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Abstract. The range sets of continuous functions from [0, 1] into a com-
plete separate metric space are closed, connected, compact, and bounded.
The classification of these properties in reverse mathematics has not
vet been fully explored prior to this work. Over RCAq, the existence of
closed set codes for the range sets of continuous functions is equivalent
to WKLg. The connectedness property is provable in RCAg and the com-
pactness and boundedness properties are equivalent to WKLy, as long as
these properties are carefully defined to avoid the use of a closed code of
range(f).
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1 Introduction
1.1 Motivation

One of the first areas of interest in the early development of reverse mathemat-
ics was the classification of the most fundamental theorems of real analysis. A
majority of these theorems are covered in great detail in Simpson’s seminal text
Subsystems of Second Order Arithmetic [6] and Brown’s doctoral thesis Func-
tional Analysis in Weak Subsystems of Second Order Arithmetic [1].

The Hahn-Mazurkiewicz Theorem (see [5]) is an early result in geometric
analysis that has not yet been studied within the context of reverse mathematics.

Theorem 1 (Hahn-Mazurkiewicz). A set M C R" is the continuous image
of [0,1] if and only if it is compact, connected, and locally connected.

The forward implication of the Hahn-Mazurkiewicz Theorem is, in standard
mathematics, the simpler one. Proving that the image of [0, 1] is compact and
connected is a fairly fundamental proof from a standard Real Analysis course.
Local connectedness is generally not preserved by continuous functions, but if
the domain is both locally connected and compact, the local connectedness is
preserved. Regardless, proving a quality of the ranges of continuous functions
(especially on a well-understood domain like [0, 1]) is typically much simpler
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than constructing a continuous function given a potential range set, which is
required for the backwards implication.

This backwards implication has been explored within the context of com-
putable analysis by Couch, Daniel, and McNicholl 3] and Daniel and McNicholl
[4]. The forward implication, despite its relative simplicity in standard math-
ematics, still requires careful consideration within reverse mathematics. These
considerations are the focus of this paper.

We will first provide some preliminaries concerning how we represent and
work with common features of real analysis within reverse mathematics.

1.2 Preliminaries

In reverse mathematics, we work within subsystems of second order arithmetic
(Z3). The three subsystems of interest to this paper are RCAy, WKLg, and ACA,.

Definition 1. RCA is the typical base system for reverse mathematics, the sub-
system of Zo consisting of PA™, the X9 induction scheme, and the AY compre-
hension scheme. (See Definition 1.7.4 in Simpson [6]).

Note that RCAy is sufficient to prove bounded XY comprehension (Theorem
I1.3.9 in Simpson [6])

Definition 2. WKLy is the subsystem of Z, consisting of RCAy and Weak
Konig’s Lemma, which states the existence of infinite paths of infinite binary
trees T C 2<N. (See Definition 1.10.1 in Simpson [6]).

Definition 3. ACAg is the subsystem of Z, consisting of PA™, the arithmetical
induction scheme, and the arithmetical comprehension scheme. (See Definition
1.3.2 in Simpson [6]).

Note that WKLg is an intermediary system, strictly stronger than RCAq but
strictly weaker than ACAg [6]. Later, we will utilize the fact that WKL is equiv-
alent over RCAg to Bounded Kénig’s Lemma, which states that “If T C N<N is
an infinite tree and f : N — N is a function such that for all 0 € T and n < |o]|,
o(n) < f(n), then T has an infinite path”. (See Lemma IV.1.4 in Simpson [6]).

When working with real numbers in reverse mathematics, we work with them
via a representation by rapidly Cauchy sequences of rationals.

Definition 4. (RCAg) A real number r is a sequence of rational numbers (qy :
k € N) such that for all k,i € N, |qx — qrsi| < 27%. (See Definition II.4.4 in
Simpson [6]).

We specify that these sequences representing real numbers are rapidly Cauchy
as the explicit convergence bound of 2~ makes these representations much easier
to use in weak subsystems like RCAg. For reals x = (z, : k € N) and y = (ys :
k € N), the statement = < y is expressed by the IT{ formula Vk(z;, < yp+27FH1)
and the statement o < y is expressed by the X9 formula Jk(z; + 2751 < ).
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As the statement x < y is IT?, it will be convenient to be able to reference
statements of this form using a bounded quantifier. Given natural number m,
we will state “z < y as measured up to m” to mean Vk < m(zy < yj, + 27 1),

We also use a similar coding for elements of any complete separable metric
space. (See Definition I1.5.1 in Simpson [6]).

Definition 5. (RCAg) A code for a complete separable metric space B is given
by a nonempty set B C N and a sequence d : B x B — R of reals satisfying the
usual metric conditions.

~ Ya € B(d(a,a) =0)
~ Va,be B(d(a,b) = d(b,a))
—- Va,b,c € B(d(a,c) < d(a,b)+d(b,c))

A point x € Bisa sequence (b : k € N) of elements of B such that for all
k,i €N, d(bg, bpri) <27F.

Using this general definition, R is given by @

Since reverse mathematics concerns second order arithmetic, we cannot work
directly with open and closed subsets of R (or any other complete separable
metric space B ). Instead we consider codes of these subsets, relying on countable
collections of basic open sets from which we can build our desired subsets.

Definition 6. (RCAy) A basic open subset of B is an open metric ball with
center a € B and positive rational radius r, represented as (a,r) or By(a).
An open set U C B is giwen by a code U C N x B x QT where for v € E,
x € U <= 3In,a,r such that (n,a,r) € U and d(x,a) < r. (See Definition I.5.6
in Simpson [6]).

Closed sets are coded by the same type of sets, but the condition on mem-
bership is different.

Definition 7. (RCAg) A closed set C C B is given by a code C CNx BxQT,
where x € C <= ¥(n,a,r) € C, d(x,a) > r. (See Definition I1.5.12 in Simpson

[6]).

Note that the code of an open set provides basic open sets contained within
the open set, while the code of a closed set is a code for its open complement.
Even though a subset and its code are different kinds of objects, we will some-
times refer to both with the same variable as long as the context makes it clear
which use is relevant.

There are two equivalent versions of Definition 7 that will be useful moving
forward.

Lemma 1. (RCA,) Every closed set C C B has a sequence code C = {{an, ) :
n € N), where each a,, € B and for x € B, x € C <= Vn(d(z,a,) > 7).
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Lemma 2. (RCAy) Suppose p(x) is a 1Y formula such that for all z,y € B, if
z =1y and o(xz) then @(y). Then there is a closed C C B such that for = € B,
x € C <= p(x). (See Lemma I.5.7 in Simpson [6]).

Note that membership in a closed set is described by a II9 formula, while
membership in an open set is described by a X formula.

It is also necessary to work with codes for continuous functions on real num-
bers. We will code these functions as a set of quintuples following the approach
in Simpson [6].

Definition 8. (RCAy) A code for a continuous function f : [0,1] — B is a set of
quintuples f C Nx (QN[0,1]) x QT x Bx Q1 which has the following properties.
We use (a,r)f(b,s) as short hand for In(n,a,r,b,s) € f.

)
(a,7)f(b,8) A (a,r) f(V,8') = d(b,b) < s+
- (an)f(bs) A(a',1") € (a,7) = (a, ") (D 5)
= (a,r)f(b,s) A (b,s) C (V') = (a,r) f(V,s)

~ For all x € [0,1] and for all € > 0, there exists (a,r)f(b,s) such that
d(z,a) <r and s < e.

(See Definition 11.6.1 in Simpson [6]).

A
A
A

Intuitively, (a,r)f (b, s) represents that the open ball By(a) in [0, 1] is mapped
into the closed ball B,(b) in B. Like earlier, while a function and its code are
different kinds of objects, we will often refer to both with the same variable as
long as the context makes it clear which sort of use is relevant.

When working with compact sets in reverse mathematics, some caution is
necessary. The Heine-Borel Theorem is equivalent to WKLy and the Bolzano-
Weierstrass Theorem is equivalent to ACAq [6]. So if we want to work with
compact sets within RCAj, we need to avoid a definition of compactness that
implies either Heine-Borel or Bolzano-Weierstrass within RCAy. Therefore, the
standard definition of compactness in reverse mathematics is a relatively weak
one. It is usually stated for complete separable metric spaces (including in Defi-
nition II1.2.3 in Simpson [6]), but here we state it for closed subsets of complete
separable metric spaces.

Definition 9. (RCAq) A closed set C is a compact subset of B if there exists an
infinite sequence of finite sequences ((x;; 11 <nj):j € N) (with z; ; € B) such
that for all j € N and x € C, there exists some i < n; such that d(x; j,x) < 277.

When it comes to the completeness of R, a similar caution is needed. If we
are working in RCA(, we cannot think of R being complete in the sense of the
Least Upper Bound Property as that is equivalent to ACAg. Instead, we will use
the Nested Interval Completeness of R, which is provable in RCA.

Theorem 2 (Nested Interval Completeness of R). (RCAy) Let (a, : n €
N) and (b, : n € N) be sequences of real numbers such that for all n, a, <
apt1 < bpy1 < by, and lim, |a,, — b,| = 0. Then there exists a real number x
such that x = lim,, a,, = lim,, b,,. (See Theorem II.4.8 in [6]).
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The nested intervals that are the name-sake of this theorem are the collection
of [an,by] for all n, and x is the unique intersection point of this collection.

Now we can move forward to the main properties of interest in this paper.
In Sect.2, we will show that the representation of range(f) as a closed set is
equivalent to WKLy over RCAg. This result will require us to adapt how we
define properties of range sets to avoid the necessity of WKLy to gain access to
a code for range(f) as a closed set. In Sect.3, we will show that a continuous
function having connected range is provable in RCAj. In Sect. 4, we will show
that a continuous function having compact or bounded range is equivalent to
WKLy over RCAg. In Sect. 5, we will discuss how we intend to use these results
in our continued research.

2 range(f) as a Closed Set

One of the most familiar results in reverse mathematics about the range of
functions is this common bridge theorem for ACA,.

Theorem 3. (RCA() The following are equivalent:

- ACAp
— For a one-to-one function f : N — N, the range of f exists.

(See Lemma II1.1.3 in Simpson [6]).

Our main interest is in the range of continuous functions f : [0,1] — R™.
Since [0, 1] is compact, the range of f is closed. Therefore, the natural way to
code range(f) in reverse mathematics is as a closed set.

Before we discuss our main result for this section, we will briefly discuss a
special case when the code of the range set can exist within RCAy. The next
lemma is an adaptation of the fact that RCAj proves the existence of the range
set of every increasing function f: N — N.

Lemma 3. (RCAq) Let f : [0,1] — R be increasing. Then there exists a code
for range(f) as a closed set.

Proof. Let f be as hypothesized. In RCAy we can form the reals f(0) and f(1).
Since f is increasing, range(f) is the closed set [f(0), f(1)], which has a closed
set code as defined by the following IT) formula.

y € [£(0), f(V)] = f(0) <y < f(1) (1)
O

In our proof that WKLg suffices to form a code for range(f) as a closed set
in the general case, we use WKLy in two ways. First, we will use WKLq to allow
access to a modulus of uniform continuity of f.
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Definition 10. Let f : [0,1] — B be continuous. A modulus of uniform conti-
nuity of f is a function h : N — N where for alln € N and all z,y,€ [0,1], if
d(z,y) < 27" then d(f(x), f(y)) < 27™. (See Definition IV.2.1 in [6]).

Theorem 4. (WKLo) For any continuous f : [0,1] — B, there exists some
modulus of uniform continuity h of f. (See Theorem IV.2.2 in [6]).

This modulus of uniform continuity will be instrumental in the proof, but
we do need the modulus to have some additional properties, which follow from
Simpson’s proof of Theorem 4.

Lemma 4. (WKLy) Every continuous f : [0,1] — B has a modulus of uniform
continuity h that satisfies all three of the following conditions:

1. h(0) > 1

2. h is strictly increasing

3. For every n and i < 2" there is a point b € B such that
(Qh_7EM’2—h(n)+2)f(b’2—n)

There is one more necessary lemma, which clarifies some of the properties
of an element z € [0, 1] that we will construct as part of the proof of the main
result of this section.

Lemma 5. (RCAg) Let g : N — N be a strictly increasing function with g(0) > 1.
If v = (x, : n € N) is a sequence of rationals such that for alln, |T,11 — x,] <
2790 then x € R and for alln € N, d(z, x,) < 279+,

Proof. First we will show that € R. Let n,i € N be arbitrary. Since g(0) > 1
and ¢ is strictly increasing, we have g(n) > n+ 1 and g(n + k) > g(n) + k for
all n and k. From this, we have that

|Zni1 — @p| < 27900 < 2= (041D (2)

Applying the triangle inequality results in the following;:

i—1

i—1
|$Tl+i - $n| < Z 2—(n+k:—|—1) = 2—n—1 Z 2—k' <9on (3)
k=0 k=0

Therefore x € R. To complete the proof of the lemma, let ¢ > 0, and let i € N
be sufficiently large such that d(x,x,1;) < e. Applying the triangle inequality
results in the following:

d(x7 xn) S d(mywn—f—i) + d(xn—f—iv Jﬁn) S €+ 2—g(n)+1 (4)
Since the above holds for all € > 0, d(x,z,) < 279+ as desired. O

Now we will prove the main theorem of interest in this section in two parts.

Theorem 5. (WKLo) Every continuous f : [0,1] — B has a code for range(f)
as a closed set.
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Proof. Assume WKL and let f be given as hypothesized. By Theorem 4, f has a
modulus of uniform continuity h. By Lemma 4, we can assume that h is strictly
increasing, h(0) > 1, and for every n and i < 2M(1) there is a point b € B such

that (567 2~h(M)+2) £(h,27™). For each n € N and i < 2" define b,,; € B to
be a point such that (gry, 27" +2) f(by,;,27).

We define the closed set code Cy for range(f) with the following I1{ formula.
For y € B, let y € Cy if and only if for all finite sequences ({ng, ig), ... (N, %))
such that i; < 2"(") and for all j < k and the union of the balls B, n(n;) (2,12—3%))
covers [0, 1], there exists j < k for which d(y, by, ;) < 27".

We need to verify that for y € E, y € Cy if and only if there exists some
x € [0,1] such that f(z) =y.

First we will show that if y & C, then y is not in the range of f. Suppose
y & Cy. Then there exists some sequence ((ng, i), - . . (ng, ix)) that witnesses this

fact, where the union of the balls B,-n(x,) (W) covers [0, 1] but for all j < k we

have that d(y, by, ;) > 27" . For the sake of contradiction, suppose there exists
some z € [0, 1] such that f(z) = y. Since the union of the balls B2—h(n_7:) (th—’nj))
covers [0,1], there exists some j < k such that » € B, (ﬁ) As
(QT’%),2_h(”)+2)f(bnj,ij,2_”ﬂ'), by the definition of image, y € By-n; (bn, ;)
This is a contradiction to the fact that d(y, by, ;) > 27". Therefore y must not
be in the range of f.

Lastly we will show that if y € C, then y is in the range of f. Suppose y € Cy.
We will construct x € [0, 1] such that f(x) = y using WKLo, constructing = using
an infinite path in an infinite bounded branching tree. First define a bounded
branching tree T C N<N as follows. Let o € T if and only if for all n < |o| the
following three conditions hold:

1. o(n) <20
2. d(y,by,0(n)) < 27" as measured up to |o]
3. If n+1 < |o|, then d(o(n + 1)/2’1(”"'1)7 U(n)/Zh(”)) < 9= h(n)

Note that, if T is infinite our desired result follows. Suppose T is infinite. By
Condition 1, T has bounded branching by the function 2"(™). So by WKLoy, T
has some infinite path p. Define 2 = (p(n)/2"™ : n € N). Since h(n) is strictly
increasing, and h(0) > 1, it follows from Lemma 5 that x € R. Furthermore,
0 < p(n) < 2" so x € [0,1]. Finally, by Lemma 5, we have the following:

p(n) —h(n)+1 —h(n)+2
d(z, 2h(n)) <2 <2 (5)
Therefore x € BQ_h<n)+z(%) for all n. By Condition 2, d(y, by »(n)) < 27"
for all n. Since (202 27h(MF2) £(b, beny,27") holds for all n, it follows that

2h(n)
f@)=y.
It remains to show that T’ is infinite. For the sake of contradiction, assume
T is finite. Fix £ such that for all 0 € T', |o| < £. Let X ={(n,i) : n<lAi<
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2 Ad(by, ;,y) > 27"} Since n (and with it, i) are bounded and d(b,, ;,y) > 27"
is a X9 formula, X exists via Bounded X9 comprehension.

Claim. For every j < 2" there is a (n,i) € X such that ﬁ% € By—nim (5757)-

Before proving this claim, we will first discuss how this claim leads to a
desired contradiction. If this claim were true, then the finite collection of balls
By—nm) (grey) for (n,i) € X would cover [0,1]. Since y € Cy, it follows that
d(y,bn,i) < 27" for some (n,i) € X. This inequality contradicts the definition
of (n,i) € X, which necessitates that d(b,, ;,y) > 27".

Finally, we will prove the claim. For the sake of contradiction, suppose there
exists some j < 27 such that ifﬁ% € By—nn (5r7) then (n,i) € X. We will
construct a string o € T of length ¢, which will contradict the choice of ¢.

Let iz, be the largest number such that i, < 2"*) and 4, /2"*) < j/2M0 By
the contradiction assumption, (k,ix) ¢ X for all k& < £.

Let o be defined as o(k) = iy for all & < ¢. Thus |o| = ¢. It is left to show
that o € T, by verifying all three conditions. Condition 1 holds since 45, < 2"(¥),
Since (k,ir) ¢ X, k and i cannot satisfy the conditions of the definition of X
and we must have instead that d(by;,,y) < 27%. This satisfies Condition 2.

To verify Condition 3, let k+ 1 < £. Note that, if it is the case that j/2M®) =
ips1/2"F 1) then we have that

Li+1 7
2h(:+1) = 2,;7@) € B2*h<k>(m) (6)
Thus d(ig /2K 4, /20F)) < 27h(K) a5 desired.
So consider instead, the case that j/2"(©) #£ i, 1 /21D By definition of iy,
we know that both iz /2"*) and iy, /2"*+1) are less than or equal to j/2"),
Since ;41 is chosen to be the largest possible value satisfying the relevant
requirements, we have the following:

Uk Uk+1 J
2h(R) = Sh(ETD) = (D (7)

Since ﬁ € By nw (%), ip1 /20T s also contained in By_nx) (2,3%)
Thus d(ipy1/2MFHD iy /20R)) < 27h(K) a5 desired. This completes the proof of
the claim and with it, the proof of the theorem. O

Now we move on to the reversal of this result. This proof relies on the con-
trapositive approach from Simpson’s proof that several properties on continuous
functions on [0, 1] reverse to WKLg as part of Theorem IV.2.3 in [6].

Theorem 6. (RCAq) The statement that for continuous f : [0,1] — B there is
a code for range(f) as a closed set implies WKLy.

Proof. We will demonstrate this implication by contrapositive in the case that
B =R. Assume =W K Ly. We will construct a continuous function f:[0,1] — R
where range(f) cannot have a closed set code, following the method used by
Simpson in his proof of Theorem IV.2.3 [6]. Since =W K L, we also have —~AC Ay.
Therefore by Theorem 3, there is some one-to-one function g : N — N such that
the range of g does not exist. Define ¢,, as follows:
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0 n=20
v {21;0 2790 >0 )

Note that ¢, is a bounded increasing sequence of rational numbers ¢y < ¢; <
--- < ¢y < --- < 2, and since the range of g does not exist, sup,,cy ¢, also does
not exist.

In the proof of Theorem IV.2.3, Simpson uses the sequence (c,) and the
existence of an infinite tree T C 2<N with no infinite path to define a continuous
function ¢4 : [0,1] — R with three crucial properties. Letting f = ¢4 for clarity
of notation, these properties are:

1. f(0)=0
2. ¥n(0 < x < ¢, = x € range(f))
3. Vn(c, < x) = x ¢ range(f)

(For full details on the construction of f, reference the proof of Theorem 1V.2.3
in [6]. However, we will only need the three properties above for the remainder
of this proof).

Classically, the range set of this function f should be [0, sup,,cy ¢n], however
such a supremum does not exist by assumption. We claim that the range of f
cannot have a closed set code.

For the sake of contradiction, let C' = ((ay,r,) : n € N) be a closed set code
for range(f) (see Lemma 1). Recall that the balls B, (a,) enumerated by this
code cover the open complement of range(f). Define a sequence of real numbers

(pn, : n € N) where
Ap —Tn QAp — Ty >0
n — 9
P {0 ap —1Tn <0 ©)

Essentially, if B, (a,) contains any positive numbers, p,, is the left-most bound-
ary point of that closed ball in R. If not, we let p,, be 0. Since f(0) = 0, we know
0 cannot be contained in B, (a,) for any n. So, if B, (a,) contains any positive
numbers, it only contains positive numbers.

We now introduce and prove two claims that are necessary for the rest of the
proof.

Claim. If ¢ is an upper bound of (¢, : n € N), then there exists some k such
that 0 < pr, < gq.

Let ¢ be as hypothesized. Note that ¢ must be positive. Since ¢,, < ¢ for all
n, it must be that ¢ ¢ range(f) by Property 3. So there exists some k such that
q € By, (ar). Thus 0 < ar, — 7, < g < ag + 7. S0 pr, = a — 7y, is as desired.

Claim. For all m, k, if pi # 0, then ¢, < pg.

For the sake of contradiction, suppose there exists m and k such that px # 0
but pr < ¢,,. We will prove this in two cases regarding the position of ¢,, relative
to the ball B,, (ax).
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Case 1. p < Cm.

In this case, (0, ¢;,) N By, (ax) # 0. However (0, ¢,,) C range(f), while B,, (ax)
is disjoint from range(f). This is a contradiction.

Case 2. pr = Cm.

In this case, since the sequence (c,) is increasing, pr < ¢p41. Thus we can
proceed as in Case 1 relative to c,,+1 as opposed to ¢, to find a contradiction.

Note that by this claim, every pi # 0 is an upper bound of (¢, ). Thus, by
the first claim, for all such k, there exists some £ such that p, < pg.

With these two claims proved, we now recursively define a function g : N — N
that picks a decreasing subsequence of (p,) in the following way:

least n > g(¢) such that 0 < p,, < pgpy k =£+ 1 for some £ € N
(10)
By the previous two claims, g is defined for all k£ € N. Thus (p,(x)) is a decreasing
sequence, and by the second claim, for all n, ¢, < chy1 < Pgnr1) < Pg(n)-
The last claim follows immediately from the definition of g and the first claim.

least n such that p,, > 0 k=20
9(k) =

Claim. If q is an upper bound of (c,), then there exists some & such that pg) <
q.

In pursuit of using the Nested Interval Completeness of R, we now claim that
lim,, pg(n) —cn = 0. For the sake of contradiction, suppose not. Then there exists
some M such that pg,) — ¢, > M for all n. Let ¢ € Q be an upper bound of
(cpn) for which there exists j such that ¢ — ¢; < M. By the last claim, there is a
k > j such that pgky < q. However, then pgpy —cx < pgry — ¢ < q—c¢; <M,
which contradicts the choice of M.

Thus, by Nested Interval Completeness, there exists some real number z such
that x = lim ¢, = lim py(,,). However, this # would be the least upper bound of
(¢ ), which is a contradiction. Therefore there must not exist any closed set code
C for range(f). Thus this theorem holds by contrapositive. O

Combining the two main theorems in this section, we get the following result.

Theorem 7. (RCAg) The following are equivalent:

- WKLy
— For continuous f : [0,1] — B, there is a code for range(f) as a closed set.

The proof of Lemma 4 generalizes from [0, 1] to any compact complete sep-
arable metric space. This leads to a more general result.

Theorem 8. (RCAq) The following are equivalent:

- WKLo

— For continuous f : [0,1] — B, there is a code for range(f) as a closed set.

— For complete separable metric spaces A and B where A is compact, if f :
A — B is continuous, there is a code for range(f) as a closed set.
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3 The Connectedness of range(f)

Since using a closed set code for range(f) requires WKLy, we will carefully define
our sense of having a connected range such that it implies that the range set of
a function is connected without relying on a code for the range set itself. This
will allow us to work with the theorem of interest in this section within RCA,
without the complications that we just discussed in Sect. 2.

Definition 11. Let C bea complete separable metric space. An open or closed
set U C C is connected in C if and only if for all open sets A,B C C, if
UCAUB andUNA#0 and UNDB # 0, then AN B # (.

Definition 12. For continuous function f : [0,1] — 6’, f has connected range
if and only if for all open sets A, B C C, if

1. Yz € [0,1](f(x) € AV f(z) € B),
2. dx € [0,1](f(x) € A), and
3. Jz € [0,1](f(x) € B)

then there exists some x € [0,1] such that f(z) € AN B.

We need two lemmas for the main result in this section. The first is Lemma
1.24 in Brown [1|. The second will allow us to use the connectedness of the
domain of f in the main theorem of the section.

Lemma 6. (RCAq) If f:[0,1] — C is continuous, then for all nonempty open
UCC, f7YU)={xz€[0,1] | f(z) € U} is open in [0,1].

Lemma 7. (RCAy) [0,1] is connected in R

Proof. For the sake of contradiction, assume [0, 1] is not connected. Then there
exist open sets A, B C R such that [0,1] C AUB, [0,1]NA # 0, and [0,1]NB # 0,
but AN B = (. Let A be coded by ((an,r,) : n € N) and B be coded by
({(bp,sn) :n €N). Let 9 € ANJ[0,1] and yo € BN 0, 1] where x # yo. Without
loss of generality, assume xy < yp.

By primitive recursion we define sequences (z,,) and (y,,) as follows, to satisfy
the conditions in the Nested Interval Completeness Theorem.

Tntyn §f IntUn c 4
Ln+1 = { 2 2 (11)

Tn otherwise
mn‘i‘Qn if mn‘f’gn c B
Yn+1 = { 2 2 (12)

Yn otherwise

From the definitions above, for all n we have that xz,, € A, y, € B, and z, <
Tnt+1 < Ynt+1 < Yn. In addition:

|5170 - y0| _

=0 (13)

lim|z,, — y,| = lim
n n
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With these properties of (z,) and (y,), in RCAg, by the Nested Interval
Completeness of R there exists a real number x such that z = lim,, z,, = lim,, y,,.
Note that = € [0, 1]. Since A and B are disjoint either x € A or x € B but not
both.

First, suppose z € A. Since A is open, there exists (a,,r,) in the code of
A such that x € B, (a,). However, since A and B are disjoint, B, (a,) and
B are disjoint. Since lim,, y,, — z, there exists some k such that d(x,y;) < 7.
However, that implies that y;, € B, (a,). This is a contradiction.

If it is supposed instead that x € B, we derive a contradiction in the same
manner as above. As there is a contradiction in both cases, [0,1] must be con-
nected. O

With the lemmas above, we can now prove the main theorem of this section.
Theorem 9. (RCAo) For all continuous f : [0,1] — C, f has connected range.

Proof. Fix open sets A, B C C that satisfy Conditions 1 through 3 in Definition
12. By Lemma 6, f~(A) and f~!(B) are open subsets of [0, 1]. By Condition 1,
[0,1] € f~1(A) U f~1(B). By Conditions 2 and 3, f~*(4)N[0,1] and f~1(B)N
[0,1] are nonempty. Thus, by Lemma 7, there is a real € [0,1] such that
x € f7H(A) N f~1(B). By applying f, we have that f(z) € AN B. Therefore f
has connected range. O

As in the previous section, this result extends to a more general case, as
stated below:

Theorem 10. (RCAg) Let A and B be complete separable metric spaces and let
A be connected. For all continuous f: A— B f has connected range.

Using the results of this section, we can now provide a simpler proof that
WKLy is equivalent to the existence of a closed set code for range(f) in the special
case when f:[0,1] — R.

Lemma 8. (RCAg) Let f:[0,1] — R be continuous. If a <g b and there exist
Za,xp € [0,1] such that f(x,) = a and f(xp) = b, then for all y € [a,b], there
exists © € [0,1] such that f(z) =

Proof. Let f,a,b,x,, and x; be as hypothesized. Let y € [a,b] be given. For
the sake of contradiction suppose f(x) # y for all € [0,1]. By Theorem 9,
f has connected range. However, the open sets A = (—o00,y) and B = (y, 00)
satisfy Conditions 1-3 in Definition 12 and are disjoint, providing the desired
contradiction. O

Theorem 11. (RCAo) The following are equivalent.

(1) WKLo

(2) For continuous f : [0,1] — R, if f is non-constant, there exist a <g b such
that range(f) is [a, b].

(3) For continuous f : [0,1] — R, there is a code for range(f) as a closed set.
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Proof. Note that (3) = (1) follows by Theorem 6. (2) = (3) follows from the fact
that RCAg suffices to prove there is a closed set code for [a,b] whenever a <g b.
In the case where f is constant, RCAq also suffices to show that singleton sets
have closed set codes.

It remains to show that (1) = (2). Let non-constant continuous f : [0,1] — R
be given. Assume WKLy. By Theorem IV.2.3 in Simpson [6], f has and attains its
supremum, and by an equivalent argument, f also has and attains its infimum.
Let a denote the infimum of f and let b denote the supremum of f. Fix x,,x; €
[0, 1] such that f(z,) = a and f(x,) = b. The range of f is contained in [a, b],
and by Lemma 8, range(f) must be equal to [a, b]. 0

4 The Compactness and Boundedness of range(f)

Similarly to Sect.3, we need to ensure our proof for the compactness of the
range set does not rely on a code for the range set itself. So we will first state
an adapted definition for compactness. While compactness is our main property
of interest here, boundedness is essential for the proof and is a useful property
to examine in its own right. So we will also provide the boundedness definition
that is appropriate for our setting.

Definition 13. (RCA) For a continuous function f : [0,1] — E, f has compact
range if and only if there is a sequence of finite sequences ((b;; 11 <nj):j€N)
(with b; ; € B) such that for all j € N and all z € [0, 1], there exists i < n; such
that d(bi’j, f(ﬂ?)) < 277,

Definition 14. (RCA,) For a continuous function f : [0,1] — B, f is bounded if
and only if there exists M € QT such that for all z,y € [0,1], d(f(x), f(y)) < M.

In the special case that f : [0,1] — R, note that RCAy is sufficient to show
that the closed interval [a, b] is compact and bounded. (See Examples I11.2.6 in
[6]). Thus, by Theorem 11, WKL, suffices to show that for continuous functions
f:10,1] = R, f has compact and bounded range.

We will prove the main result of this section by extending some standard
results from Simpson, returning again to Theorem IV.2.3 [6].

Theorem 12. (RCAq) The following are equivalent:

(1) WKLo.
(2) If f:]0,1] — B is continuous, then f is bounded.
(3) If f:]0,1] — B is continuous, then f has compact range.

Proof. Note that Simpson proved (1) < (2). (See Theorem IV.2.3 [6]). Thus,
proving that (2) < (3) is sufficient to prove the theorem.

First we will show that (2) = (3). Since (1) < (2), assume WKLy. By The-
orem 4, let h be a modulus of uniform continuity of f. By Lemma 4, for each

j € Nand i< 2"0) let b;; € B be a point such that (575,27 "9) f(b; ;,277).
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We claim that ((b; ;11 : i < 2"M0HD) ¢ j € N) witnesses that f has compact
range. Let j € N and 2 € [0,1] be given. There exists some i < 2PU+1) such
that & € By-ni+1) (grrery ). Therefore d(b; j, f(x)) < 27UTD < 279, Thus f has
compact range.

Next we will show that (3) = (2), reasoning in RCAq. Let ((b; ; : ¢ <mn;):j €
N) be given demonstrating that f has compact range. Consider the first finite
sequence (b; o : 7 < ng) of this infinite sequence. We claim that any M € Q such
that M > 24+max; y<n, d(bj,0,br,0) is a bound for the range of f as in Definition
14. Let z,y € [0, 1] be arbitrary and fix j, k < ng such that d(b;, f(z)) <1 and
d(bko, f(y)) < 1. By applying the triangle inequality we find the following:

d(f(z), f(y)) < d(f(x),bj0) + d(bj0,bk,0) + d(bk,o, f(y) <2+ jnax d(bj.0,br0) < M

(14)
Thus f is bounded. O

Brown proved something similar to (1) = (3) for functions between complete
separable metric spaces. (See Theorem 3.20 in Brown [1]). However, Brown’s
proof invoked the code for the range set, so further analysis was needed to deter-
mine whether or not the implication held without the strength of the implicit
existence of the code.

As in the previous sections, our result extends to the more general case with
some adapted definitions.

Theorem 13. (RCAp) Let A and B be complete separable metric spaces, and
let A be compact. The following are equivalent:

(1) WKLy.
(2) If f : A — B is continuous, then f is bounded.
(3) If f - A— Bis continuous, then f has compact range.

5 Future Directions

In this paper, we have classified several fundamental theorems about range sets
of continuous functions. However, there are several questions still unanswered.
First, there is an alternative coding scheme for closed sets in reverse mathemat-
ics. Sets with these codes are called separably closed sets to distinguish them
from those coded using the definition we discussed in this paper. Since Brown
[2] proved that all closed subsets of compact spaces being separably closed is
equivalent to ACAg over RCA(, the results in Sect.2 and 4 imply that ACAy is
sufficient for the range set of a continuous function on [0, 1] to have a separably
closed code. It is currently unclear whether ACAg is necessary or if a weaker
subsystem is sufficient to prove this.

However, the main interest of our current line of research is local connected-
ness: the remaining property of range sets in the forward direction of the Hahn-
Mazurkiewicz Theorem. It is still unknown which subsystem is required to prove
that the range of continuous functions on [0, 1] are locally connected. Complicat-
ing this analysis is the variety of equivalent definitions for local connectedness.
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It is still unclear how best to adapt the definition of local connectedness to suit
the context of reverse mathematics. Once these questions are answered, the next
topic of focus is the backwards implication of the Hahn-Mazurkiewicz Theorem,
and further still, the classification of additional theorems related to space-filling
curves. Space-filling curves are an active area of research in geometric analysis
with many cross-disciplinary applications in computer science.
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