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ABSTRACT

Billions of organic molecules are known, but only a tiny fraction of the functional inorganic materials have been discovered,
a particularly relevant problem to the community searching for new quantum materials. Recent advancements in machine-
learning-based generative models, particularly diffusion models, show great promise for generating new, stable materials.
However, integrating geometric patterns into materials generation remains a challenge. Here, we introduce Structural Constraint
Integration in the GENerative model (SCIGEN). Our approach can modify any trained generative diffusion model by strategic
masking of the denoised structure with a diffused constrained structure prior to each diffusion step to steer the generation
toward constrained outputs. Furthermore, we mathematically prove that SCIGEN effectively performs conditional sampling from
the original distribution, which is crucial for generating stable constrained materials. We generate eight million compounds using
Archimedean lattices as prototype constraints, with over 10% surviving a multi-staged stability pre-screening. High-throughput
density functional theory (DFT) on 26,000 survived compounds shows that over 50% passed structural optimization at the DFT
level. Since the properties of quantum materials are closely related to geometric patterns, our results indicate that SCIGEN
provides a general framework for generating quantum materials candidates.

Introduction

The structure-property relationships are instrumental in understanding quantum and functional materials, and are a fundamental
part of any materials science curriculum. Two key structural indicators, symmetry, and geometric pattern, profoundly influence
materials properties. For example, materials with inversion symmetry can lead to topological crystalline insulators', whereas
breaking inversion symmetry can result in a variety of phenomena such as Rashba spin-orbit coupling?, ferroelectricity?, second
harmonic generation*, and topological Weyl semimetals’. Meanwhile, a material’s geometric pattern is closely linked to its
electronic states and magnetic orderings. The square lattice serves as a prototype for high-temperature cuprate superconductors®,
while triangular, honeycomb, and kagome lattices can host exotic magnetic states like quantum spin liquids’-. Additionally,
kagome and Lieb lattices can support electronic flat bands”!'? with the technological importance of replacing rare-earth
elements!!. Also, porous structures like zeolite lattices find applications in catalysis'?. However, designing stable materials
with desired properties can be nontrivial. For example, only a dozen quantum spin liquid candidates have been identified after a
decade of research!3, and even fewer are known for the Lieb lattice.



Machine-learning (ML) based materials generators have led to a paradigm shift in material design. Diffusion models like
CDVAE, UniMat, and DiffCSP'#"'®, and graph neural network models like GNoME!”, have shown great promise in identifying
stable structures to generate millions of materials. However, most ML-based generators create new materials with respect to
the distribution of the database, making it challenging to generate materials with specific constraints. Although there have
been some developments in the incorporation of crystallographic space groups in the materials generation'82°, the integration
of geometric patterns into generation algorithms for functional materials remains challenging. In quantum materials, space
group symmetry and geometric patterns can be independent; including the space group symmetry alone will sometimes not
allow for proper screening, as is often encountered in monoclinic stacking variants of hexagonal symmetry layers. Moreover,
in frustrated magnets, the geometric pattern such as a kagome lattice filled with magnetic atoms plays more important roles
than the overall space group in supporting the exotic magnetic structures. Therefore, there is a pressing need to develop an
ML-based generator capable of producing new materials constrained by particular geometric patterns.

To answer this need, in this work, we present SCIGEN: Structural Constraint Integration in the GENerative model. SCIGEN
is a scheme that can be utilized by any pre-trained generative diffusion model for the incorporation of geometric pattern and
symmetry constraints during the generation, without the need for retraining or fine-tuning. Starting from the target constraints,
SCIGEN diffuses a random constrained structure over multiple time steps. The constrained structures are used to mask the
denoised structure before each diffusion step, creating an inductive bias that directs the generation process toward producing
outputs that adhere to the constraints. It turns out that, as we have proven, SCIGEN effectively performs conditional generation
with respect to the distribution of the base model. This indicates that the constraint set by SCIGEN would preserve the integrity
of the base generative model, including but not limited to the stability of generated materials. To demonstrate, we apply SCIGEN
to DiffCSP'® for generating materials constrained by Archimedean lattices (ALs)?!>?, which are a collection of 2D lattice tiling
with square, triangular, honeycomb, kagome, and a few other geometric patterns, and rich harbors for exotic quantum materials.
We generate a total of 7.87 million materials belonging to ALs. After a four-staged stability pre-screening, over 790,000
materials survived. Structure relaxation on a subset containing 26,000 materials is computed with high-throughput density
functional theory (DFT), showing that 95% completed the calculation, and more than 53% can reach the energy minimum
within 150 steps of structural optimization. Since SCIGEN requires no extra training apart from the underlying generative
model, it also offers a flexible and generically applicable conditioning scheme of materials generation with constraints from
both symmetry and geometric patterns.

Results

Structural constraint integration in the generative model
Figure 1 presents the schematic overview of SCIGEN. The goal of crystal structure generation is to find periodic crystals M,
which can be represented by the three components: the lattice matrix containing three basis vectors L = [I,1,,13] € R3*3,
the fractional coordinates F = [f,, f5,..., fn] € [0,1)**", and one-hot representations of atom types A = [a;,a3,...,ay] €
[0, l]hXN . Our methods impose geometric constraints on L, F and A respectively in diffusion-based material generation. Figure
la illustrates notable geometries including triangular, honeycomb, and kagome lattices. Following the guideline in Fig. 1b, we
initiate the constrained structures with an AL composed of magnetic atoms. Figure 1c¢ explains the algorithm of the generative
process integrating the constrained components. The initialized structure is subjected to a diffusion process by adding noise
over T-steps denoted as M{ where t € [1..T] (T = 1000 by choice), providing the pre-defined pathway of denoising process
for the constrained components. An unconstrained structure is initiated as a completely noisy structure M%. Both M% and
' are integrated to form M. This composite structure My is then denoised to retrieve M%._;. SCIGEN repeats this process
through all steps; it merges My and M} to get M;, and then predicts M;"_,. This iteration optimizes the final material structure
M by guiding a subset of atoms to form AL planar structures. More details are shown in Supplementary Information 3.
Additionally, as proven in Supplementary Information 4, SCIGEN can take the structural constraints and fill the remaining
unconstrained components, while preserving the integrity of the unconstrained optimization. Following the generation of a
large set of material candidates, we evaluate their stability through a four-staged pre-screening process . The pre-screening
involves applying chemical rules such as charge neutrality and the volume of atoms occupying the lattice unit cell, along with
auxiliary neural networks that predict stability based on the energy above convex hull (Eyy))) values. After that, we employ high
throughput DFT to relax structures and identify potentially stable candidates.

Materials generation with Archimedean lattice constraints

Figures 2a-c display the results of materials generation constrained by three primary AL types: (a) triangular, (b) honeycomb,
and (c) kagome. The AL structures are formed in the generated structures, as SCIGEN algorithm has guided them to be formed
as pre-defined. The positions of the other unconstrained atoms are not specified rigorously but are often found to reside on
the sites that bridge the AL atoms. For triangular lattices (Fig. 2a), each of the unconstrained atoms is placed on the sites
connecting with three magnetic atoms forming an equilateral triangle. For honeycomb lattices (Fig. 2b), we often observe
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materials with one unconstrained atom at the center of the hexagon formed with magnetic atoms within the same plane. As to
kagome materials (Fig. 2c), unconstrained atoms bridge the equilateral triangles and the hexagons of kagome lattice layers. If
the space inside the polygons is too small compared to the atomic radii, the filler atoms will be pushed outside the AL plane.
On the other hand, large polygons like hexagons can accommodate the filler atoms to fit within the same plane.

To generate constrained material structures with a higher likelihood of stability, we develop a scheme for sampling initial
conditions. We analyze the ratio of stable outputs, defined as the survival ratio after the multi-staged pre-screening processes.
First, we sample the number of atoms per unit cell (V) from a uniform distribution to identify which N values are more likely to
pass the stability pre-screening. This results in a probability distribution py values based on their pre-screened stability. We
then use this probability distribution py to sample N for initializing the large-scale generative process. Figure 2d shows the
sampling profile of N, which covers all of the 10 common magnetic atoms as the vertices of AL structures. For triangular lattice
materials, smaller N values show higher success rates, whereas larger N values are favored for honeycomb and kagome. This
result is reasonable since the AL type is directly linked to the unit cell size, which is a linear function of bond lengths for each
class of AL types. For triangular lattice, the lattice parameters /; and /; are the same as the bond length of the neighbor node,
while for honeycomb and kagome lattices, the lattice parameters are v/3 and 2 times of the bond length, respectively. In the
case where many atoms are packed into the unit cell of a small cross-section of the AL, the cell needs to be “tall”, i.e., /3 needs
to be larger with respect to /; and /. Next, we survey which magnetic atoms are suitable as the vertices of ALs. Figure 2e
presents the number of stable materials after the prescreening with respect to magnetic atom types, which we analyze from
the set of 3000 generated materials for each lattice type and each magnetic atom. Despite variations, all magnetic atoms are
shown to be able to form AL structures. Therefore, we choose to sample atom types for AL vertices with equal probabilities for
large-scale materials generation and database construction. Methods section and Supplementary Information 2 describe in
detail the sampling schemes for the initialization conditions.

Our exploration of materials with geometrical constraints does not end with the three primary types of ALs but can apply to
other geometrical patterns. In contrast to the common types of triangular, honeycomb, and kagome lattices, magnetic systems
known to fit in other ALs are extremely rare. Figure 3 showcases 3x3x 1 supercells of the generated materials with seven other
types of Archimedean lattices: Square, Elongated triangular, Snub square, Truncated square, Small rhombitrihexagonal, Snub
hexagonal, and Truncated hexagonal. One type of AL lattice, Great rhombitrihexagonal, is not presented due to the challenge to
generate stable materials. The unconstrained atoms within these materials often play a critical role in the overall stability of
the structures. They tend to bridge gaps between structured lattice layers, either by sitting at the center of polygons on the
same plane or contacting all vertices of the polygon structures, effectively stabilizing the AL layers. This bridging is not just
a passive consequence of the material generation process but actively contributes to the mechanical and thermal stability of
materials”3. Interestingly, even when not explicitly constrained to form specific lattice structures, these unconstrained atoms
frequently organize into recognizable Archimedean patterns. This trend could suggest an inherent preference or stability in the
configurations of AL whose vertices are equivalent with respect to the local coordinates.

Materials generation with Lieb-like lattice structures

The Lieb lattice is a variation of AL that consists of a square lattice with additional atoms located at the centers of each edge of
the squares, as visualized in Fig. 4a. Each unit cell of the Lieb lattice contains three atoms. The geometry of the Lieb lattice
can lead to magnetic frustration when interacting spins are placed at each lattice site, as we expect for AL structures. This can
result in complex magnetic states, which are of significant interest for studying quantum magnetism. Beyond that, Lieb lattices
are studied to possess characteristic electronic properties. One key feature of the Lieb lattice is the presence of a flat electronic
band'®. Contrary to localized atomic orbitals, the flat bands formed from the Lieb lattice originate from the destructive quantum
interference effect which quenches the kinetic energy. This may lead to interesting physical phenomena such as enhanced
electron correlation and high-temperature superconductivity?*%>. Also, recent research has shown that the Lieb lattice can
exhibit non-trivial topological properties when subjected to various perturbations?. However, the Lieb lattice has mainly been
achieved in artificial systems like photonic crystals®’->®, and atomic solids that can host Lieb lattice are extremely rare.

In this work, we also focus on the Lieb-like lattice where magnetic atoms sit on the Lieb lattice. Figures 4b,c show the
generated materials with Lieb-lattice-based crystal structures and their calculated band structures. In these generated materials,
magnetic atoms such as terbium (Tb) and dysprosium (Dy) are strategically positioned at the nodes of the Lieb lattice. Following
structural relaxation through DFT calculations, the integrity of the Lieb lattice architecture is maintained, and the structures
exhibit the anticipated flat-band characteristics close to the Fermi level. These outcomes demonstrate SCIGEN’s ability to
generate new, stable materials with exotic geometric patterns, even when there are very few known materials that fit the desired
geometric pattern.

Database of the materials with Archimedean lattice
As detailed in Supplementary Information 7, we generate an AL materials database using SCIGEN. The database contains three
components: the total 7.87 million materials generated by the SCIGEN model, the 790 thousand materials that survived four
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stages of stability pre-screening processes, and 24,743 out of 26,000 sub-sampled materials in which DFT calculations are
successfully converged. By systematically extending our exploration to encompass a wider range of ALs, we can investigate
new exotic magnetic orderings, discover porous structures beyond zeolites, and explore new electronic flatband structures,
among other possibilities.

Conclusions

In this work, we present SCIGEN, a new generative model aimed at discovering quantum material candidates that adhere to
geometric constraints. Our method leverages an AL layer within the crystal structure to identify potential quantum materials.
These materials have been validated through DFT to ensure that their relaxed structures are consistent with the machine-learning
generations.

To further enhance the validity of SCIGEN, it is crucial to conduct experimental verification through the synthesis of these
machine-generated materials. Computation-aided synthesizability check may involve additional analysis in binary, ternary,
or other more complex phase diagrams. Setting aside experimental validation, SCIGEN paves an avenue for a few future
directions. By focusing on atomic arrangements, we can explore additional geometry-related constraints, such as bonding
types, coordination numbers, short-range orderings, and point-group and space group symmetries, during materials generation.
Additionally, integrating other diffusion channels, like through the virtual node approach, allows us to incorporate more complex
constraints such as defect constraints and magnetic interaction constraints, broadening the scope of the SCIGEN model. More-
over, conditioning the generation process with targeted functionalities, such as specific electrical and optoelectronic properties,
or sustainability or environmental impact of materials, can lead to the direct creation of materials with tailored performance. Our
SCIGEN model represents a general machine learning-based framework for discovering new quantum materials. It leverages
information typically absent from crystal structure databases, offering deeper insights into the structure-property relationships
of emerging quantum materials.

Methods

Initialization of the Archimedean Lattices

We describe the workflow to initialize the materials generation process related to the both AL and the entire structure of crystal
for the diffusion model. This initialization process involves a few steps: the choice of AL, the atom types, and the total number
of atoms per unit cell. Here we provide a summary of the initialization process in Fig. 2b, where more detailed scheme can be
found in Supplementary Information 2.

First, we assign the required geometric domain condition to the crystals. In SCIGEN, we specify one of the AL structures,
such as triangular, honeycomb, or kagome lattice, as geometric domain condition. Each type of AL requires the number
of vertices per unit cell and the size of the unit cell. Supplementary Information 1 presents the geometric patterns and the
preliminary profiles of all AL and Lieb lattices.

Second, we choose the constrained atom type <7 placed on the vertices of the AL structure assigned above. To generate
candidate materials which may host geometrically frustrated quantum magnetism, we specify 10 types of common magnetic
atoms (Mn, Fe, Co, Ni, Ru, Nd, Gd, Tb, Dy, Yb) on the vertices. The atom types are chosen independently from the AL choice
above.

Third, we sample the constrained magnetic bond lengths d¢, aka the distances between the nearest-neighbor magnetic
atoms forming the ALs. For each magnetic atom type .<7¢, we generated the profile of the bond lengths by sampling the
nearest-neighbor distances between the corresponding atoms in the MP-20 dataset?>3? using CrystaINN>!. To ensure the
nearest-neighbor distances do not become significantly close, we cut the minimum lengths by the metallic radii*? for each atom
type. The bond length distribution for each magnetic atom type &7¢, pyc (7€), is presented in Supplementary Information 2.

Finally, we sample the total number of atoms per unit cell N. Each of the ALs has the distribution of the preferable N
values with better stability. We generate py, the stable materials probability distribution of N. We can sample N from py as
the sampling profile of N for each AL type. The sampling profile of both py and py(</¢), which is distribution of with each
magnetic atom type .27, are displayed in Supplementary Information 2.

To impose Archimedean lattice as the constraints, we organize masks m = (mE, mF mA), which give constraints to the
lattice L, fractional coordinates F, and atom types A respectively. mE is equal to 1 for the two lattice basis vectors I, and I,
defining the unit cell of AL layer plane. mL is equal to O for I3, as we let the diffusion model generate I3 without explicit
constraints. We assign mf is equal to 1 for the i-th atoms (i € [1,N]) to guide them to be placed at the vertex positions of AL
layers. The same rule applies for m* so that the atoms at AL vertices result in the magnetic atom types 7.
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Integration of constrained and unconstrained components to guide materials generation

We design SCIGEN as a generic framework applicable for any diffusion model as a base model. Without loss of generality,
let the pre-trained base model represent a periodic structure as My, with T diffusion steps, a sampling probability prior Pr,
diffusion inference model g, which is normally chosen to map the materials distribution of the training dataset to Pr, and
denoising generative model p which needs to be trained. The diffusion inference model g works by iteratively injecting noise
to the input structure, M. The inference probability of most diffusion models is a Markov process, i.e., the probability of
diffusing M for ¢ steps to M, can be written as

t
P(M;|Mo) = go,(M;|Mo) = [ ] gs—1.(M|M;_1) (1)
s=1

with
P(MT|M0) :q07T(MT|M()) %PT. (2)

A well-trained diffusion model should have denoising generative model p that can inverse the diffusion, i.e., for a denoising
step from M, to M,_ 1,

Pt,z—l(Mt—1|Mt) ~ %,t—l(Mt—1|Mt)~ (3)

Here, the subscripts of p and ¢ indicate the initial and final time steps that the models are applied to, e.g., gy, +, is the diffusion
inference from time step #; to to. Note that, since g is normally chosen to be a simple probabilistic function, we cannot easily
find its inverse. Hence, the training for the denoising generative model is required.

Our approach to material design is summarized in Algorithm 1, where integration of geometrical constraints plays a pivotal
role in ensuring that certain structural elements, like lattice configurations or specific atomic distributions, adhere closely to
predefined parameters. This method effectively blends prescribed structural characteristics with the creative latitude allowed
in other aspects of the material’s architecture. Previously, a generative model with unmasked areas as constraints has been
employed in image generation for image inpainting, such as RePaint method*?. However, the geometrical pattern constraint for
crystal generation is still challenging and differs in a few ways. The generation of crystal generative model with geometrical
constraint involves several key steps:

1. Adding noise to the constraint structures: Initially, we introduce noise to a structure which is randomly selected
from structures that satisfy the target constraints (This constrained structure can be unstable, or unrealistic as long as it
contains the target constraints.) with the diffusion inference model, g, to get diffused constrained structures for each time
stept € [1,T]. This operation is aimed at creating a predefined pathway for denoising the constrained structures. The
unconstrained components of the crystals are guided by this known denoising pathway, which results in the presence of
constrained components in the final outputs.

2. Denoising the unconstrained structures with a base diffusion model: Concurrently, the parts of the structure that are
unconstrained from these specific constraints undergo a normal denoising process with p. This process, facilitated by the
base model, iteratively refines these regions by methodically reducing the introduced noise, thereby nudging them toward
physically realistic configurations.

3. Integration of the constrained and unconstrained structures: For each denoising step, after processing both parts
independently, they are carefully recombined. This combination is critical as it ensures the integrity of the predefined
constraints is maintained while integrating seamlessly with the freely generated segments. This method preserves
essential structural features and fosters innovation in material design.

Algorithm 1 presents the SCIGEN sampling procedure designed to generate material structures with structural constraints.
The algorithm utilizes a diffusion model to iteratively refine structures, ensuring the generated structures contain specific
geometry as constraints. The procedure begins with the initialization of constrained structures, indicated with superscript
¢, Mg, along with the corresponding masks m, which indicate the constrained components in M{ with binary masking, i.e.,
assigns value of 1 to constrained, and 0 to the unconstrained components. The final-time-step unconstrained structure, indicated
with superscript u, M, and constrained structure M4 are sampled from the probability prior Pr of the base model. Through
masking, we obtain the final-time-step structure M7 that contains the constrained components from M%, and the remaining
parts from M4 formulated as M7 <+ m © M5 + (1 —m) © M}, where © represents a component-wise multiplication. Basically,
the components of M7 that got masked (values in m equal to 1) come from M% while the remaining components (values in m
equal to 0) come from M7

5114



The iterative process begins from the final time step 7' and proceeds backward to 0. For each time step ¢, the structure M, un-
dergoes the denoising process giving the distribution of the unconstrained structure at time step t — 1, M}, as p; ,—1 (M}, |M;).
Concurrently, the diffusion process gives the distribution of the constrained structure M;_; as go,—1(M;_;|Mg). Then, the
unconstrained structure M;" |, and constrained structure M;_; are sampled from their corresponding probability distributions.
The structure M, is updated by combining the sampled constrained and unconstrained parts using the mask m similar to the
final-time-step case. The process continues iteratively until the initial time step is reached, at which point the refined structure
M, is returned. This ensures that the generated material structures respect the given constraints and exhibit realistic and viable
configurations. Supplementary Information 3 provides the schematic explanation of the denoising process, as well as the
integration of constrained and unconstrained components of material structures.

This approach effectively integrates structural constraints into the diffusion model, enabling the generation of novel
material structures that align with the AL structures as the predefined requirements. Using masks to combine constrained
and unconstrained parts ensures that the constraints are maintained throughout the iterative refinement process, resulting in
high-quality material structures suitable for practical applications.

Algorithm 1 Structural Constraint Integration in Material Generation Procedure

1: Input: constrained structure M, constraint mask m, diffusion inference model ¢, denoising generative model p, number of
steps T, probability prior Pr
Sample M4 ~ Pr, M5 ~ Pr
Mr—moOM;+(1-m)OM;
fort=T,...,1do
Sample M;_; ~ qo,—1 (M;_,|Mj)
Sample M| ~ p;,—1 (M| |M;)
M_ —moM,_ +(1-m)oM;_,

return M.

® Lk LN

To demonstrate the algorithm for the generation of AL materials, we chose DiffCSP'¢ as the base model of SCIGEN before
applying geometric constraint. In DiffCSP, the structure representation got divided into three components M = (L,F,A): the
lattice matrix containing three basis vectors L = [I1,1,13] € R3*3, the fractional coordinates F = [f,, f5,...,fy] € [0,1)>V,

and one-hot representations of atom types A = [ay,a,...,ay] € [0,1]*V. Using these components, the infinite periodic crystal
can be described as
{(ai,x;) | x; =L-(f;+k),Yk € Z**' Vi€ [1..N]} 4)

which tell all atomic types a, and Cartesian coordinates x of every atoms in the structure. DiffCSP uses normalized Gaussian
diffusion in its diffusion inference model ¢ which have standard normal distribution as probability prior, i.e., Pr = A47(0,1).
Furthermore, the diffusion is applied independently between components, making it possible to split the model as g =
(q*,4F ,q*) where the superscripts indicate the components that the diffusion acts on. We can write the split diffusion inference
model of DiffCSP as

Gri+1(Mi1|M;) = %l:erl (Lys1|Ly) 'qft+l (Fr1|Fy)- q‘t“,erl (Ar+1/Ar). &)

Since the denoising generative process of DiffCSP utilizes Predictor-Corrector sampling* mechanism on the fractional
coordinate components only, the model need to be split into p = (pL, pf'-?, pF<, pA) where the boldface superscripts indicates
the components that the diffusion gives while p and ¢ superscripts indicate predictor and corrector sub-models, respectively.
We can write the split denoising generative model of DiffCSP as

Pra—1 (M1 |M;) = pzl,‘tfl (Li—1|M;) 'Pfffl (F,_% M) 'Pf{il (Fi |L,,1,Ft_% Ar-1) 'pltll.,lfl (A—1|M,). (6)

Basically, the lattice, and atomic type components got denoised by their respective model to get L,_;, and A,_1, respectively.
For the fractional coordinate components, the predictor denoises them to the half-time-step point F, 1, and the corrector uses
2

t
to accommodate the constraints that are also imposed on the F,_, as shown in algorithm 2.

F__ 1 L, |, and A;_; to predict F;_;. Because of this additional prediction of F 1 algorithm 1 need to be slightly modified

[N

Pre-screening procedure to retrieve stable materials structures

Following the generation of materials constrained by AL structures, it becomes essential to evaluate their stability. Due to the
high volume of generated candidates—often reaching into the millions—a rapid yet reliable method is necessary to assess
stability. Here, we describe our four-staged pre-screening of materials based on a series of stability criteria.

6/14



Algorithm 2 Structural Constraint Integration in Material Generation with DiffCSP

1: Input: constrained structure M = (L§, F§,A§), constraint mask m = (mE,mF m4), diffusion inference model ¢ =

(¢*,4F ,q*), denoising generative model p = (pk, pf», pF¢. pA), number of steps T
2: Sample M} = (L%, F'1,AT) ~ A (0,1), M5 = (LS, F5,AT) ~ A(0,1)
3: My = (LT,FT,AT) — m@M% + (1 —m) @MLT‘-
4: fort=T,....,1do
Sample M;_| = (Li_|, F;_,A{_|) ~ qo.—1 (M;_|M{)
Sample L | ~ szfl (L{ M), Af -y ~ P?,zq(A?—l M)
Ly +mtoL  +(1-mbhoL
A< mt OAL +(1-mh) OAL,
Sample | ~ g, (Fi_,|F§)

10: Sample F?,% pr,’fl(F;C%\M;)
11: F,_, ~mFoF° [ +(1-mF)oF" |
2 =3 =2

b A

120 Sample Fi_y ~ p (Fi" L1, F,_ 1 A1)
13 Fy+mfoF_  +(1-mF)oF",
14: return My = (Lo, Fo,Ap).

Charge Neutrality

Materials must be electrically neutral to ensure stability and real-world applicability. We employed the SMACT approach?
to evaluate the charge neutrality of generated materials. This process, inspired by methodologies described in the CDVAE
approach'®, ensures that only chemically feasible materials are considered in subsequent steps.

Density and Space Occupancy Ratio

Some generated materials feature densely packed atomic configurations, which are unrealistic in actual crystalline phases. To
address this, we compare these materials against a reference dataset (MP-20) to identify and eliminate those with excessively
high atom densities. The space occupancy ratio R, is calculated as

4mrd
Yy 5
Ryee = ———— 7
occe Vce” ( )
where 7; is the radius of the i-th atom and V,,; is the volume of the unit cell. Materials in MP-20 observed a similar distribution
of R, that is independent of N, as we can find in Supplementary Information 6. We discard materials with an R,.. value
exceeding 1.7, a threshold based on the distribution of R,.. in the MP-20 dataset.

Graph Neural Network Classifiers for Stability Evaluation
To rapidly assess the stability of the remaining material candidates, we utilize graph neural networks (GNNs) based on the
E3NN3¢37 framework, designed for their efficiency in handling crystallographic data. We develop two models:

* GNN for Stability classification W;: This model predicts whether a material’s energy above the convex hull (Ep,y) is
below a threshold of 0.1 eV, which is indicative of thermodynamic stability. The model is trained using data from the
Matbench-discovery3®.

¢ GNN for Stability classification W;: Recognizing the potential for our model to generate materials that diverge from
known stable structures, this classifier distinguishes between pristine and diffused structures. Training data includes
original structures from the MP-20 dataset and the ones with added Gaussian noise on unit cell matrix L and fractional
coordinates F, simulating potential inaccuracies in atomic positions during generation. As the training dataset of ¥, we
diffuse L and F as L' = L+ (I1,1,13)" - 4/(0,031) and F' = w(F + .#(0,071)), respectively. Here, 0, regulates the
level of diffusion, and w(-) is a wrapping function that adjust fractional coordinates to fit within [0, 1). We decide that
1% diffusion materials (o; = 0.01) are stable, but 5% diffusion materials (o; = 0.05) are unstable. This model helps
ensure that even stable materials are not overly distorted or unrealistic.

The two GNN-based classifiers are in simple architecture, but presented high accuracy. We present the confusion matrices
of the two models in Supplementary Information 6. The prediction accuracy for the test dataset is 0.83 and 0.99, respectively.
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The four-staged pre-screening filters could provide us with an extremely efficient screening tool to evaluate the stability of
the generated materials. We argue this stability evaluation is valid, as we observe the materials gain stability as it goes through
the denoising process from the noisy structures (M7) to the pristine ones (M(). Moreover, more than 50% of pre-screened
materials survive DFT relaxation, indicating the efficacy of the pre-screening process. The detail of the stability evaluation is
shown in Supplementary Information 6.

DFT for stability evaluation and structural relaxation

The candidate models are further evaluated with DFT for potential structural stability. Due to the high cost of DFT calculations,
it is necessary to balance the accuracy and throughput. In the first stage of DFT screening, we choose to use a relatively coarse
treatment of the electronic structure to evaluate as many candidates as possible (up to 26,000). Planewave DFT calculations are
performed using the Vienna Ab initio Simulation Package (VASP)°. The calculation used Projector Augmented Wave (PAW)
method***! to describe the effects of core electrons and Perdew-Burke-Ernzerhof (PBE)*> implementation of the Generalized
Gradient Approximation (GGA) for the exchange-correlation functional. The energy cutoff is 1.2 - max(ENMAX) for the
plane-wave basis of the valence electrons. The electronic structure is calculated on I'-centered mesh for the unit cell (the
grid length density is 5 k-points per nm~!). The total energy tolerance for electronic energy minimization is 10~¢ eV, and
the energy criterion for structure optimization is 10~> eV. The maximum number of steps is 60 for electronic self-consistent
calculation and 150 for structural optimization. During the structural relaxation, the symmetry of the crystal is maintained while
the cell shape/size and all atomic coordinates are allowed to relax. Non-spin-polarized calculation is employed for this initial
screening. A small fraction of models failed the electronic structure calculation, which are terminated and the corresponding
candidates are considered unstable. For the candidates with completed VASP calculation (either because the energy criterion is
reached or the maximum number of relaxation steps is reached), the following quantities are extracted/calculated as indicators
of potential stability: (1) maximum interatomic force after relaxation, (2) initial and final total energy, (3) average changes
in lattice constants, (4) average changes in atomic coordinates. These quantities are then analyzed and compared to identify
potentially stable candidates worth further and more rigorous evaluations.

Band structure calculation for Lieb-like lattice materials

The DFT band structure calculations for Lieb-like lattice structures are performed using VASP. PAW method and PBE exchange-
correlation functional are used for all DFT calculations. The initial electronic structure calculations are performed on a K-point
mesh centered at Gamma point with resolved value k.5, = 0.03 - 27t/A for each structure. The band structure is subsequently
calculated on a high symmetry path generated by the VASPKIT code*’.

Data visualization
We use VESTA** to visualize the materials structures presented in the main article. For Supplementary Information, we utilize
OVITO™ to visualize the materials structures.

Data Availability Statement

We compile a comprehensive database of AL materials generated by SCIGEN. The dataset provides the folders of the entire
generated materials (7.87 million), the survived materials after the four-staged pre-screening process (790 thousand materials),
and DFT-relaxed structures (24,743). The folder with DFT calculation contains materials structures before and after relaxation.
The Supplementary dataset is available in Figshare repository*°.

Code Availability Statement
The source code is available at (https://github.com/RyotaroOKabe/SCIGEN).
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Figure 1. Schematic overview of material generation with geometric patterns as constraints. a. Three primary classes of
Archimedean lattices with hexagonal unit cells: triangular, honeycomb, and kagome. b. Guideline for structure initialization for
diffusion model, with magnetic atoms at Archimedean lattice vertices. Required components include: (1) lattice types, (2)
magnetic atom types, (3) nearest-neighbor distances, and (4) total number of atoms per unit cell. ¢. Methodology of crystal
structure generation via diffusion denoising probabilistic model with geometrical pattern as constraints. The initialized
structures are iteratively made noisy (0), to prepare predefined pathway of the constrained structure M¢, t € [1,T]. For each
denoising step ¢, an unconstrained structure M} is combined with constrained structure My to get an integrated structure M,.
M, is passed to the denoising model ®y and denoised to become the unconstrained structure M ;. By repeating this process,
we obtain the final crystal structure My, which is guided by the geometrical pattern constraints M{, but remains realistic with a
fair chance to maintain stability.
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Figure 2. Generated materials with three primary types of archimedean lattices. Archimedean lattice patterns and
generated material structures are displayed for a. Triangular, b. Honeycomb, and ¢. Kagome lattices. d. The sampling profile
of the number of atoms per unit cell N, generated by measuring the survival ratio from a uniform sampling of N. e. The number
of materials remaining after pre-screening is presented for the common magnetic atom types in each of the primary geometrical
patterns.
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| Archimedean and Lieb lattices as geometrical pattern constraints

Archimedean lattices (ALs)"?, commonly referred to as Archimedean tilings, are distinctive for their planar, uniform tiling,
where each vertex configuration is identical. Unlike regular tilings, which utilize only one type of regular polygon, Archimedean
lattices incorporate multiple types of regular polygons but are arranged uniformly at each vertex. A key feature of ALs is their
vertex-transitivity, which allows any vertex to be mapped to any other through a series of reflections, rotations, and translations,
thus preserving the arrangement’s overall symmetry.

There are exactly 11 types of ALs, each uniquely defined by the types and sequences of polygons that meet at each vertex.
Each AL can be described both as a descriptive name and the numerical name called by the list of the polygons surrounding one
vertex. These include the Triangular (39), Honeycomb (6%), and Kagome (3,6, 3,6) lattices, which are composed of triangles and
hexagons in different configurations. The Square lattice (4*) consists solely of squares. The Elongated triangular (33,4?) and
Snub square (32,4,3,4) lattices mix triangles and squares in varied layouts. Other forms include the Truncated square (4,8),
Small rhombitrihexagonal (3,4,6,4), Snub hexagonal (3%,6), Truncated hexagonal (3, 12?), and the Great rhombitrihexagonal
(4,6,12), which involve combinations of squares, hexagons, and dodecagons, each offering complex geometric arrangements.

The Lieb lattice is a unique two-dimensional lattice structure characterized by its three sites per unit cell configured in a
square shape. The vertices of this lattice are positioned at each corner and at the midpoint of each edge, forming a bipartite
lattice. This specific arrangement allows the lattice to be divided into two interpenetrating sublattices, where each site on one
only interacts with sites on the other sublattice. The configuration of the Lieb lattice is particularly significant in research
areas focusing on optical, magnetic, and transport properties due to its potential for facilitating unusual localized states. These
attributes make the Lieb lattice a valuable model in theoretical physics and the practical development of materials with tailored
electronic properties.

Table S1 lists the characteristics of Archimedean and Lieb-like lattices. It covers the header that we used for giving file
names to each output material, the property of the unit cell, the number of nodes forming AL per unit cell N, and the fractional
coordinates. Here, we write six lattice parameters as [y, b, I3, &, B, 7. SCIGEN imposes constraints for the lattice parameters
that reflect the AL structures (/1, [, 7), while there are no constraints on the other lattice parameters (/3, o, ). We also included
the constants kyq;; = 11 /d€ (or [ /d°) as the ratio of lattice vector length (I}, [5) to the bond length between neighboring vertices
(d°), indicating the relative size of the AL unit cell. Figure S1 visualizes all types of AL and a Lieb-like lattice. The unit cell
area is highlighted with blue areas, and the red vertices represent the required positions within the unit cell.



