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ON THE EMBEDDING COMPLEXITY OF LIOUVILLE
MANIFOLDS

SHEEL GANATRA & KYLER SIEGEL

Abstract

We define a family of symplectic invariants which obstruct ex-
act symplectic embeddings between Liouville manifolds, using the
general formalism of linearized contact homology and its L., struc-
ture. As our primary application, we investigate embeddings be-
tween normal crossing divisor complements in complex projective
space, giving a complete characterization in many cases. Our main
embedding results are deduced explicitly from pseudoholomorphic
curves, without appealing to Hamiltonian or virtual perturbations.
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1. Introduction

1.1. Context and motivation. A Liouville domain is a compact
manifold-with-boundary equipped with a primitive one-form A such that
w := dA is symplectic and A restricts to a positive contact form along
the boundary. Liouville domains form a nice class of open symplectic
manifolds which naturally arise in many geometric contexts, including:

e unit cotangent disk bundles of closed Riemannian manifolds
e sufficiently large compact pieces of smooth complex affine varieties
e regular sublevel sets of Stein manifolds.

The principal goal of this paper is to develop tools to understand when
one Liouville domain is “larger” or “more complicated” than another.
Specifically, given two Liouville domains (X, \) and (X', \) of the same
dimension, we seek to understand when there is a Liouville embedding

L
X — X'. This consists of a smooth embedding ¢ : X — X’ such that
t* X agrees with \ up to some positive scaling factor and the addition of
an exact one-form (see §2.1.3). The existence of a Liouville embedding

X <£> X'’ is a qualitative notion, depending only on X and X’ up to
Liouville homotopy. Equivalently, by attaching an infinite cylindrical
end, any Liouville domain (X, \) can be completed to a (finite type)
Liouville manifold ()A( , X) (e.g. the completion of a cotangent disk bundle
is the full cotangent bundle), and the existence of a Liouville embedding

x & X s equivalent to having a smooth (but not necessarily proper)
embedding ¢ : X < X' such that L*(X,) — X is exact.

One reason for interest in Liouville embeddings comes from their
connection to exact (compact) Lagrangian submanifolds. An ezact La-
grangian submanifold of (X, \) is a half-dimensional submanifold L C X
equipped with a function f such that \|;, = df (so in particular w|;, = 0).
The study of exact Lagrangian embeddings has played a prominent role
in the symplectic topology literature, going back to Gromov’s theorem
[Gro] that there are no closed exact Lagrangians in C"”, and Arnold’s
“nearby Lagrangian conjecture” stating that there is a unique closed
exact Lagrangian in the cotangent bundle of a closed manifold up to
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Hamiltonian isotopy. By a version of the Weinstein neighborhood the-
orem, a given L admits an exact Lagangian embedding into (X, \) if

and only if there is a Liouville embedding D} L Lo x , where DL de-
notes the cotangent e-disk bundle of L for some Riemannian metric
and ¢ > 0 sufficiently small. As it turns out, most known examples
of Liouville domains (such as DL) are a fortiori Weinstein domains,
meaning they carry Morse functions suitably compatible with the Li-
ouville structure. A Weinstein domain deformation retracts onto its
skeleton, which is an isotropic (but possibly singular) closed subset; in
the case of DL with its canonical Liouville structure, the resulting
skeleton is L itself. Hence, we intuitively view a more general Wein-
stein domain as the cotangent disk bundle of its singular skeleton, and
Liouville embeddings of Weinstein domains as singular generalizations
of exact Lagrangian embeddings.

Liouville embeddings also constitute a primary class of morphisms
under which functoriality holds for the most widely studied symplec-
tic invariants of Liouville domains, for instance symplectic cohomology,
wrapped Fukaya categories and various other invariants built from the
theory of pseudoholomorphic curves (see e.g. [Seil, AS2]). Given a Li-
ouville domain X and a chosen ground ring K, its symplectic cohomology
SH(X) is, among other things, a unital K-algebra whose isomorphism

1

type depends only on X up to symplectomorphism.” A Liouville em-

bedding X & X’ induces a transfer map SH(X’) — SH(X) of unital K-
algebras. We have also SH(B?") = 0 and SH(D*Q) = H.(LQ),?> where
LQ denotes the free loop space of (). Combining these properties gives
an elegant proof of Gromov’s theorem as follows. Given a hypothetical
exact Lagrangian L C C", the transfer map SH(C") — SH(D?L) is nec-
essarily the zero map. This forces the unit in SH(D}L) to be zero, and
hence H,(LL) = 0, but this is never the case.

The argument in the preceding paragraph can be formalized into the
following simple but surprisingly powerful observation:

Observation 1.1. Given a Liouville embedding X (£> X', if
SH(X’) =0, then we must also have SH(X) = 0.

For example, every Weinstein domain is diffeomorphic to one which is
flezible [CE, §11.8], with the ball and more generally subcritical Wein-
stein domains arising as special cases. Since flexible Weinstein domains

'In more detail, any two finite type Liouville manifolds which are symplectomor-
phic are also exact symplectomorphic by [CE, Lem. 11.2], and hence their symplectic
cohomologies are isomorphic by a consequence of Viterbo functoriality as in [Seil,
§7b).

ZMore precisely, this isomorphism always holds over K = Z /2, and it holds for
more general K if @ is Spin, whereas the general case necessitates using a twisted
coefficient system.
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have vanishing symplectic cohomology (see [MS, §3.3]), we immediately
extend Gromov’s theorem to find that there are no exact Lagrangians
in any flexible Weinstein domain.

However, Observation 1.1 is rather insufficient in situations where
SH(X') and SH(X') are both vanishing or both nonvanishing, especially
since the transfer map is generally neither injective nor surjective. For
instance, let X ,f" denote the complement of a small neighborhood of &
generic hyperplanes in CP". As we explain in §2.4, X ,3“ has a canonical
Weinstein structure. Concretely, we can ask:

Problem 1.2. For which k, k' € Z>; is there a Liouville embedding
xn & x2n
We make a few preliminary observations:

e For k<n, X ,3” is subcritical, in fact its symplectic completion is
(C*)*=1 x C"*1, and hence we have SH(X?") = 0. From this
it is straightforward to produce a Liouville (in fact Weinstein)
embedding of X,?,” into X,%" whenever k, k' < n.

e There is a spectral sequence [GP, McL3] for computing the sym-
plectic cohomology of any ample simple normal crossing divisor
complement from the ordinary cohomology of various combinato-
rial strata defined by the normal crossings configuration. When
k > n + 1, this spectral sequence degenerates (see [GP, Thm 1.4
and Example 5.1]) and in particular SH(X?") # 0 for any coeffi-
cient field K. Therefore, by Observation 1.1 there is no Liouville

embedding X,z," ‘i X,?" when &' >n+1and k < n.

e There is a Weinstein embedding X,%" K> X,f,” whenever k£ < K
(see §1.2.2). There is also a symplectic (and in particular smooth)
embedding from X ,%" into X ,3,” for k > k', given by adding back
in some of the hyperplanes.

We are left to wonder about Liouville embeddings of X,f,” into X l%” in
the case k' > k > n + 1, and more generally:

Question 1.3. Is there a natural notion of “complexity” of Liouville
domains, such that more complicated Liouville domains cannot Liouville
embed into less complicated ones?

We point out right away that there are already several interesting par-
tial answers to Question 1.3 appearing in the literature, though these
approaches are not sufficient (to our knowledge) to solve Problem 1.2
(see the discussion in §3.2). For one, Abouzaid-Seidel [AS1] introduced
a “homological recombination” construction which modifies a given We-
instein domain so as to kill its symplectic cohomology when the char-
acteristic of K belongs to a chosen set of primes, and otherwise leaving
SH intact. As a corollary, by appealing to Observation 1.1, we can find
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e.g. an infinite sequence of Weinstein domains Wy, Wy, Wy, ..., all dif-
feomorphic to BY, such that ; does not Liouville embed into W; unless
i < j. According to [LS], we can also arrange that W; does admit a
Weinstein embedding into W; for i < j.

In a different direction, which lies closer to the heart of this paper, we
have the notion of dilation [SS], and its generalizations and cousins (see
e.g. [Zha, Zho, Li2]). The basic observation here is that symplectic
cohomology SH has an S'-equivariant analogue SHg:, which enjoys a
more refined version of Observation 1.1 (see §3.1) For example, [Zho]
constructs Brieskorn varieties having k-dilations but not (k—1)-dilations
for any fixed & € Z>0, and this translates into a non-existence result
for Liouville embeddings. Essentially the same structure is exploited
by Gutt—Hutchings to construct symplectic capacities in [GH]. In fact,
although these capacities were developed as quantitative invariants, they
become qualitative if one only remembers whether each capacity is finite
or infinite. As we will explain, these notions are closely related to the
linear version of the invariants we define in §3, whereas our more general
invariants parallel the higher symplectic capacities defined in [Sie2].

Problem 1.2 naturally fits into a wider framework as follows. Fix
a positive integer n. Let d = (di,...,dy) € Z%, denote a tuple of
positive integers for some k € Z>;. We denote by Xffn the natural
Weinstein domain given by the complement of a small neighborhood
of k smooth hypersurfaces of degrees di,...,d; in general position in
CP™. Notably, this depends only on d and is independent of all other
auxiliary choices up to Weinstein deformation equivalence (see §2.4).
Similarly, put & = (d}, ..., d,,) € 7%, for some k' € Z>1, and denote the
corresponding Weinstein domain by XC%". Note that with this notation

we have X,%" = X(21 oy
) 9

k

Problem 1.4. For which tuples d and d is there a symplectic /
Liouville / Weinstein embedding of X;J‘ into XC%”?

1.2. Main results. The following result is representative of the tech-
niques of this paper:

Theorem 1.5. Fiz n € Z>1 and tuples d = (di,...,dy) € Z’gl and

~ , k K/

d=(d,...,d,)e Zgl with ,Z:ldi’ Zldi > n+1. Assume that we have
= i=

K k I

Y di <2> di—n—1. Then there is a Liouville embedding X;” — X;,"

i=1 i=1

if and only ifafj d.
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We will deduce the obstructive part from a more general framework,
a synopsis of which is given in §1.2.1. The relevant embedding construc-
tions, and in particular the definition of the combinatorial partial order
“<” are summarized in §1.2.2.

As an illustrative example, combining the above theorem with the
observations from in the previous subsection solves Problem 1.2:

Corollary 1.6. For anyn € Z>; and k' > k > n + 1, there is no
L
Liouville embedding X,%,” < X

Example 1.7. Consider the case n = 1 of Problem 1.2, so that X,% is
the two-sphere minus k open disks. For k& < &/, there is a Liouville em-

L
bedding X7 < X ,?,, given by iteratively attaching Weinstein 1-handles.

By contrast, there is no Liouville embedding ¢ : X2, <£> X ,? Indeed,
given such an embedding, the complement X2\ ¢(X?,) would necessar-
ily have at least one component which is disjoint from 9X?, and this
violates Stokes’ theorem (c.f. Example 2.4).

1.2.1. Obstructions. In §3, we define for each m € Z>( a symplecto-
morphism invariant G<7"p> of Liouville domains which takes values
in positive integers and is monotone with respect to Liouville embed-
dings, i.e.

x4 x = C<TMp>(X) < C<TMp>(X")

Heuristically, G<T™p>(X) corresponds to the least number of positive
ends of a rigid rational curve in X which passes through a generic point
p and is tangent to order m to a generic local divisor at p. Whereas
this would generally depend on the choices involved, the more precise
definition of G<T™p>(X) is based on the L structure on linearized
contact homology CHy, (X). In §4, we compute this invariant for divisor
complements in projective space:

Theorem 1.8. For n € Z>; and d = (di,...,dy) € Zgl with
Zle d; > n+1, we have

k
-1 2ny _ ,
(1) C<T" 'p=(X2") = d;.
i=1
As an immediate consequence:
Corollary 1.9. Forn € Z>1, we have X <7£> X a, when—

17 7
ever YK d; > Z‘:1 d; >n+1.
It is worth emphasizing that there is a symplectlc (and in partlcular
smooth) embedding from X into Xj” whenever d is a subtuple of d,
essentially given by adding back in some of the divisor components (see
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S
§2.4). For instance, there is a symplectic embedding X ,3" — X lf,” for any
k,k' € Z>,. In particular, the obstructions provided by Corollary 1.9
are a purely exact symplectic phenomenon.

Remark 1.10 (on virtual perturbations). We point out that the gen-
eral construction of linearized contact homology, with its L, structure
and full functoriality package, requires a virtual perturbation frame-
work to achieve transversality for configurations involving multiply cov-
ered curves. The polyfold theory of Hofer—-Wysocki-Zehnder is widely
expected to provide such a framework (see e.g. [HWZ]). There are
several other candidate such frameworks in development and in various
stages of completeness — see e.g. [FH, Par, HN, BH, Ish] and the
references therein. Our high level discussion of symplectic invariants in
83 and their computation in §4 relies only general properties of SF'T as
outlined in [EGH] and not on any particularities of the chosen pertur-
bation framework. Subsequently, in §5 we give a detailed discussion of
transversality for the curves relevant to our main applications, and pro-
ceed to give direct proofs based on classical transversality techniques.

Although Corollary 1.9 rules out many Liouville embeddings between
hypersurface complements, it turns out to be rather far from optimal in
general. Indeed, there are many cases in Problem 1.4 with Zle d; <
Ef’;l d} for which a stronger obstruction is necessary. In §5, we refine
the proof of Theorem 1.8 by analyzing the outcome of neck stretching
in more detail, arriving at our main combinatorial obstruction.

Theorem 1.11. Fizn € Z>1, and consider tuples d= (dy,...,dy) €
7%, and d=(d,..., ) € Zg1 with S°F_ di, ¥ di > n+1. Given

i=1"

L
a Liouville embedding X;" — X;/”, we must have:

e positive integers l,q € Z>1 with Zle di <1< Zf;l d. and
(i di—n—1)<l-n-1

o tuples 71, ..., 7 € 75,\ {0}, each having at most n nonzero com-
ponents, such that Zi-:l Ti=qd

o tuples y1,...,y € Z’go \ {0}, such that 22:1 Ui = d

e a group homomorphism ® : 7F/(d) — 7V /(d) such that
®(Z; mod (d)) = §; mod (d) fori=1,...,1.

This theorem is proved using moduli spaces of genus zero punctured
pseudoholomorphic curves with several positive ends. The proof of
Theorem 1.5 in §5.2 will then be extracted from the combinatorics
of Theorem 1.11, together with the constructions described in Theo-

rem 1.15 below. In fact, we conjecture that the main degree assumption
K k

d; <23 d; —n —1 in Theorem 1.5 can be removed, but it is not
i=1 i=1
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immediately clear whether this can be deduced from the combinatorics
of Theorem 1.11.

At present, we illustrate the utility of Theorem 1.11 with some ex-
amples which go beyond Corollary 1.9. Note that these examples also

l

hold without the assumption Z d; <2 E di —n—1.
i=1 i=1

Example 1.12. In the context of Theorem 1.11, consider a Liouville
embedding X%” <£> X},” where the target X{%” =X ,3," is a hyperplane
complement. Then the source is also a hyperplane complement, i.e. we
must have X;” = X,f" for some k < K.

Indeed, in the context of Theorem 1.11, note that the rank of the
image of ® in Z¥ /(d’) = Z¥~! must be at most [ — 1. Since the rank
of the domain Z*/ (cf) of ® is k — 1, this is only possible if we have

k > 1. We therefore have k < Zle d; < 1 < k, which implies that
di=---=d =1.

Example 1.13. In the context of Theorem 1.11, consider a Liou-
ville embedding XC%” <£> X;” where the source XC%” = X(%Z) is the
complement of a single divisor component. We claim that d; must di-
vide ged(d'). Conversely, by Theorem 1.15 below, if d; divides ged(d')

then there is a Weinstein embedding X?27 () % Xg,”. We conclude that

Xt & X2 if and only if di| ged(d).

To justify the claim, note that we must have [ > d;. Moreover,
since the domain of ® is Z/(d;), for each i = 1,...,l we must have

dig; =0 € 2V J(d), i.e. dig = a;d for some a; € Z>1. We then have

SN

so all of these inequalities are equalities and we have a1 = -+ =a; = 1.
It follows that dy divides each component of d’, and hence it divides
ged(d').

Lo
> fd > d,

Q.‘&

1.2.2. Constructions. For k € Z>;, let S := YA Y,/%k denote the
set of unordered k-tuples of positive integers. Here Y, denotes the
symmetric group on k letters with its natural action on Z’;l. We will
often represent the equivalence of a k-tuple by its unique representative
(di,...,dy) such that dy > --- > dj. Put & := U2 |S,. We define a
partial order on S as follows:

Definition 1.14. For ci:c? € S, we put d < d if d can be obtained
from d by a sequence of the following moves:
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1) (combination) delete two entries d;, d; for some 1 <1i < j <k and
add the new entry d; + d;

2) (duplication) add a new entry diy1 with dgy1 = d; for some 1 <
i <k.

For example, we have (3,2,2) =< (7,2) thanks to the following se-
quence of moves:

(3,2,2) ~ (3,2,2,2) ~ (5,2,2) ~ (7,2).

By contrast, we have (3,2,2) £ (10,1), since there is no way to acquire
the entry 1 by a sequence of the above moves.

Theorem 1.15. Fizn € Z>1. For d,d" € S such that d < d' there is
a Weinstein embedding of X%” into X(%".

Remark 1.16. Our proof of Theorem 1.15 takes inspiration from
[Ngu|, which gives a more precise description of the resulting Wein-
stein cobordism in the case that the divisor has no triple intersection
points. In fact, Theorem 1.15 may already be known to experts, but we
nevertheless include the proof for completeness.

Note that Theorem 1.11 obstructs Liouville embeddings, hence a for-
tiori Weinstein embeddings. Since the constructions provided by Theo-
rem 1.15 are Weinstein embeddings, we can also reformulate most of the
preceding results in the Weinstein category. For example, the analogue
of Theorem 1.5 is:

Corollary 1.17. Fix n € Z>1 and tuples d= (dy,...,dy) € 7% %, and
cf’—(ﬁ,... ) € wzthzzldz,zll d; > n+1. Assume that we
have ZZ L di <2 Zl 1di —m —1. Then there is a Weinstein embedding
X}” <—> XC%” if and only zf cfj d.

We note, however, that Weinstein embeddings have more restricted
topology compared to Liouville embeddings. Namely, the complemen-
tary cobordism must admit a Morse function with all critical points
having index at most half the dimension (see e.g. §2.1). Consequently,
many of the obstructions involved in Corollary 1.17 follow simply from
singular homology considerations (c.f. Remark 6.4).

As for the symplectic category, there is quite a bit more flexibil-
ity. For example, as mentioned above there are symplectic embeddings

S
X%n — X,f," for any k, k" € Z>1. At the same time, in some cases sym-
plectic embeddings are automatically Liouville embeddings due to first
cohomology considerations, and hence Theorem 1.5 applies.

Corollary 1.18. Fiz n € Z>9 and tuples d = (di,...,dx) € Z’;l
and d = (d}, ..., 1) € lwzthz,ld@,zll ' >mn+ 1. If there

)
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d’

S -
is a symplectic embedding Xjﬂ < X2 then we must have that ged(d)
divides gcd(ci;). Moreover, if we assume that gcd(cf) is an entry of d,

then there is a symplectic embedding X}" <£> Xj*,n if and only if gcd(af)
divides ged(d).

S
Proof. Suppose that we have a symplectic embedding Xflﬂ — Xg,”.

Put g := ged(d). By Theorem 1.15 there is a Weinstein embedding

w
X (2;) — Xjﬂ, and hence by concatenating we get a symplectic embed-

ding X(Qg”) i XC%". Since HI(X(QgV;; R) = 0, this is automatically a Liou-
ville embedding. By Example 1.13, such a Liouville embedding exists
only if g divides gcd((f’ ).

If we assume that ¢ divides gcd(c?) and also that ¢ is an entry of
d_: then we have a symplectic embedding X;” <i X (2;3 given by adding
back divisor components, and we can concatenate this with a Weinstein
embedding X (2973 ‘K Xg,” to get a symplectic embedding Xflﬂ <§> X(%”.

q.e.d.

The rest of this paper is structured roughly as follows. In §2 we
discuss the necessary background on divisor complements and pseudo-
holomorphic curves, meanwhile setting the notation for the rest of the
paper. In §3 we introduce our main symplectic embedding obstructions
G<T™p>, which arise as simplifications of a more general family of
symplectic invariants 1=/, In §4 we begin the discussion of the relevant
SFT moduli spaces and we prove Theorem 1.8, assuming virtual pertur-
bations. In §5, we analyze the moduli spaces in more detail and prove
Theorem 1.11. In §6, we produce Weinstein embeddings, and also dis-
cuss flexibility constructions which place our main results into broader
context. Finally, in §7 we give a (highly nonexhaustive) list of open
problems and future directions.

Addendum 1.19. After the first draft of this paper was completed,
the authors learned of the concurrent paper [MZ] by A. Moreno and
7. Zhou, whose techniques and results are closely related to the present
work. In [MZ], the authors define and exploit algebraic structures on
rational symplectic field theory in order to obstruct exact cobordisms be-
tween contact manifolds, implemented using Pardon’s framework [Par].
In particular, their techniques recover our Corollary 1.6 (see [MZ, Thm.
G]), and they moreover compute their invariants for a variety of other
geometrically natural examples.

Acknowledgments. S.G. would like to thank Daniel Pomerleano for
the suggestion that the holomorphic lines in CP™ ought to be able to
(through a numerical invariant proposed by Seidel [Sei2] extracted from
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Lo structures in equivariant symplectic cohomology) exhibit the in-
creasing Liouville complexity of hyperplane complements in CP". S.G.
was supported by NSF grant DMS-1907635. K.S. thanks Oleg Lazarev
and Mark McLean for helpful discussions and comments.

2. Setting the stage

2.1. Geometric preliminaries.

2.1.1. Contact manifolds and symplectizations. Recall that a
contact form on a closed odd-dimensional manifold Y is a maximally
nondegenerate one-form «, i.e. a Ada A --- A da is everywhere nonvan-
n—1

ishing, where dim Y = 2n — 1. If the orientation induced by this volume
form agrees with a preferred orientation on Y then we say that « is a
positive contact from. A contact manifold is a pair Y equipped with
a hyperplane distribution of the form & = ker a for some contact form
«. In this paper we will typically work with strict contact manifolds,
i.e. contact manifolds having a preferred one-form «. By slight abuse
of notation, we will often refer to the strict contact manifold simply
by Y when « is implicitly understood, and a similar remark holds for
Liouville domains and so on.

Given a strict contact manifold (Y, «), the symplectization is the sym-
plectic manifold R x Y equipped with the symplectic form d(e"«) and
preferred one-form e"a, where r is the coordinate on R. We will some-
times also utilize the positive (resp. negative) half-symplectization,
given by restricting to R>¢ x Y (resp. R<g x Y).

The Reeb vector field R, is the unique vector field on Y such that
a(Ry) =1 and da(Ry, —) = 0. By a (T-periodic) Reeb orbit we mean
a loop v : [0,7] — Y with v(0) = v(T") for some T" € R-q, such that
4(t) = Ra(y(t)) for all t € [0,T]. Here T is called the period or action
of v, denoted by A(7y). Note that equivalently we have A(y) = fv a.
A Reeb orbit v is nondegenerate if the map |,y — &l (o) induced by
linearized the time-T' Reeb flow does not have 1 as an eigenvalue, and
the contact form « is nondegenerate if all of its Reeb orbits are.

2.1.2. Flavors of open symplectic manifolds. Recall that a Liou-
ville domain is a pair (X, \), where X is an even-dimensional compact
manifold with boundary and A is a one-form such that dA is symplectic
and \ restricts to a positive? contact form on 9X. This last con-
dition is equivalent to the Liouville vector field V), characterized by
dA(Vy, —) = A, being outwardly transverse along 0.X.

There is a closely related notion of Liouville manifold, which is a pair
(X, ), where X is a noncompact manifold and A is a one-form such

3More precisely, we orient X by the volume form A"w and we orient X via the
boundary orientation.
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that d\ is symplectic and the flow of the Liouville vector field V) is
complete. If we can moreover find a compact subdomain D C X with
smooth boundary such that V) is outwardly transverse along 0D and
A is nonvanishing on X \ D, then (X, \) is said to be of “finite type”.
In this case, the restriction (D, \|p) defines a Liouville domain. Con-
versely, if (X, \) is a Liouville domain, its symplectic completion ()Z' , X)
is the finite type Liouville manifold given by attaching the positive half-
symplectization of (90X, Msx) to (X, ).

Given two Liouville domains (X, \) and (X, \') on the same mani-
fold X, we say that they are Liouville homotopic if there is a smooth
one-parameter family of Liouville forms A\, t € [0, 1], with A\g = A and
A1 = X. Two Liouville domains (X, ) and (X', \) are Liouville de-
formation equivalent if there exists a diffeomorphism F : X — X’ such
that (X, \) and (X, F*)’) are Liouville homotopic. These induce equiv-
alent notions of Liouville homotopy and Liouville deformation equiva-
lence between the corresponding symplectic completions. By a version
of Moser’s Stability Theorem (see [CE, Prop. 11.8]), if two Liouville
domains are Liouville homotopic, then their symplectic completions are
symplectomorphic. Moreover, by [CE, Lem. 11.2], if two Liouville
manifolds (X, A) and (X, \’) are symplectomorphic, then we can find a
diffeormorphism G : X — X’ such that G*\ — X is an exact one-form.

In particular, the process of symplectic completion sets up a one-to-
one correspondence between Liouville domains up to Liouville homo-
topy and finite type Liouville manifolds up to Liouville homotopy. In
the sequel we will mostly phrase results in terms of Liouville domains
for convenience. A similar remark will apply for Weinstein domains /
manifolds and Stein domains / manifolds.

A Weinstein domain is a triple (X, X, ¢), where (X, ) is a Liouville
domain and ¢ : X — R is a generalized Morse function which is gradient-
like for the Liouville vector field V) and constant along 0X. Similarly,
a Weinstein manifold is a triple (X, A, ¢), where (X, \) is a Liouville
manifold and ¢ : X — R is an ezhausting (i.e. proper and bounded
from below) Morse function such that V) is gradient-like for ¢. The
Weinstein manifold (X, A, ¢) is finite type if and only if ¢ has finitely
many critical points, which implies that (X, \) is a finite type Liouville
manifold. A standard computation shows that each critical point of
¢ has index at most half the dimension of X, and this puts strong
restrictions on the homotopy type of X. Conversely, any manifold X of
dimension at least six which admits a nondegenerate two-form and an
exhausting Morse function with critical points of index at most half the
ambient dimension is diffeomorphic to a Weinstein manifold (see [CE,
Thm. 13.2)).

Two Weinstein domains (X, A, ¢) and (X, N, ¢’) are Weinstein ho-
motopic if there exists a smooth family of Weinstein domains (X, \¢, ¢¢)
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for t € [0,1], with (Ao, ¢0) = (A, @) and (A1, ¢1) = (X, ¢'). Note that a
generic one-parameter family of functions will have isolated birth-death
type degenerations, which is why we require the functions ¢; to be only
generalized Morse (see [CE, §9.1]). Similarly, two Weinstein domains
(X, A, ¢) and (X', N, ¢') are Weinstein deformation equivalent if there
is a diffeomorphism F : X — X' such that (X, ), ¢) and (X, F*N, F*¢’)
are Weinstein homotopic.

A Stein manifold is a (necessarily noncompact) complex manifold
admitting a proper biholomorphic embedding into affine space CV for
some N € Z>i. There are several other common equivalent definitions
— see e.g. [CE, §5.3] for more details. It turns out that one can al-
ways find an exhausting strictly plurisubharmonic function ¢ : X — R,
which we can assume is Morse after a small perturbation. Here strict
plurisubharmonicity of ¢ is equivalent to —dd®¢ being a Kihler form,
where d®¢ denotes the one-form d¢ o J, with J the (integrable) almost
complex structure. The Stein manifold (X, A, ¢) is finite type if ¢ has
finitely many critical points. The definitions of Stein homotopy and
Stein deformation equivalence mirror the Weinstein case.

Given a Stein manifold (X, J) and an exhausting strictly plurisub-
harmonic function ¢ : X — R, we produce a Weinstein manifold
W(X,J) ;= (X,\:= —d®p,¢ 0 ¢), where ¢ : R — R is a suitable dif-
feomorphism (this is needed to make the vector field V) complete — see
[CE, §2.1]). Moreover, up to Weinstein homotopy this Weinstein man-
ifold depends only on the Stein manifold (X, J) up to Stein homotopy.
In fact, by a deep result from [CE], this association sets up to one-to-
one correspondence between Stein manifolds up to Stein homotopy and
Weinstein manifolds up to Weinstein homotopy. As a consequence, for
the qualitative embedding problems considered in this paper, it makes
no essential difference if we work in the Stein or Weinstein category.

The above definitions also naturally generalize to the notions of Liou-
ville cobordism, Weinstein cobordism, and Stein cobordism. For exam-
ple, a Liouville cobordism (a.k.a. exact cobordism) is a pair (X, \) where
X is a compact manifold with boundary such that the Liouville vector
field is inwardly transverse along some components of 90X (the negative
boundary 0~ X) and outwardly transverse along the components of 0.X
(the positive boundary O X). Given a Liouville cobordism X, we pass to
its symplectic completion by attaching the positive half-symplectization
of 9T X to its positive end and the negative half-symplectization of 9~ X
to its negative end. Similarly, a Weinstein cobordism is a triple (X, A, ¢),
where (X, \) is a Liouville cobordism and ¢ is a Morse function which
is constant along 9~ X and 9% X, such that V) is gradient-like for ¢.

As we recall in §2.4, smooth complex affine algebraic varieties are
Stein manifolds, canonically up to Stein homotopy. In summary, we
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have the following hierarchy for exact symplectic manifolds

affine = Stein < Weinstein = Liouville.

Remark 2.1. Although pseudoholomorphic curves are best behaved
in exact symplectic manifolds, for many purposes it suffices to have
exactness only near the boundary. If we relax the definition of a Liou-
ville cobordism by only requiring the one-form A to be defined near the
boundary, we arrive at the notion of a (strong) symplectic cobordism.

2.1.3. Embeddings. Recall (see e.g. [Seil]) that a Liouville embed-
ding from one Liouville domain (X, \) into another Liouville domain
(X', \) of the same dimension is a smooth embedding ¢ : X — X’
such that t*(\') = e? X + df for some constant p € R and some smooth

function f : X — R. As a shorthand, we put (X, \) S (X', N) or

simply X (£> X' if such a Liouville embedding exists. Note that in
the case p = 0, this says that ¢ is an ezact symplectic embedding, i.e.
t*(N) — X\ is an exact one-form, and if moreover f = 0, then ¢ is a strict
exact symplectic embedding, i.e. it satisfies .*\' = \. Also, given Liou-
ville domains (X, \) and (X', \'), we will say that a smooth embedding

X o X! is ezact symplectic if we have ¢ N o=\ + df for a smooth
funct1on f: X >R

The following lemma combines a few standard observations about
Liouville embeddings.

Lemma 2.2.
(a) Suppose that (X, At)sejo1] is a Liouville homotopy of Liouwville do-

mains. Then there is a diffeomorphism h : X — X such that
R\ = /)\\0 +df for some smooth function f : X >R

(b) Let (X,\) and (X,)\) be Liowville domains, and suppose there
is a Liouville embedding of (X, \) into (X', N'). Then there is a
Liouville homotopy (X', Xy)sejo,1] with Ay = X' and a strict exvact
symplectic embedding of (X, ) into (X', \]). Moreover, we can
assume that we have N;|axr = eI N |yx: for some smooth function
q:10,1] = R and all t € [0,1].

(¢) For Liouville domains (X, \) and (X', \'), there is a Liouville em-
bedding (X, \) & (X', N) if and only if there is a (not necessarily
proper) ezact symplectic embedding of (X, \) into ()/(\’ )T’)

(d) Suppose that there is a Liouville embedding (X, \) < (X’ ) of

Liouville domains. Then the same is true after applying a Liouville
homotopy to (X, \) or (X', \).

Proof. Part (a) is [CE, Prop. 11.8], proved using Moser’s trick.
For (b), suppose that ¢ : X < X' is a smooth embedding with
t*N = eP \+df for some constant p € R and smooth function f : X — R.
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After post-composing ¢ with the Liouville flow of X’ for some negative
time, we can assume that we have ((X) C Int X’. Let f : X’ — R be
a smooth function whose restriction to ¢(X) agrees with ¢, f and which
vanishes outside of a small neighborhood of ¢(X). Consider the Liouville
one-form on X’ given by N := e ?(N — df). Then we have t*(N) = X,
and the family X, := e~ (X — tdf) defines a Liouville homotopy with
Ay =X and N = .

For (c ) first _suppose that ¢ : X < X’ is a smooth embedding sat-
isfying L*)\’ = A+ df for a smooth function f : X 5 R Forte R,
let ¢y : X X - X X' denote the time-t flow of the Liouville vector field,
so we have qﬁ;f)\’ = ¢!N. Then for t < 0, the composite embedding
drotlx : X — X’ has image in X', and it pulls back N to etX%—d(etf),
so it is a Liouville embedding.

Conversely, suppose that ¢ : X < X’ is a Liouville embedding. By
(a) and (b), we can assume that ¢ is a strict exact symplectic embedding,
i.e. we have t*\ = . We extend ¢ to a smooth embedding T X C — X
by requiring 7 to intertwine the Liouville flows on (X )\) and (X DY ).
We then have 7\ = \.

Finally, (d) follows immediately by combining (a) and (c). q.e.d.

Remark 2.3. A key feature of Liouville embeddings X &4 X' is that
curves without positive ends in the complementary cobordism X'\ X
are ruled out by Stokes’ theorem. That is, for any admissible almost
complex structure J on the symplectic completion of X'\ X, there
are no nontrivial punctured asymptotically cylindrical J-holomorphic
curves without positive ends (see §2.2.2 below).

Similarly, given Weinstein domains (X, A, ¢) and (X', N, ¢') of the
same dimension, a strict Weinstein embedding consists of a smooth em-
bedding ¢ : X — X' such that +(X) is a sublevel set of ¢’ and we have
N = Xand ¢ or = ¢. In this case, X'\ ¢(X) equipped with the
restrictions of ' and ¢’ is a Weinstein cobordism with positive end 90X’
and negative end ¢(0X). More generally, we say there is a Weinstein

embedding of (X, )\, ¢) into (X', N, ¢'), denoted by X X X', if there is
a strict Weinstein embedding after applying Weinstein homotopies to
X and X'

Example 2.4. For g,k € Z>q, let ¥, denote a compact surface
of genus g with k boundary components. Then ¥, ; admits a unique
Liouville structure up to Liouville deformation equivalence. Indeed, it
is easy to produce such a structure by attaching Weinstein one-handles
to the two-ball, and if A\g and A\; are one-forms on ¥, ; which induce
the same orientation then they can be joined by the Liouville homotopy
A = (1 — t))\o +tA, t € [0 1]
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Moreover, if X and X’ are two-dimensional Liouville domains with a

L
Liouville embedding X — X', by Stokes’ theorem each component of
X'\ X must contain at least one component of 9X’, and in fact this
condition also suffices to provide the existence of a Liouville embedding

X <£> X'. Tt follows that there is a Liouville embedding ¥ <£> Yy g if
and only if we have g < ¢ and k — k' < ¢ —g.

2.1.4. The Conley—Zehnder index. The Conley—Zehnder index
plays an important role in the Fredholm index formula for punctured
curves. Let v be a Reeb orbit in a nondegenerate strict contact manifold
(Y, «). The contact distribution £ := ker a equipped with the restriction
of da is a symplectic vector bundle over Y. The Conley—Zehnder index
[CZ] of ~ is defined with respect to a choice of framing, i.e. a trivializa-
tion (up to homotopy) 7 of the pullback of the symplectic vector bundle
¢ by v. We denote this by CZ,(v) € Z. Given another framing 7/, we
have

(2) CZT(’V) - CZy (’7) = 2m(T,7 7—)7

where we use 7 to view the framing 7/ as a loop in Sp(2n — 2), and
m(7',7) € m(Sp(2n — 2)) = Z is its Maslov index (see e.g. [RS]).

Suppose that Y is the contact boundary of a Liouville domain X.
Given a spanning disk for 7, i.e. a map u : D? — X with u|pp2 = v,
there is a unique (up to homotopy) trivialization of v*T'X which extends
to a trivialization of u*T' X, and this induces a trivialization of y*£. Let
CZy(7y) denote the corresponding Conley—Zehnder index with respect to
this trivialization. Given another such spanning disk u/, the difference
in Conley—Zehner index is given by

(3) CZu(v) = CZuw (v) = (2c1(X), A),

where A € Hy(X) is the homology class of the sphere given by gluing u
to u’ with its opposite orientation.

2.2. SFT moduli spaces.

2.2.1. Admissible almost complex structures. Let (Y,«a) be a
strict contact manifold, and let R x Y be its symplectization, with R-
coordinate r. An almost complex structure J on R x Y is admissible
or cylindrical if it is invariant under r-translations, sends 9, to R, and
restricts to a da-compatible almost complex structure on the contact
distribution £ = keraw on {0} x Y. Note that such an almost complex
structure is compatible with the symplectic form w = d(e"a) on R x Y,
ie. w(J—,—) is symmetric and nondegenerate on each tangent space,
but it also satisfies an additional R-symmetry.

Similarly, suppose that X is a strong symplectic cobordism, with
corresponding symplectic form w and contact forms a® on 90X, and
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let X = (Reg X 0~ X) U X U (Rsg x 87 X) denote its symplectic com-
pletion. An almost complex structure J on X is admissible if it is
w-compatible on X, and it is cylindrical when restricted to the ends
[RZO x 07X and IRS() x 0~ X.

2.2.2. SFT moduli spaces. The main analytical tool in this paper is
the study of moduli spaces of punctured pseudoholomorphic curves a la
symplectic field theory. We refer the reader to [BEH™, Abb] for more
of the technical details, and we also recommend [Wen] for an excellent
recent treatment. Since the setup here is quite similar to that of [Sie2,
§3.2], we give here only a short summary to set our notation.

Let (Y, o) be a nondegenerate strict contact manifold, and let J be an
admissible almost complex structure on its symplectization R x Y. Sup-
pose that we have two collections of Reeb orbits I't = (v, ... ,7;) and
'~ =(v,...,7,.) inY, for some s;,s5_ € Z>9. We let ML(DHT7)
denote the moduli space of J-holomorphic* genus zero® curvesin RxY,
with s™ punctures which are positively asymptotic to the Reeb orbits
yf“ Y ,ysﬂ, and s~ punctures which are negatively asymptotic to the
Reeb orbits 717, ...,7,_. Note that such curves (called “asymptotically
cylindrical” in [Wen]) are proper, and the conformal structure on the
domain (as a sphere with (s +s~)-punctures) is unconstrained. The R-
invariance of J induces a corresponding R-action on M{,(F*; ') which
is free away from trivial cylinders, i.e. cylinders of the form Rx~y C RxY
with v a Reeb orbit in Y. We denote the quotient by My.(I'";T7)/R.

Given a curve u € M‘{/(FJF; I'7), we define its energy by

(4) Ewy:AmL

Note that this is not quite the same as the symplectic area fu d(e"a),
which is always infinite. Nevertheless, we have E(u) > 0, with equality
if and only if u is a branched cover of a trivial cylinder. By Stokes’
theorem, we have

) B(w) = Y- Aa(3) = 30 Aalri ).

In particular, v must have at least one positive puncture. Also, in the
case st = s~ =1, we have E(u) = 0 if and only if v{ =, and u is a
trivial cylinder.

4We sometimes refer to J-holomorphic curves as “pseudoholomorphic curves” or
simply “curves” if the almost complex structure is unspecified or implicit. Similarly,
we will also sometimes omit J from our moduli space notation.

5All curves considered in this paper are genus zero and hence we will generally
suppress the genus from the notation.
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Similarly, let X be a strong symplectic cobordism, with nondegen-
erate contact forms a® on 0*X, and let J be an admissible almost
complex structure on its symplectic completion X. For a collection of
Reeb orbits TF = (7. .. ,'y:;) in0*X andI'™ = (vy,...,7,.)ind~ X,
we let M &(F*; I'") denote the moduli space of J-holomorphic curves in
X with s+ punctures positively asymptotic to 'yf e ,fy;; and s~ punc-
tures negatively asymptotic to v, ,...,v,_. By slight abuse of notation,
we will often suppress the completion process from the discussion and
refer to elements of M¥ (I't;T7) simply as “curves in X”.

In the case that X is a symplectic filling, i.e. 0~ X = &, note that
curves in X cannot have negative ends, and we denote the moduli space
with positive asymptotics Tt = (77,...,75) by ML ,...,75)
without risk of confusion. Similarly, if X is a symplectic cap, i.e.
0T X = @, we denote the moduli space of curves in X with negative
asymptotics I'™ = (1 ,...,7,2) by M (s Yo )-

We define the energy of a curve u € M}Q(F“‘; ') by

(6) E(u) := /d},

u
giving by integrating over u the piecewise smooth two-form
(7) @ = (da)|g,gwotx +wlx + (da7)|r_gxo-x-

Note that for J admissible and u € M%(I'T;T~) we have E(u) > 0,
with E(u) = 0 if and only if u is a constant map. If X is furthermore a
Liouville cobordism, we have by Stokes’ theorem

(8) E(U) = ZAa+ (’V;r) - ZAQ— (7;)
=1 Jj=1

In particular, u must have at least one positive end.

Let Ho(Y;T" UT ™) denote the set of 2-chains in Y with boundary
Zf; v - 25;1 7; » modulo boundaries of 3-chains (c.f. [Hut, §3.1]).
This forms a torsor over Ha(Y). A curve u € M{(I'F;T7) has a well-
defined homology class [u] € Ho(Y;T"UT ™), and for a given class A €
Hy(Y;T+t UT™) we have the subspace My ,(I';T7) € M{(IHT7)
consisting of all curves lying in the class A. Similarly, we denote by
Hy(X;TT UT™) the set of 2-chains in X with boundary Zf; v -
Z;’;l 7; » modulo boundaries of 3-chains, and for a homology class A €
Hy(X;TT UT ™) we have the corresponding subspace M (I T7) C
M%(TH;T7). The energy of a pseudoholomorphic curve u in X is
determined by its homology class [u] € Ho(X;TTUT™).

We will also sometimes need to consider parametrized moduli spaces
of pseudoholomorphic curves. For example, let {J};¢c(0,1) be a (smooth)
one-parameter family of admissible almost complex structures on the
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symplectization R x Y. We denote by Mi{/‘]t}(f‘*; I'") the parametrized
moduli space consisting of all pairs (t,u), with ¢ € [0,1] and u €
M#(F*;F*). Similarly, if {Ji},e[0,1] i3 @ one-parameter family of ad-
missible almost complex structures on the strong symplectic cobor-
dism X, we denote the corresponding parametrized moduli space by

M@+ 1),

2.2.3. SFT compactness and neck stretching. The SFT compact-
ness theorem, which comes in several variants, is the counterpart for
punctured pseudoholomorphic curves of Gromov’s compactness theo-
rem for closed curves. It provides natural compactifications of each
of the above moduli spaces. Roughly, in addition to the nodal degen-
erations which appear in the closed curve case, punctured curves can
degenerate into multilevel pseudoholomorphic buildings. For example, a
typical element of the compactification of M{/ A(TTT7) /R consists of
some number [ > 1 of levels in the symplectization R x Y. Each level
consists of one or more J-holomorphic curve components® in R x Y,
such that the Reeb orbit asymptotics of adjacent levels are matched,
and the total domain after gluing along paired punctures is a sphere
with st + s~ punctures. Moreover, the total homology class of the con-
figuration is A € Ho(Y ;T UT ™), the positive asymptotics of the top
level are given by I't, and the negative asymptotics of the bottom level
are given by I'". Each curve component is defined up to biholomorphic
reparametrization, and each level is defined up to translation in the R
direction. In addition to disallowing constant closed components with
two or fewer special points, the SF'T stability condition also disallows
symplectization levels consisting only of trivial cylinders.

Similarly, a typical element of the compactification ﬂi AT T)
of Mg( 4(IT;T7) consists of a pseudoholomorphic building with some
number (possibly zero) of levels in the symplectization R x " X, a single
level in X, and some number (possibly zero) of levels in the symplectiza-
tion R x 0~ X, subject to the same conditions as above. Here the curve
components in the X level are J-holomorphic, whereas the components
in R x 0% X are J*-holomorphic, where J* are the cylindrical almost
complex structures naturally determined by restricting J. Here each
of the symplectization levels is again defined only up to R-translation,
whereas the level in X is defined without any quotient.

SHere by component we mean irreducible component, i.e. a curve whose domain
is smooth and connected. For example, a cylinder with an attached sphere bubble
consists of two components. We will use the term “curve component” when we wish to
emphasize that there is a single component, as opposed to a nodal curve or building.
By contrast, we will use the term “configuration” when we wish the emphasize the
possibility of several components or levels.
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For a parametrized moduli space such as Mgg’ﬁ(f‘*;f‘*), the SFT

compactification ﬂﬁgjﬁ (I't;T7) is defined as the union over pairs (C,t)

for C € ﬂ}]&A(F‘F; I'") and ¢t € [0, 1]. A variation on this called stretch-
ing the neck constitutes a fundamental tool in symplectic field theory.
Namely, X be a strong symplectic cobordism (this includes the case that
X is closed) with symplectic form w, and let Y C X be a separating
codimension one closed submanifold which is contact type, i.e. there is
a one-form A defined near Y satisfying d\ = w, and such that the Li-
ouville vector field V), is transverse to Y. Following e.g. [BEH™T, §3.4]
(see also [CO, Lem. 2.4]), we can define a family of almost complex
structures {J; }¢¢[o,1) on X which roughly has the effect of stretching out
(—e,e) XY to (—Ry, Ry) x Y, with %gr{ R, = o, such that J; is cylin-

drical on (—Ry, Ry) x Y. More precisely let J be an admissible almost
complex structure on X which is cylindrical on a small neighborhood
U of Y which is identified with (—d,d) x Y for some § > 0 under the
flow of V), with J invariant under translations in the first factor. Let
Jrxy denote the induced cylindrical almost complex structure on the
full symplectization R x Y. Let F; : (=R, R¢) — (—0,9) be a family of
increasing diffeomorphisms for ¢ € [0,1), such that F; has slope 1 near
—R; and R;. We then set J; to be (Fy X 1)«(Jrxy|(=Ry,R)xy) on U
and J|x\p on X \ U. We assume that Ry = ¢ and Fj is the identity
function, so that we have Jy = J.

Although %gr% Ji is not a well-defined almost complex structure on

X , we nevertheless have a compactified moduli space ﬂﬁg’ﬁ (T T7).
This has a well-defined projection to [0, 1], where the fiber over 1 corre-
sponds to pseudoholomorphic buildings in the broken symplectic cobor-
dism X~ ® XT, where X~ and X correspond to the bottom and top
components of X \ Y. More precisely, a typical element of the fiber over
1lin ﬂﬁg’ﬁ (I'F;T7) is a pseudoholomorphic building with some number
(possibly zero) of levels in the symplectization R x 9T X (this is vacuous
if 0T X = @), a single level in X, some number (possibly zero) of levels
in the symplectization R x Y, a single level in X ~, and some number
(possibly zero) of levels in the symplectization R x 9~ X (this is vacuous
if 07X = ©). This configuration is subject to similar matching and
stability conditions to the above.

2.2.4. Regularity for simple curves. Ideally one would like to
say for example that Mg( 4(TT;T7) is a smooth manifold and that

ﬂi 4(TF;T7) is a smooth compactification, at least for a generically”
chosen admissible almost complex structure J. Indeed, the Cauchy—

"Following standard usage, we will say that subset of admissible almost complex
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Riemann equation defining a curve u € M}T((I“*';F_) is a Fredholm
problem of index

9)

ind(u) =(n—3)(2—sT —s7)+ Z CZ: (") — Z CZ:(v; ) + 21 (u).
i=1 j=1

Here as usual we put dim X = 2n, 7 corresponds to a choice of framing
of each of the involved Reeb orbits, and ¢](u) denotes the first Chern
number of u relative to this choice of framings, i.e. the signed count of
zeros of a section of u*T'X which is constant with respect to the given
framings. Then ind(u) gives the expected (or “virtual”) dimension of
M%(T+;T7) near the curve u.

If w is regular, i.e. its linearized Cauchy—Riemann operator is surjec-
tive, then by a version of the implicit function theorem it can be shown
that M gf 4(TT;T7) is indeed a smooth manifold near u. Unfortunately,

we cannot in general arrange that all elements u € Mg( A7) are
regular for generic J, due to the existence of multiple covers, which fre-
quently appear with higher than expected dimension (e.g. they appear
despite having negative index). Defining SFT in generality therefore
necessitates the use of virtual perturbations (c.f. Remark 1.10).

Nevertheless, by standard techniques we can fortunately achieve reg-
ularity for simple curves. Namely, by [Wen, Thm. 6.19], any non-
constant asymptotically cylindrical J-holomorphic curve can be fac-
tored into a degree x holomorphic map between punctured Riemann
surfaces, followed by a J-holomorphic curve which is an embedding
apart from finitely many critical points and self-intersection points.
We call k the covering multiplicity of u, and u is simple if and only
if we have k = 1. We denote the subspace of simple curves by
MEEL(THT7) € MY, (0FT7).

Any simple curve u is somewhere injective, i.e. there is a point z in
its domain such that dul, # 0 and u=!(u(2)) = z (see e.g. [MS, §2.5]).
A standard argument shows that, for any neighborhood U of u(z) and
a generic perturbation Jof J supported in U, any j—holomorphic curve
in X with a somewhere injective point mapping to U is regular. By
leveraging this idea with some care, one can show that every simple
curve is regular for generic J (see [Wen, §7.1]), and hence Mg(’s (Tt 1)
is a smooth oriented® manifold of dimension ind(u).

structures is generic if it is comeager, i.e. it contains a countable intersection of open
dense subsets (c.f. the Baire category theorem).

8For a discussion of how to assign orientations SFT moduli spaces see e.g. [Wen,
§11]. Strictly speaking this only applies when all asymptotic Reeb orbits are good
(see e.g. [Wen, Def. 11.6]), which will be the case for all examples considered in this

paper.
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Similarly, simple curves in a symplectization are regular for generic
J. In the case of a symplectization, some care is needed due to the
R-symmetry (c.f. the discussion in [Wen, §8]). Assuming there are
no trivial cylinders in the moduli space MEJ;S(FﬂI‘*), the quotient
M‘}]}S(FJZ I'")/R is a smooth oriented manifold of dimension ind(u) — 1.
In particular, since this is necessarily nonnegative, nontrivial simple
curves in a symplectization must appear with index at least 1 for generic
admissible J.

In the case of a parametrized moduli space M&It}(FJF;I‘*), we also
have that simple curves lying over ¢ € (0,1) are regular, provided
that the homotopy {.J;} is generic. Note that regularity of (¢t,u) €
/Vlggt} (I'";T7) does not imply regularity of u as a Ji-holomorphic curve.
Rather, if (t,u) is regular for some t € (0,1), then Mﬁgt}(lﬂ"*;f‘_) is a
smooth oriented manifold of dimension ind(u) + 1 near (¢,u), where
ind(u) denotes the Fredholm index of u as a Ji-holomorphic curve. In
particular, for (t,u) € Mgg’f}’s(F*; I'") we must have ind(u) > —1.

We will also need to know something about the structure of the SE'T
compactifications of one-dimensional moduli spaces, which we expect to
be compact one-dimensional manifolds with boundary. Provided that
all relevant curves are simple, this is indeed the case, with the necessary
charts near the boundary provided by the procedure of gluing along
cylindrical ends. For example, consider a generic homotopy {.J: }:(0,1];
and assume that each of the curve components appearing in the com-
pactification ﬂ;ﬁh}(l"“; I'7) is simple. Then M&—Iﬁ}(F“‘; I'") is an ori-
ented one-dimensional manifold whose boundary contains ./\/lg(1 (T'*t;177)
and MJ1 (I*;T7) (with its opposite orientation). We defer the reader to
[Wen, §1O 2.4] and the references therein for a more detailed discussion.

2.2.5. Formal curves and anchors. As a convenient device for book-
keeping, we will make use of the notion of formal curves. Namely, in
a strong symplectic cobordism X, a formal curve C' consists of a nodal
punctured surface ¥, with each puncture designated as either positive
or negative, together with, for each irreducible component of ¥, the
following data:

e a collection of Reeb orbits I't = (7{,...,7f) in 87X T corre-
sponding to the positive punctures of
e a collection of Reeb orbits '™ = (v, ,...,7,-) in 9~ X correspond-

ing to the negative punctures of
e a homology class Ay € Ho(X;TTUT™).
Formal curves in a symplectization R x Y of a strict contact manifold Y
are defined similarly, except that both the positive and negative Reeb
orbits lie in Y, with homology classes Ay, € Ho(Y; UL ™). We will also
additionally allow C to have extra marked points decorated by “formal”
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local tangency constraints of the form <7™p> for some m € Z>y. The
formal curves considered in this paper will typically be connected and
without any nodes, and they will always have total genus (after resolving
nodes) zero.

Note that a formal curve C has a well-defined Fredholm index. For
instance, in the case that C'is connected and without nodes or additional
constraints we put

(10)

ind(C):=(n—3)(2—s" —57) + Z CZ: (") — ECZT(VI) +2¢](A).
=1

Jj=1

Any honest? curve u € Mg( 4(IT;T7) can be viewed as a formal curve,
but a formal curve need not have any pseudoholomorphic representative.
Consider strong symplectic cobordisms X+ and X~ with common con-
tact boundary Y = 9t X~ =9~ X', and let X~ ® X denote the strong
symplectic cobordism obtained by concatenating them along Y. Given
pseudoholomorphic curves u~ € Mx—(I;T7) and ut € Mx+(I';T)
with shared Reeb orbit asymptotics I', we can formally glue along the
orbits of I' in a natural way to obtain a formal curve C'in X~ ® X .
Importantly, note that the index is additive under this operation, i.e.
we have ind(C) = ind(u™) + ind(u™).

Another important device from symplectic field theory is that of an-
chors, which are used to correct naively defined structure maps. For
example, if X is a Liouville domain, the linearized contact homology
CHyin (X) can be viewed as the anchor-corrected version of cylindrical
contact homology, the latter not typically being well-defined without
additional assumptions (see e.g. the discussion in [HN, §1]). Sup-
pose that X~ and X are strong symplectic cobordisms with common
contact boundary ¥ = 907X~ = 97 X', and assume that we have
0~ X~ = @. A pseudoholomorphic curve in X, anchored in X, con-
sists of a two-level pseudoholomorphic building, with top level in X
and bottom level in X ~, such that each positive end of a component
in X~ is paired with a negative end of a component in X, but we
allow unpaired negative ends of components in XT. We will refer to
the unpaired negative ends of components in X' as the negative ends
of the anchored curve. The index of an anchored curve is by definition
the sum of the indices of each component, and the topological type is
that of the punctured surface given by gluing together the components
of the domain along paired punctures. Intuitively, we view a curve in
X anchored in X~ as a curve in X with some extra “tentacles” ex-
tending into X ~, noting that the level in X may consist of more than
one component. Similarly, if X is a Liouville domain, we define curves

9We will call a curve “honest” when we wish to emphasize that it is not formal.
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in the symplectization R x 0.X, anchored in X, in essentially the same
way, but now with top level in R x 0X. We can also speak of anchored
formal curves, defined similarly but with each level only a formal curve
(i.e. we have two levels, one in X and one in X, each consisting of
one or more formal curve components).

2.3. Local tangency constraints. In order to probe higher dimen-
sional moduli spaces of pseudoholomorphic curves in the Weinstein
domains X}", we will need to impose additional geometric constraints
to cut down dimensions. Although there are a number of possible
geometric constraints we could impose, such as multiple point con-
straints or blowup constraints (see e.g. the discussion in [Sie2, §5]),
the most fruitful for us are local tangency constraints. The basic idea,
pioneered by Cieliebak—Mohnke [CM2], is to require curves to pass
through a generically chosen point p and to be tangent to specified
order to a generically chosen germ of a divisor D passing through p.
For example, if M is a closed 2n-dimensional symplectic manifold with
A € Hy(M), the count of pseudoholomorphic curves in M representing
the class A and with tangency order m (i.e. contact order m + 1)
to D at p gives rise to a Gromov—Witten type invariant, denoted
by GWy a<T™p> € Q, which is independent of all choices. Note
that the local tangency constraint <7 ™p> cuts down the expected
dimension by 2n + 2m — 2. These counts are defined in [MSie] using
classical transversality techniques for semipositive closed symplectic
manifolds, in which case they are integer-valued, computable by an
explicit algorithm at least in dimension four. We can also incorporate
local tangency constraints into moduli spaces of punctures curves,
and we denote the analogues of the aforementioned moduli spaces by
M 4 (CHT)<T™p>, MY (T T7)<T™p>, and so on.

As explained in [MSie, §4], one can equivalently replace the local
tangency constraint with a skinny ellipsoidal constraint. Namely, after
removing a small neighborhood of p which is symplectomorphic to a
sufficiently skinny 2n-dimensional ellipsoid, curves satisfying the con-
straint <7 ™p> are substituted by curves with an additional negative
puncture which is asymptotic to the (m + 1)-fold cover of the small-
est action Reeb orbit in the boundary of the skinny ellipsoid. This
approach, while somewhat less geometrically natural, has the advan-
tage of casting the constraint entirely within the standard framework of
asymptotically cylindrical curves in strong symplectic cobordisms. For
easy of exposition, we stick with the local tangency terminology and
notation.

2.4. Weinstein structure on a divisor complement. In this sub-
section, we discuss the geometry and topology of complements of di-
visors in closed symplectic manifolds. We first recall that there is a
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natural Weinstein structure on the complement of any ample simple
normal crossing divisor in a smooth projective complex variety. We
then formulate Theorem 2.7, which gives a precise model for the Reeb
dynamics. Together with Proposition 2.10, this gives an explicit un-
derstanding of the actions, first homology classes, and Conley—Zehnder
indices of the corresponding closed Reeb orbits.

Let M?" be a smooth complex projective variety, and let D C M
be an ample divisor, i.e. D = ¢71(0) is the zero set of a holomorphic
section o of an ample line bundle £ — M. We assume that D is a simple
normal crossing divisor, i.e. each irreducible component is smooth, and
near each point of D there are local holomorphic coordinates z1, ..., z,
such that D is cut out by the equation z; ...z; = 0 for some 1 < k < n.
Recall that ampleness of L is equivalent to positivity, i.e. the existence
of a Hermitian inner product (—,—) on £ such that curvature with
respect to the Chern connection is a Kéhler form. Given a holomorphic
section o, this is equivalent to the function ¢ := —log||o|| being a
strictly plurisubharmonic function on X := M \ D, where || — || is the
norm corresponding to (—, —). In this case, —dd®¢ extends to a Kéhler
form on M.

By [Seil, Lem. 4.3], the critical points of ¢ form a compact subset
of X. In particular, after a small perturbation we can assume that ¢ is
a Morse function. Then since ¢ is exhausting, (X,.J) is a Stein mani-
fold, and the restriction to {¢ < C} is a Stein domain for any C' > 0
sufficiently large. Note that the Liouville vector field dual to A := —d%¢
is not complete, though this can easily be rectified by postcomposing
¢ with a suitable function ¥ : R — R (c.f. [CE, Prop. 2.11]), after
which (M \ D, \,9 o ¢) becomes a Weinstein manifold. As explained
in [Seil, §4a], it follows from Hironaka’s resolution of singularities that
any smooth complex affine variety can be presented in this way as the
complement of an ample simple normal crossing divisor in a smooth
projective variety, and moreover the resulting Stein manifold is inde-
pendent of all choices (the compactifying divisor, the Hermitian metric,
etc) up to Stein deformation equivalence.

Now let Dy, ..., Dy denote the irreducible components of an ample
normal crossing divisor D in a smooth complex projective variety M,
and consider a nonzero tuple 7@ = (vy,...,v;) € Z%,\ {0}, which we
suppose has exactly » > 1 nonzero components. For future reference,
we introduce some additional notation:

e Let Dz denote the intersection of all those D; for which v; # 0.
e Let Dy :=Dz\ |J D; denote the open stratum of Dj.

i v;=0
e Let NDz — Djz denote the normal bundle to Dy C M. There
is a natural reduction of the structure group to U(1)*", and in

particular we can locally identify the fibers with C*" in a manner
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which preserves the splitting. We will also sometimes identify
N Dy with a small neighborhood of Dz in M

e Let Sy denote the T bundle over Dy given by (NDz\ D)/RZ, and
let S F— D denote its restriction to D~

e Let S3/S! denote the T"~!-bundle over Dy given by quotienting
Sz by the restriction of the natural free T" action to the circle
{t¥ : t € R} C R"/Z" =T", and let Sz/S* denote its restriction
to bg.

e Fori=1,...,k, let ¢; denote a small disk in M which intersects
D, once transversally and negatively and is disjoint from the other
divisor components, and let [0c;] € Hi(X) denote the homology
class of its boundary.

In order to discuss the action filtration on a divisor complement, we
also recall the notion of wrapping numbers.

Definition 2.5. [McL3] Assume that M is a smooth complex pro-
jective variety with a divisor D = o~1(0), where ¢ is a holomorphic
section of an ample line bundle £L — M. For ¢ = 1,...,k, the ith
holomorphic wrapping number is minus the vanishing order of ¢ along
D;.

There is also a purely symplectic analogue given as follows. Following
[McL2, TMZ], recall that a symplectic simple normal crossing (SNC)
divisor D in a symplectic manifold (M,w) consists of a collection of

transversely intersecting symplectic submanifolds Dy, ..., Dy C M such
that each partial intersection Dy := (| D;, I C {1,...,k}, is a symplec-
i€l

tic submanifold, and the “symplectic orientation” on D agrees with the
“intersection orientation”. We note that this last condition is equivalent
to the existence of a compatible almost complex structure J for (M, w)
which makes each D; J-holomorphic.

Definition 2.6. [McL3| Let (M,w) be a symplectic manifold with
a symplectic SNC divisor D = Dy U--- U Dy, and let A be a one-
form on M \ D with d\ = w[j\p. Let N be the closure of a small
neighborhood of D with smooth boundary which deformation retracts
onto D, and let p: N — [0, 1] be a function which is equal to 1 near D
and vanishes near dN. Let @ be the two-form on N given by w near D
and d(pA) away from D. The symplectic wrapping numbers wi, ..., wg
are the unique coefficients such that — "% w;[D;] € Han o(N;R) is
Poincaré-Lefschetz dual to [@] € H?(N,ON;R).

The following theorem summarizes most of what we will need to know

about the symplectic geometry of divisor complements:

Theorem 2.7 (see [McL2, §5] or [TMZ, Thm. 2.17]). Fiz C € Ryg
arbitrarily large and € € Rsq arbitrarily small. Let M be a smooth com-
plex projective variety with an ample simple normal crossing divisor D,
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and let (X, \, @) denote the associated Weinstein domain corresponding
to the divisor complement. For each v € 7% 20\ {0}, pick an exhausting

Morse function'®  fy : S@‘/Sl — R. After a Weinstein homotopy of
(X, N\, ¢) and a deformation of D through symplectic SNC' divisors, we
can find a Kdahler form w on M and an embedding ¢ : X — M such
that:

(1) N := M\ «(X) deformation retracts onto D

(2) fw = dA, and 1\ extends to a one-form X on M \ D such that
d\ = w|ynp

(8) the symplectic wrapping numbers of D coincide with the holomor-
phic wrapping numbers.

Moreover, the contact form o := A|gx has nondegenerate Reeb dynam-
ics, where:

(4) the Reeb orbits of (0X, ) of period less than C are in one-to-one
correspondence with the set of critical points crit(fz) of fz as U

ranges over 7% 0 \ {0} such that — Ek_l viw; < C.
(5) the Reeb orbit v4 corresponding to the tuple ¥ € 7% >0 \ {0} and

critical point A € crit(fz) lies in the homology class Zi:l v;[0c;] €
Hy(X)
(6) the action of ¥4 is given by — Zle viw;, up to a discrepancy of €.

In the sequel, we will typically assume that the above theorem has
already been applied to a given divisor complement, and by slight abuse
of notation we view ¢ as an inclusion X C M and denote A again by .

Remark 2.8.

e Note that for any admissible almost complex structure J on the
symplectic completion of N, any J-holomorphic curve in N must
intersect D. Indeed, otherwise by (2) we can apply Stokes’ theo-
rem together with nonnegativity of energy to get a contradiction.

e For most of the pseudoholomorphic curve arguments in this paper
we have an a priori upper bound on the actions of Reeb orbits
which could arise. This means we can simply take C to be suf-
ficiently large and safely ignore all Reeb orbits of action greater
than C.

Note that qu/ S' is typically noncompact, hence we must specify the behav-
ior at infinity. Since f7 is exhausting, after choosing a Riemannian metric which
is Morse—Smale for fv, the resulting Morse cohomology is isomorphic to the ordi-
nary cohomology of Sy /S*. By Poincaré duality, this is isomorphic the Borel-Moore
homology of Sy 35/S* after a degree shift.
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We end this subsection by discussing the Conley—Zehnder indices of
the Reeb orbits *ygl described in Theorem 2.7. In the context of Theo-
rem 2.7, each Reeb orbit 71’74 bounds a small spanning disk v in N which
has homological intersection v; with [D;] fori =1,..., k.

Lemma 2.9. Assume that the Poincaré dual to ci(TM) can be ex-
pressed in the form hi[Di] + --- + hg[Dy] € Hap o(M;R) for some
hi,...,h; € R. Let v be a Reeb orbit in 0X, and let u,u’ : D> — M be
two bounding disks such that [u] - [D;] = [W/] - [D;] fori=1,...,k. We
have CZy(y) = CZy (7).

Proof. Let S denote the sphere in N = M \ X obtained by gluing
u to «' with its opposite orientation, and let [S] € Ha(N) denote the

corresponding homology class. Note that the homological intersection
number [S] - [D;] vanishes for ¢ = 1,... k. Then by §2.1.4 we have

(11) CZu(v) = CLuw (v) = 2c1(M) - [S] = Zhi[Di] -[S]=0.

q.e.d.

By default, we will compute the Conley—Zehnder index of the Reeb
orbit ’y;jf‘ via a small spanning disk u as in Lemma 2.9 which satisfies
[u] -[D;] = v; for i = 1,..., k. We denote this trivialization of T'M along
the Reeb orbits 71‘74 by 79, and we denote the corresponding Conley—
Zehnder index by CZ,.

Proposition 2.10. [GP, §2] For each 7 € 75\ {0} with Dy # @,
we have

k
(12) CZr(vd) =n—1—|A| =2 w.
i=1
Here |A| denotes the Morse index of A € crit(fz). Putting
(13) 0 =0(7z)=n—1-|4],
we have alternatively CZ, (v4) = § — 24 T with § < n—1. Here we use
the shorthand 1 := (1,...,1).
N——
k
Remark 2.11. Consider the case that D is anticanonical, with ir-
reducible components Dy, ..., Dy, and let £ be a meromorphic section
of the canonical bundle of M which is nonvanishing away from D. For
i=1,...,k, let a; denote the order of vanishing (possibly negative) of

x along D;. In this case we can alternatively compute Conley—Zehnder
indices with respect to the holomorphic volume form «|x, and we have

k
(14) Czn(ﬁl):”—l—|A|—22w(ai+1)~
=1



ON THE EMBEDDING COMPLEXITY OF LIOUVILLE MANIFOLDS 1047

Example 2.12. As a simple example, let us specialize to the case
of a four-dimensional hyperplane complement X,g. For k € Z>», let
Y denote the two-sphere with &k punctures. Then for any nonzero
7= (v1,...,vx) € Z%, we have:

e when there is exactly one nonzero component of #, So’g is diffeo-
morphic to ¥;_; x S! and 5’5/31 is diffeomorphic to 3j_q

e when there are exactly two nonzero components of v, So'g is diffeo-
morphic to T2 and Sg/ S is diffeomorphic to S*

e if three or more components of ¥ are nonzero, then Dy = &.

Now choose exhausting Morse functions f3 : Sg/ S! — R as in Theo-
rem 2.7, which in this example we can assume are perfect, so that the
critical points give rise to a distinguished basis for H *(5’5/ S1). The
Reeb orbits of 8X2‘ (of period less than C) are then given explicitly as
follows:

1) For each ¥ with exactly one nonzero component, we have the Reeb
orbit 71‘74 with CZ, (71‘74) = 1—2?21 vj, corresponding to the unique
basis element of HY(3;_1).

2) For each ¢ with exactly one nonzero component, we have the Reeb
orbits 'y;f‘ with CZ, (71’74) =— Zle v;, corresponding to the k — 2
basis elements of H'(3;_1)

3) For each ¢ with exactly two nonzero components, we have the
Reeb orbit 75‘4 with CZ, (wgl) =1- Zle v;, corresponding to the
unique basis element of H%(S!)

4) For each ¢ with exactly two nonzero components, we have the
Reeb orbit 74 with CZ,(v4) = — Zle v;, corresponding to the
unique basis element of H'(S!).

3. A family of invariants

In this section we describe our general family of symplectic invariants
which obstruct Liouville embeddings. Firstly, in §3.1 we elaborate on
the S'-equivariant analogue of Observation 1.1 and the resulting Liou-
ville embedding obstruction F, which has appeared in the literature in
various forms. In §3.2, we vastly generalize this by incorporating L.
structures, and we encode this data as the invariant [<!. Finally, in §3.3
we introduce the simplified invariant G<7™p>, whose computation is
more tractable and will suffice for our main applications.

3.1. Obstructions from cylinders. We seek to generalize the binary
phenomenon of vanishing symplectic cohomology as in Observation 1.1.
For simplicity, we work throughout over K = Q. Let X be a Liouville
domain, and let e € SH(X) denote the unit in its symplectic cohomology
ring with its pair of pants product. We will also use e to denote the
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unit in the ordinary cohomology ring H*(X). Let
co o H*(X) = SH*(X) - SHY(X) & H*H(X) — ...

denote the long exact sequence coming from splitting off the generators
of low action. Note that symplectic cohomology is generally graded only
by Z/2, although this can upgraded to a Z grading if ¢;(X) = 0, and by
default we grade Hamiltonian orbits by n — CZ (as usual, n denotes half
the real dimension of X'). Since SH(X) is a unital K-algebra, it vanishes
if and only if we have e = 0 € SH(X), or equivalently if e € H(X) lies
in the image of ¢.

Passing to S'-equivariant symplectic cohomology produces more in-
formation as follows. We refer the reader to e.g. [BO, Seil, Gan, GH]
for more on the technical setup and structural properties of SHg1. By
slight abuse of notation, let e also denote the image of e € SH(X) under
the “erase” map SH*(X) — SHE,(X). It should be emphasized that
SHg:(X) does not have a product, although it does have a Lie bracket
of degree —2, which corresponds to the “string bracket” in the case that
X is cotangent bundle. In particular, the vanishing of e € SHgi(X)
does not necessarily imply that SHg1 (X) itself vanishes.

We put K[u~!] as a shorthand for the K[u]-module K[u, u™1]/(uK[u]),
where u has degree 2. From the algebraic point of view (c.f. [Gan, §2]),
SC(X) is endowed with the structure of an S'-complex, i.e. we have
a sequence of operations 6° : SC*(X) — SC**1=2 for i ¢ Z>p, with
80 the differential and 6 descending to the BV operator, such that we
have Y. 8704/ =0 for all k € Z>p. Then SHgi(X) is the homology

itj=k
of the positive cyclic chain complex (SCgq1(X),dg1) with SCq1(X) :=
o0
SC(X) ® Klu~!] and dg1 := > uié’.
Similar to the nonequivarilar(l)t case, we have the connecting map
Sg1: SHG | (X) = Hy (X)),

which is a map of K[u]-modules. Here H,(X) is canonically identified
with H*(X)® Klu™1]. Let Py: He1(X) ~ H*(X) ® Klu™] — Klu=!]{e)
be induced by the map H*(X) — H°(X) = K{e) projecting to degree
zero (we assume that X is connected, so that H°(X) is one-dimensional
and generated by e). We also use e to denote the image of the unit
under the natural map H*(X) — Hg, (X).

Definition 3.1. Let F(X) € Z>¢ U {oo} be the smallest k£ such that
u~*e does not lie in the image of Py o dg1 : SHY, L(X) = Klu™(e). If
no such k exists, we put F(X) = co.

Note that if u e lies in the image of Py o dg1, then by K[u]-linearity

so do the elements v **le ... u~le,e. Using Viterbo functoriality and
standard invariance properties for symplectic cohomology, we have:
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Proposition 3.2. For a Liouville domain X, F(X) is independent
of all choices and invariant under Liouville deformation equivalences.

Giwen a Liouville embedding X & x of Liouville domains X, X', we
have F(X) > F(X').

Proposition 3.2 is proved in [GH] with mostly quantitative appli-
cations in mind. Indeed, the authors define a sequence of symplectic
capacities ¢{H(X) < §H(X) < §H(X) < ... valued in Rsg U {00},
and F(X) is equivalent to the number of such capacities which are fi-
nite. For example, if X is a star-shaped domain in C”, then all of these
capacities are finite and hence we have F(X) = oo.

A closely related notion of higher dilation is introduced in [Zha],
based on the original definition of dilation from [SS]. Recall that a
Liouville domain X admits a dilation if A(z) = e € SHY(X) for some
x € SHY(X), where A : SH*(X) — SH*}(X) denotes the BV operator.
It admits a higher dilation if and only if we have F(X) = co. The higher
dilation concept is refined in [Zho] by declaring that X has a k-dilation
if e € SHg1(X) is killed on the (k + 1)st page of the spectral sequence
induced by the u-adic filtration. Then F(X) > 0 if and only if X admits
a k-dilation for some k (or equivalently X admits a cyclic dilation in
the sense of [Lil]).

Remark 3.3. The definition of F(X) is also formally similar to
the notion of algebraic torsion of contact manifolds introduced in
[LWH], which provides a hierarchy of symplectic fillability obstruc-
tions. Whereas the former involves only genus zero curves and applies
to Liouville domains, the latter is based on higher genus symplectic field
theory and applies to contact manifolds which cannot be strongly filled.

3.2. Incorporating curves with several positive ends. The invari-
ant F(X) is unfortunately not strong enough to tackle Problem 1.2 or
the more general Problem 1.4. Indeed, recall that SHg, , (X) has a
natural grading by H;(X), corresponding to the homology classes of
generator loops. Moreover, the map dg1 : SHg: | (X) — H*Y(X) is
compatible with this grading, which means that it is supported on the
graded piece of the trivial class in H;(X). However, for d = (di, . .., dy)
with k& > n + 1, none of the Reeb orbits in OXSZ" with our preferred
contact form are contractible in XC%” (see §4.1). It then follows that g1
is trivial, and hence:

Lemma 3.4. For d = (di,...,d;) € Z’gl with k > n + 1, we have
[F(Xsﬂ) =0.

In principle one could imagine extracting more information using the
product or Lie bracket on SH or the Lie bracket on SHg1, which are
based on pseudoholomorphic curves with not one but two positive ends.
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However, for Xjﬂ with & > 2n + 1 these operations are purely “topo-

logical” by first homology considerations (see Theorem 2.7(5) and (15)
in §4), i.e. they vanish unless one of the inputs comes from H*(X),
and hence it seems unlikely that they carry any nontrivial embedding
obstructions. Note that the ring structure on SH(X CQZ") in this case is

isomorphic to the log cohomology ring from [GP, §3].

To go further, we can consider the chain-level L., structure on
SCg1(X), which encodes certain counts of genus zero pseudoholomor-
phic curves with an arbitrary number of positive ends and one negative
end. By upgrading the map FPyodg1 : SCq1 4 (X) — Klu™!] to an Lo
homomorphism and appealing to the bar construction framework of
[Sie2], we obtain a large family of symplectic invariants which behave
well with respect to Liouville embeddings. Unfortunately, a complete
description of this L, algebra has not yet appeared in the literature,
and its relationship to the direct geometric approach of §5 is somewhat
opaque.

Rather, in this paper, following [Sie2] we replace SCg1 4 (X) with
its SFT counterpart CHy,(X), and we replace the connecting map
dg1 with a map counting curves with local tangency constraints. Here
CHy;, (X)) denotes linearized contact chains, the chain complex comput-
ing linearized contact homology CHy,(X).1Y  We refer the reader to
[EGH] for a structural description of linearized contact homology and
to e.g. [FH, Par, HN, BH, Ish]| for some technical approaches to its
construction.'? An isomorphism between positive S'-equivariant sym-
plectic cohomology and linearized contact homology (assuming K = Q)
is described in [BO]. In the following discussion, we defer to [Sie2, §3]
for a more detailed discussion of the L., structure on CHy, and [Sie2,
§5] for augmentations defined by local tangency constraints.

As a K-module, CHy;,(X) is freely spanned by the good!® Reeb or-
bits of 0X. Using the n — CZ grading convention, the L., operations
(Y, 02,03, ... are such that ¢¥ : ®FCHy,(X) — CHy,(X) has degree
4 — 3k. Here (¥ counts (possibly virtually perturbed) index one asymp-
totically cylindrical pseudoholomorphic curves in the symplectization
R x dX modulo target translations, anchored in X, with k positive punc-
tures and one negative puncture. Strictly speaking this makes CHy;, (X)
into a shifted L algebra, and following [Siel] it is convenient to instead

11Adopting the notational convention of [BEE], CHy, by default denotes the
chain level object, and we use the boldface CHyi, to denote its homology.

12At the time of writing the homotopy relations needed to establish suitable in-
variance properties of linearized contact homology have not yet been adequately
addressed in many of these approaches (see e.g. the discussion of cylindrical contact
homology in [Par, §1.8]).

13Recall that a Reeb orbit is good if it is a cover of another Reeb orbit whose
Conley—Zehnder index has the opposite parity. All of the Reeb orbits appearing in
the main examples in this paper are good.
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grade by n—CZ—3, so that each operation £* : ©®*CHy;, (X) — CHyp, (X)
has degree +1 (here ®F denotes the k-fold graded symmetric tensor
product over K).

The bar complex BCHy;, (X) is by definition the chain complex given

by the reduced symmetric tensor algebra SCHy, (X) = @ ©FCHji, (X)),
k=1

equipped with the degree +1 bar differential v SCHy(X) —
SCHyn(X). For I € Zsq, let BSICHy,(X) € BCHy,(X) denote the
subcomplex spanned by elements of tensor word length at most [. We
also put BS*°CHy, (X) := BCHy, (X).

Let e<7T*> : CHjn(X) — K[t] denote the Lo homomorphism given
by counting curves in X with local tangency constraints. Here K][t]
is viewed as an abelian L., algebra, i.e. all operations vanish iden-
tically, graded such that t* has degree —4 — 2k. More precisely, this
L+ homomorphism consists of terms e*<7T*p> : GFCHy, (X) — K[t
for k € Z>1. For Reeb orbits ~i,...,7k, the structure coefficient
(eF<T*p>(71,...,7k),t™) counts k-punctured spheres in the (symplec-
tic completion of) X with positive Reeb orbit asymptotics 71, ..., v,
and having tangency order m (i.e. contact order m + 1) to a generic
local divisor D at a point p € X. Let e<T*p> : BCHy,(X) — BK][t]
denote the induced map on bar complexes, which has degree zero with
our conventions. Note that BK[t] is simply SK[t] equipped with trivial
bar differential, and we identify its homology HBK][t] with SK[t].

Definition 3.5. For | € Z>1 U {oo}, let 1(X) C SK[t] denote the
image of the homology level map He<T *p> : HBCHy, (X) — SK[t].
More refinedly, let 15/(X) denote the image of the same homology level
map after restricting to HBS'CHy, (X).

As in [Sie2], by the functoriality package for CHy;, (X) and e<7*>
we have:

Theorem 3.6. For a Liouville domain X andl € Z>1U{oc}, IS1(X)
1s independent of all choices and invariant under Liouville deformation

equivalences. Given a Liouville embedding X <£> X' of Liouville domains
X, X', we have 15H(X") C 154 X).

Note that [ = 1 corresponds to the case of curves with only one posi-
tive end as in F(X). At the other extreme, I(X) = 15°°(X) corresponds
to the case of no restrictions on the number of positive ends.

Remark 3.7. It is also natural to consider analogous invariants de-
fined by replacing the local tangency constraint by some other geometric
constraint. For example, we can consider curves with a fixed number of
generic point constraints. As explained in [Sie2, §5], this necessitates
the more elaborate formalism of rational symplectic field theory.
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3.3. The simplified invariant G<7™p>. The invariant 1=¢ provides

strong obstructions to the existence of Liouville embeddings X & X'
between Liouville domains X, X’. However, its full computation re-
quires a rather strong understanding of both the chain-level L., algebra
CHjin (X) and the Lo homomorphism e<7°*p> : CHy,n(X) — KIt],
which is quite challenging to achieve for all but the simplest exam-
ples. Also, the map E<7 *p> has a geometric interpretation as counting
curves with several components, but this is somewhat unintuitive.

In order to have a more easily interpretable invariant, we now in-
troduce a simplified invariant whose computation is typically more
tractable and which involves only irreducible curves. To achieve this,
let 7y, : SK[t] — ©FK[t] denote the projection to the subspace spanned
by elements of word length k. In particular, we have m : SK[t] — K[¢].

As a warmup, consider the condition that 1 € K[t] lies in 71 (1S¢(X)).
Heuristically, to first approximation this means there is a rigid curve in
X which passes through a generic point constraint and has at most [
positive ends. However, to make this more accurate we need to keep in
mind that (a) in addition the asymptotic orbits must define a cycle with
respect to the bar complex differential, (b) this cycle could be a linear
combination of several elementary tensors, and (c) the relevant curves
are possibly anchored and virtually perturbed, and they are counted
algebraically with signs.

More generally, we can replace the point constraint <p>, which cor-
responds to 1 € K[t], with a local tangency constraint <7"™p>, which
corresponds to t" € K[t].

Definition 3.8. Let G<7"p>(X) € Z>1 U{o0} denote the smallest
I such that 7 (15/(X)) has nontrivial image under the projection map
mem  K[t] — K(#™).14 If no such [ exists, we put G<7"p>(X) = oo.

Heuristically, to first approximation G<7"p>(X) records the small-
est number of positive ends of a rigid curve in X satisfying a <7 ™p>
constraint. The following is immediately extracted from Theorem 3.6:

Theorem 3.9. For a Liouville domain X and m € Z>o,
GC<T™p>(X) is independent of all choices and invariant under Liou-

ville deformation equivalences. Given a Liouville embedding X <£> X'
of Liouville domains X, X', we have G(X) < G(X").

Remark 3.10. A closely related invariant based on an L. struc-
ture on SCgq1 and defined in terms of the w-adic spectral sequence is
mentioned in [Sei2].

11 ¢1(X) = 0, by grading considerations this is equivalent to saying that t™ lies
in 7 (15Y(X)).
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4. Computations for hypersurface complements I:
SFT version

The goal of this section is to prove Theorem 1.8. We begin with
some generalities on projective hypersurface complements in §4.1. The
proof then proceeds by establishing a lower bound in §4.2 and an upper
bound in §4.3. Finally, in §4.4, we describe a more general framework
for producing Maurer—Cartan elements.

Note that in this section we assume SFT transversality via virtual
perturbations, although the arguments are independent of any specific
perturbation scheme. In the next section we upgrade this to the stronger
Theorem 1.11 and also remove this assumption.

4.1. Geometry of hypersurface complements in projective
space. We now specialize the discussion from §2.4 to the complement of
a collection of generic hypersurfaces in projective space. Here by generic
we mean that each hypersurface is smooth, and the collection defines a
simple normal crossing divisor. Given a tuple de Z’;l with & € 751,
we consider the corresponding Weinstein domain XC%” = CP"\ Op(D),
where Dq,..., Dy is a generic collection of (smooth) hypersurfaces in
CP™ of degrees d, ..., d; respectively, and we put D := Dy U---U Dy.

After a Weinstein homotopy, we arrange that Xd%” has geometry

as in Theorem 2.7. In particular, for each ¥ € Z’go \ {0} we choose

a Morse function fz : Sg/ S — R, which we further assume has a
unique minimum. Let €; denote the ¢th standard basis vector, i.e.
€ :=1(0,...,0,1,0,...,0). Then there is a unique Reeb orbit (of action
i—1 k—i

less than C) of GXCQZ" of the form yé with CZ, ('yé) = n—3, correspond-
ing to the unique minimum A of fg, : So'gi /St — R. For future reference,
we denote these orbits by 1, ..., 8. Heuristically, these correspond to
the fundamental classes of the open divisor strata bgl, cen bgk.

Let [0¢;] = B; for i = 1,...,k denote the homology classes of

small loops surrounding the hypersurfaces D1,..., Dy as in §2.4. Then
Hl(Xjﬂ) is (k — 1)-dimensional, with

(15) Hy(X2") = Z([0cy), ... [0ck)) /(dr[0er] + - - + di[Der]) = 2/ (d)

(see e.g. [Lib, Prop. 2.3]).

For k,n € Z>1 and a tuple d = (dy,...,dy) € 7% |, put ged(d) =
ged(dy, ..., dy). As explained in §2.4, we have a preferred trivializa-
tion 19 of the symplectic vector bundle TX;” over each Reeb orbit

S
;74 in 8X3”. Observe that a symplectic embedding XC%" — X;” pulls

back cl(XC%”) to cl(Xc%”). In particular, if X;{‘ is Calabi-Yau, i.e.
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c1 (XC%") = 0, then the same must also be true of XC%". The Calabi-
Yau condition for Xffn is equivalent to the existence of aq,...,ap € Z

such that Zle a;d; = —n — 1. More generally, we have:

Lemma 4.1. For i € Z, we have icl(Xjf”) =0¢€ Hg(Xjf”) if and

only if i(n + 1) is divisible by ged(d).

As a consequence, we obtain the following purely formal counterpart
to Theorem 1.11. In the following, a codimension zero smooth embed-
ding is an almost symplectic embedding if it preserves the homotopy
class of the symplectic form as a nondegenerate two-form (or, equiva-
lently, it preserves the homotopy class of a compatible almost complex
structure). Put

-

.: gcdgd) .
ged(ged(d),n + 1)

&

(16)

Corollary 4.2. Suppose there is an almost symplectic embedding of
Xffn into X{%”. Then we must have that F,,(d) divides F,(d").

Proof. Let ¢ be an almost symplectic embedding X;" — Xg;”. Ob-

serve that F,(d) is the smallest positive i such that ged(d) divides
i(n + 1), or equivalently such that ic; (X;”) = 0. Note that ¢ preserves
the homotopy class of compatible almost complex structures, and hence
first Chern classes. Then we have

Fu(@)er(X2) = 0 (F(d)en (X20) = 0,
and hence F,(d') is a multiple of F,(d). q.e.d.

Proof of Lemma 4.1. Put X = Xg", and consider the long exact se-
quence

o — H*(CP", X) — H*(CP") —» H*(X) — ...,
which using excision and Poincare—Lefschetz duality we can rewrite as
-o- = Hyp_o(D) — H*(CP™) — H*(X) — ....

Let [H] € Ha,—2(CP™) denote the hyperplane class. Using the iden-
tifications Ha,—2(D) = Z([D1],...,[Dy]) and H*(CP") = Z[H]", ob-
serve that the image of an element x € Ha,_o(D) is (z - [H])[H]Y. In
particular, the element [D;] € Ha,_2(D) gets mapped to d;[H]Y for
i=1,...,k, and hence the image of this map is Z(ged(d)[H]). Since
c1(X) € H*(X) is the image of (n + 1)[H]Y € H?(CP™), this vanishes

—

if and only if ged(d) divides n + 1. More generally, for ¢ € Z, ici(X)

-

vanishes if and only if ged(d) divides i(n + 1). q.e.d.
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Remark 4.3. It is interesting to compare Corollary 4.2 with Ex-

ample 1.13. Namely, consider a Liouville embedding X(%Z) <£> Xc%”.
Under the assumption ged(di,n + 1) = 1, we have F,((d1)) = di, and

hence Corollary 4.2 implies that di must divide F;,(d’), and hence also

ged(d’). By contrast, in the case that dy is a divisor of n + 1, we have
F,((d1)) = 1, so Corollary 4.2 is vacuous, whereas Theorem 1.11 implies

that dy|ged(d’) still holds.

Fix d = (di,...,d;) € 7% | for some k € Z>;. Recall that the loci of
Reeb orbits for 8X3]‘ give rise to the spectral sequence in [GP, McL3],
which computes the symplectic cohomology of X}" and whose first page
is described in terms of the ordinary cohomology of the torus bundles 5*17
over the open divisor strata 10?17. A straightforward consequence using
compatibility with the grading by H; (XC%”) is that the spectral sequence

degenerates at the first page if we have k£ > n + 1. Combining this with
[GP, Cor. 1.2]:

Proposition 4.4. We have SH(X(%”) # 0 for any coefficient ring K,
provided that either Zle di>n+1ord; >2 for someie {1,...,k}.

Note that X27; is Weinstein deformation equivalent to D*T", and
in particular has nonvanishing symplectic cohomology. For Zle d; >

n+ 1, we have X2", Z X;" by Theorem 1.15, and hence SH(X}”) #0
by Observation 1.1.

Remark 4.5. Note that for Zle d; < n+1 with d; > 2 for some
ie{l,...,k}, X(%” is not subcritical or flexible. It would be interesting

to see whether the assumption Ziil d; > n+1 in Corollary 1.9 could
be weakened.

4.2. Lower bound. In this subsection we prove the following lemma,
which is based on index and first homology considerations:

Lemma 4.6. For d = (dy,...,dy) € 2121 with Zle di >n+1, we
have G<T"'p>(X2) > 31, di.

Proof. Let ef<T*p> : @kCth(X;”) — K[t] for k € Z>; denote the
maps constituting the L., homomorphism <7 *p> : CHlin(Xjﬁ) —
K[t], i.e. the coefficient of ™ in e¥<T*p> counts curves with k pos-
itive ends and a <7 ™p> local tangency constraint. Let e<7Tp> :
@kCHlin(X ) — K denote the L, augmentation whose constituent maps
eF<Tmp> for k € />y are given by post composing eF <T*p> with the
projection to the t™ component of KI[t].
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According to the definition of G<T"_1p>(X}”), it suffices to show

that we have e!<T" !'p>(v1,...,7) = 0 for any [ < Zle dj, and Reeb
orbits v1,...,y in 8X62lﬁ. Since e'<T™ 1p> counts index zero curves,
this follows immediately from the next lemma. q.e.d.

Lemma 4.7. Assume Zle di > n+1. Let u be a formal curve
n Xflfb with 1 < Zle d; positive ends and satisfying the constraint
<T" 'p>. Then we have ind(u) < 0.

Proof. For u a formal curve in X}” as in the statement of the lemma

with [ positive ends, which we take to be of the form fy?ll, . ,fyél for
some vectors ¥,...,U0 € Z’;O and critical points A; € crit(fy) for

i =1,...,1. Note that we must have Zﬁzl[’yg‘ii] =0¢€ Hl(XL%"), Le
Eizl @ = qd for some q € Z>.
Let 79 denote the framing of Reeb orbits in OXC%" which extends over

small spanning disks as in §2.4, and let ¢°(u) denote the relative first
Chern number of uw with respect to 9. By capping off each asymptotic
Reeb orbit of u with its small spanning disk, we obtain a formal two-
sphere S in CP" of degree q. Since the trivialization 7y extends over
each of the small bounding disks, we have

() = ex(S) = g(n + 1),
By the discussion in §2.4, for each 1 < ¢ <[ we have CZ, ('y;%i) =

8; — 20 - 1 for some 8; < n — 1. Noting that the constraint <7 1p> is
codimension 4n — 4, we then have

l
ind(u) = (n—3)(2— 1) + Y _ CZ(v2") +2¢[° (u) — (4n — 4)
=1
l
:(n—3)(2—l)—|—2(5¢—217i'f>+2q(n+1)—4n—|—4
l
<(n-3)2-0)+ n—ll—2<z ) T4+2¢(n+1)—4n+4

=1

—(n=3)2-+ -1 -2(d-T-n-1)~4n+4

k
§(n—3)(2—l)—|—(n—1)l—2(Zdi—n—1> —dn+4

. =1
=921 —2 Z d;
=1

< 0.
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4.3. Upper bound. We prove the following lemma, which together
with Lemma 4.6 proves Theorem 1.8:

Lemma 4.8. For any d = (di,...,dx) € Zgl, we have
C<T" Ip>(X2) < 0, di.

The basic idea for getting an upper bound is as follows. Starting with
the moduli space Mcpn | L]<7'”71p> of degree one curves in CP" satis-
fying a <7" 'p> local tangency constraint, we stretch the neck along
the boundary of X}”, keeping the constraint in the interior (a similar
approach appears in a slightly different context in [CM2, Ton]). Build-
ing on the discussion in §4.1, we have strong control over the geometry of
the complement CP" \X;fb, which is a small neighborhood of the divisor

D. We show that the outcome must be a nonzero count of curves in X;Jl
with precisely Zle d; positive ends, and moreover the corresponding
collection of Reeb orbits must give rise to a cycle in BCHHH(X}”).

Let N;" denote the closure of CP™ \ X;JL. We begin with a lemma

characterizing certain relative homology classes in Hg(N[%”, (‘9]\7;”).
Lemma 4.9. Consider the exact sequence
f )
Hy(N3") —— Ha(NZ",ONZ") —— Hi(ONZ"),

and suppose that A € HQ(N}”, 8]\7;”) lies in the kernel of §. Then there
is some q € Z such that we have A - [D;] = qd; for eachi=1,... k.

Proof. By exactness, we have A = f(B) for some element B €
HQ(N;—»”). Let ¢ : HQ(N;”) — H3(CP"™) denote the map induced by
the inclusion Nsﬂ C CP™. Observe that we have f(B)-[D;] = «(B)-[D;]
for each 1 < ¢ < k. Since Hy(CP") is generated by the homology

class [L] of a line, we have ((B) = ¢[L] for some ¢ € Z, and hence
A - [D;] = q[L] - [D;] = qd; for each 1 < i < k. q.e.d.

By our transversality assumptions, each limiting configuration un-
der the aforementioned neck stretching procedure must be a two-level
building, with

e top level in N2" consisting of a collection of index zero curves,
each with at least one negative end

e bottom level in XC%” consisting of a collection of index zero curves,
each with at least one positive end,

such that the total configuration represents a sphere in class [L] €
H>(CP™). Note that the bottom level has one “main” component u
which inherits the <7 !p> constraint. By grouping together compo-
nents sharing a paired asymptotic end, excepting the positive ends of
the main component, we can view this as a building with:
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e top level in N}" consisting of a collection of index zero planes
Ci,...,C}, anchored in Xg,”
e bottom level in CP" consisting of just the main component w.

Note that since the anchored planes are composed of pseudoholomorphic
curves, they have nonnegative energy, and by positivity of intersection!®
the homological intersection number [C;] - [D;] is nonnegative for each
ie{l,...,l} and j € {1,...,k}. Put §; = ([Ci] - [D1],...,[Ci] - [Dx]) €
ZI;O. Then, by Lemma 4.10 below, each of the anchored planes C;
is negatively asymptotic to 3; for some j € {1,...,k} (recall that we
defined the Reeb orbit f3; in §4.1), and we have §; = e;. Since the
total configuration represents the line class in Ho(CP™), we must have
Zizl 5, = d. Tt follows that we have [ = Zle d;, and up to reordering
the positive ends of u are Sy,...,81,..., Bk, -..,Bk. For brevity, in the

dy dp,
sequel we denote this list by 8%, ..., kXd’“.

Lemma 4.10. Let C be a formal plane in N;", anchored in ng‘,

with negative asymptotic 71’74. Assume that the homological intersection
number of C with each component of D is nonnegative, and put § :=

([C] - [D1],---,]C] - [Dx]) € Zgo' Assume also that C' has nonnegative
symplectic area. Then we have ind(C) > 0. Moreover, if ind(C) = 0,
for some j € {1,...,k} we must have ¥ = § = €; and |A| = 0, and

hence 71‘74 = B;.

Proof. We will assume n > 2 (the case n = 1 can be checked directly
and is left to the reader). Note that due to the anchors C' make involve
components in X;”, and hence does not a priori define a homology
class in HQ(N;”,&N;”). However, since Hl(Xg.”,(?X;”) = 0, for each
component of C' lying in X;fb there is a formal curve in 0X2" with
the same topological type, positive asymptotics, and energy, and after
making these replacements we get a homology class in Ha (Njﬂ, aNé&”)
which we will denote by [C'].

For i = 1,...,k, let ¢; be a small disk intersecting D; once tran-
versely and negatively and disjoint from the other components of D
as in §2.4, and let [¢;] € Hg(N}",@NC%”) denote its relative homology

class. Since Zle vi[e;] — [C'] lies in the kernel of the connecting map
HQ(N(%”,ON;”) — Hl(aNjﬂ), by Lemma 4.9 we have § = 7 + qd for
some q € 7.

15Strictly speaking positivity of local intersection points would require a more
delicate discussion of virtual techniques. Here we only use need the fact that the
total homological intersection number is positive, which is manifestly perturbation
invariant.
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Let p : Njf” — [0, 1] be a function which is 0 near ONC%” and 1 out-
side of a small neighborhood U of 8]\7;", and let w be the two-form
on N;ﬂ given by pA on U and w on N;" \U. Let w = (wq,...,wWg)
denote the corresponding symplectic wrapping numbers as in §2.4,
ie. —Zle w;i[D;] € Hgn,g(Njﬂ;[R) is Poincaré-Lefschetz dual to
[©0] € HQ(NC%”,GN;”; R). By Theorem 2.7, these agree with the holo-
morphic wrapping numbers, so we have w; = —d; < 0 for i = 1,... k.
We then have:

og/ w:/ a+/ (- )
o e Jien

k
_ <_ZM[D¢]> [C] = A(v)

where in the second line we have used the definition of symplectic wrap-
ping numbers and in the third line we have used part (6) of Theorem 2.7.

Since each component of d is positive, each component of w is nonposi-
tive, and ¢ is arbitrarily small, we must have ¢ > 0.

Observe that we have ¢](C) = ¢(n + 1), since we can glue C to the
small spanning disk for 'yg‘ with its opposite orientation to get a formal
sphere of degree q. We then have

ind(C) =n — 3+ 2¢P°(C) — CZ, (v4)
=n—3+4+2¢n+1)—(6(r) —20-1)
> 24 2(n+1)+27-1,

with equality only if & (7;74) = n—1. We recall here that 7-1 is a shorthand
for Zle v, and ¢ is defined in the discussion following Proposition 2.10.
Moreover, —2+ 27 -1 and 2g(n+ 1) are both nonnegative, with equality
only if -1 = 1 and ¢ = 0, in which case we must have 7 = e; for
some j € {1,...,k}. Since $; is the unique Reeb orbit of the form ’yg
satisfying 5(79;) =n — 1, the lemma follows. q.e.d.

Since neck stretching produces a cobordism of moduli spaces, the
above discussion shows that the count of curves in X 5” with positive

ends B{(dl, e ﬂkx &k and satisfying the constraint <7" !p> is nonzero.
Therefore, to complete the proof of Lemma 4.8, it suffices to show that
(O1B) @ ---© (% Fy,) is closed under the bar differential:

Lemma 4.11. The element (0131) @ ---© (0% 6y) € BCHHH(X;”)
s a cycle with respect to the bar differential.
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Proof. Recall that the L, operations on CHlin(Xjﬂ) count index one
curves in the symplectization R x 0X2", anchored in X2, with some

number [ > 1 of positive ends and one negative end. Let C be such an
anchored curve, with top ends 3, , ..., §;, for someiy,...,4 € {1,...,k}

such that Zé‘:l €i; < cf, and let 75‘ be the bottom end. First homology
considerations give

[717A] = [611] +ot [621] € HI(Xj"n)a

and hence ¥ = é;, + --- + €, + qd for some q € Z.
By nonnegative of energy and Stokes’ theorem, we have
0< E(C) = A(Bi) + -+ ABy) — A(vi)
<—w- (€ 4+ +e =)+ ([ +1)e

=

= —w-(—qd) + (I + e.

Since each component of w is negative, each component of dis positive,
and € > 0 is arbitrarily small, we must have ¢ < 0. This implies that
q = 0, since each component of ¥ is nonnegative. We then have

!
ind(C) = (n = 3)(1 = 1)+ > _ CZn(Bi,) — CZny(74) +2¢7(C)
j=1

= (n=3)(1 =) +1(n—3)—(5(v4) —20-1)

>n-=3)1-0)+Iin—-3)—(n—1)+2]

=2l —2.
Note that 2¢{°(C) = 0 since ¢ = 0 (c.f. Lemma 2.9). This shows that
ind(C) > 2 unless [ = 1.

The case [ = 1 corresponds to a cylinder C' in R x 8X§J‘, anchored in
Xffn’ with top end §;, and bottom end ’ygA, and ind(C) = 1 means that
we have CZ(v4) = CZ(B;,) — 1. Note that by action and first homology
considerations as above we must have v = €;,. Furthermore, we claim

that C' cannot be anchored. Indeed, we have E(C) < ¢ (c.f. the proof
of Lemma 4.10), whereas any curve in X;JL would have energy at least

that of the minimal action of a Reeb orbit in 8X3”, which is in turn
bounded from below by min —w; —e >1—e¢.
1<i<k
Although we cannot a priori rule out the existence of C' as an honest
index one cylinder in R x GXEJL, it suffices to show that the count of

such cylinders (modulo target translations) is vanishing for any fixed
choice of negative asymptotic Reeb orbit *yé . To see this, consider the

compactified moduli space of index one pseudoholomorphic planes in
N}" with negative asymptotic 'ygl, and homological intersection number
i1

one with D;. Its boundary consists of two-level configurations, with:
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e top level consisting of an index zero plane in N}" with negative
asymptotic 5;,

e bottom level consisting of an index one cylinder in the symplec-
tization R x 8]\7;", positively asymptotic to B;, and negatively
asymptotic to 'ygl.

We claim that the count of planes in the top level is nonzero. Since the
total count of boundary configurations is zero, it then follows that the
count of cylinders in the bottom level is necessarily zero, as desired.
Finally, the preceding claim follows from the neck stretching proce-
dure described at the beginning of this subsection. Indeed, by energy
considerations as above, each of the anchored planes C1, ..., C; is in fact
unanchored. Consequently, since neck stretching induces a cobordism
of moduli spaces, the count of index zero planes in N;ﬂ with negative
asymptotic §; is necessarily nonzero for each 1 < i < k. q.e.d.

4.4. The Cieliebak—Latschev formalism. In this subsection, which
is logically independent from the rest of the paper, we provide a broader
perspective on the upper bound in the previous subsection based on
Maurer—Cartan theory. This approach, which builds on unpublished
work of Cieliebak-Latschev and is discussed also in [Sie2, §4] from a
slightly different perspective, can be used to produce bar complex cycles
in greater generality. In particular, we prove:

Theorem 4.12. Let M?" be a closed symplectic manifold of dimen-
sion 2n > 4 and let A € Ha(M) be a homology class such that the count
GWpa<T"p> € Q is nonzero'®  for some m € Z>qo. Let X?" be a
2n-dimensional Liouville domain admitting a symplectic embedding into
M such that the induced map H*"~2(M) — H*"~2(M \ X) is injective.
Then we have

C<TMp>(X) < 0.

Let X be a Liouville domain which is symplectically embedded into
a closed symplectic manifold M. As before, for simplicity we work over
K = Q. Let CHyy,(X; K) denote the L, algebra as described in §3.2, but
with the following modifications:

e as a K-module, the generators of CHyy(X;K) are pairs (v, []),
where v is a good Reeb orbit in 0X and [¥] is a 2-chain ¥ in M
with boundary -, modulo boundaries of 3-chains in M

e the differential and higher £, operations count the same curves
as before, and the bounding 2-chain ¥ of the output is given by
concatenating these with the bounding 2-chains of the inputs.

16We note that the invariant GWar,a<T ™p> is well-defined via classical pertur-
bation techniques if M is semipositive by [MSie, Prop. 2.2.2], whereas the definition
for general M necessitates virtual perturbations.
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Here we are assuming that 9.X has nondegenerate Reeb dynamics, which
we can always achieve by a small perturbation. Note that, for a given
Reeb orbit v, the set of possible choices of [X] is a torsor over Ha(M).
Each generator (v, [¥]) of CHy, (X ; K) has a well-defined energy, given
by the integrating the symplectic form w of M over Y. This induces a
decreasing R-filtration on Cth(X [K) and we denote the corresponding
completed Lo algebra by CHjy(X; K). The bar complex BCHy, (X; K)
also inherits a decreasing filtration by energy (i.e. the energy of an
elementary tensor is the sum of the energies of its components), and we
denote the corresponding completed chain complex by B\CHHH(X ; ﬁIZ)
The Cieliebak—Latschev formalism associates to the symplectic em-

S

bedding X — M a Maurer—Cartan element

me Gﬁlin(X?ﬁZ)a
given by the (possibly infinite) count of index zero planes in the sym-
plectic cap N := M \ X, anchored!” in X (c.f. [Sie2, §4]). Note that
this sum is well-defined in CHj;, (X; K), since by SFT compactness there
are only finitely many configurations with energy below ow any given value.
Since m lies in the positive part of the filtration on Cth(X |]<) it has
a well-defined exponential

1 _ _
(17) exp(m) = Z 0O - Om e BCH;(X;K),
l

and the Maurer—Cartan equation for m is equivalent to the fact that
exp(m) is a cycle.

Given a pair (v, [X]) as above, note that [X] defines a well-defined
element in Ho(M,X) = Hy(N,0N), and this gives rise to a natu-
ral Hy(N,0N)-grading on the Lo, algebra CHyy (X K), and also on
its completed bar complex BCth(X [K) Given a homology class
A € Hy(M), let A € Hy(N,dN) denote its restriction to N (i.e. we
apply Poincaré—Lefschetz duality to the input and output of the restric-
tion map H?""%(M) — H?""%(N)), and let exp(m); € BCHj;, (X K)
denote the part of exp(m) lying in the graded piece corresponding to A.
Then exp(m) 5 € gCHlln(X' R) is itself a cycle.

We claim that exp(m) 7 in fact lifts to a cycle = in the uncompleted

bar complex BCHj, (X; |]<) Indeed, it suffices to show that there is a
uniform upper bound on the energy of each summand of exp(m) 7, since
then the SFT compactness theorem implies that there are only ﬁmtely
many such terms. To justify the claim, consider a summand of exp(m) i

"More precisely, each such configuration is a two-level pseudoholomorphic build-
ing, with top level in N and bottom level in X, such that the total configuration
after formally gluing along each pair of Reeb orbits is a plane.
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which we represent as a formal curve in N, anchored in X. We denote
by C' the resulting formal curve in N after throwing away any anchors
in X. Then C represents the homology class A € Ha(N,0N), and we
denote its negative asymptotic Reeb orbits by ~i1,...,v. Let X be a
primitive one-form for w defined near N, and let p : N — [0, 1] be a
function which is 0 near QNN and 1 outside of a small neighborhood U of
ON. Let @ be the two-form on N given by d(pA) on U and w on N\ U.

We have
oL+ [
:/Ca+/mUd([1—p]A)

_ /C@—z:l;/l(%-).

Note that [,& depends only on the homology classes [0] €
H2(N,ON:R) and [C] = A € Hy(N,ON;R), and hence we have
Jow < [w] - [A] as desired.

Now let K[H2(M)] denote the group ring of Hy(M), and let
[K[m )] denote its completion with respect to symplectic area. Put

CWy<TMp>:= Y. eACGWya<T™p> € K[Hy(M)]. In general,
A€Hy (M)
neck stretching curves with a <7™p> constraint gives the relation in

K[H2(M)] of the form
(18) 1 0 e<T "p>(exp(m)) = GW <7 "p>.

Here mioe<T™p> : gCHlin(X) — K[H2(M)] is the induced map count-
ing curves with a <7"p> local tangency constraint as in §3.3, except
that we now concatenate these curves with the input curves to define ho-
mology classes in Hy(M), and we pass to completions. Since the restric-
tion map Ha(M) — H2(N,ON) is injective by assumption, A € Hy(M)
is the unique class which restricts to A € Hy(N,dN). Therefore by

projecting the above relation to the graded piece corresponding to A,
we get

(19) 7 0 E<T " p>(exp(m) 7) = GWpr a<T"p> e,

Note that exp(m)yz is in fact a finite sum by the SFT compactness
theorem, so it follows from the definition that we have

C<TMp>(X) < o0,

which completes the proof of Theorem 4.12.
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Example 4.13. In the case of the natural inclusion X;” c CP"

for a tuple d = (di,...,d;), we have Hgn,g(NjJ‘) >~ K([D4],...,[Dk]),
where D1, ..., Dy represent hypersurfaces of degrees d, ..., dx, and the
induced map H?*"~2(CP") — HQ”_Q(NC%”) is injective, so Theorem 4.12
applies. In this case, by the argument in §4.3, for A = [L] the line class
in Hy(CP"™) we have that exp(m) 1 is a multiple of (®% 1) ®- - -®(©% )

5. Computations for hypersurface complements 1I: avoiding
virtual perturbations

The main goal in this section is to prove Theorem 1.11. In §5.1,
we revisit the neck stretching argument from the previous subsection
and analyze the possible degenerations in more detail without virtual
perturbations. Subsequently, in §5.2 we assemble these ingredients and
complete the proof.

5.1. Some lemmas. In this subsection we formulate various technical
results about our moduli spaces of interest, providing the main ingredi-
ents for the proof in the next subsection. Fix d= (di,...,dy) € Z%, for
some k € Z>1. Note that for this subsection we do not need to assume

SFdi>n+ 1.

Lemma 5.1. Let J be a generic admissible almost complex structure
on the symplectic completion ofXjﬂ, and let u be a J-holomorphic curve

in )?3" satisfying the constraint <T" 1p>. Then we have ind(u) > 0.

Proof. Let us take the positive Reeb orbit asymptotics of v to be
A A
Vg, 7%7/’ and put

0; == 5(7%) =n—1—|A]

for i = 1,...,1. As before, the constraint <7" 'p> is codimension
4n — 4, and the index of u is given by

l
ind(u) = (n—3)(2 1) — (4n —4) + > _ CZ(y2) + 2¢] (u)

=1

l l
=n-3)2-1)—(An—4)+) 62 <Z@-> T4 260 (w).
=1 =1

Since Zizl['yéi] =0€ H; (X;JL)7 we must have 2221 ¥; = qd for some
q € Z>1. Then the sphere in CP" obtained by capping off each end of u
by the corresponding small spanning disk as in §2.4 has degree ¢, and
since 7y extends to these disks we have ¢}’ (u) = ¢(n + 1).

Now suppose that u is a k-fold branched cover of its underlying simple
curve u, i.e. w is given by the precomposition of @ with an order
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branched cover ®, which extends over the punctures to a holomorphic
map CP! — (I:[P1 Let us denote the positive Reeb orbit asymptotics of

u by 'ygll,.. wq,and put &; = 5( ‘) for i =1,. ..,1. The point in
the domain of u satlsfylng the <77~ 1p> constraint is mapped by ® to
a point in the domain of @ satisfying a constraint <7 ™ 'p> for some

m € Z>1. Taking into account this constraint, the index of w is given
by

(20)
1 1
ind(@) = (n—3)(2—1)—(2n+2m—4)+> _8;—2 | > _ i | - T+2c (w).
=1 =1

We define the branching order of a branched cover of the Riemann
sphere at a point in the domain to be the local degree of the map at
that point minus one. Let a denote the branching order of & at the
point satisfying the <7™ 'p> constraint, and let b be the sum of the
branching orders of ® over all of its punctures. Note that we must have

a<k-—1,
and by the Riemann—-Hurwitz formula we have
a+b<2k-—2.

Also, since u satisfies the constraint <7 !p> and since the contact
order to the local divisor gets multiplied by the local degree of the
cover, we must have

m(a+1)>n
Furthermore, looking at the punctures we have
l=kl—b.
We also have:

Claim 5.2. Y!_ 6 > HZE-:I 0; — (n—1)b.

Proof. Fixi € {1,...,1}, and let jy, ..., j, be the indices of the punc-
tures of u which cover the ith puncture of w. Let b; denote the contri-
bution to b coming from these punctures, i.e. we have b; = x — 3. Since
0; <n —1, we have

5j1 =+ e —1—5'% = %gi = (H— bi>go > /igi — (n— 1)[)2
The claim follows after summing over . q.e.d.

Lastly, observe that we have

MN

oL

1

/K.

~— .

and hence ¢° (@) = ¢(n +1
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We then have

and therefore

ind(u) — kind(@) > (n —3)(2—kl+b) —4n+4— (n—1)b
—k(n—3)(2—1) +K(2n +2m — 4)
=-2n—242k—2b+2mk
> —2n—2+2k—2(26 —2—a) + 2mk
=-2n+2+2a+2k(m—1)
—2n+2+2(n/m—1)+2k(m —1)
(m—1)(26 —2n/m)
(m—1)(2k — 2[a + 1))
0.

Vv

v v

Since w is simple, it is regular for J generic, and hence we have ind(u) >
0. q.e.d.

We now revisit the neck stretching procedure for the moduli space
./\/l@[pnvm<7’"_lp> along the contact type hypersurface 8X§fl c Ccp»
as in §4.3. Consider a generic compatible almost complex structure J on
CP™ which is cylindrical near 6X§~”. Let Jx and Jy denote the induced
admissible almost complex structures on the symplectic completions of
Xjﬁ and Nsﬂ respectively, given by restricting J and then extending
over the cylindrical ends. Similarly, let Jryxgx denote the resulting
admissible almost complex structure on the symplectization R x GXE.”,

given by restricting Jx to 8X§JL and extending R-invariantly. We assume
that Jx, Jn, Jrxoax are generic, so that simple curves are regular. Now
let {Ji }1e[0,1) be the one-parameter family of almost complex structures
on CP" realizing the neck stretching as described in §2.2.3.

Lemma 5.3. Under the above neck stretching, each limiting con-

figuration corresponding to t = 1 in the compactified moduli space

Mgﬁim<7-"_1p> 18 a two-level pseudoholomorphic building with

e top level consisting of Z§:1 d; index zero regular Jy-holomorphic

planes in CP", with negative asymptotic ends fdl,..., kXd’“
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and lying in the homology classes [c1],...,[c1],. .., [ck], -, [ck] €
———— ——

d1 dk
HQ(N;»”, 8N§J‘) respectively
e bottom level consisting of a single index zero regqular Jx-
holomorphic (genus zero) curve in X;” with positive ends
1><d1’ e ,BkXd’“ and satisfying the constraint <T" p>.
Proof. By the SF'T compactness theorem, any limiting configuration
consists of a multilevel pseudoholomorphic building, with

e top level Jy-holomorphic in N;f‘

e some number (possibly zero) of levels Jrxsx-holomorphic in the
symplectization R x 8X3”

e bottom level Jx-holomorphic in XCQZ" consisting of a “main com-

ponent” wu satisfying the <7" !p> constraint, along with some
number (possibly zero) of additional unconstrained components.

Note that in principle some of the components in a given level could be
joined by nodes (each of which increases the expected codimension by
two), but this is easily ruled out. Namely, by formally gluing together
all pairs of asymptotic ends, we obtain a possibly nodal formal sphere
in CP™. Since the total degree is one and each component has positive
area and hence positive degree, this precludes any nodes.

Let us now formally glue together all pairs of ends except for those
corresponding to the positive asymptotics of the main component u to
arrive at the following simplified picture:

e top level consisting of some number [ > 1 of formal planes in N;ﬂ,
anchored in X2

e bottom level consisting of a single main pseudoholomorphic com-
ponent u in X;” with [ positive ends and satisfying the <77 p>
constraint.

By Lemma 4.10, each of the formal planes has nonnegative index. Simi-
larly, by Lemma 5.1, the main component has nonnegative index. Since
the total configuration has index zero, it follows that the main compo-
nent and each of the formal planes C' must have index zero. Lemma 4.10
then implies that each of the components in the top level has negative
end f3; for some j € {1,...,k}, and has homological intersection d;; with
[D;] for each i € {1,...,k}.

We wish to show that each of these formal planes C' corresponds to
an honest pseudoholomorphic curve in N;ﬁ. We can suppose that the
configuration underlying C' consists of a multilevel pseudoholomorphic
building with

e top level in NC%”
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e some number (possibly zero) of levels in the symplectization R x
oxz
d
e bottom level (possibly empty) in Xjf‘.

Since the symplectic form on Nsﬂ is exact away from D (c.f. part (2) of
Theorem 2.7), by Stokes’ theorem each component in the top level must
intersect D nontrivially. Since the homological intersection number of
[C] with [D] = Z?Zl[D,-] is 1, it follows by positivity of intersection
that there is exactly one component in the top level. Also, as in the
proof of Lemma 4.11, energy considerations rule out any component in
the bottom level XC%”. Indeed, note that we have E(C) < ¢ (c.f. the
proof of Lemma 4.10), whereas any such component would have at least
one positive Reeb orbit asymptotic and hence energy at least 1 — e.
Similarly, there cannot be any components without any negative ends
in a symplectization level. It follows that the component in the top
level must be a plane, and by similar energy considerations there are
no symplectization levels (since any component with energy less than e
would necessarily be a trivial cylinder, violating the stability condition
in the SFT compactness theorem), so C' is an honest plane in N27.
Evidently C' is simple since (3; is a primitive Reeb orbit. Finally, since
Jx is generic, regularity of the component u follows from the simple
Lemma 5.4 below. q.e.d.

Lemma 5.4. Let Jx be any admissible almost complex struc-
ture on the symplectic completion of Xf?n’ and consider u €

Mx2n( Xdl, e ,5Xdk)<Tn_1p>. Then u is simple, and hence regu-
lar zf Jx is generic.

Proof. Suppose by contradiction that u is a k-fold cover of its un-
. . _ B;
derlying simple curve u for some x > 2. Let 'y]?l ...,’yJ denote pos-

itive ends of w. Since we have Zl 1[ ] =10¢ Hl(XQ”), we must

have ZZ 1wZ = qd for some ¢ € Z>;. However, we then must have
ﬂqd Z 1 di€; = d which is not possible unless k = 1. q.e.d.

The following proposition is roughly the geometric analogue of

Lemma 4.11. Let Jrxgx be a fixed generic cylindrical almost com-
plex structure on the symplectization R x 8X§", and let Jx denote the

space of all admissible almost complex structures on )?;” which agree

with Jrxax on a neighborhood of the cylindrical end.

Proposition 5.5. For generic Jx € Jx, the signed count of
(genus zero) Jx-holomorphic curves in X;ﬂ with positive asymp-

totics BXdl, ceey kXd"’ and satisfying the constraint <T" p> is finite,
nonzero, and independent of Jx.
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Remark 5.6. Since Jrygx is arbitrary, it follows that the count in
Proposition 5.5 is nonzero for any choice of generic admissible almost
complex structure Jy on X , i.e. not necessarily with fixed behavior at
infinity. With a bit more work, it is also possible to show that this count
is entirely independent of this choice, but since we will not explicitly
need this we omit the proof for brevity.

Proof of Proposition 5.5. As before, let J be a generic compatible al-
most complex structure on CP™ which agrees with Jrxgx on Op(@Xjﬂ)
and restricts to Jx and Jy on X;JL and NC%" respectively, and let
{Jt}1e)0,1) be a family of almost complex structures on CP" with Jo = J
which realizes the neck stretching along 8X02T". According to [MSie,
Prop. 2.2.2], the count GW@[pn’[L]<T”_1p> = #Mé’ﬂin7[L]<Tn_1p> is
independent of J (provided that it is generic), and in fact by [CM2,
Prop. 3.4] we have GW¢pn [L]<T”_1p> = (n—1)! # 0. Now con-
sider the compactified moduli space MC[Pn <T" 'p>, and let 7 de-
note its natural projection to [0,1]. The ﬁber 771(0) coincides with
MC[Pn <T" !p>, whereas according to Lemma 5.3 the fiber 771(1)
con51sts of two-level pseudoholomorphic buildings with regular compo-
nents. In particular, by standard gluing along cylindrical ends (see
e.g. [Par, Thm. 2.54]), Mé‘n]fi [L]<T”_1p> defines a one-dimensional
oriented topological cobordlsm, at least after restricting the family to
[1 —0,1) for § > 0 sufficiently small. Using again [MSie, Prop. 2.2.2],
the counts #m~1(0) and #7 (1 — ) coincide, and hence by counting
signed boundary points we obtain the relation

(*)
d.
(n—l)!:#/\/lxz,,( b B <T > H( N% (6,)) :

=1

X2n( X BT s £ 0, as well

as #./\/INQn ] (ﬂz) #0 for i =1,...,k, and all of these counts must be

finite.
Finally, suppose that we have another generic admissible almost com-
plex structure J% which coincides with Jx on a neighborhood of the

In particular, we have #M

cylindrical end of )A(g” Let J' be the compatible almost complex struc-
ture on CP™ which restricts to Jxs and Jy on Xflfl and N;ﬁ respectively.
Since we have also

(21) HMLG 1 <T"'p> = GWepn 1) <T"'p>,
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by comparing (*) with the analogous relation using J' instead of J, we
must have

(22) #MX%( XL B <T >

_#MX%( X B <T >
q.e.d.

5.2. Completing the obstructions proof. We now complete the
proof of Theorem 1.11. Fix n € Z>; and tuples of positive integers

d=(dy,...,d) €S and d = (dy,...,d,) € S with Y X d;, XK d >
n+1, put X := Xjﬁ and X’ : X;”, and consider a hypothetical

Liouville embedding ¢ : X & X7 Let A and N denote the preferred
Liouville one-forms on X and X’ respectively provided by Theorem 2.7.
By Lemma 2.2 (b), after applying a Liouville homotopy to X’ we can
assume that we have t*) = A. Note that since this homotopy only
modifies the contact form on X’ by a positive scaling factor, the Reeb
dynamics are unaffected (expect for possibly rescaling the periods of all
Reeb orbits by a fixed constant), so all of our results about the geometry
of X’ still apply.

Let J' be a generic admissible almost complex structure on the sym-
plectic completion of X’. After deforming J’, we can assume that .*(J')
is the restriction of a generic admissible almost complex structure J on
the symplectic completion of X. In particular, J' is cylindrical near
Y :=1(0X). Now let {J;}c0,1) € Tx' be a corresponding neck stretch-
ing family of admissible complex structures on the symplectic comple-
tion of X, with J) = J' and J limiting as ¢ — 1 to a broken almost
complex structure on X ® (X’ \ ¢(X)). We consider the compactifi-
cation Mg{}<7”_1p>(ﬁfdll, . ,,B,:dﬁf) provided by the SFT compact-
ness theorem, and let 7 denote the natural projection to [0, 1].

Lemma 5.7. In the situation above, the fiber 7=1(1) is nonempty.

Proof. Observe that the fiber 771(¢) is nonempty for any ¢ € [0,1).
Indeed, if 7 1(¢) were empty, then in particular the moduli space

Mgg,<7’”71p>(51 ,...,Bk *) would be empty, and hence trivially
regular, contradicting Proposition 5.5. It follows then by compactness

f./\/l{ t}<T” 1 (51Xd/1, . ,B:d;") that 7—'(1) is nonempty. q.e.d.

We now consider a configuration in 771(1) and use its existence to
read off various consequences. A priori, we have a pseudoholomorphic
building with

e some number (possibly zero) of levels in the symplectization R x
ox’
e a level in the cobordism X'\ ¢(X)
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e some number (possibly zero) of levels in the symplectization R x
0X

e bottom level in the domain X consisting of one “main” compo-
nent inheriting the constraint <7 !p>, along with some number
(possibly zero) of unconstrained components.

By formally gluing together all pairs of ends except for those corre-
sponding to the positive ends of the main component in the bottom
level, we arrive at the following simplified picture:

e a level in the cobordism X'\ ¢(X) consisting of some number [ > 1
of formal components, anchored in X

e bottom level consisting of a main component u with [ positive ends
and satisfying the constraint <7" 1p>.

Note that main component is pseudoholomorphic with respect to
the generic admissible almost complex structure J on X, and so by
Lemma 5.1 we must have ind(u) > 0. Therefore, by Lemma 4.7 we

must have [ > Z?Zl d;. Since each component in the cobordism level
has at least one positive end, we also must have [ < Zflzl d..

Let ’yﬁll,...,'ygl be the positive ends of u. Then for i =
1,...,1, the ¢th formal component in the cobordism level has nega-

tive end 'y?_", and its positive ends form a nonempty subcollection of
G181, Bk,...,0k. Each of these positive ends corresponds to

dy dy
one of the unit basis vectors ey, ..., e Let 7 € 2%\ {0} denote the

sum of these unit basis vectors. Note that by construction we have
Yiy =

We now consider the map ¢, : H1(X) — Hy(X’) induced by the Liou-
ville embedding ¢ : X < X’. Under the identification from §4.1, this is
naturally viewed as a group homomorphism ® : Z¥/(d) — Z¥' /(d'), and
as such it sends Z; mod (d) to g mod (d') for i = 1,...,l. Since u pro-
vides a nulhomology of 22:1['72 il € H(X), we must have !, #; = qd
for some q € Z>1.

Finally, nonﬁegativity of the index of u translates into

l
0<(n=3)2-1)— (n—4)+ ) CZy(yz) + 27 (u)

i

=1
l
—(n=3)2-0) - (n-4+> (604) ~ 27 T) +2q(n + 1)
=1

k
<(n=3)2-1)—(n—4) +1(n—1)—2¢Y di+2q(n+1)
=1
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k
=-2n+20—2-2¢() di—n-—1),
=1

ie. q(Zf:1 di —n —1) <l —n—1. This completes the proof of Theo-
rem 1.11.

Remark 5.8. In the above neck stretching argument, it is not too
difficult to show that any configuration in 7—1(¢) with ¢ € [0,1) consists
entirely of simple components, and hence can be assumed to be regular,
meaning that 771([0, 1)) is a one-dimensional topological manifold with
boundary. However, we did not show (or require) that the configurations
in 771(1) are transversely cut out, and multiply covered components in
the cobordism X’ \ ¢(X) could be in principle appear. Transversality

for the whole compactification H{J;}<Tnflp>(61xd,1, ce B:d;“) should
follow by adapting the Cieliebak—-Mohnke framework [CM1, CMZ2] or
a more general virtual perturbation frameworks (c.f. Remark 1.10),
leading to a slight strengthening of Theorem 1.11.

6. Constructions

6.1. Weinstein cobordisms from degenerations. In this subsec-
tion we prove Theorem 1.15 based on the idea that in a degenerating
family of divisors there is a Weinstein cobordism from the complement
of the special fiber to the complement of the general fiber. We then
complete the proof of Theorem 1.5.

Proof of Theorem 1.15. Since Weinstein cobordisms can be concate-
nated, it suffices to consider the case that d’ is obtained from d by
either a combination move or a duplication move. In the former case,
put d = (dy,...,dy) and & = (dy,...,d_2,ds_1 + dj) without loss of
generality, and let Dy, t € [0, 1], be a smooth family of simple normal
crossing divisors in CP" such that

e for t > 0, D; has k — 1 irreducible components of degrees
di,...,dg_9,dr_1 + dj respectively
e Dy has k irreducible components of degrees di,...,dg_1,d; re-
spectively.
Namely, the last component, which is a smooth hypersurface of degree
dp_1 + dj, degenerates into a union of two hypersurfaces of degrees dj_1
and d. Put £ := O(Zi?:l d;). Correspondingly, we can find a smooth
family of holomorphic sections oy € H°(CP™; L), i.e. degree Zle d;
homogeneous polynomials in C[Xy, ..., X,], such that D, = o, L(0) for
t € [0,1]. Then the existence of a Weinstein embedding of X;” into X;/”
follows from Proposition 6.1 below.
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Similarly, suppose now that d differs from d by a duplication move,
and put d = (di,...,d) and d = (dy,...,dy,dy) without loss of gener-
ality. Let Dy, t € [0,1], be a smooth family of simple normal crossing
divisors in CP™ such that

e for t > 0, D; has k + 1 irreducible components of degrees
di,...,dg,dy respectively

e Dy has k irreducible components of degrees dj, . . . , di respectively.
Note here that, by [Seil, Lem. 4.4], considering a divisor compo-
nent with multiplicity does not change the Weinstein structure on the
complement up to Weinstein homotopy. Namely, the last two compo-
nents, which are smooth hypersurfaces of degree dj, degenerate into
a single hypersurface of degree dj (but with multiplicity two). Put
L= O(F  di + dy), and let oy € HO(CP" L) be smooth family of
holomorphic sections such that D; = o, '(0) for ¢ € [0,1]. Then again
the existence of a Weinstein embedding of X;JL into X;{L follows from
Proposition 6.1 below. q.e.d.

Recall from §2.4 that if M is a smooth complex projective variety
and D C M is an ample simple normal crossing divisor, then M \
Op(D) is canonically a Weinstein domain up to Weinstein deformation
equivalence.

Proposition 6.1. Let M be a smooth complex projective variety, let
L — M be an ample line bundle, and let oy € H°(M; L), t € [0,1]
be a smooth family of holomorphic sections such that D, := at_l(O) 18
a simple normal crossing divisor for each t € [0,1]. Then for § > 0
sufficiently small, there is a Weinstein embedding of M \ Op(Dy) into
M\ Op(Ds).

Proof. Pick a Hermitian metric (—, —) on £, with associated norm
|| = ||. Fort € [0,1], put ¢ := —log||ot||. As in §2.4, the function
¢t : M\ Dy — R is exhausting and strictly plurisubharmonic for all
t € [0,1], with critical points contained in a compact subset. After a
small perturbation, we can further assume that ¢; is generalized Morse
for all ¢ € [0,1]. Put N := ¢ ((R,00)) U Dy for R sufficiently large,
so that we have Dy C N and all of the critical points of ¢q lie in
M \ N. Pick § > 0 sufficiently small such that R is a regular value
of ¢ for all t € [0,5]. Put U := ¢5'((S,00)) U D; for S sufficiently
large, so that we have Dy C U C N and none of the critical points
of ¢ lie in U. Put Wi := ¢; *((—oo,R]) for t € [0,6] and W' :=
65 ((~o0, S]). Then (W, —d ol dolwy) and (W', —dCslwr, dlw)
are Weinstein domains which represent the natural Weinstein structures
on M\Op(Dy) and M\Op(Ds) respectively up to Weinstein deformation
equivalence. Moreover, the former is Weinstein deformation equivalent
to the Weinstein subdomain of the latter corresponding to {¢s < R}.
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Indeed, the family of Weinstein domains (W, —d®¢¢|w,, ¢¢lw,) for t €
[0, 9] induces the desired Weinstein deformation equivalence. q.e.d.

Proof of Theorem 1.5. The “if” part is immediate from Theorem 1.15,
so it suffices to prove the “only if” statement, i.e. given a Liouville

L - -
embedding X;” — X;/" we must have d < d’. By Theorem 1.11 we
have

l-n—1 _ Y, di—n—1_2Y3 di—2n-2

q< < =2,
Zledi*nfl Zledi*n*]_ Zledifnfl
and hence ¢ = 1. We therefore have
!
d-1<1<> #-1=d-T,
i=1
which forces | = d - T and Zi-1=1fori= 1,...,l. Therefore, after

possibly reordering, we can assume that we have

Note that for two equal tuples Z;, Z;, the corresponding elements ¥, ¥

must have equal residues in Z*'/ (ci7 ), and hence must simply be equal.
We therefore have

d151+---+dk5k:c27

for some tuples 21,...,2; € Zgo \ {0}. To see that d < d’, observe that
we have

di,....dy) 2 (di,....dy, ... dg,...,dp) = (dy,...,d),
( ) = ( ) = (dy W)
Z11 Z-T
where the first inequality comes from iteratively applying duplication

moves and the second inequality comes from iteratively applying com-
bination moves. q.e.d.

6.2. Flexible constructions. As already pointed out, the main ob-
structions in this paper are of an exact symplectic nature, i.e. they
obstruct exact symplectic embeddings in situations where symplectic
embeddings (and in particular formal symplectic embeddings) do exist.
Still, since the divisor complements X%” have fairly nontrivial smooth
topology, it is natural to wonder what role (if any) the topology plays.
It turns out that there is a fair amount of freedom to modify the dif-
feomorphism type without invalidating the obstructions, although first
homology groups appear to play an essential role.
We begin with a definition:
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Definition 6.2. Two Liouville domains X, X’ of the same dimen-
sion are Liouville (resp. symplectic) embedding equivalent if there is a
Liouville (resp. symplectic) embedding of X into X’ and of X’ into X.

For instance, if X and X’ are Liouville domains which are Liouville
embedding equivalent, and if X” is a third Liouville domain, then we

have X < X" if and only if X’ & X" In an attempt to remove all
smooth topology from the discussion, it is natural to ask whether any
Liouville domain X is Liouville embedding equivalent to another do-
main which is diffeomorphic to the ball. This is easily seen to be false.
Concretely, suppose by contradiction that X?l’}rl & D*T™ were Liouville
embedding equivalent to a Liouville domain Q?" which is diffeomorphic

to the ball. Since ngh symplectically embeds into the standard Liou-
S L
ville C", we also have Q < C", and hence Q <> C" (since H'(Q;R) = 0),

L Lo L
whence be’}rl — C", which is a contradiction.

Now suppose X is a Weinstein domain, and X’ is obtained from

X by Weinstein handle attachments. Then we have X K X', so by
monotonicity we have G<T"p>(X) < G<T™p>(X') and more gen-
erally 150(X) D 15H(X’) for any m € Z>g and | € Z>1. In the spe-
cial case that X’ differs from X by subcritical or flexible Weinstein
handle attachments, a well-known metaprinciple states that “all” pseu-
doholomorphic curve invariants of X and X’ should coincide (see e.g.
[Cie, Fau, BEE, MS] for the case of symplectic cohomology). Ac-
cordingly, we conjecture that 1</(X) and in particular G<7™p> are
invariant under subcritical and flexible Weinstein handle attachments.
In particular, this would give a large amount of freedom to change the
smooth topology of X without affecting these Liouville embedding ob-
structions (although one cannot kill the homology in the critical dimen-
sion %dim(X ) by Weinstein handles, since these have index at most
2 dim(X)). Note that the above discussion shows that the Liouville
embedding type is not generally invariant under subcritical handle at-
tachments, since it is possible to kill the fundamental group by adding
Weinstein two-handles.
Using somewhat more geometric considerations, we have:

Proposition 6.3. Fizn > 3 and N € Z>1. For each k € 7Z>1 and
d e Z’gl with Z§:1 d; < N and such that 1 is an entry of d, there is a

Weinstein domain X(%” such that

. . . . W = . .
e there is a Weinstein embedding X;” — XCQZ” and a Liouville em-
So. L
bedding Xjfl — XCQZ”

° )A(/;” s almost symplectomorphic to )Z;l” for any such d_; d.
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In particular, Theorem 1.5 still holds if we replace each XC%” with the
corresponding Xjﬂ

The point here is that all of our Liouville embedding obstructions
apply equally if we replace XC%" with Xjﬁ (since these are Liouville
embedding equivalent), and yet the almost symplectomorphism type of

)Zjﬂ is independent of J: meaning that these obstructions must be purely
symplectic in nature (i.e. there are no smooth embedding obstructions).

Proof. Observe that we can find some (very large) unordered tuple
fE S (recall §1.2.2) such that d < ffor each d € S with Zle di <N
}Laving lﬁasqan entry. More specifically, we assume that f contains each
d with d -1 < N which contains 1 as an entry as a subtuple (up to
reordering). For each such CZ; we consider the Weinstein embedding
X;JL K X%" provided by Theorem 1.15. Note that this presents X]%f‘
as the result after concatenating X;” with a Weinstein cobordism W.
We define )23" to be the Weinstein domain obtained by concatenating
Xjﬁ with the flexibilization Flex(WW) of the Weinstein cobordism W
(see [CE, §11.8]). Then )?}" is almost symplectomorphic to XJ%”, and

evidently there is a Weinstein embedding of X;JL into )z;"
So, L
To see that there is a Liouville embedding X;JL — XC%”, note that by

our assumption on f there is a symplectic embedding X%" i X;JL (up
to Weinstein homotopy), given by adding back in some of the divisor
components. Now consider the result after concatenating the Weinstein
embedding Xflﬁ ‘K X}%.” with the above symplectic embedding XJQ?” i)
XC%". This can be identified with the result after attaching to Xffn a finite

piece of the symplectization of 8X;”. We see that there are no formal

obstructions to extending this to a Liouville embedding X}QF” i> Xfi'n’
so there are also no formal obstructions to extending it to a Liouville
embedding )Afflﬁ i> XC%”. Since )Zflfb is obtained from Xffn by attaching
subcritical and flexible handles, we can apply the Lagrangian caps h
principle [EM] to produce a genuine Liouville embedding )A(g” <£> X;JL.

q.e.d.

Remark 6.4. We do not know of any example of a Liouville domain
which is diffeomorphic to a Weinstein domain but not symplectomorphic
to any Weinstein domain. Still, Liouville embeddings between Weinstein
domains are often more flexible than Weinstein embeddings. For exam-
ple, any n > 3, Flex(D*T") admits a Liouville embedding into C™ (see
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[EM, Cor. 6.3]), but it does not admit a Weinstein embedding for (or-
dinary) homological reasons (i.e. Weinstein handle attachments cannot
shrink the rank of the nth homology group). More generally, if X and

X' are Weinstein domains with X & X’ , then the boundary connect
sum of X with sufficiently many copies of Flex(D*T™) still Liouville
embeds into X’ (again using [EM]), whereas a Weinstein embedding is
impossible for homological reasons.

Remark 6.5. If X is a Weinstein domain, it is interesting to ask
whether the invariant 15/(X) can be computed from the wrapped Fukaya
category W(X) of X. By [Gan] together with generation results from
[CRGG, GPS], the “cyclic open-closed map” gives an isomorphism
from the cyclic homology of W(X) to SHgi(X). After taking into
account additional naturality properties it should be possible to re-
cover the invariant F(X) from §3.1. However, it seems unlikely that
we can recover the full invariant 15/(X) solely from the A, category
W(X) without any additional structure. Rather, the L structure
on SCg1 should be equivalent to an Lo structure on cyclic chains of
W(X) which depends on a smooth Calabi-Yau structure on W(X)
(see e.g. [CEL] for a somewhat analogous setup), the existence of
which is guaranteed by [Gan]. Under the cyclic open-closed map, we
expect that this data is sufficient to recover the L., homomorphism
Pyodg : SCq (X)) — Klu™!] (c.f. §3.2), which in turn determines an
invariant which is closely analogous (and conjecturally equivalent up to
an isomorphism of SK[u™']) to I5/(X). Note that subcritical handle
attachment does not change the wrapped Fukaya category (see [GPS,
§1.7]), so this approach could potentially be used to determine the effect
on I15/(X) of subcritical handle attachment.

7. Possible extensions

In this brief conclusion we sample a few interesting directions for
further research.

Allowing self-crossings. One fairly mild generalization of Problem 1.4
is to let D be a normal crossing divisor which is not necessarily simple,
i.e. the irreducible components are allowed to have self intersections.
For example, the log Calabi—Yau surfaces studied in [Pas] can all be
viewed as complements of degree three curves in CP? which are not
necessarily smooth or irreducible. Although these examples do not quite
fit into the framework of Theorem 2.7, it seems natural to expect the
theorem to generalize to this case in light of [TMZ].

More ambitiously, one could consider e.g. complements of (non-
generic) hyperplane arrangements in C". In this case it is interesting to
ask to what extent the invariant 1=! is sensitive to the intersection poset
of the arrangement.
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More general hypersurface singularities. It is also natural to con-
sider divisors with more general hypersurface singularities. For in-
stance, complements in C" of vanishing loci of Brieskorn polynomials
P(z1,....2p) = 2{* + -+ 20 € Clz1,...,2,) for a1,...a, € Z>9
play an essential role in McLean’s constructions of symplectically ex-
otic affine spaces [McL1] (see also [AS1, §4b]). Concretely, if we take
P=23+ 422 +z3forn>4devenor P =23+ - +22 o423 +2) for
n > 3 odd, then, after attaching a (subcritical) Weinstein two-handle,
C"\ P~(0) becomes diffeomorphic but not symplectomorphic to C".
Furthermore, by counting idempotents in the symplectic cohomology
algebra over Z/2, McLean shows that Vi, Vs, V3, ... are pairwise non-
symplectomorphic, where Vj denotes the boundary connect sum of k

w
copies of V. Evidently we have Weinstein embeddings Vj < Vj for
k < k', and the above suggests that Vi might be “larger” than Vj:

Question 7.1. Is there a Liouville embedding Vj <£> Vi for k > K'?

A starting point would be to compute G<T"p>(C" \ P~1(0)) for
m € Z>o, where P(z1,...,2y,) is a Brieskorn polynomial as above. More
broadly, what values can the invariant G<7™p> assume on symplecti-
cally exotic affine spaces in a given dimension?

Other ambient spaces. We are also interested in divisor complements
in more general smooth projective varieties. In fact, recall that every
smooth complex affine algebraic variety is the complement of an am-
ple simple normal crossing divisor in a smooth projective variety as a
consequence of Hironaka’s resolution of singularities theorem. The neck
stretching strategy in §4,85 could plausibly extend to compute the in-
variant G<7™p> for divisor complements in other smooth projective
varieties M, after replacing GW@[,»n7[L]<T"*1p> with an appropriate
invariant GW s a<7™p> which is nonzero for some A € Hy(M) and
m € Z>o. At least in the case n = 2, the counts GW 7, 4<7™p> can be
computed by the algorithm in [MSie]. For example, for M = CP* x CP!
we have GWCIPIXC[PI,A<Tde> =1%# 0 when A =d[L;] + [Ls] (i.e. we
are counting curves of bidegree (d,1)) for d € Z>y.

Higher genus analogues. On the other hand, there are also examples
having no apparent rational curves whatsoever. For instance, suppose
that M is a product of n closed Riemann surfaces, each having genus at
least one. In this case we have ma(M) = 0, and hence GW py 4<T"p> =
0 for all m € Z>¢ and all A € Hy(M). In fact, if D C M is an
ample simple normal crossing divisor and X = M \ Op(D) denotes the
corresponding divisor complement (endowed with a contact form as in
Theorem 2.7), then there cannot be any nonconstant asymptotically
cylindrical pseudoholomorphic curves of genus zero in X. Note that
this holds by purely topological considerations, i.e. such a curve could
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be capped off to give a homologically essential map S? — M, which
is a contradiction. In particular, the obstructions defined in this paper
are vacuous in this case. It is possible that analogous invariants defined
using higher genus curves could provide more refined obstructions.

As a special case, we consider the Liouville domains given by prod-
ucts of Riemann surfaces with boundary. Note that there are obvious
symplectic embeddings given by filling in some of the boundary compo-
nents. In dimension 2n = 2, Example 2.4 provides complete Liouville
embedding obstructions by purely elementary considerations, but this
does not extend to higher dimensions.

Cotangent bundles. Another interesting direction is to compute [=
for cotangent bundles T*@Q of closed smooth manifolds ). This case
has implications for (exact) Lagrangian embeddings. As a starting
point, recall that if () admits a Riemannian metric of negative sec-
tional curvature, then the unit sphere bundle S*@Q admits a correspond-
ing contact form all of whose Reeb orbits have Conley—Zehnder index
zero. For dim(Q) > 3, it follows that any formal curve in D*@Q with-
out constraints has nonpositive index (c.f. [EGH, Cor. 1.7.4]), and
hence has negative index after imposing a point constraint, so we have
G<TMp>(D*Q) = oo for any m € Z>g, and in fact:

Proposition 7.2. Let X?"26 be o Liowville domain such that
C<T™Mp>(X) is finite for some m € Z>y. Then X does not have any
embedded Lagrangian submanifold which admits a Riemannian metric
of negative sectional curvature.

In light of the discussion in §3 and the relationship between symplectic
cohomology and string topology (see e.g. [Abo, CG]), the invariants
defined in this paper for cotangent bundles should be computable using
techniques from rational homotopy theory.
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