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Abstract—Spatial non wide-sense stationarities cause partial
visibility regions (VRs), and it is a unique propagation charac-
teristic of emerging extra-large aperture arrays (ELAAs). Thus,
classification of VRs is a necessity for accurate estimation of
channels and efficient design of VR-aware precoders for ELAAs.
In this paper, a deep learning framework is proposed to classify
VRs in ELAAs. Our objective is to boost the accuracy of
classifying VRs based on the uplink pilots received at the ELAAs.
Consequently, we focus on guaranteeing user-fairness in the
presence of wholly/partial VRs and improving the achievable
rates by adopting VR-aware channel estimation and precoding.
We propose a hybrid deep learning architecture comprising
one dimensional convolutional neural networks and long-short
term memory to classify VRs of each user at the ELAA. To
achieve a higher accuracy, we generate a diverse dataset through
Monte-Carlo simulations that captures numerous combinations
of VRs at the ELAA. A transmit power allocation algorithm
is also proposed to achieve a common downlink rate for all
users irrespective of the different VRs, and its computational
complexity is discussed. A set of numerical results is presented
to evaluate the performance of our proposed framework. It
is efficient and accurate in classifying VRs. Thus, it can be
used to enhance the estimation accuracy of ELAA channels
with VRs and thereby to design VR-aware precoders to boost
spectral/energy efficiency of the next-generation wireless systems.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) has been
well established, and it is now being commercially deployed in
fifth-generation (5G) wireless systems [1]. A logical evolution
for this technology is to employ extra-large aperture arrays
(ELAA) within the framework of massive MIMO to further
boost spatial/energy efficiency [1].

In massive MIMO with compact antenna arrays, it is
typically assumed that the channels are wide-sense station-
ary (WSS) in the spatial dimension [2]. However, recent
channel measurement campaigns have shown that arrays with
extremely large apertures give rise to spatial non-WSS char-
acteristics [3]. Consequently, the statistical properties of the
received signal, such as the average power, vary across ELAAs
[3]–[5]. There is also a possibility that widely separated
antennas do not share the same clusters of scatterers, leading
to spatially non-stationary channels [6].

Scattering clusters in a wireless channel can be catego-
rized into wholly-visible (WV), seen by the entire array, and
partially-visible (PV), visible only to a portion of the array
[3]–[5]. When an electromagnetic (EM) signal interacts with
a PV cluster, it may be received by only a subset of antennas
associated with that PV cluster. Consequently, there can be
one user group served by WV clusters, while another user
group may be served by PV clusters. The presence of WV/PV
clusters and the spatial non-stationarities in ELAAs give
rise to visibility regions (VRs) [3]–[5]. Thus, conventional

spatial correlation models must be reexamined to account
for the spatially non-stationary fading across ELAAs [6]–[8].
Specifically, it is a necessity to accurately classify VRs to
efficiently design precoders and power allocation techniques
for ELAA channels with spatial non-stationarities.

The necessity for accurate classification of VRs in ELAAs
is elaborated next. In sub-6 GHz massive MIMO, the uplink
channels are estimated at the base-station (BS) by using user
pilots, and the precoders for the downlink are designed based
on the uplink channel estimates by leveraging channel reci-
procity in time-division duplexing (TDD) [2]. This approach
ensures system scalability since the pilot length depends solely
on the number of users, and it is independent of the number
of BS antennas. The minimum mean square error (MMSE)
based estimators require the knowledge of spatial covariance
matrices. Such channel statistics are typically assumed to
be known a-priori as they vary on a much large time-
scale compared to the channel coherence interval [2]. A
common practice in the current state-of-the-art is to model
these covariance matrices by assuming full visibility of the
BS array [9]. However, the MMSE estimates computed via
covariance matrices with full visibility may not be accurate for
ELAAs. Hence, spatial covariance matrices must capture VRs
of ELAA channels to ensure VR-aware precoders and transmit
power allocation. For instance, in [9], the perfect knowledge
on VRs at the ELAA-based BS is assumed for channel
estimation and precoder designs. The approach outlined in
[9] requires accurate classification of VRs to encompass all
potential combinations and scenarios involving multiple users
served by ELAAs. However, attaining a high precision in VR
classification of ELAA channels for each user is challenging.
In [3], a sliding window method is proposed to identify VRs
of MIMO channels, and [10] adopts an energy detector for
the same task. However, such analytical techniques become
prohibitively complicated for ELAAs in large antenna regime.

Machine learning, particularly deep learning-based artificial
neural networks (ANNs), has garnered significant interest
due to its potential to solve problems that are otherwise
prohibitively complicated through analytical techniques [11].
It enables discovering effective solutions without relying on
a predefined mathematical model, making it applicable to a
wide-range of application domains. Recently, deep learning
has become an enabler of efficient transceiver designs when
the underlying models are mathematically intractable and
optimal solutions are unattainable via conventional analytical
frameworks [12]. Automatic modulation classification (AMC)
is a prevalent task in wireless signal recognition. For such
tasks, deep learning-based models such as convolutional neu-
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ral network (CNN) and long-short term memory (LSTM) can
be used to capture and adjust dynamic operations based on raw
data from a diverse range of signal characteristics and channel
effects [13]. In [14], an AMC is adopted for distributed
spectrum sensing networks and a data-driven model solution is
proposed via LSTM. In [12], a CNN-based multi-task learning
(MTL) framework is proposed for concurrent modulation and
signal classification. In [15], a hybrid deep learning model
and image-based CNN architecture is proposed for multi-
class modulation recognition. Inspired by deep learning-based
pixel-by-pixel image classification with CNNs, we propose
an antenna-by-antenna classification of VRs in ELAA chan-
nels. The contribution of this paper can be highlighted as
follows. We propose a hybrid one-dimensional (1D) CNN-
LSTM architecture to solve the challenging problem of pre-
cise VR classification for multi-user ELAAs. Our proposed
technique makes uplink channel estimates more accurate by
precisely capturing VRs and thereby facilitates VR-aware
precoders and transmit power allocation techniques. Firstly,
we curate a dataset employing a multi-user ELAA system.
Secondly, we train a hybrid deep learning architecture for VR
classification. We evaluate the system performance through
a VR-aware maximum ratio transmission (MRT) precoder
designed through predicted VRs and compare it with a VR-
unaware precoder design. The uplink channels are estimated
by using MMSE criterion. We also derive the achievable
user rates in closed-form. We propose a VR-aware transmit
power allocation algorithm based on statistical channel state
information (CSI) to achieve a common rate for all the users
irrespective of different VRs. A flow-chart for our design
procedure is given in Fig. 1.

Uplink pilot transmission

Pre-trained ANN (VR classifier)

Acquire VR-aware spatial correlation matrices

VR-aware MMSE-based channel estimation

VR-aware MRT precoder design and power allocation

Downlink data transmission

Fig. 1: A flowchart for the proposed design of ELAAs.

II. SYSTEM, CHANNEL, AND SIGNAL MODELS

A. System model
We consider a multi-user ELAA system in which a BS

equipped with M antennas serves K single-antenna users
(see Fig. 2). An ELAA, which consists of an active uniform
rectangular planar array with M1 rows and M2 columns
(where M1×M2 =M ), is used at the BS. The uplink channel
between the kth user and ELAA is denoted by fk ∈ CM and
it undergoes spatially correlated Rayleigh fading:

fk ∼ CN (0,Rfk) . (1)

For simplicity, the large-scale fading coefficients are incorpo-
rated into the spatial correlation matrix, Rfk [2].

user-k

xkn xkm

ykm
ykn

user-1

user-K

fk

M antenna
BS

PV clusters

Fig. 2: An ELAA-based MIMO system with partial VRs.

1) Correlation matrices with full visibility: With full vis-
ibility, we denote R̃fk as the correlation matrix for the
channel between the BS and the kth user. The angles-of-
arrival/departure (AoA/AoD) at the BS are randomly dis-
tributed in azimuth and elevation planes as Ψi ∼ N

(
ψi, α

2
i

)
and Φi ∼ N

(
ϕi, ν

2
i

)
, respectively, with i=AoA and i=AoD

denoting the AoA and AoD. The correlation matrices at the
BS can be modeled as R̃k = ζkRtk, where ζk accounts for the
large-scale fading, and Rtk = Rtk,az ⊗Rtk,el. Here, Rtk,az

and Rtk,el are given by [16]

[Rtk,el]x,y = ej(2πdel(y−x)cos(ϕl))e−
1
2
(2πνldel)

2(y−x)2sin2(ϕl), (2)

[Rtk,az]u,v = δ
−1/2
3 e

−
δ22 cos2(ωl)

2δ3
− (δ1αl sin(ωl))

2

2δ3 e
j
δ1 cos(ωl)

δ3 , (3)
where del and daz are the inter-antenna element distances.
In (2) and (3), δ1, δ2, and δ3 are δ1 =2πdaz(v − u) sin(ϕl),
δ2=2πdaz(v−u)νl cos(ϕl), and δ3 = ν22α

2
l sin

2(ωl)+1 [16].
2) Correlation matrices with partial visibility: Next, we

define the covariance matrix at the ELAA with VRs to capture
spatially non-WSS fading. Inspired by [9], we assume that the
kth user visualizes the BS antennas in both horizontal (from
xkn to xkm) and vertical (from ykn to ykm) axes (see Fig.
2)1. To capture the VR at the BS, two diagonal matrices Gxk

and Gyk are defined as [3]–[5]
Gxk = diag(0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸

from xkn to xkm

, 0, · · · , 0), (4)

Gyk = diag(0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
from ykn to ykm

, 0, · · · , 0), (5)

where diag(·) generates a diagonal matrix. Then, the correla-
tion matrix at the BS pertaining to the kth user with partial
visibility (i.e., Rfk in (1)) can be written as

Rfk =
(
G

1
2
xkRtk,azG

1
2
xk

)
⊗
(
G

1
2
ykRtk,elG

1
2
yk

)
, (6)

where Rtk,az and Rtk,el are the covariance matrices with full
visibility, and they are defined in (2) and (3), respectively.
B. Uplink channel estimation

The coherence interval length is set to τc, and τu symbols
are allocated for orthogonal user pilots [2]. The kth user’s
pilot, ψk ∈ Cτu satisfies ψkψ

H
k = 1 and ψkψ

H
k′ = 0 for

k ̸= k′. The received pilot signal at the BS is given as

Y =
∑K

k=1

√
ρuτufkψk +N, (7)

where ρu is the normalized uplink signal-to-noise ratio (SNR)
of pilot signals, and N ∈ CM×τu is an additive white
Gaussian noise (AWGN) at the BS with independent and
identically distributed (i.i.d.) complex Gaussian elements with
zero mean and unit variance. To estimate fk, the received pilot
signal (7) is first projected onto ψk and then scaled as

1Our deep learning framework to classify VRs is given in Section V.
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yk = YψH
k /(

√
ρuτu) = fk + nk, (8)

where nk ∼ CN (0, I/(ρuτu)). Next, we derive the MMSE
estimate of fk as [17]

f̂k = CykfkC
−1
ykykyk, (9)

where Cykfk and Cykyk
are given as [17]

Cykfk = E
[
ykf

H
k

]
= Rfk, (10)

Cykyk = E
[
yky

H
k

]
= Rfk + (1/(ρuτu))I. (11)

Due to MMSE criterion, the estimate and its error are orthog-
onal [17], the true channel fk can be given in terms of its
estimate (9) and estimation error as [17]

fk = f̂k + ϵk, (12)
where ϵk is the error vector with zero-mean and a covariance
matrix Cϵkϵk = Rfk −Cf̂kf̂k

. Here, the covariance matrix of
the estimator can be derived as

Cf̂k f̂k
= E

[
f̂k f̂

H
k

]
= CykfkC

−1
ykykE

[
yky

H
k

]
C−1

ykykCykfk

=CykfkC
−1
ykykCykfk = RfkC

−1
ykykRfk . (13)

C. Signal model
An MRT precoder is adopted due to its computational sim-

plicity [2]. Due to channel reciprocity in TDD, the downlink
channel from the BS to the kth user is given by fHk , while
its MMSE estimate is given as f̂Hk (9). Then, the normalized
MRT precoder of the kth user can be written as

wk = f̂k
/√

Tr
(
E
[
f̂k f̂Hk

])
= f̂k

/√
Tr
(
Cf̂k f̂k

)
. (14)

By denoting the power allocation coefficient for the kth user
as η′k, we define ηk = η′k/Tr(Cf̂kf̂k

). The received signal at
the kth user is given by
ydk=

√
ρd
∑K

i=1

√
η′
if

H
k wixi+nk=

√
ρd
∑K

i=1

√
ηif

H
k f̂ixi+nk

=
√
ρdηkf

H
k f̂kxk +

√
ρd
∑K

i̸=k

√
ηif

H
k f̂ixi + nk

=
√
ρdηk E

[
fHk f̂kxk

]
︸ ︷︷ ︸

DSk

+
√
ρdηk

(
fHk f̂kxk − E

[
fHk f̂kxk

])
︸ ︷︷ ︸

DUk

+
√
ρd
∑K

i̸=k

√
ηi f

H
k f̂ixi︸ ︷︷ ︸
IUIki

+nk, (15)

where xk is the symbol intended for the kth user with
E
[
|xk|2

]
= 1, and ρd is the normalized SNR. In (15),

nk ∼ CN (0, 1) is the AWGN at the kth user. The first,
second, and third terms in (15) are the desired signal (DSk),
decision uncertainty (DUk), and sum of inter-user interfer-
ence (IUIki), respectively. The signal-to-interference-plus-
noise ratio (SINR) at the kth user can be written as

γk =
ρdηk|DSk|2

ρdηi|DUk|2 + ρd
∑K

i̸=k ηi|IUIki|2 + 1
. (16)

III. PERFORMANCE ANALYSIS

A. An achievable rate
By invoking the worst-case Gaussian technique [2], an

achievable rate at the kth user can be expressed via (16) as

Rk =

(
τc − τu

τc

)
log2

(
1 +

βDSk

βDUk +
∑K

i̸=k βIUIki + 1

)
, (17)

where βDSk
, βDUk

, and βIUIi in (17) can be derived as [16]

βDSk = ρdηk|DSk|2 = ρdηk
(
Tr
(
Cf̂k f̂k

))2
, (18a)

βDUk = ρdηkE
[
|DUk|2

]
= ρdηkTr

(
RfkCf̂k f̂k

)
, (18b)

βIUIki = ρdηiE
[
|IUIki|2

]
= ρdηiTr

(
RfkCf̂if̂i

)
. (18c)

From (17)-(18c), at high SNR regime (ρd→∞), the asymp-
totically achievable rate for the kth user are derived as

R∞
k =

(
τc − τu

τc

)
log2

1 +
ρdηk

(
Tr
(
Cf̂k f̂k

))2
∑K

i=1 ρdηiTr
(
RfkCf̂if̂i

)
 . (19)

Remark 1: To evaluate the MMSE-based channel estimate
(9) and to design the precoder (14), the channel covariance
matrices (6) must be known a-priori. The achievable rates in
(17) and transmit power optimization in Section III-B also
rely on these covariance matrices. Due to (4) and (5), these
covariance matrices depend on the VRs of ELAAs. Hence, the
accurate classification of the VRs is a necessity for system
design and analysis. In Section VI, we further study the
adverse effects of VR-unaware precoding in the downlink.
B. Transmit power allocation optimization

Different VRs lead to different achievable rates for the users
[9]. Hence, we present an optimization algorithm to allocate
the transmit power at the BS such that all the users achieve a
common rate and thus preserving user fairness regardless of
near-far and VR effects. Since log2(·) is an increasing function
of its argument, we formulate our optimization problem based
on statistical CSI to maximize the minimum SINR as

P : max
η′
k

∀k
min
k

βDSk

βDUk +
∑K

i̸=k βIUIki + 1
, (21a)

subject to C1 : η′
k ≥ 0 ∀k, (21b)

C2 :
∑K

k=1
η′
k ≤ 1 , (21c)

where βDSk
, βDUk

, and βIUIki
are given in (18a)-(18c). Next,

by introducing an auxiliary variable θ, which lower bounds all
K user SINRs, the max-min optimization problem in (21a)-
(21c) can be reformulated as

P : max
η′
k

∀k
θ, (22a)

subject to C1 : η′
k ≥ 0 ∀k, (22b)

C2 :
∑K

k=1
η′
k ≤ 1 , (22c)

C3 :ρdη
′
kTr
(
Cf̂k f̂k

)
≥

K∑
i=1

θρdη
′
i

Tr
(
Cf̂if̂i

)Tr(RfkCf̂if̂i

)
+θ, ∀k,(22d)

where C3 is obtained via (18a)-(18c) and also by utilizing
ηk = η′k/Tr

(
Cf̂kf̂k

)
. The optimization problem in (22a)-

(22d) is a convex optimization problem, which can be solved
via geometric programming, and hence, it can also be solved
via CVX [18]. Our proposed transmit power allocation opti-
mization procedure is summarized in Algorithm-1.
Remark 2: In CVX, SDP3 solver uses interior-point algo-
rithms to solve convex optimization problems. Hence, the
computational complexity of our optimization P in (22a)-
(22d) has a complexity in the order of O(K3.5). It is worth
noting that the complexity of this algorithm does not depend
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Fig. 3: The proposed deep learning architecture (N is the number of input samples).

Algorithm 1 : Transmit power allocation (P) in (21a)-(21c)

Input: Rfk and Cf̂kf̂k
∀k

Output: η′∗k ∀k
1: Compute Tr

(
RfkCf̂if̂i

)
and Tr

(
Cf̂kf̂k

)
∀k, i

2: Compute η′∗k ∀k by solving P in (22a)-(22d)

on the number of BS antennas (M). Thus, the proposed
transmit power allocation algorithm is practically appealing
for ELAAs in which the number of antennas can grow large.

IV. DATASET PREPARATION
In the dataset generation stage, we use the system, channel,

and signal model presented in Section II. The received uplink
pilot signals (8) are taken as the inputs to our deep neural net-
work (DNN). Hence, a dataset is generated via Monte-Carlo
simulations for an ELAA BS with 30× 30 antenna elements,
resulting in 900 complex-valued features. To accommodate
deep learning networks that work with real numbers, we split
the complex numbers into real and imaginary parts, doubling
the feature dimension to 1800 [12]. Each region that the users
perceive at the ELAA-based BS is assigned a unique integer
label as the output.

Two main scenarios are considered with five users (K = 5
and 5 VRs) and ten users (K = 10 and 10 VRs). Under
each scenarios, two cases are considered as overlapping and
non-overlapping VRs, totaling upto 4 cases. For each 5-
VR dataset, we generate 50000 samples, each consisting of
1801 elements, where the initial 1800 represent features, and
the last one indicates integer-labeled region output. Each
VR contains 10000 samples. In the 10-VR dataset, we have
100000 samples, all sharing the same 1801-sample length,
with each VR having 10000 samples. Thereby, we maintain
a constant number of samples per region for all four cases.
We perform data normalization, scaling all sample values
within the range of -1 to 1. This normalization expedites the
learning of optimal parameters in a neural network, leading
to improved convergence speed [12].

In the 5-VR scenario, each region consists of 180 antenna
elements, and in the 10-VR case, each region consists of 90
antenna elements. In the overlapping scenario, we introduce
a 6% overlap between regions. The summary of dataset
preparation is presented in Table I.

V. DEEP LEARNING MODEL ARCHITECTURE
Our proposed neural network architecture is tailored for

time-series classification tasks, distinguishing itself from tra-
ditional machine learning algorithms, which are reported to
be less efficient than deep learning frameworks [11].

Number of users K = 5 K = 10
Number of regions 5 10

Total antenna elements 900 (30× 30) 900 (30× 30)
No. of antennas in each region 180 90

Feature dimension 900 (complex) 900 (complex)
Dataset sample size 50000 100000
Samples per region 10000 10000

Sample length 1801 1801
Overlapping/non-overlapping Both Both

TABLE I: Two scenarios with two different number of users.

The proposed model combines a 1D convolutional layer,
a dense layer, a 1D max-pooling layer, a dropout layer,
an LSTM layer, and a final output layer for classification
tasks (see Fig. 3). As reported in the existing literature
related to various architectures for time-series labeled multi-
class classification problems [11], [12], [14], the LSTM-
based architecture posed a computational burden due to its
significantly lengthy training time in our specific context.
Our experimentation with the 1D CNN architecture resulted
in lower accuracy when compared to our proposed model.
Further details on the comparison between LSTM, CNN, and
the final proposed architecture are provided in Section VI. The
final proposed architecture demonstrates its efficiency when
configured with 64 filter numbers, a size of 2 in the CNN
layers, and 64 units in the LSTM layer. The architectural
features are summarized in Table II.

During training, our model effectively learns to predict the
correct integer label (related to each VR) based on the input
features. The softmax output layer consists of 5 units in the
5-VR scenario and 10 units in the 10-VR scenario, generating
probability scores for each class. The class with the highest
probability is ultimately predicted.

Layer name Layer information Output
dimensions

Input Input shape: (1800, 1) (1800, 1)
Conv1D Filters: 64, Filter Size: 2x1, ReLU (1799, 64)
Dense Units: 32, ReLU (1799, 32)

MaxPooling1D Pooling Size:(2) (899, 32)
Dropout 0.3 (899, 32)
LSTM Units: 64, Return Sequences: True (899, 64)
Flatten Flattened vector (None, 57536)
Dense Units: 10 or 5, Softmax (10) or (5)

TABLE II: Model architecture details.
VI. NUMERICAL RESULTS

In this section, we present our numerical results which
validate our design/analysis and illustrate the performance
of our proposed deep learning framework. The path-losses
of the channels between the users are modeled as ζk =
ζ0 + 10κlog (d), where κ = 3.5 is the path-loss exponent,
ζ0 = 42 dB is the reference path-loss, and d is the distance in
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Fig. 4: The accuracy versus the pilot transmit power.
meters. The ELAA of the BS is equipped with 900 antennas
(M = 900). The distances between the BS and users are set
in between 50 m and 100 m. The noise power is modeled as
σ2
n = 10log10 (N0BNF ), where the bandwidth B = 10MHz,

the noise figure NF = 7 dB, and N0 = −174 dBm/Hz. The
pilot length is equal to the number of users (τu = K), and the
coherence interval consists of 196 symbols (τc = 196) [2].

The proposed 1D-CNN-LSTM architecture was tested with
batch sizes of 16, 32, and 64, and the best performance was
observed with a batch size of 64. We incorporated dropout
layers after 1D max-pooling layer (with a dropout rate of
0.3) and after the LSTM layer (also with a dropout rate
of 0.3). The study revealed that the optimal placement for
the dropout layer was after the 1D max-pooling layer with
a dropout rate of 0.3. Further experiments involved testing
different kernel sizes and numbers in the 1D-CNN layer
and LSTM units. The best results were obtained with a
kernel size of (64,2) in the CNN layer and 64 units in the
LSTM layer. Other combinations suffered from generalization
issues, as shown in Table III. The proposed 1D-CNN-LSTM
architecture underwent training, testing, and validation on a
70-20-10 dataset split. We employed the Adam optimizer with
a learning rate of 0.001.

Model CNN (K, S) LSTM
units

Batch
size Dropout Accuracy

1 (64,2) 64 64 0.3 High
2 (32,5) 32 32 0.3 Low
3 (32,7) 32 32 0.3 Low
4 (64,5) 64 64 0.3 Low
5 (64,7) 64 64 0.3 Low

TABLE III: Experimental configurations and results.

In Fig. 4, we investigate the VR classification accuracy
versus the pilot transmit power (Pu) for four different cases. In
Case-1 and -2, we assume 5 non-overlapping and overlapping
VRs, respectively, while in Case-3 and -4 there are 10 non-
overlapping and overlapping VRs, respectively. Fig. 4 clearly
illustrates that the accuracy increases with the pilot transmit
power. This is because in the presence of partial visibility,
the antennas in the VR will receive higher pilot signal power,
while the non-visible antennas have noise only. As expected,
5-VR cases (Case-1 and -2) perform better than the 10-
VR cases (Case-3 and -4) mainly due to the fewer number
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Fig. 5: The accuracy versus the epoch number with K = 10.
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Fig. 6: The achievable sum rate versus average transmit SNR.

of confusions in 5-VR cases. It is evident that the non-
overlapping cases perform better than the overlapping cases
generally. As an example, with Pu = 10 dBm Case-1, -
2, -3, and -4 provide accuracy of 98.71%, 96.75%, 96.6%,
and 96.57%, respectively. In comparison, we explored LSTM
and 1D CNN-based models separately. With the same pilot
transmit power, the 1D CNN model achieved a maximum
accuracy of 78% to 81% for all scenarios with the same
learning rate and batch size, while the LSTM model reached
85% to 87%.

Fig. 5 depicts the accuracy of our proposed method against
the number of epochs with K = 10 for two different
pilot transmit powers; Pu ∈ {−10, 0} dBm. Attaining the
VR classification accuracy of 85.45% and 83.89% in non-
overlapping and overlapping cases at a pilot transmit power
of -10 dBm, and achieving accuracy of 96.82% and 95.45%
for the same two cases at 0 dBm, our model exhibited
rapid convergence within the initial epochs in both scenarios.
The rapid convergence trend aligns with previously reported
AMC models [12]. This shows that our model has desirable
generalization characteristics and computational efficiency.

In Fig. 6, we compare the sum rate of the proposed VR-
aware MRT precoder against the perfect case (with 100% VR
classification accuracy) and a VR-unaware MRT precoder. The
analytical and asymptotic rate curves are obtained via (17) and
(19), respectively. Here, we have used non-overlapping VR
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Fig. 7: The sum rate loss due to VR-unaware precoding.

cases for K = 5 and K = 10 with 98.71% and 96.6% VR
classification accuracy, respectively. The VR-unaware MRT
precoder is designed by assuming full visibility although the
true channels exhibit VRs. At an average transmit SNR (ρd)
of 30 dB, when compared against the sum rate provided by the
perfect case with 100% VR classification accuracy (i.e., rates
of 18.52 bits/s/Hz for K = 5 and 35.57 bits/s/Hz for K = 10),
the sum rate achieved via the proposed method drops down
to 95.46% (17.68 bits/s/Hz) and 95.08% (33.82 bits/s/Hz) for
K = 5 and K = 10 cases, respectively. This drop in rate
occurs due to two reasons. Firstly, in a given sample, when
a VR of a single user is miss-classified (while correctly
identifying the VRs of the remaining users), the downlink
precoder is constructed imperfectly. This not only reduces the
rate of the miss-classified user, but also reduces the rates of
the remaining users by increasing the inter-user interference.
Secondly, a single miss-classification will affect the transmit
power allocation and thereby eventually reducing the rates of
users with accurately classified VRs. Hence, Fig. 6 highlights
the importance of having a higher accuracy for the VR
classification in ELAAs. At ρd = 30 dB, the sum rate further
drops down to 64.14% and 58.88% for VR-unaware precoder
when compared against the proposed VR-aware precoder for
K = 5 and K = 10, respectively. Our method only utilizes the
antennas visible to a user when designing its precoder. Hence,
it minimizes the inter-user interference. Since the VR-unaware
precoder assumes full visibility, the inter-user interference
is however higher. The VR-unaware precoder also leads to
inefficient transmit power allocation.

In Fig. 7, the sum rate percentage loss caused by current
state-of-the-art VR-unaware MRT precoding is studied when
compared to the proposed VR-aware MRT precoding. In
VR-unaware precoding, regardless of VRs, all antennas in
the ELAA transmit all user signals leading to higher inter-
user interference. However, in VR-aware precoding, a given
antenna in ELAA transmits signals intended for the users
that are visible to that antenna. Fig. 7 also reveals that the
VR-unaware precoding yields higher losses when the number
of users increases due to enhanced inter-user interference. In
lower SNR regime, the sum rate loss is higher since the limited
amount of transmit power is shared among the users when
designing a VR-unaware precoder by assuming full visibility.

VII. CONCLUSION
We proposed 1D-CNN-LSTM deep learning architecture to

accurately classify VRs in ELAA-based wireless systems. Our
proposed deep ANN model, a hybrid of 1D CNN and LSTM,
demonstrated higher accuracy in classifying VRs based on
received pilot signals at the ELAA-based BS. The uplink
channels have been estimated by using MMSE criterion. A
computationally efficient transmit power allocation optimiza-
tion algorithm has been proposed to prioritize user-fairness
by guaranteeing a common achievable rate for all users
irrespective of their different VRs and near-far effects. The
effectiveness of our proposed 1D-CNN-LSTM architecture
in classifying VRs in ELAAs has been validated through a
rigorous set of numerical results. The robustness, accuracy,
and efficiency of the proposed deep learning framework
position it as a valuable tool to improve the quality of channel
estimation and VR-aware precoder design for ELAAs.
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