the standard procedures 
to preprocess each sample using the fMRIPrep pipeline [ 3], including intensity 
nonuniformity correction, skull stripping, spatial normalization, FSL-based seg-
mentation, boundary-based registration, slice-time correction, susceptibility dis-
tortion correction, resampling in both original and standard spaces, and motion 
artifact removal using ICA-AROMA. To handle data collected from multiple 
periods, we treated the data for each 100-day interval as a sample, assuming no 
significant change during that period. Data acquisition during a 6-minute session 
(164 volumes) employs a 16-channel head coil scanner (TR = 2.2 s, TE = 27 ms, 
FOV = 240. × 240 mm, FA = 90. ◦). 

In order to generate regional features for each sample, we first average the 
voxel-level BOLD time series into 100 regions-of-interest (ROIs) for each time 
point based on the Schaefer-100 parcellation [ 17]. These averaged time series are 
then further averaged over time points to create ROI-based input features. Fol-
lowing [ 15, 21], we incorporate key demographic variables including age, gender, 
and intracranial volume (ICV) as covariates to control their potential impact on 
the results. Utilizing the same preprocessing steps results in a 22-dimensional 
covariate vector for each sample. 

2.2 Normative Modeling 

Overview. Figure 1 presents an overview of our proposed FAAE architecture 
and process for normative modeling. In the training phase, the model is trained 
only on the HC group, thus constructing a normative range of healthy brain 
patterns in each brain region. In the testing phase, we calculate a thorough 
evaluation of each patient’s deviation from the established normative range, 
facilitating precise identification of AD and its associated ROIs. 

We use an autoencoder as our model architecture. The backbone module 
establishes a normative range by training with a dataset of healthy control (HC) 
individuals. The encoder condenses features into a latent representation, while 
the decoder reconstructs the input from this latent space, enabling the model
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to understand healthy brain patterns. An adversarial focal loss discriminator 
is then integrated to enhance the model’s sensitivity in detecting complex AD 
cases. Below, we detail each module. 

Autoencoder. In this study, we employ the conditional variational autoencoder 
(CVAE) as the foundational architecture for our normative modeling framework. 
This type of autoencoder allows us to influence the model’s reconstruction using 
demographic variables such as age, gender, and ICV. Moreover, it is capable 
of generating a probabilistic latent space representation, which is crucial for 
effectively capturing the inherent variability and uncertainty prevalent in the 
data for normative modeling. 

Our model architecture consists of three primary components: the encoder, 
the latent distribution, and the decoder. The encoder compresses high-
dimensional data into a compact, low-dimensional latent space. The latent dis-
tribution focuses on understanding the data’s distribution through its mean (. μ) 
and variance (. σ), which define the probabilistic contours of the latent space. 
These parameters are essential for generating new data samples, useful for aug-
menting datasets, especially in cases of rare conditions or imbalanced datasets 
common in normative modeling. In our study, we use standard random sampling 
within the latent space to facilitate this generative process as follows: 

.z = μ + σ � ε, ε ∼ N (0, 1). (1) 

where . z is the latent representation obtained from the encoder and . � denotes the 
element-wise product. This sampling strategy is instrumental in maintaining the 
balance between data representation accuracy and the flexibility needed for effec-
tive normative modeling. Subsequently, the decoder reconstructs the data back 
to its original high-dimensional form, starting from this probabilistically encoded 
latent representation. Through this intricate process of encoding, probabilistic 
modeling in the latent space, and decoding, our model architecture ensures that 
the most salient features of the data are preserved and accurately represented. 
The objective function can be formulated as: 

.LCVAE = E[logPφ(x|z, c)] − KL(Qθ(z|x, c)||Pφ(z|c)), (2) 

where . x represents the input features and . c the confounding variables. The 
functions .Qθ(z|x, c), .Pφ(x|z, c), and .Pφ(z|c) correspond to the encoder, decoder, 
and prior distribution, respectively, with . φ and . θ denoting their parameters. The 
term .E[logPφ(x|z, c)] measures the reconstruction error, indicating how closely 
the output matches the input data. The term Kullback-Leibler (KL) divergence, 
.KL(Qθ(z|x, c)||Pφ(z|c)), assesses the accuracy of the distribution .Qθ(z|x, c). 

Adversarial Focal-Loss Discriminator. Building on the insights from prior 
studies [ 15, 21], we integrate adversarial learning into the CVAE-based frame-
work described above. This combination enhances the model’s reconstruction 
loss by incorporating the perceptual-level representation capabilities of the dis-
criminator, a key component in adversarial learning.
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In adversarial learning, the system has two components: the discriminator 
and the generator. The discriminator distinguishes between samples from the 
prior distribution and the CVAE’s latent distribution. The generator (also the 
decoder) produces samples to fool the discriminator. This interaction improves 
the quality and accuracy of the generated samples. The objective function can 
be expressed as follows: 

.LAdv = E[logD(z|c)] + E[log(1 − D(Qθ(z|x, c)))], (3) 

where .D(z|c) is the discriminator, and .Qθ(x|z, c)) is the generator, which in this 
particular case, acts as the encoder role. 

Recent research [ 11] indicates that discriminators in adversarial learning may 
sometimes struggle with hard samples, which are particularly challenging for 
the model to learn. This can impact the model’s ability to adapt and generalize 
effectively across diverse data samples. To address this issue, we introduce focal 
loss into the adversarial objective function. Focal loss modifies the standard 
cross-entropy loss by adjusting the weighting of samples within the loss function, 
offering significant advantages for handling imbalanced datasets and effectively 
targeting hard-to-learn samples [ 4]. To elaborate, the focal loss is mathematically 
defined as follows: 

.FL(p) =

{
−α(1 − p)γ log(p), y = 1
−(1 − α)pγ log(1 − p), y = 0

(4) 

where . p denotes the predicted probability of the true label. The parameter . α
serves as a scaling factor, while . γ is employed to amplify the focus on learning 
from hard samples, where the model is more likely to make errors. Leveraging 
this formulation in Eq. (4), we adapt the adversarial learning loss to take the 
following form: 

.
LAdvFL = E [−α(1 − D(z|c))γ logD(z|c)]
+ E [−(1 − α)(D(Qθ(z|x, c)))γ log(1 − D(Qθ(z|x, c)))] .

(5) 

This extension to the adversarial learning framework integrates the princi-
ples of focal loss, optimizing our model’s focus on the more challenging samples 
encountered while training our one-class normative model on the HC group. 
Specifically, the parameter . α plays a key role in balancing the weights of the dis-
criminator and generator, thus minimizing the bias towards prevalent healthy 
patterns. Meanwhile, . γ increases the model’s sensitivity to subtle variations, a 
crucial aspect for identifying early-stage or less apparent anomalies. This app-
roach enhances the model’s ability to discern nuanced deviations, which is key 
for effective normative modeling in medical applications. 

Final Loss. Combining Eqs. (2) and  (5), the total loss for training our FAAE 
model is expressed as follows: 

.LFAAE = LCVAE + LAdvFL. (6)
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Deviation Metric. We employ the standard mean square error (MSE) as a 
performance function to compute the deviation between the input data and 
the reconstructed output, defined as: .DMSE = ‖x−x̂‖2

2
n , where  . x̂ represents the 

reconstruction of the input data . x as generated by the decoder, and . n denotes 
the dimension of . x, which is set to 100 in this study. 

3 Experiments and Results 

Experimental Settings. We split the data into a training set, comprising 80% 
of the randomly selected HC samples, and a test set, consisting of the remaining 
HC samples and all AD samples. We follow the same setting as [ 21] to normalize 
the training and test sets, as well as neural network architectures, and standard 
parameter settings. To ensure robust results, we employ bootstrap resampling, 
repeating the process 30 times and reporting the average results. 

Competing Methods. To evaluate our proposed FAAE, we conduct compar-
isons with five deep normative modeling methods: vanilla AE [ 1], VAE [ 7], CVAE 
[ 19], ACVAE [ 21], and AAE [ 16]. Each method represents a unique normative 
modeling approach. For these methods, we utilize their publicly available codes 
and apply the same parameter settings as our experiments to ensure a fair and 
consistent comparison. 

Evaluation Metrics. Measures of performance included the area under the 
receiver operating characteristic (AUROC), sensitivity, and specificity, which 
are commonly used in disease diagnosis. A highly sensitive test ensures that 
patients with the disease are correctly identified, while a highly specific test 
ensures that patients without the disease are accurately excluded. The AUROC 
score combines both sensitivity and specificity, providing a single metric that 
reflects the overall diagnostic performance of a test. A higher AUROC score 
indicates better discrimination between patients with and without the disease. 

Table 1. Testing performance comparison of different models. 

OASIS-3 ADNI 
Methods AUROC Sensitivity Specificity AUROC Sensitivity Specificity 
AE 58.83 .± 2.21 55.24 .± 13.67 61.03 .± 11.29 65.70.± 2.50 66.60.± 5.08 66.93.± 5.76 
VAE 61.54 .± 1.82 65.71 .± 5.55 56.47 .± 5.40 59.36.± 2.61 55.46 . ±2.1072.39. ±3.52 
CVAE 62.81 .± 1.26 68.10 .± 5.65 56.64 .± 3.42 62.11.± 1.17 56.60.± 7.40 72.39.± 8.16 
ACVAE 64.64 .± 2.53 64.76 .± 17.97 61.46 .± 13.84 67.82. ±0.98 67.38.± 1.74 64.41.± 1.51 
AAE 55.94 .± 3.05 44.76 .± 21.53 69.15 . ± 20.47 64.57.± 2.65 60.43. ±10.3572.46. ±9.65 
FAAE 68.56 . ± 3.98 70.00 . ± 12.06 61.76 . ± 11.99 66.15. ±1.17 72.20. ±5.30 60.50.± 4.74 

Results. Table 1 shows the performance of six comparison methods on both 
OASIS-3 and ADNI datasets. From the results, we can observe that our method
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Fig. 2. (a)–(b) Observed mean deviation and effect size of HC vs. AD on OASIS-3 for 
top-3 methods, respectively. (c) Parameter sensitivity on OASIS-3. 

Fig. 3. Comparative analysis of average regional-deviation values of AD across top-3 
methods on OASIS-3 dataset. 

significantly outperforms other methods in terms of sensitivity, while also achiev-
ing higher or comparable AUROC scores. In most medical applications, high 
sensitivity is crucial as it minimizes false negatives, thereby reducing the risk of 
missing disease cases. 

Notably, FAAE demonstrates a marked improvement in sensitivity compared 
to adversarial learning-based methods like ACVAE and AAE. While adversar-
ial learning typically yields higher specificity in AD detection, as evidenced by 
AAE’s top scores, it significantly falls short in sensitivity. This shortfall is likely 
due to a bias towards easy samples in adversarial learning, which is especially 
prevalent in datasets with a dominant healthy class. Confirming our hypothesis, 
FAAE shows enhanced sensitivity, underscoring the role of focal loss in effectively 
classifying minority cases in imbalanced datasets. Another observation is that 
although AAE has high specificity, their sensitivity is low. The reason behind 
this is that AAE applies adversarial learning on an imbalanced dataset, which 
leads to overfitting. 

Moreover, we use OASIS-3 as an example to illustrate our analysis of model 
performance and regional brain impacts. Figure 2(a) shows the deviation box-
plots for top-3 methods in the test set, which indicates that FAAE can bet-
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ter distinguish HC and AD. Furthermore, we investigate the impact of different 
brain regions by computing 95% confidence intervals for the effect size differences 
between HC and AD, where an interval not containing 0 indicates a significant 
difference. Figure 2(b) shows our method identifies more regions with significant 
effects than baseline models, indicating its superior robustness and sensitivity. 

Additionally, we demonstrate regional variations for the top-3 methods by 
calculating deviations between expected norms and observed values in AD. 
Figure 3 shows the results on OASIS-3. Regions with higher deviations indi-
cate a stronger association with AD. Notably, FAAE identifies critical areas like 
LH_Default_PFC_5 (prefrontal cortex) and RH_Cont_PFCmp_1 (medial 
posterior prefrontal cortex), consistent with previous studies [ 6, 20, 22], and 
uncovers additional AD-related regions such as RH_Default_pCunPCC_2 (pre-
cuneus posterior cingulate cortex), RH_Cont_PFCl_2 (lateral prefrontal cor-
tex), and RH_Cont_Cing_1 (cingulate cortex). On the ADNI dataset, FAAE 
also identifies critical brain regions such as LH_Default_PFC_6 (prefrontal 
cortex) and RH_Cont_PCFmp_2 (medial posterior prefrontal cortex), aligning 
with previous studies [ 5, 6]. Particularly, FAAE discovers somatosensory dys-
function in RH_SomMot_5 (primary somatosensory cortex). These findings, 
highlighting both known and novel regions linked to AD, could be crucial for 
identifying potential biomarkers in Alzheimer’s research. 

Parameter Analysis. Figure 2(c) demonstrates the parameter sensitivity anal-
ysis of FAAE with respect to the focal loss parameters . α and . γ on OASIS-3. The 
results reveal stable AUROC performance across most settings, with a noticeable 
increase in AUROC values at higher . γ levels, particularly .γ = 15 and . γ = 17.5
combined with specific . α values. Sensitivity to . α and . γ is evident, with higher 
detection rates of actual AD cases at increased . γ, especially at .γ = 15 and 
.α = 0.2. This underscores the importance of carefully balancing . α and . γ to 
optimize the model for medical diagnostics. 

Sample Size Analysis. We investigate the effect of varying HC sample sizes 
in the training set. Table 2 presents the performance of our FAAE model on 
the ADNI dataset. All training samples are sampled from the 80% HC as in 
the experimental setting. Generally, increasing the number of HC samples in the 
training data enhanced model performance initially, but this improvement stabi-
lized as the sample size continued to grow. For instance, AUROC improves from 
65.98. ± 2.36 with 200 samples to 70.04. ± 1.86 with 1000 samples, with no signif-
icant improvement beyond that. Specificity follows a similar trend. Sensitivity 
increases from 65.20. ± 5.02 with 200 samples to 70.57. ± 4.06 with 600 samples, 
then slightly decreases to 68.35. ± 4.60 at 1400 samples. 

Table 2. Performance as a function of the number of training samples. 

Metrics 200 400 600 800 1000 1200 1400 
AUROC 65.98.± 2.36 67.73.± 2.45 68.91.± 3.12 69.05.± 2.23 70.04.± 1.86 69.85.± 1.32 70.01.± 1.59 
Sensitivity 65.20.± 5.02 65.39.± 4.95 70.57.± 4.06 70.71.± 5.67 68.79.± 4.88 68.32.± 5.92 68.35.± 4.60 
Specificity 62.79.± 3.66 64.84.± 3.23 62.31.± 4.72 60.91.± 5.92 64.82.± 3.55 64.73.± 5.96 65.29.± 5.05
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4 Conclusions 

This paper introduces an innovative normative modeling approach for 
Alzheimer’s Disease (AD) diagnosis and biomarker identification. Our method 
combines an adversarial focal loss discriminator with an autoencoder frame-
work, improving the detection of complex AD cases. By establishing a normative 
model based on healthy controls, we estimate neuroanatomical deviations in AD 
patients. Extensive validation on the OASIS-3 and ADNI datasets demonstrates 
that our approach significantly outperforms existing methods in AD detection, 
enhancing clinical sensitivity. Future research could expand this work by inte-
grating multimodal data and advanced brain network analysis for a more com-
prehensive understanding and improved diagnostic precision. 

Prospect of Application: Our FAAE-based normative modeling approach 
enhances AD diagnosis and biomarker discovery. It aids early detection, person-
alized treatment, and diagnostic interpretation in clinical settings. In research, it 
uncovers novel disease mechanisms, improving patient outcomes and advancing 
the understanding of neurodegenerative diseases. 
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