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Abstract 
High-definition transcranial direct current stimulation (HD-tDCS) is a promising approach for stroke rehabilitation, which 
may induce functional changes in the cortical sensorimotor areas to facilitate movement recovery. However, it lacks an 
objective measure that can indicate the effect of HD-tDCS on alteration of brain activity. Quantitative electroencephal- 
ography (qEEG) has shown promising results as an indicator of post-stroke functional recovery. Therefore, this study aims 
to determine whether qEEG metrics could serve as quantitative measures to assess alteration in brain activity induced by 
HD-tDCS. Resting state EEG was collected from stroke participants before and after (1) anodal HD-tDCS of the lesioned 
hemisphere, (2) cathodal stimulation of the non-lesioned hemisphere, and (3) sham. The average power spectrum was 
calculated using the Fast Fourier Transform for frequency bands alpha, beta, delta, and theta. In addition, delta-alpha 
ratio (DAR), Delta-alpha-beta-theta ratio (DTABR), and directional brain symmetry index (BSI) were also evaluated. 
We found that both anodal and cathodal stimulation significantly decreased the DAR and BSI over various frequency 
bands, which are associated with reduced motor impairments and improved nerve conduction velocity from the brain 
to muscles. This result indicates that qEEG metrics DAR and BSI could be quantitative indicators to assess alteration 
of brain activity induced by HD-tDCS in stroke rehabilitation. This would allow future development of EEG-based neu- 
rofeedback system to guide and evaluate the effect of HD-tDCS on improving movement-related brain function in stroke. 
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Introduction 
In ischemic stroke, blood flow to the brain is blocked, pre- 
venting brain tissue from getting oxygen and nutrients, 
causing lasting neurological deficits. Of all strokes, 87% 
are ischemic, with a global prevalence of 68.16 million in 
2020 (Tsao et al., 2023). The prevalence of stroke continues 
to increase each year, with nearly 4% of the adult US popu- 
lation projected to have experienced a stroke by the year 
2030 (Tsao et al., 2023). Long-term effects of stroke 
include cognitive impairment and motor deficits, leading 
to difficulty with activities of daily living and returning to 
work (Tsao et al., 2023). Stroke recovery is highly variable 
since the long-term effect is determined by the site and size 
of the initial lesion. Specifically, a lesion on the motor or 
sensory cortices will causes focal damage to the cortices 
and to their descending pathways (Nudo et al., 1996). 
Individuals post stroke can experience continued upper 
extremity motor impairment including hemiparesis, loss 
of sensation in the extremity, spasticity, and loss of fine 
motor skills (Winstein et al., 2016). 

Neuromodulation is a promising approach for reducing 
post-stroke motor impairment. Non-invasive brain stimulation 
technologies, such as transcranial direct current stimulation 
(tDCS), are safe and easy-to-manage neuromodulation 
approaches to modulate cortical excitability. Current research 
suggests that anodal stimulation to the lesioned hemisphere 
and cathodal stimulation to the non-lesioned hemisphere can 
improve upper extremity motor function for patients in 
stroke recovery (Elsner et al., 2017; Santos Ferreira et al., 
2019). However, the effect is limited as conventional tDCS 
uses large sponge electrodes making it difficult to target a spe- 
cific area of the patient’s brain. Therefore, our research focuses 
on a targeted high-definition tDCS (HD-tDCS) technique 
using few small electrodes, navigated by subject-specific 
MR-based computer simulation (Mackenbach et al., 2020) 
and verified by TMS localization. This protocol has been 
shown to have promising results to improve upper limb 
motor function post stroke and our early phase analysis has 
been published (Williamson et al., 2023). 

One of the most widely used methods to assess motor 
recovery post intervention are clinical assessments such as 
the fugl-meyer motor assessment (FMA), the National 
Institude of Health Stroke Scale (NIHSS), and the modified 
rankin scale (mRS) (Santisteban et al., 2016). Specifically, 
the FMA is sensitive to motor gains and has well- 
established reliability and validity as an indicator of motor 
impairment throughout stroke recovery (Duncan et al., 
1983; Gladstone et al., 2002). However, the FMA is rela- 
tively subjective and is an indirect measure of neural deficits 
(Saes et al., 2019). Therefore, recent studies and review 
have indicated the benefit of objective measures in conjunc- 
tion to the FMA to obtain optimal evaluation of the motor 
state (Boyd et al., 2017; Dahlby et al., 2024; Stinear, 
2017; Ueyama et al., 2023). In fact, in a recent Stroke 

Recovery and Rehabilitation Roundtable (SRRR) task 
force, they note there is an urgent need for complementary 
neural biomarkers in addition to clinical assessments to 
optimize the accuracy of evaluating motor recovery (Boyd 
et al., 2017). It has not yet established a quantitative 
measure that evaluates the neuro-effect of HD-tDCS to 
the brain. 

Electroencephalography (EEG) is a non-invasive technique 
that measures cortical brain activity with a high degree of tem- 
poral resolution (Nunez & Srinivasan, 2006). Mathematical 
analysis of EEG signals yields quantitative EEG metrics 
(qEEG) that have been studied as a potential indicator of func- 
tional impairment following stroke (Finnigan et al., 2004). The 
level of cortical deficits after stroke may be quantified by 
resting-state EEG, as altered resting-state cortical activity is 
associated with motor dysfunction (Guggisberg et al., 2019). 
In acute phase of stroke, altered slow-frequency oscillations 
in the delta (1–4 Hz) and theta (4.1–8 Hz) bands of the EEG 
signal may be linked to the volume of lesion and edema 
(Harmony et al., 1995). During the recovery, the increase of 
slow-frequency is likely associated with the decline in neur- 
onal integrity and poor recovery outcomes (Finnigan & Van 
Putten, 2013; Saes et al., 2021; Thibaut et al., 2017); while 
the enhancement of fast-frequency oscillations, alpha (8.1– 
12.5 Hz) and beta (12.6–30 Hz) bands, is often associated 
with improved motor function post stroke (Olga, 2012; 
Pichiorri et al., 2018). A ratio of slow and fast oscillation spec- 
tral characteristics can be expressed by the Delta/Alpha Ratio 
(DAR) (Leon-Carrion et al., 2009) and Delta-Theta/ 
Alpha-Beta ratio (DTABR) (Sheorajpanday et al., 2011). 
Unilateral stroke may also affect the activity of the cortical 
areas involved through modified spectral power distributions 
over the hemispheres, resulting in interhemispheric imbalance 
(Dodd et al., 2017). This likely caused by increased neural 
activity in the contralesional hemisphere to compensate the 
functional loss of the lesioned hemisphere (Mohapatra et al., 
2016). The hemispheric asymmetry of neural activity can be 
quantified via the pairwise-derived brain symmetry index 
(BSI) or the direction BSI (dirBSI) (Finnigan et al., 2007; 
Saes et al., 2019; van Putten & Tavy, 2004). 

These qEEG metrics, when measured early post stroke, 
have been found to be predictors of future motor neuro- 
logical deficits (Bentes et al., 2018; Doerrfuss et al., 2020; 
Finnigan & Van Putten, 2013). In patients with acute 
middle cerebral artery stroke, frontal lobe DAR assessed 
within 72 h post-stroke correlated with cognitive function 
assessed 3.5 months post-stroke (Schleiger et al., 2014). 
A recent study has shown these changes also occur longitu- 
dinally. BSI calculated over delta band was longitudinally 
associated with FMA and DAR, BSI, BSI over delta and 
theta were longitudinally associated with NIHSS (Saes 
et al., 2020). However, it is yet to explore the potential of 
qEEG parameters as quantitative indicators for evaluating 
the effectiveness of HD-tDCS on modulating neural activity 
in the brain and its relationship with motor function 



Williamson et al. 211 
 

 

 
changes. Therefore, the goal of this study was to determine Table 1. Stroke Participants Demographics. 
whether qEEG metrics could serve as quantitative measures 
to assess alteration in brain activity induced by HD-tDCS 
and are related to improved motor function. 

Lesion Time post FM-UE 

 

Methods 
The human subject study was approved by the internal 
review board (IRB # 14011 and #12550) of the 
University of Oklahoma Health Sciences Center and con- 
ducted in its entirety in the Neural Control and 
Rehabilitation Lab within that University. 

 

Power Analysis 
A power analysis was performing using commercial software 
Statistical Analysis Systems (9.4, SAS, Carey, NC, USA). 
Proc Power was used for a paired t-test for mean difference 
using the Fugl-Meyer Upper Extremity test as primary 
outcome measure. Utilizing a normal distribution, with the 
exact method, a difference in the means of 6 points (which is 
the minimally clinically significant difference), a standard devi- 
ation of 5 points, a power of 0.8 and an alpha = 0.05, the number 
of participants needed was 10 (Hiragami et al., 2019). 

 

Participants 
Fourteen individuals (4 female) provided written consents for 
the study and were recruited from January 18, 2022, to May 
12, 2023. The participants were at least three months post 
stroke and had an ischemic unilateral, subcortical stroke 
lesion confirmed by a physician through their most recent clin- 
ical or radiological report. The subjects also had paresis con- 
fined to one side and capacity of provide informed consent. 
Exclusion criteria included muscle tone abnormalities and 
motor or sensory impairment in the unimpaired limb, severe 
concurrent medical problems (e.g., cardiorespiratory impair- 
ment), use of a pacemaker, metal implants in the head, 
known adverse reaction to TMS and tDCS, and pregnancy. 
Demographics of participants are provided in Table 1. 

 

Baseline Assessment and Subject Selection 
One participant (S13) was lost to follow up before the 
screening visit. The rest of the participants (n = 13) 
were screened at their baseline using the Fugl-Meyer 
upper extremity (FM-UE) score [12] and transcranial 
magnetic stimulation (TMS)-induced motor evoked 
potentials (MEP), details on these methods can be 
found in our previous publication (Williamson et al., 
2023). 

After the baseline assessment, eight of the participants 
(S2, S3, S5, S9, S10, S11, S12, and S14) met the 
inclusion/exclusion criteria and within the FM-UE score 

 
 
 
 
 
 
 
 
 
 
 

range (10–40) of a registered pilot clinical trial 
(ClinicalTrials.gov Identifier: NCT05174949, IRB # 
14011). Three of the participants whose FM-UE scored 
above 40 (S4, S7, and S8) signed an additional consent 
form through a separate IRB (IRB # 12550) – this 
allowed mildly impaired participants with the higher 
FM-UE score to continue with the same procedure for inter- 
vention and data collection. S1 and S5 did not meet the cri- 
teria to continue. Therefore, a total of eleven participants’ 
data were included in the data analysis study to develop 
qualitative EEG metrics for determining HD-tDCS 
induced alteration of brain activity in stroke rehabilitation. 
Based on our power analysis, the number of participants 
is sufficient for the proposed analysis. 

 

Study Design 
Eleven of the participants (Subject no. 2, 3, 4, 5, 7, 8, 9, 10, 
11, 12, and 14) participated in randomized, double-blind 
(Participant, Outcomes Assessor) cross-over studies (with 
three visits lasting about 2 h each: (1) anodal high-definition 
transcranial direct stimulation (HD-tDCS) over the ipsile- 
sional M1, (2) cathodal HD-tDCS over contralesional 
PMd, (3) sham stimulation, with a two-week washout 
period to mitigate any carry-over effect of intervention. 
The cross-over design reduced variability and controlled 
for unknown confounding factors, as each subject served 
as their own control. The biostatistician prepared the ran- 
domization program and enrolled and consented each 
patient. The investigator randomized each patient and 
placed them into one of three intervention sequences 
based on a computer-generated randomization program, 
unavailable to the FM-UE evaluators. Detailed methods 
for subject specific HD-tDCS hot-spot identification, 
HD-tDCS parameters, and collection of TMS-included 
motor evoked potentials (MEP) and FM-UE are recorded 
in our previous analysis (Williamson et al., 2023), with 

Subject ID Side Age Sex stroke (Total:66) 

1 L 64 M 33 months 8 
2 R 72 M 17 months 14 
3 L 81 F 14 months 10 
4 Both 55 M 6 months 46 
5 L 44 M 3 months 26 
6 R 62 M 30 months 48 
7 L 43 M 87 months 53 
8 R 59 M 33 months 46 
9 R 65 M 14 months 16 
10 L 73 F 92 months 23 
11 R 57 F 7 months 15 
12 L 67 M 11 months 16 
13 R 75 F 5 months - 
14 R 38 M 4 months 38 
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the calculation of the current density and total charge 
density explained below. 

In HD-tDCS, current density (J) refers to the amount of elec- 
tric current flowing through a given area on the scalp. This is 
particularly important in HD-tDCS because the electrodes 
used are smaller and provide a more focused stimulation com- 
pared to conventional tDCS. The formula for current density is: 

formula mentioned above, considering the specific volume 
and stimulation time. 

In our study, we applied 2 mA (0.002 A) for 20 min 
(1200 s). Thus, the total charge delivered is 0.002 × 1200 = 
2.4 C and charge density is 2.4/V (V is the volume of the sti- 
mulated area which is subject-specific in this study due as the 
brain volume varies from subject to subject). 

 
J = I 

A 

 
(1)  

EEG Data Collection 
where J is the current density (measured in amperes per square 
meter, A/m²), I is the total current applied by the electrodes 
(measured in amperes, A), and A is the area of the electrode(s) 
in contact with the scalp (measured in square meters, m²). 

In our study, the area of an electrode is 1 cm² and the 
applied current is 2 mA at the central electrode and 2 mA/ 
4 = 0.5 mA at four surrounding electrodes. Therefore, the 
current density at the central electrode is 20 A/m² and at 
the surrounding electrodes is 5 A/m². 

The total charge density (ρ) in HD-tDCS refers to the 
amount of electric charge distributed within the brain 
tissue during stimulation. The charge density can be calcu- 
lated using the following formula: 

The EEG was recorded before and after HD-tDCS stimula- 
tion using the OpenBCI Cyton Daisy Biosensing Boards 
(OpenBCI, New York, United States) sampled at 125 Hz 
and established wireless communication with a computer 
using the BLE (Bluetooth Low Energy) module. Each par- 
ticipant was fitted with a 16 channel OpenBCI Gel Free 
Electrode Cap. The participants were instructed to sit 
quietly, eyes closed, in a dark room without noise for the 
duration of the 3 min. The EEG data was preprocessed 
using EEGLAB v 2020.0 toolbox in MATLAB 
(EEGLAB v. 2020.0, Swartz Center for Computational 
Neuroscience) (Delorme & Makeig, 2004). The data was 
visually inspected for artifact removal. In some participants’ 

ρ = Q 
V (2) 

data, some electrodes had “noisy” data, typically due to 
poor contact between the electrode and the scalp or exces- 

where ρ is the total charge density (measured in coulombs 
per cubic meter, C/m³), Q is the total charge delivered by 
the stimulation over a period of time (measured in cou- 
lombs, C), and V is the volume of brain tissue exposed to 
the stimulation (measured in cubic meters, m³). The total 
charge delivered is a product of the current applied and 
the duration of stimulation. Thus, the charge delivered 
over time can be calculated as: 

ρ = I × t (3) 

where I is the applied current (in amperes, A) and t is the 
duration of stimulation (in seconds, s). 

To calculate charge density, we then divide the total 
charge by the volume of brain tissue that is being stimu- 
lated. The total charge depends on the geometry of the elec- 
trode and the spread of current in the brain tissue, which can 
be influenced by factors such as the electrode configuration, 
skin-electrode contact, and tissue conductivity. 

Therefore, to precisely calculate the current distribution 
in a specific brain region, we use the Finite Element 
Method. This method helps simulate how the current 
flows in the brain, considering the electrode configuration 
and the conductivity of different brain tissues. A common 
software for this purpose is SimNIBS (Hendrickson et al., 
2023). SimNIBS helps model the current flow in the 
brain, taking into account the individual anatomy and elec- 
trode setup, providing accurate results for current density 
and charge distribution. Once the current distribution is cal- 
culated, total charge density can be determined by using the 

sive blinking artifacts. In these cases, these electrodes 
were removed from the calculation. 

 

Outcome Measures 
Spectral Power. The power spectrum was calculated average 
using the Fast Fourier Transform. From this, mean power 
was computed across the following frequency bands: 
delta (1–4 Hz), theta (4.1–8 Hz), alpha (8.1–12.5 Hz), and 
beta (12.6–30 Hz) (Finnigan et al., 2004) for electrodes in 
the sensorimotor area (C3/C4, F3/F4, and P3/P4) of the 
16 channel EEG. 

 
Delta Alpha Ratio (DAR) and Delta Theta Alpha Beta Ratio 
(DTABR). DAR is defined as the ratio of delta power to 
alpha power. DTABR is defined as the ratio of delta and 
theta power to alpha and beta power. For every channel c 
the power of each frequency band was determined as the 
mean of the spectral power Pcf. With these mean values, 
DAR and DTABR were calculated using the following for- 
mulas (Saes et al., 2019): 

DAR = (Pc(f ))f = 1, . .  . , 4 Hz (4) 
c (Pc(f ))f = 8.1, . . .  , 12.5 Hz 

DTABRc =   (Pc(f ))f = 1, . . .  , 4 Hz + (Pc(f ))f = 4.1, ..  . , 8 Hz   
(Pc(f ))f = 8.1, . . .  , 12.5 Hz + (Pc(f ))f = 12.6, . . .  , 30 Hz 

(5) 

These values were averaged all N channels of the sen- 
sorimotor areas. 
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L 

L 

 
Table 2. Statistical Summary for Individual Power Bands and Power Ratios. 

 

 Alpha Beta Delta Theta DAR DTABR 

Anodal       
Mean Change 0.50 0.03 −15.9 −0.09 −3.1 −1.1 
SD 15.9 4.3 388.7 48.2 4.0 1.1 

Cathodal       

Mean Change −14.3 −5.5 −254.6 −35.3 −4.3 −0.98 
SD 31.2 13.0 608.7 81.7 3.0 1.4 

Sham       

Mean Change 2.2 0.42 47.6 6.8 −0.17 −0.04 
SD 15.9 3.8 339.6 43.1 3.1 1.9 

GEE Analysis of Group*Time 
Anode v Sham p = 0.655 p = 0.818 p = 0.694 p = 0.727 p = 0.026 p = 0.104 
Cathodal v Sham p = 0.105 p = 0.120 p = 0.178 p = 0.145 P = 0.011 P = 0.259 

 
 

1  N 
DAR = N 

1 
 
 

1  N 
DTABR = N 

1 

 
DARc (6) 

 
 

DTABRc (7) 

and post intervention), with their interaction, and the random 
factor as subject ID. This technique used correlated linear 
models for each outcome variable. This method was selected 
due to its ability to improve the power in small-sample studies 
in which the temporal spacing of outcomes was the same for 
each subject. Specifically, we used a modified empirical sand- 
wich covariance matrix estimator within correlation structure 
selection criteria and test statistics. Use of this estimator can 

Brain Symmetric Index (BSI). The BSI was defined as the mean 
of the absolute value of the difference in mean hemispheric 
power in the frequency range from 1 to 25 Hz. Traditional 
BSI does take the direction of the asymmetry into account; 
therefore, we calculated directional BSI. Directional BSI 
ranges from −1 to +1. BSI = 0 represents perfect symmetry. 
Positive values represent higher power in the right hemisphere 
compared to the left hemisphere, vice versa for negative values. 
The BSI for each channel pair (cp) was calculated using the fol- 
lowing formula (Saes et al., 2019). 

improve the accuracy of selection criteria and increase the 
degrees of freedom to be used for inference (Westgate & 
Burchett, 2016). Glimmix was used to determine correlation 
between Fugl-Meyer Upper Extremity (FM-UE) score and 
qEEG outcome measures. 

 
 

DAR Topography 
Topography maps of EEG channels were generated using 
MNE-Python library(Gramfort et al., 2013). Individual com- 

BSI PCRight (f ) − PcLeft (f ) = (8) ponent analysis (ICA) was done for all 16 channels, and 
cp 

CRight (f ) + Pc 
 

Left (f ) 
 
f =1,...,25 Hz 

from 2 to 4 components were selected to filter out the artifacts 
and identify channels with signals based on the subject’s 

These values were averaged over N channel pairs of the sen- 
sorimotor areas: 

N/2 

lesion. The data arrays were then aligned so that the lesion 
side will be on the left, meaning all the arrays with lesion 
on the right were reversed. Using the selected ICAs, DAR 

BSI = 2 
N 

L 
BSIcp 

cp=1 
(9) values were plotted for each channel to generate a topography 

map. This was completed for all participants before and after 

BSI was also determined separately for the delta, theta, 
alpha, and beta frequency bands. 

 
Statistical Analysis 
All statistical analysis was completed using commercial soft- 
ware Statistical Analysis Systems (9.4, SAS, Carey, NC, 
USA) with alpha = 0.05. After checking for and finding no evi- 
dence of a non-normal outcome measure distribution using Proc 
Univariate, the outcome measures were analyzed using general- 
ized estimating equations (GEE) in PROC GENMOD. The 
fixed factors were group (anodal, cathodal, sham), time (pre 

each visit. The individual maps were averaged together to 
create mean topography maps before and after stimulations. 

 
 

Results 

Spectral Power and Power Ratios 
Table 2 displays the descriptive statistics and results of GEE 
analysis for individual bands and power ratios DAR and 
DTABR. No significant differences were found in the analysis 
of individual power bands alpha, beta, delta, and theta between 
anode or cathode and sham stimulation (Figure 1). GEE 

P 
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Figure 1. Boxplots of Mean Changes of Individuals Power Bands (Alpha, beta, delta, and Theta) Before and After Stimulation for 
Anodal, Cathodal, and Sham. 

 

analysis did reveal that anodal stimulation (group*time) altered 
the DAR significantly as compared to sham stimulation, with a 
beta estimate of −2.9215, z = −2.23, p = 0.0260. Cathode 
stimulation (group*time) also decreased DAR significantly in 
comparison to sham stimulation, with a beta estimate of 
−4.1047, z = −2.55, p = 0.0108. For DTABR, while the 
mean change for cathode (−0.98) and anode (−1.06) are 
greater than the sham (−0.04) there were no statistically signifi- 
cant changes found between cathode and anode compared to 
sham over time. This can be visually displayed in Figures 2 
and 3. Figure 2 also displays means changes of FM-UE and 
Latency of M1 MEP for comparison. 

 
Brain Symmetry Index 
Table 3 displays the descriptive statistics and results of GEE 
analysis for BSI and BSI of individual frequency bands. 
GEE analysis of the BSI revealed that anodal stimulation sig- 
nificantly changed the BSI over time in individual frequency 
bands, BSIAlpha, BSIBeta, BSIDelta, and BSITheta, compared to 

the sham. Cathodal stimulation significantly changed the 
BSIAlpha over time compared to the sham. There were no sig- 
nificant differences in standard BSI over frequency 1–25 Hz. 
This is also displayed in Figure 4. 

 

Association Between qEEG Metrics and Motor 
Impairment 
There was no statistically significant correlation found 
between the initial (pre intervention) qEEG metrics with 
initial FM-UE scores. There also no statistically significant 
correlations found in the changes of qEEG metrics (post 
minus pre intervention) with the changes in FM-UE 
score. These values are shown in Table 4. 

 
Discussion 
These results indicate that DAR significantly decreased 
after both anodal and cathodal HD-tDCS compared to the 
sham.  No  significant  differences  were  observed  in 
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Figure 2. Boxplot of Mean Changes of Power Ratios DAR and DTABR, FM-UE Score, and Latency of Lesioned M1 MEP Before and 
After Stimulation for Anodal, Cathodal, and Sham. Stars Indicate Statistically Significant Differences between Groups *<0.05, **<0.01, 
***<0.001. 

 
 

individual frequency bands. DAR has consistently been a 
superior qEEG measure in ischemic stroke identification 
when analyzed against individual absolute and relative 
power bands and other power ratios (Claassen et al., 2004; 
Finnigan et al., 2016; Leon-Carrion et al., 2009). The 
decrease in DAR reflects an improvement in overall resting 
state brain function. DAR quantifies the overall signal inten- 
sity of abnormal, slow delta activity, relative to that of 
(healthy) alpha activity (Finnigan & van Putten, 2013). 
Due to this normalization, this ratio may more sensitively 
reflect the severity of neurological deficits compared to the 
individual spectral components (Saes et al., 2021). The 
mechanism behind the change in DAR may be related to 
the interaction between thalamocortical circuits and the 
activity of monoaminergic neurotransmitters. Descending 
monoaminergic neurotransmitters, norepinephrine and sero- 
tonin, have been shown to play a key role in flexion synergy 
and spasticity expression in chronic hemiparetic stroke 

(McPherson et al., 2018). The generation of high-frequency 
waves (alpha) and the reduction of lower-frequency waves 
(delta) also depend on these neurotransmitters (Hughes & 
Crunelli, 2005; Saletu et al., 1996). Therefore, DAR may 
reflect the change in norepinephrine/serotonin level after 
HD-tDCS stimulation. While mean DTABR was lower 
after anodal and cathodal stimulation compared to the 
sham, this difference was not found to be statistically signifi- 
cant. While this ratio has been shown to be associated with 
post stroke recovery (Vanderschelden et al., 2023), others 
have argued that theta and beta do not appear to contribute 
to the predictive capacity of EEG for functional outcome 
prognosis or monitoring (Finnigan et al., 2004). 

Our results also showed that BSIAlpha significantly 
increased (closer to perfect symmetry) after anodal and 
cathodal stimulation. BSIBeta, BSIDelta, and BSITheta also 
significantly increased after anodal stimulation. A reduction 
in interhemispheric imbalance is associated with improved 
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Figure 3. Topography of Difference in DAR Before and After Stimulation for Anodal, Cathodal, and Sham. Data Arrays Aligned to 
Have Lesion on Left. Blue Indicates Greater Decrease in DAR, Red Indicates Less Decrease in DAR. 

 
Table 3. Statistical Summary for Brain Symmetry Index. 

 

 BSI BSIAlpha BSIBeta BSIDelta BSITheta 

Anodal      
Mean Change 0.091 0.04 0.03 0.05 0.05 
SD 0.35 0.08 0.10 0.16 0.13 

Cathodal      

Mean Change 0.099 −0.06 −0.11 −0.12 −0.10 
SD 0.39 0.15 0.22 0.25 0.22 

Sham      

Mean Change −0.08 −0.10 −0.12 −0.15 −0.11 
SD 0.42 0.18 0.18 0.24 0.21 

GEE Analysis of Group*Time 
Anode v Sham p = 0.397 p = 0.0005 p = 0.0091 p = 0.0376 p = 0.0378 
Cathodal v Sham p = 0.233 p = 0.0478 p = 0.869 p = 0.769 P = 0.850 

 

brain function and the reduction of severity of motor 
impairment post stroke (Berenguer-Rocha et al., 2020). 
Increase in asymmetry quantified by BSI, has been widely 
shown in the acute and subacute stages after stroke 
(Agius Anastasi et al., 2017; Finnigan et al., 2016; 
Sheorajpanday et al., 2009). However, research in the 
chronic phase is limited. It has been shown that BSI is cor- 
related with motor impairment in lower frequency bands 
(Saes et al., 2020, 2021). However, these studies did not 
include information about individual frequency alpha and 
beta bands in their analysis. Our results showed that there 
were no significant correlations between BSI and motor 
impairment (FM-UE) in individual frequency bands in the 
chronic phase, as well as changes after anode or cathode 
HD-tDCS intervention. This research provides new insights 
into changes in brain symmetry in the chronic phase of 
stroke. This is important for selecting appropriate para- 
meters to objectively quantify brain stimulation effects. 

Specifically, these results emphasize the value of taking 
into account the individual frequency bands when calculat- 
ing qEEG parameters. 

This change in observed EEG wave patterns is consistent 
with prior studies using conventional anodal tDCS on ipsi- 
lesional M1 post stroke (Bernardes et al., 2024). However, 
prior research using cathodal tDCS over contralesional M1 
found no change in EEG metrics post stimulation (Wang 
et al., 2021). Our results indicate that targeted cathodal 
HD-tDCS over contralesional PMd does improve DAR in 
the sensorimotor area. This is likely because the PMd is 
the origin of cortico-reticular projection whose input 
to the hyperactive reticulospinal tract is known to be a 
driven of abnormal muscle synergies and spasticity in 
chronic stroke (Li, 2017; Li et al., 2019; McPherson 
et al., 2018). This finding provides further evidence for as 
contralesional PMd a neural target for cathodal HD-tDCS 
(Williamson et al., 2023). 
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Figure 4. Boxplot of Mean Changes of Directional BSI and BSI Over Alpha, Beta, Delta, and Theta Frequency Bands. Stars Indicate 
Statistically Significant Differences Between Groups *<0.05, **<0.01, ***<0.001. 

 
Table 4. Correlations Between Fugl-Meyer Upper Extremity Score with qEEG Metrics for Initial Values and Changes After Stimulations. 

 

Initial Change after Anodal Change after Cathodal 
 

Independent variable R p value  R p value  R p value 

Spectral Power         
Alpha −0.022 0.953  −0.008 0.984  −0.013 0.971 
Beta −0.101 0.782  −0.031 0.938  0.024 0.948 
Delta 0.080 0.826  −0.040 0.918  −0.025 0.946 
Theta 

Power Ratios 
0.049 0.893  −0.033 0.933  −0.020 0.955 

DAR −0.011 0.976 0.326 0.392 0.046 0.899 
DTABR −0.064 0.861 0.421 0.259 0.130 0.721 

BSI         

BSI 0.372 0.289 0.121 0.756 0.276 0.441 
BSIAlpha −0.103 0.777 −0.050 0.899 0.178 0.623 
BSIBeta −0.035 0.924 0.100 0.798 0.149 0.681 
BSIDelta −0.008 0.982 0.405 0.279 0.093 0.798 
BSITheta −0.042 0.908 0.285 0.457 0.099 0.785 

 

Additionally, this study emphasizes the use of HD-tDCS 
as compared to conventional tDCS. Conventional tDCS has 
much lower current density than HD-tDCS which likely 
limited its effectiveness. A recent phase II, multicenter clin- 
ical trial found that increasing the dosage to 4 mA and 
30 min stimulation in the conventional tDCS did not 
improve its effectiveness as compared to 2 mA stimulation, 
as well as sham stimulation (Schlaug et al., 2025). This is 
likely because that a conventional tDCS uses a large size 
sponge electrode which results in a low current density 
(0.114 mA/cm²). It has been suggested to increase current 
density by reducing the electrode size, which is exactly 
what we did in this study using the HD-tDCS. With the 

2-mA dosage in our proposed HD-tDCS setup, the current 
density at the central electrode is 20 A/m² and at the sur- 
rounding electrodes is 5 A/m². Furthermore, a previous 
study shows that 20 min of tDCS can effectively change 
the cortical excitability while 30 min of tDCS did not 
improve the outcome (Vignaud et al., 2018). Increasing 
the stimulation time from 20 min to 30 min is not recom- 
mended, thus, we used 20 min in this study. 

Identifying objective parameters that can measure and 
predict recovery after stroke is useful in creating indivi- 
dualized rehabilitation. In the case of non-invasive brain 
stimulation, stimulation location, current, and time can 
be optimized with an online real-time HD-tDCS-EEG 
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procedure. qEEG biomarkers, DAR or BSI could be used 
to guide a tailored intervention to improve outcomes. The 
use of qEEG metrics as a measure of stroke recovery for 
HD-tDCS is also important in the assessment of severely 
impaired post stroke individuals who cannot perform func- 
tional movement tasks, as well as in individuals in the 
acute/subacute phases of recovery from a stroke whose 
movement ability is still limited or absent. Being able to 
track recovery without voluntary movement of the 
paretic arm may also prevent “over-exerting” a more 
impaired individual or an acute individual while perform- 
ing motor assessments or strenuous non-targeted rehabili- 
tative interventions. 

 
 
Study Limitations 
This proof-of-concept study involved a few stroke subjects 
in the sub-acute/chronic phase post stroke. Therefore, future 
work involves increasing the sample size and including 
acute stroke participants to observe the effects in this 
phase. An additional aspect to consider is accounting for 
infarction volume and location (cortical vs. subcortical) to 
compare the responses. Furthermore, while others have 
reported correlations between qEEG metrics and FM-UE 
scores (Agius Anastasi et al., 2017; Bentes et al., 2018), 
we did not observe this in our result. Without clear func- 
tional relevance, it is difficult to make conclusions for clin- 
ical use. It is suggested to increase the sample size to 
observe if this changes the significance of the correlation. 
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