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Abstract

Constitutive relations close the balance laws of continuum mechanics and serve as
a surrogate for a material in the design and engineering process. The problem of ob-
taining the constitutive relations is an indirect inverse problem where both the relation
and the quantities that define the relation have to be inferred from experimental obser-
vations. The advent of full-field observation techniques promises a new ability to learn
constitutive relations under realistic operational conditions. However, this is done in
two steps, first obtaining deformations from the images, and then obtaining the consti-
tutive relation from deformations and forces. This leads to a variety of difficulties. In
this paper, we propose a novel approach that enables us to obtain constitutive relations
directly from the raw data consisting of images and force measurements.

1 Introduction

The design of structural, aerospace, protection, and other thermomechanical engineering
systems requires a constitutive relation that describes the material properties [14, 6], and is
empirically determined. The essential challenge is that we cannot measure these constitutive
relations directly; in fact we cannot even measure the quantities like stress, heat flux, energy
density, and state variables that describe the constitutive relations.

The traditional approach relies on uniform states (e.g., uniaxial tension) or universal
solutions (e.g., torsion) [6]. Each test provides limited information, and they require rep-
etition. This has been addressed with automation and high-throughput approaches [21].
However, this is not always possible, since some experiments (e.g., plate impact) need sterile
conditions with precise alignment to obtain the desired state [20]. In any case, all of these
still sample idealized states of strain. These limit the fidelity of the resulting models when
we use them to model complex situations. We propose to develop methods that can provide
high fidelity constitutive relations by probing complex domains and complex states by using
full field techniques like digital image correlation (DIC) [25, 15] and thermal imaging.

DIC takes a series of images of a decorated surface undergoing deformation and compares
them to infer the deformation [25, 15]. It has emerged as a method of choice due to the ease
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of using it with the widespread availability of cameras and robust commercial (e.g., [2]) and
open source (e.g., [1]) software. The full-field information it provides also gives useful insight.
It has been extended beyond optical imaging (e.g., [16] using scanning electron microscopy
images), to digital volume correlation [9, 30|, and tomography [19]. The deformation is then
used to obtain constitutive relations.

This current practice of splitting the inverse problem into two inverse problems, first
image to deformation, and second deformation and force to constitutive relation, poses a
number of challenges. First, these inverse problems may be ill-posed and have to be reg-
ularized. When they are done separately, the regularization of one problem can limit the
information available to the other problem. Indeed, DIC as a purely kinematic problem of in-
ferring deformation is ill-posed. In practice, it is either regularized using filters or constrained
by finite dimensional (local or global) ansatz. However, finite dimensional approximations
do not necessarily converge, and regularization limits the efficacy when there are cracks,
shear bands, and shocks. Further, we image a fixed region of space that may correspond to
different parts of the body in different snapshots. So, image registration limits us to small
displacements. One can stitch together multiple snapshots, but errors may be compounded,
and the method is inaccessible to dynamic events where one has very few snapshots.

Second, even when a reasonable deformation is available, the second inverse problem is
still a difficult problem since we cannot directly measure stress, but have to infer it from the
total force acting on a part of the boundary. So it is still common to use simple configurations,
though the full-field inversion is a subject of active research, and we refer the reader to [4]
for a recent literature survey.

Third, we may have a mismatch of sensitivities. Even if the overall sensitivity is reason-
able, the splitting into two problems leading to situations where the first inversion has low
sensitivity, but the second has high sensitivity. This leads to significant errors.

Finally, there are phenomena where the instrument and the experiment are intimately
coupled, rendering a sequential inversion impossible or dependent on unverifiable ansatz.
For example, Lawlor et al. [18] recently introduced a speckle pattern in the interior of a
transparent specimen and were able to observe the interaction between a shock wave and a
pore. However, due to the photoelastic effect that changes the refractive index under stress,
the image is heavily distorted in the vicinity of the shock as well in the wake of the shock.

In this paper, we propose an alternate approach where we study the integrated inverse
problem of inferring constitutive relations directly from raw data in the form of images of
speckle patterns and overall forces. We formulate this as an optimization problem and solve
it using a gradient-based approach. We focus on finite elasticity and rubber, and demonstrate
the method using both synthetic and experimental data.

The study of the mechanical properties of rubber goes back to seminal works of Treloar
28], Rivlin and Saunders [24], and Gent and Rivlin [12]. Assuming incompressibility, one
can fully characterize the material by applying two principal stretches independently, and
this motivated the biaxial tension test [24] that is widely used [3, 27]. These and other
approaches [17, 5, 7] seek to create a uniform state. Others use universal solutions [11] like
torsion [28] and inflation [12]. More recent efforts study complex deformations in two and
three dimensions, exploiting advances in optical microscopy [23, 13, 10] and x-ray computed
tomography [29]. This leads to the inverse problem that is the focus of this work.

We provide the formulation in Section 2. We demonstrate the approach using synthetic



data in Section 3, and experimental observations in Section 4. We conclude in Section 5

2 Formulation

We assume that the material is hyperelastic, and is governed by a stored energy per unit
reference volume W. We assume a parametrized form, so that W = W (F’; P), where F' is the
deformation gradient and P € R” is a set of parameters. Our goal is to find the parameters
from an experiment.

2.1 Image to constitutive relation

We consider a body occupying the region 2 C R”™ in the natural reference configuration.
We fix part of the boundary 9y(2, and apply a time dependent Dirichlet boundary condition
y(z,t) = y(z,t) on another part 0,(2. The remainder of the boundary is traction-free. At
each instant ¢, the body is in equilibrium, and the deformation y : {2 — R™ satisfies

V- Wg(Vy; P) =0 on Q (1)

subject to the boundary conditions where Wr = 0W/0F. Equivalently,
—/(WF(Vy;P)-Vgo) d?=0 Veel={u=0ongQ2uUa,N}. (2)
Q

We decorate a part of the traction-free boundary of the body with a speckle (or other
distinctive) pattern, and image a certain region of space R that contains a part of the
traction-free part of the boundary to obtain images g(y,t) (we typically obtain a series of
snapshots). We also measure the total reaction force on the part 9,2.

Our goal is to obtain P from the observations {¢(y,t), f(¢)}, by matching them with the
corresponding quantities computed with a model with parameters P. We formulate this as
an optimization problem

P = argmin O(P), (3)
where the objective is

2

We(Vy(z,t); P)ndA — fexp(t) dt,
0,9

0= / w(t) / 00() — g(y(z. 1), D2 dA + a

(4)
and y(z,t) satisfies the governing equation (2), w(t), a are weights, and go(z) = g(x,0).

We solve this by gradient descent, and therefore seek to calculate the sensitivity of the
objective with respect to the parameters. Doing so directly requires us to calculate yp, the
sensitivity of the solution to the governing equation (2) to the parameters; this is difficult.
Therefore, we use the adjoint equation [22, 8]. To derive this equation, add the left hand



side of (2) to our objective, and then differentiate with respect to P. We obtain,

doO t
B = [ (=2 [ w)0660.0) - gtute.0.00g50m 4

+ 2aw(t) ( WF’fZ dA — fexp(t)) . (/a o (WFFVyp + WFP) ﬁdA) (5)

OyQ2
Q

where Wg, Wgp, Wrp are all evaluated at (Vy(z,t); P). This still contains the problematic
quantity yp. However, this expression is true for all ¢ € U (cf. (2)). We now make a special
choice such that we eliminate yp from above. Specifically, let ¢ satisfy the adjoint equation

/V¢~WFFV¢da:+/u(x,t)wdA+ Vo Wer(\t) @7) =0dA Yo eU (6)
Q S 0,9

where we have used the fact that Wrp has major symmetry and

plz, 1) = —2w(t)(go(z) — g(y(z, 1), 1))gy,  Alt) = 20w(t) ( WritdA — fexp(t)> - (7)

8,2
Then, the sensitivity of the objective with respect to the parameter is

t
a0 _ / / Wrp(Vy(z,t); P) - Veodr + At) - [ WrpndA | dt. (8)
dP 0 Q 9,Q

2.2 Numerical method

We start with an initial guess for the parameters, and then solve the forward and inverse
problem using a finite element method, use the sensitivity to update the parameters, and
iterate until a convergence criteria is met. Note that the forward problem is non-linear and
we solve this iteratively using Newton-Raphson iteration. We discretize both the forward and
the inverse problem with a 3D brick element and a standard piecewise polynomial Lagrange
basis function of degree 1. The parameters are updated using method of moving asymptotes
(MMA) [26] until either the norm of the sensitivities or the incremental objective reaches
e = 107°. Algorithm 1 summarizes our approach.

The calculation of p requires some care. Since this term involves quantities from images
that are typically pixelated, the integration is performed by locating pixels in each element
and summing over these pixels (instead of quadratures). Further, the imaging is performed
in the current configuration, and the current image g(y,t) is in pixelated form with uni-
form pixel spacing in y (current configuration). However, we integrate it over the reference
domain. Therefore, we have to pull it back to the reference configuration by finding the
values of g(y(z,t),t) where z is sampled uniformly in the reference domain. We use bilinear
interpolation to do so. We compute V,g by pixel differences in the current configuration
and then interpolate to pull it back to the reference configuration. While this term can be
noisy, it is integrated against the shape function that is smooth on the scale of the pixels,
and leading to a stable calculation of .



Algorithm 1 Constitutive relations from images
Input: Reference image gy, deformed images g, parametrized model
Output: Displacement y

Step 1: Initiate guess of parameters P;
Step 2: Pick region of interest (S) to perform correlation;
Step 3: Determine locations of each pixel in each finite element within S;
Step 4: Precompute spatial gradients of the image Vg;
while ||[dO/dP| or ||O — O_41|| > ¢ do
Step 5: Solve forward problem for displacement yi(z,t);
for each pizel in each finite element in S do
Step 6: Compute g(y(z,t),t), g, from yi(x,1);
end for
Step 7: Solve adjoint problem for adjoint variable ¢ (x,t);
Step 8: Compute objective O(y, Py);
Step 9: Compute sensitivity dO(yx, Py,)/dP for each P;
Step 10: Update parameters Py 1 = P, + 0P with MMA;
end while

2.3 Contrast with the purely kinematic DIC

Before we demonstrate the proposed method in the next section, we comment on the math-
ematical issues associated with the current practice of treating digital image correlation as a
purely kinematic problem of finding deformations. In this approach, we compare the image
go(z) of a decorated surface before deformation with g(y) after the deformation occurs to
obtain the deformation y(z). Specifically, we maximize the correlation between the reference
and convected images over all possible deformations, or equivalently, minimize the L? norm
between the reference and convected images over all possible deformations,

y = arg max / 60(2)9(y(x)) dA = arg min / 90() — g(y(@))? dA. (9)

The two formulations are equivalent since expanding the second integral gives us the first up
to a factor (—2) and the L? norm of the images (that are independent of the deformation).

Unfortunately, this problem is ill-posed. Note that the second problem in (9) is the
classical optimal transport problem of Monge (transporting a mass with density gy to a
mass with density ¢), and y is called the transport map. Unfortunately, this problem is not
mathematically well-posed, and solutions may not exist and minimizing sequences may not
converge. The relaxation, according to Kantorovich, is to look for minimizers over transport
plans, G(z,y), such that

mén/ G(z,y) |z —y|> dA x dA (10)
s

subject to
/3 G, ) dA, = gol2), / G, y) dA, = g(y). (11)

In essence, the image intensity at some reference point x can get spread over a region of



the spatial domain, and the intensity at the spatial point y may come from a region of the
reference domain. In short, the solution to the classical DIC problem (9) may not exist.

In practice, we make a finite dimensional ansatz on the deformation. Two are common.
The first is local, where we select a grid of points {Z'} and assume that the deformation is
piece-wise affine in a sub-domain around these points

y(@) =Y (v + F'(@ - 7)), (12)

(2

where y; is the indicator function of the i*" sub-domain around #'. The second is non-local
where the deformation is given in terms of a finite-dimensional (often finite-element based)
basis set {1},

TOEDIEIC (13)

These constraints yield a solution, but there is no notion of convergence as the number of
grid-points or basis functions goes to infinity. Further, this constraint to finite dimensions
makes the method fail or have poor accuracy when there are cracks, shear bands, and shocks.

There are other difficulties with a purely kinematic approach. We image a fixed region of
space that may correspond to different parts of the body in different snapshots. So, image
registration limits us to small displacements. One can stitch together multiple snapshots, but
errors can be compounded, and the method is inaccessible to dynamic events where one has
very few snapshots. Further, there are situations where the deformation and imaging interact
as, for example, in the recent work of Lawlor et al. [18] mentioned in the introduction.

Note that we overcome these difficulties in our proposed approach, since the deformation
is obtained from the equilibrium equation (2) and thus is well defined.

3 Testing the idea with synthetic data

We test the idea by using synthetic data: we use a known constitutive relation, solve the
forward problem with that constitutive relation, and use it to generate synthetic data. We
then use the procedure described in Section 2 on the synthetic data to obtain the constitutive
relation. Comparing the inferred constitutive relation with the known constitutive relation
provides us with a verification of the method.

3.1 Homogeneous material

We consider a compressible hyperelastic constitutive relation motivated by neo-Hookean:
W = % (tr(FTF) — 3 — 2log(det F)) + g(det F—1)? (14)

where the parameters are the shear and bulk moduli P = {u,k}. We consider a specimen
(0,€) x (0,w) x (0,t) in the form of a rectangular strip with a central circular hole as shown in
Figure 1(a). We create a speckle pattern (g(x,0)) from correlated solutions [2] also as shown.
We clamp this specimen with the constitutive relation (14) on the left (y({0,z2})) = {0, z2},
and apply a horizontal displacement on the right y({¢,z2})) = {(1 + &t)¢, x5} where the
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Figure 1: Images of reference and deformed configuration for (a) testing, (b) experimental
validation, and (c) two-material example. The region of interest to perform correlation is

highlighted in red in (a).

nominal strain rate & is taken to be extremely small. The lateral surfaces, x5 = 0, w, are
traction-free. We solve the equilibrium equation (2) at each time ¢ to obtain the synthetic
deformation y(z,t). We obtain the speckle pattern in the current configuration by convecting
the reference image by the deformation:

g(y7t) = gO(x(yat» (15)

where z(y,t) is the inverse deformation. A snapshot is shown in Figure 1(a). We also
compute the total reaction force f(t) at z; = ¢ at each instance. We use {go,£} and a
number of snapshots of {g, f} as our data.

Known constitutive relation. We start with a situation where the constitutive relation
used to generate the data is the same as assumed in the inference, and we seek to find the
parameters. A typical result is shown in Figure 2. The data is generated with a initial
parameters p = 4 MPa, k = 8.67 MPa, and the calculation is initialized with 4 = 8 MPa, k =
7.3 MPa. Figure 2(a) shows the reference image of the specimen with the finite element grid
used for the simulations, the speckle pattern and the region of correlation & marked. The
overall dimensions are 0.036 x 0.012 x 0.005 m. Figure 2(b) shows the objective and the
sensitivity, while Figure 2(c) shows the material parameter as the iteration proceeds. We
observe a quick drop in the objective, a steady drop in the sensitivity, and a stable value for
the parameters. The recovered values are u = 3.98 MPa, k = 8.58 MPa, in close agreement
with the values that generated the data.

We repeat the simulation with several values of the initial guess, and data generated with
three sets of parameters. The results are shown in Table 1. We see that we obtain very good
recovery in each case.

We now turn to noisy data. Images obtained from an experiment have noise depending
on the experimental setup and pixel accuracy, and so we seek to test our approach against
noisy data. We generate images with 720240 pixels and 360x 120 pixels within the domain
and add 10% uniformly distributed random noise to the speckle values for all pixels. The
range of speckle values is between 0 and 1, hence, the maximum absolute noise value is 0.1.
As before, the synthetic data is generated with p© = 4 MPa and x = 8.67 MPa. The initial
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Figure 2: Results for quasistatic uniaxial tensile test of specimen shown in (a).

box is the region to perform image correlation, S. (b) The normalized objective in (4) and
the combined sensitivity of material parameters with iterations. (c¢) The evolution of shear
and bulk modulus. The synthetic data is generated with p = 4 MPa, x = 8.6 MPa and the

optimization is run with initial guess of p = 8 MPa, x = 7.3 MPa.

Initial guess Recovered value
Case | Shear modulus, p; \ Bulk modulus, x; | Final shear, puy \ Final bulk, x;
Set 1: Generate data using 4 = 4 MPa, k = 8.67 MPa
la 4 MPa 38 MPa 3.95 MPa 8.63 MPa
1b 1 MPa 9.67 MPa 4.03 MPa 8.35 MPa
lc 0.4 MPa 3.8 MPa 3.95 MPa 8.61 MPa
1d 40 MPa 387 MPa 3.95 MPa 8.50 MPa
le 0.4 MPa 0.36 MPa 3.98 MPa 8.52 MPa
1f 8 MPa 7.34 MPa 3.98 MPa 8.58 MPa
lg 5 MPa 6.67 MPa 3.99 MPa 8.61 MPa
Set 2: Generate data using 4 = 4 MPa, k = 38.6 MPa
2a 1 MPa 3 MPa 3.99 MPa 33.3 MPa
2b 8 MPa 10 MPa 3.99 MPa 33.3 MPa
2c 2.2 MPa 7 MPa 4.38 MPa 36.0 MPa
Set 3: Generate data using u = 0.5 MPa, x = 4.83 MPa
3a 1 MPa 2 MPa 0.55 MPa 4.48 MPa
3b 0.1 MPa 0.8 MPa 0.49 MPa 4.19 MPa
3c 0.3 MPa 1.0 MPa 0.5 MPa 4.16 MPa

Table 1: Performance with various initial guesses and various sets of synthetic data.
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Figure 3: Performance with (a) 10% random noise in for synthetic images with 720x240
pixels and (b) 360x120 pixels. (¢) Various number of images for inversion.

Total pixels Mesh refinement

% Error 180 x 60 | 360 x 120 | 720 x 240 | 1x mesh | 2X mesh
Shear modulus, x|  0.5% 0.4% 0.4% 0.8% 0.4%
Bulk modulus, & 2.4% 1.3% 0.6% 1.5% 1.3%

Table 2: Performance tests: Errors for various image and mesh resolution.

guess of parameters is ;4 = 0.4 MPa and k = 0.44 MPa. The evolution of material parameters
can be seen in Figure 3 (a,b). We note that the method is able to recover both parameters
with just 4% error.

We study the performance of our method with 2, 3, 50, 100, 250, and 500 snapshots
of g(y,t), resulting in errors of 1.9%, 1.1%, 1.0%, 0.99%, 0.98%, 0.97% in the bulk modulus,
respectively. The error is bulk modulus and computational time per iteration can be seen in
Figure 3(c). In all cases, the number of optimization iterations using MMA method is 35,
35, 37, 39, 39, and 34, respectively. Thus, we get reasonable recovery with two snapshots
and this improves mildly with more snapshots.

We conclude this study by looking at a few computational issues. We study the perfor-
mance of the method under refinement for both the image and the finite element discretiza-
tion. In each case, the synthetic data is developed using parameters {u, k} = 4 MPa, 8.67 MPa,
and the simulations are initialized with parameters {u, x} = 8 MPa, 7.34 MPa. Table 2 sum-
marizes the effect of refining the image (pixel resolution) while keeping the finite element
discretization fixed. We see that the errors are still small, though it degrades a little with
decreasing image resolution. The effect of fixing the image resolution (at 360x120 pixels)
and refining the mesh can also be seen in Table 2. We find a slight improvement in the
recovery with a refined mesh.

Putting all these together, we conclude that the proposed method successfully recovers
the parameters of a known constitutive relation.
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Unknown constitutive relation. We apply our approach to synthetic data generated
as described above with (14). However, in contrast to the previous example, we do not
assume a knowledge of the form of the constitutive relation. Instead, we assume a different
parametrized form, one motivated by a compressible Mooney-Rivlin relation

W =Cy(I; —3) + Co(Ir — 3) + C5(I; ' — 3Y) + k/2(det F — 1)2, (16)

with parameters P = {C},C,, Cs, k} where I, I, are the principal invariants of the left
Cauchy-Green tensor, normalized by (det F)~2/3. We proceed as before and obtain the
parameters C; = 1.6 MPa, Cy = 0.017 MPa, C5 = 0.004 MPa, and x = 12.4 MPa.

To verify that the recovered constitutive relation still captures the actual constitutive
behavior, we perform an independent simulation on a validation specimen with a different
geometry as shown in Figure 1(b), with overall dimensions 0.05 x 0.02 x 0.005 m. Figure 4(a)
compares the measured and computed force between synthetic and recovered constitutive
relations. Figure 4(b-d) shows the comparison of 011, 092, and o9y at a nominal strain of
25%. We define the overall total error in the stress and strain fields to be

_ f()t fQ(Usynthetic - UR(P))2 dS2 dt B f(; fQ(Esynthetic _ ER(P))2 dQ) dt

€ = 1 2 ) € — t 2
0
f fQ (Usynthetzc) a2 dt fO fQ (Esynthetw) a2 dt

and find 0.015% error in stress and 0.014% error in strain.

Therefore, we conclude that the proposed method successfully recovers the constitutive
relation even without a priori knowledge of the form of the constitutive relation.
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Initial guess Recovered value
Case | Shear modulus, p; \ Bulk modulus, x; | Final shear, pf \ Final bulk, x
Material 1: Generate data using u = 4 MPa, k = 8.67 MPa
1 1 MPa 2.17 MPa 4.03 MPa 8.42 MPa
2 20 MPa 9.34 MPa 4.01 MPa 8.28 MPa
3 8 MPa 7.34 MPa 4.16 MPa 8.44 MPa
4 1 MPa 1.67 MPa 3.95 MPa 8.59 MPa
5 0.8 MPa 7.73 MPa 3.96 MPa 8.09 MPa
6 8 MPa 3.73 MPa 4.28 MPa 8.06 MPa
Material 2: Generate data using y = 20 MPa, k = 136 MPa
1 15 MPa 45 MPa 19.8 MPa 127 MPa
2 40 MPa 36.7 MPa 20.1 MPa 119 MPa
3 15 MPa 145 MPa 20.1 MPa 135 MPa
4 40 MPa 187 MPa 20 MPa 130 MPa
5 10 MPa 96.7 MPa 19.7 MPa 145 MPa
6 25.0 MPa 242 MPa 22.4 MPa 201 MPa

Table 3: Performance in the two-material case and various initial guesses.

3.2 Heterogeneous material

The method above can also be used when the material is piecewise uniform, as long as
the domains of uniformity are identified a priori. The derivation of the sensitivity using the
adjoint equation described earlier can easily be generalized to this case. The adjoint equation
and the sensitivity are exactly as in (6) and (8) respectively, except that W depends on .
Importantly, the adjoint problem is solved only once per iteration, and the parameters for
all the materials are updated simultaneously from the resulting sensitivity.

We now demonstrate the performance of our method when we have two materials as
shown in Figure 1(c). We assume the constitutive law (14) for each material, but with
different parameters. We generate synthetic data with (u1, k1) = (4 MPa,8.67 MPa) and
(2, ko) = (20 MPa, 136 MPa) as described above. The results of our algorithm for various
initial guesses are shown in Table 3. We observe excellent recovery as before.

4 Experimental demonstration

We now apply the proposed method on experimental data obtained using a natural rubber
specimen (McMaster-Carr, 87145k411). We consider a specimen of size 0.036 x 0.012x 0.0015
m with a hole in the center as shown in Figure 1(a) and apply a speckle pattern of similar size
to that in the figure. We clamp the left end and apply a uniaxial displacement to the right
at a nominal strain rate of ¢ = 0.001/ up to a nominal strain of 45% on the Instron E3000.
As the sample deforms, we record the boundary force and image the sample at 2 frames per
second, with a resolution of 1024 x 1024 pixels of the field of view (Photron Fastcam NOVA
S12 camera and Tokina AT-X PRO lens, 100F 2.8D). We use bilinear interpolation of the
image to downsample the images to 720px x240px.
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Figure 5: Comparison of the measured and computed (a) force and (b-d) average strain re-
sponse for the verification specimen. The computed response uses the recovered parameters,
and the strains are averaged over a region marked in Figure 1 using the recovered parameters
for the verification specimen.

We then perform our method on the series of images collected. We assume that our
material is described by a compressible constitutive relation motivated by the Mooney-Rivlin

constitutive law, - B
W = (I, — 3) + Co(Tp — 3) + r/2(det F — 1)2, (18)

with parameters P = {C}, Cy, } where I, I, are the principal invariants of the left Cauchy-
Green tensor, normalized by (det F)~2/3. We obtain C; = 0.33 MPa, C; = 0.21 MPa, and
k = 7.53 MPa as the parameters from the experiment.

To verify that these recovered constitutive behavior accurately describes the material, we
conduct an independent experimental test on a specimen with a different geometry shown
in Figure 1(b), with overall dimensions 0.05 x 0.02 x 0.0015 m. As before, the sample is
deformed at € = 0.001/s up to 50% strain, and we record the force and image the specimen
every 2 frames per second. Figure 5(a) compares the measured and computed force response
using a finite element calculation and the recovered parameters. We find an excellent match.

We then use the recorded images and the commercial VIC2D software (Correlated Solu-
tions, Columbia, SC) to obtain the (Lagrangian) strain field. Figure 6 compares the strain
field obtained from VIC2D with that computed using finite element analysis and the recorded
parameters at three loading stages. Figure 5(b-d) compares the strains averaged over a region
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Figure 6: Experimental images used for verification of material parameters of a natural
rubber specimen.
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marked in Figure 1(b). Again, we find an excellent match. We note that the discrepancy
in €15 is comparable to the strain uncertainty of VIC-2D. The uncertainty is determined by
measuring the noise floor of strain values in VIC2D by taking a series of five still images of
a control sample. Under no deformation, the standard deviation of €11, €99, €15 are 0.0006,
0.0005, and 0.0004 respectively.

We conclude that the proposed method successfully recovers the constitutive relation
from an experimental test.

5 Conclusion

We address the problem of learning constitutive relations of materials from experiments.
We seek to use the power of full-field observation techniques like digital image correlation.
In a departure from previous work that breaks down the inverse problem into two nested
optimization problems, first obtaining deformation from images and second obtaining consti-
tutive relations from deformation and force, we propose an integrated approach. Specifically,
we formulate the problem of obtaining constitutive relations from raw data (images and force)
as a partial differential equation constrained optimization problem, and solve it using the
adjoint method. The integrated approach overcomes many of the problems associated with
treating digital image correlation as a purely kinematic problem of obtaining deformation
from images, as well as the problems associated with a multi-level optimization. We demon-
strate this approach on finite elasticity using both synthetic and experimental data. We
view this as a first step in a larger program, and plan to address history-dependent behavior,
shocks, fracture, and other phenomena in future work.
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