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1 | INTRODUCTION
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Abstract

The canonical technique for nonlinear modeling of spatial/point-referenced
data is known as kriging in geostatistics, and as Gaussian Process (GP) regres-
sion for surrogate modeling and statistical learning. This article reviews many
similarities shared between kriging and GPs, but also highlights some impor-
tant differences. One is that GPs impose a process that can be used to automate
kernel/variogram inference, thus removing the human from the loop. The GP
framework also suggests a probabilistically valid means of scaling to handle a
large corpus of training data, that is, an alternative to ordinary kriging. Finally,
recent GP implementations are tailored to make the most of modern computing
architectures, such as multi-core workstations and multi-node supercomputers.
We argue that such distinctions are important even in classically geostatistical
settings. To back that up, we present out-of-sample validation exercises using
two, real, large-scale borehole data sets acquired in the mining of gold and other
minerals. We compare classic kriging with several variations of modern GPs
and conclude that the latter is more economical (fewer human and compute
resources), more accurate and offers better uncertainty quantification. We go on
to show how the fully generative modeling apparatus provided by GPs can grace-
fully accommodate left-censoring of small measurements, as commonly occurs
in mining data and other borehole assays.
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(unclassified) publications did not appear until later (e.g.,
Sacks et al. [2]). The spatial statistics community was

The modern literature on spatial nonparametric regression
(e.g., “kriging”) traces its origins to the mining analytics of
Danie Krige and Henri de Wijs and the subsequent work
of Matheron [1]. Similar ideas were developed indepen-
dently around the same time to aid the early analysis of
computer simulation experiments, like those conducted
in the study of nuclear weapons and energy, however

responsible for much of the subsequent advances in
methodology (e.g., Cressie [3]), and software for kriging
in use commercially (e.g., LeapFrog, Vulcan, Surfer,
etc.) and academically (e.g., GSLIB) in mining today.
More recently, researchers in geospatial statistics, sur-
rogate modeling of computer experiments, and more
broadly in statistical and machine learning communities,
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have pushed the boundaries of fidelity and computational
tractability as modeling ambition and scale of data collec-
tion continue to grow, for example, Gramacy [4]. These
disparate literatures have converged around the nomen-
clature of Gaussian process (GP) regression as a generative
framework for the kinds of data and procedures involved in
kriging, but with a more cohesive and flexible approach to
inference, approximation and automation based upon the
likelihood, which is the foundation to modern statistical
learning.

Common geoscience applications for spatial smooth-
ing and interpolation include ore-grade estimation and
reservoir characterization/simulation; however, software
tools utilized for such applications lag the state-of-the-art
(as outlined above) by a decade or more. For example,
obtaining fits requires expert human interaction with the
software library and intuition to entertain alternatives
of spanning anisotropies, neighborhood sizes for ordi-
nary kriging in the face of large training data sets, and
appropriate semivariogram forms modeling the decay of
spatial correlation. Recent advances from the statistics
and data analytics communities automate many of these
time-consuming tasks, while offering substantial improve-
ments in computational efficiency including the use of
contemporary computing architectures such as multi-core
workstations and clusters.

The main goal of this paper is to advocate for the more
modern, GP perspective via open-source libraries such as
for R: GPvecchia [5] and 1aGP [6]. These are just
two of many examples offering a modern take on ordinary
kriging, embodying advances in engineering and statistical
learning: likelihood-based criteria offloaded to robust opti-
mization libraries; human out-of-the-loop inference. Not
only are they easy to use, but they are also hard to misuse.
To emphasize the modern GP perspective, we also provide
a review which focuses on the similarties and differences
between GPs and kriging.

This narrative is supported by empirical comparison.
We consider two real borehole-based mining examples
with data records on gold and other minerals, over spatial
and depth coordinates, sized in the hundreds of thou-
sands. Later, figure 4 in Section 4 shows a 2d projection
of a subset of these data, where they are described in
more detail. These data exhibit many typical yet chal-
lenging features such as abrupt changes in dynamics,
left-censoring of small values due to the sensitivity of the
measurement instrument, and large measurement gaps in
space. Using these data, we devise a cross-validation-based
out-of-sample exercise which is careful to respect the bore-
hole nature of data collection. The outcome of that exer-
cise is evidence that modern GP-based methods are both
more accurate, more hands-off, more economical (in terms
of computing resources), and offer better uncertainty

quantification than their kriging-based analogues. They
also enable extensions which would be difficult to enter-
tain without a fully probabilistic generative framework. As
a showcase, we entertain a multiple imputation scheme
to handle left censoring that involves only a few lines of
code around library-based GP fitting and prediction sub-
routines.

The rest of the paper is outlined as follows. Section 2
contains a review of GP regression and kriging. Build-
ing on those, Section 3 contains the main, large-scale GP
regression and kriging methods we compare using two
real borehole ore data sets. Section 4 has cross validation
results comparing those methods on both time and accu-
racy, including extensions to faciliate (without discarding)
a large degree of left-censoring in one of the two data sets.
Finally, Section 5 concludes with a discussion and ideas for
future work.

2 | GAUSSIAN PROCESS VERSUS
KRIGING

We begin by introducing Gaussian process (GP) regres-
sion with an eye toward connecting to kriging. At some
level, they are the same thing. The biggest differences
lie in vocabulary and inference for unknown quantities,
which is coupled with the degree of automation/human
intervention.

2.1 | Gaussian process regression

Suppose we wish to model a function f : RY > R with
a limited number of noisy evaluations y; = f(x;) + ¢;, for
i=1,...,N. Let Xy be an N xd matrix formed with
d-dimensional xl.T in each of its rows. Similarly com-
bine scalar outputs y; into an N-vector Yy. Throughout
this paper, we privilege an input-output (x,y) notational
scheme in keeping with the vast majority of the statisti-
cal learning literature on regression, nonparametric and
nonlinear or otherwise. In many geospatial contexts (e.g.,
Banerjee [7]), where f might be an environmental or
geological process, it is common to use s; for (spatial)
input sites and z; = Z(s;), among many alternatives, for
the response. We think this unproductively biases think-
ing toward d = 2-dimensional point-referenced (latitude
and longitude) data, whereas these methods can be applied
much more widely than that. Machine learning (e.g.,
Rasmussen & Williams [8]) and computer surrogate mod-
eling for example, Gramacy [4] applications are typically
in higher input dimension, and one of our goals in this
paper is to introduce this way of thinking into the mining
literature.
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A common nonparametric model for such data is a
Gaussian process (GP), which assumes that outputs Yy
follow a multivariate normal (MVN) distribution. Inputs
Xy are primarily involved in the specification of the MVN
covariance Xy = X(Xy,Xy) with a form for X(-,-) that
inverts Euclidean distances between its arguments. For
example,

where =V follows

Yn ~ #N(0, Zn), N

> for some decreasing S. (1)

1
sl — 2
<Dist(xi,xj)

In Equation (1) we are being deliberately imprecise
about the form of Xy, a topic we shall detail shortly in
Section 2.2. For now, simply suppose correlation in outputs
decays as a function of distance in inputs: Corr(yi, yj) <
Corr(y;, yx) if x; is “closer” to x; than it is to x;. We are also
using a zero mean specification, so that all of the modeling
“action” is in the covariance. Extensions abound.

Although a Bayesian interpretation is not essential in
characterizing GP regression, Equation (1) can be said to
specify a prior over (noisy evaluations of) functions like f,
abstracting as Yy ~ GP. Choices for the mean (0) and vari-
ance (X) determine the modeling properties of f like its
smoothness and wiggliness. We shall largely leave those
properties to our references, except as relevant to partic-
ular choices for Z(-,-), again in Section 2.2. Then, if N’
new locations X come along where we do not yet have
observations, Y(X), we can summarize our understand-
ing for those in light of the (training) data we do have—a
predictive distribution—through the lens of posterior con-
ditioning: Y(X) | Yy. First, extend the GP prior to cover
Y (X) jointly with Yy:

Yy 0 2N 2(Xn, X)

~ '/VN-}—N/ ’
Y(X) o |Z(X.XN) X(X,X)
In so doing, we may leverage that Y(&X) values are
more highly correlated with Yy values whose Xy entries
are close to X by applying standard MVN conditioning

rules, such as found in Kalpi¢ & Hlupi¢ [9], Y(X) | Yy ~
NN (un(X), Zn (X)) where

HN(X) = B(X, Xn)ZY YN
IN(X) =2(X, &) — Z(X,XN)Z;,lE(XN, X). 2)

Note that Xx(X) and Z(X, X) are N’ X N’ matrices; the
N subscript serves as a reminder of conditioning on Yy.
Observe that un(X) is a (high dimensional) linear pro-
jection of those Yy values, where the “weights” involved
are inversely proportional to the distance between their
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Xy values and those of X. Such conditioning identities
apply for any MVN, based on a GP prior or otherwise. The
special thing about the regression context is the (inverse)
distance-based dynamics manifest as © (N) weights in each
row of (X, Xy), and O (Nz) in Xy, involved in the projec-
tion, rather than the usual 0(d) or © (dz) weights in, say,
an ordinary linear regression. That higher-dimensional
linear projection, un(&X), has properties that transcend
the Bayesian interpretation. For example, under certain
conditions it is a best linear unbiased predictor (BLUP).
Although much of modern statistical learning now under-
stands Equation (2) in a wider, primarily Bayesian GP
context, they are identical to the so-called kriging equations
[10], which have been instrumental in geospatial/mining
analysis for more than half a century.

To illustrate Equation (2) consider f(x)=2+
2 sin(4xx), observed at N = 20 x;-values uniform in [0, 1]
as y; = f(x;) + &;, where ¢; X A(0,0.1). While GP regres-
sion is usually applied in higher dimension, such as 2d
and beyond, the 1d setting is convenient for visualiza-
tion. These 20 (x;,y;) pairs comprise of our “training
data” (Yn,Xn). Suppose we had a dense testing grid of
N’ =1000 testing locations X covering [0,1]. Applying
Equation (2) provides us with an N’ vector of predictive
means uyn(X) and an N’ x N’ matrix of predictive covari-
ances Xy(&X) summarizing our regression of y onto x.
Variances cr]z\,(z\’) along the diagonal of Xn(&X) could be
used to build error-bars describing a predictive interval
(PY) as roughly uy + 20y for 95% coverage.

These quantities are shown for one example of such
data in the left panel of Figure 1. The middle panel and
table on the right will be discussed in Section 2. Observe
how noisy data evaluations (solid dots) dance around the
true unknown function f (black line); our prediction(s)
un and Pls in (blue/red lines, dashed respectively) in two
variations (labeled “GP” and “Kriging”) accurately distill
the essence of the input-output relationship. All of this
is modulo a fortuitous choice for Z(-,-) which we have
yet to detail. Its specification, and method of inference or
unknown quantities, comprises the wedge between mod-
ern GPs (red in the figure) and traditional kriging (blue).

2.2 | Modeling

The discussion above hinges on a choice of Z(-,:), or S
in Equation (1). S was merely used as a notational device
to delay discussion until this moment; we shall not use
S going forward. Yet, that Equation (1) formulation is
attractive because it abstracts all modeling details down
to this “one” choice. “One” is in quotes because O (N?)
quantities, one for each pair of N data elements (x;,;),
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Semivariance

GP K-EB | K-NLS
772 or 7 1.99 3.17 2.48
t’gorr; | 0.145 | 0.018 | 0.00010
0 or R 0.172 | 0.17 0.13
RMSE 0.14 0.084 | 23.11
scoreg 869 -4161 | -125514

— K-EB — Mean
— K-NLS - Pl
T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1
X
FIGURE 1

Distance

Left: A 1d example function in black with dots being the observed locations. The GP prediction is in blue with dashed lines

being the 90% predictive interval (PI). Kriging predictions are shown in red and magenta with EB and NLS referring to different variography

techniques. Middle: A Gaussian kernel/semivariogram fit to the function. “EB” denotes a semivariogram fit by hand, whereas “NLS” uses

non-linear least squares; “GP” derives the semivariogram from an MLE hyperparameterization. Right: Compares hyperparameter estimates

and contains out-of-sample RMSE and score.

are actually constrained by the covariance structure. This
vast number of potentially tunable quantities, more even
than N, is why one refers to GPs as nonparametric. But of
course, it’s neither practical nor valid to allow oneself such
unbridled freedoms. For example, we must choose X(, -)
so that X is finite and positive definite for use as an MVN
covariance.

An inverse-distance-based covariance is conventional
as an intuitive spatial modeling device. However, this is
not a requirement and may not be ideal in all situations,
for example, when modeling periodic effects. We may wish
to allow flexibility in how distances are measured, in what
coordinates and with what decay in inversion, and to con-
trol how such choices relate signal to noise. Such consid-
erations lead to frameworks for choices of X(-,-) whose
tunable quantities, sometimes called hyperparameters to
acknowledge a nonparametric modeling apparatus, can be
learned from data.

For example, if the range of the responses Yy is
unknown a priori we might wish to design Z(-, -) to include
a scale hyperparameter, say 7. If Yy is noisy and/or con-
tains measurement error, we may wish to encode it as part
signal, and part noise. Sometimes this is governed by a
so-called nugget hyperparameter, which we shall denote as
g. We caution that the role of GP nugget is inspired by, but
is subtly different from, a parameter of the same name in
the geostatistics/kriging literature. More in Section 2.4. We
may wish to control the smoothness and rate of decay of
correlation of the signal in terms of (inverse) distance, and
thereby the smoothness and other properties of the under-
lying response surface. This may be accomplished through
selection of a so-called kernel function ky (xi,xj) ‘R4 >
[0, 1] whose hyperparameter 6 can be used to describe the
rate of radial decay from kg (xl-,xj) = 1 for x; = x; down to

zero as x; moves away from x; in an isotropic modeling con-
text. Kernels k may also re-scale and/or rotate the space
for anisotropic effects. One way to put these elements
together is

2(xi,x;) = v°(ko(xi,x;) + 865)  so that
Iy = 7Ky + gly). (3)

Above, §; is the Kronecker delta function returning
1 when the index i = j, that is, when the same training
data element appears in both arguments, and zero oth-
erwise, and Ky = ko(Xy,Xy) applying k elementwise as
K]i{'] = ko (xi,x; ). Observe that the diagonal of Zy is (1 + g)
and all off-diagonal entries are less than or equal to 72,
and strictly less than for all x; # x;. This discontinuity
between diagonal and off-diagonal, as long as g > 0, leads
to smoothing of the predictive surface when following
Equation (2). Otherwise, when g = 0 the surface inter-
polates. Again, this is a little different than the typical
geostatistics formulation as explained later in Section 2.4.

Choices for distance-based kernels k preserving pos-
itive definiteness and targeting certain other properties
abound. See, for example, Abrahamsen [11] or Wendland
[12]. The two that are most widely used are the power
exponential and the Matérn. These are provided below in
an isotropic setting, that is, with radial decay as a function
of distance.

o) =en{ B3 )

21 ) 2v
kgl(xi,xj) = m(”xi =Xl 7) ICV<”xi =Xl F)
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In both cases above the hyperparameter 6 appears
in the denominator, scaling (squared or square root)
Euclidean distances between x; and x;, and is thus some-
times called the characteristic lengthscale. Both have addi-
tional hyperparmeters, p and v, respectively, which must
be positive and which our notation does not include in 6
because they are usually specified, rather than inferred.
These control the of the resulting response surface.
When p =2 the power exponential produces infinitely
smooth (mean-square differentiable) realizations, and
sometimes this special case is called the Gaussian ker-
nel," which we denote as kg. When p # 2, the surface
is nowhere differentiable. While sometimes such patho-
logical non-smoothness is a reasonable assumption—and
in spite of this the predictive surfaces (2) often look
smooth—there are better mechanisms for relaxing unrea-
sonable (infinite) smoothness.

Many of the choices in our references above offer
higher fidelity control over smoothness (beyond none and
infinite). Of those, the Matérn has percolated into the
canonical position thanks largely to persuasive techni-
cal arguments from Stein [13]. The parameter v controls
this aspect, with higher values leading to greater smooth-
ness, yielding surfaces which are [v] —1 mean-square
differentiable. Ultimately when v — oo the Gaussian ker-
nel is recovered as a special case. However, the modified
Bessel function %, can be difficult to work with compu-
tationally. Specific settings with v € { %, g } have algebraic
closed forms (no Bessel functions) which yield degree one
and two differentiability, with the latter being most often
applied in practice because most interesting dynamics
result from at least twice (but not infinitely) differentiable
processes.

Both the (isotropic) power exponential/Gaussian and
Matérn are stationary kernels because they are defined
only in terms of displacement “x,- —xJJ|, so the resulting
response surface would have identical dynamics through-
out the entire input space. Nonstationary modeling is
also possible, but is a lot more difficult in general, for
example, see Sauer et al. [14], and further discussion
in Section 3.1. However, one can still capture nontriv-
ial dynamics with stationary kernels, for example by
deploying several of them simultaneously: sums, prod-
ucts, convolutions (and more) of valid kernels for GP
regression (i.e., are positive definite) are also valid, for
example, see Rasmussen & Williams [8] or Gramacy [4].
One of the most common applications of this result is to
extend to axis-aligned anisotropy by taking a product of

' Gaussian here refers to the expression resembling the density of a
Gaussian distribution; it has nothing to do with making a Gaussian
assumption, or its use in GP. Such kernels are used in a variety of other
contexts.

kernels applied univariately in each coordinate direction:
ko (xi,x;) = nglkgk (Xik. X ), abusing the notation some-
what. This can be done with any kernel. Notice here we
are introducing a d-dimensional lengthscale parameter
0 = (01, ... ,6,), controlling the rate of spatial correla-
tion differentially in each coordinate direction. For the
Gaussian kernel, the result is identical to

& (e = )
kS (x:,x;) = exp _z—é)k , (5)

k=1

which is sometimes called the separable Gaussian kernel
or the ARD Gaussian kernel. ARD stands for automatic
relevance determination [15], borrowing terminology from
early neural networks literature. The idea is that the data
can inform on longer lengthscales (less relevant) or shorter
ones (more relevant) for each input variable separately.
ARD/separable Matérn kernels are also common, but their
expression(s) are less tidy so we do not include it here.

There is a one-to-one relationship between vector-
ized lengthscale in the ARD kernel formulation and with
re-scaling inputs Xy, say as a pre-processing step. Rather
than scaling each input differently, one can extend to rota-
tions and projections to accommodate less rigid anisotropy
either as preprocessing [16] or as a hyperparameterized
kernel [17]. We find that such high-powered approaches
are overkill for most applications, including the mining
ones discussed later.

2.3 | Inference

The models above have tunable quantities, or hyperpa-
rameters, that could be set by hand but would ideally
be learned from data. We restrict our focus to those
which we introduced for X(-, ), particularly ¢ = (z2,g,0)
with the latter usually vectorized in an ARD setting, but
there could potentially be additional quantities which
must be estimated from data. There are many crite-
ria and algorithms across several literatures devoted to
such “fitting” enterprises, for example, Diggle & Ribeiro
[18]. Yet there is a remarkable confluence in modern
statistical learning practice when it comes to the near
universality of likelihood-based methods when distribu-
tional assumptions are being made (like the MVN in
Equation (1)). The reason is that no additional criteria
need be introduced to commence with learning. One may
choose to impose additional assumptions, like priors on
aspects of ¢ for a Bayesian approach [7], which is still
likelihood-based, or not—simply maximize the likelihood.
This is the approach we present here because it is tidy
and fast.

A5uddI' suowwo)) aanear)) dqesrjdde ayy £q pauraAos are sajonae YO (ash Jo sa[ni 10j AIeIqrT AuluQ A3[IAL UO (SUONIPUOD-PUE-SULIA)/WO0d A3[1m AIeIqi[our[uo//:sdny) suonipuo)) pue swd I, ay) 39S “[£20z/80/10] uo Areiqr autjuQ A3IpM ‘Yoo eruiSuA £q €911 wes/z001 01/10p/wod Ko[im Kreiqiaurjuo,/:sdny woly papeoumod ‘0 ‘7L81TE61



s | WILEY

CHRISTIANSON ET AL.

Equation (1) depicts how observations/outputs (like
Yy), are distributed in relation to inputs (like Xy) and
parameters or other structure (like X(-, -) via hyperparam-
eters ¢ and kernels k). The likelihood simply re-frames
the density of that distribution, which assigns positive real
values to Yy as a function of parameters (or hyperparame-
ters ¢, say), the other way around: providing positive reals
for ¢ given Yy. Once in that context, it makes sense to seek
out the parameterization that makes the observed Yy most
likely, that is, that maximizes the likelihood. There are two
benefits to this approach. One is that it reduces a statis-
tical inference question to an optimization one without
introducing auxiliary criteria. The other is that the solution
to this optimization, the so-called maximum likelihood
estimator (MLE), has special properties that can be used
to quantify uncertainty. For a review of likelihood-based
inference, see Casella & Berger [19]. Details for GPs are
provided in section 1 of our Appendix S1; all Figure 1
quantities labeled as “GP” utilize MLE settings of hyper-
parameters.

24 | Kriging and variography

The main difference between classical kriging and the GP
presentation above regards inference for unknown quan-
tities and, in the case of the latter, a more up-front and
highly-leveraged distributional assumption (Gaussian)
for the response. Both use Equation (2) to form pre-
dictions and quantify uncertainty. In geostatistics, these
are known as the “kriging equations,” even when
other aspects historically associated with kriging are
not faithfully replicated. Classical kriging focuses on
lower input dimension—particularly d € {2, 3} in spatial
contexts—and as such prefers isotropic modeling after a
suitable transformation of spatial inputs. Variography is
used to select the kernel and its hyperparameters, rather
than the likelihood. This has advantages and disadvan-
tages. Many of the advantages are related to the histori-
cally larger training data sets encountered in spatial prob-
lems, although that gap is narrowing in wider statistical
learning and computer experiments contexts. More on
this in Section 3, wherein further distinctions arise. The
main disadvantage is that input pre-processing and vari-
ogram inspection are inherently hands-on, human driven
enterprises, albeit ones enhanced by computational tools.
Other differences are more superficial, like naming, sym-
bol choice, and applications of hyperparameters within
variography.

The semivariogram, or half the variogram, denoted as
y(h),is the variance of two output y-values that are distance
h apart in the input x-space: y(h) = %Var(Y(x + h) — Y(x)).
Implicit in this definition is an assumption of intrinsic

stationarity, implying that E[Y(x + h) — Y (x)] = 0, or that
the covariance between two y values depends not on posi-
tion but on relative distance notated by the displacement
h between them. If h is calculated using Euclidean dis-
tance, intrinsic stationarity implies isotropy. When this is
alimitation to effective spatial modeling, one may prescale
or rotate the coordinate system. This is often based on
expert-judgment of the prevailing variabilities within the
input domain, like the direction of an ore body within
the geologic topology. As mentioned earlier, a modern GP
approach would deploy separable lengthscales (5), or more
flexibly parameterized rotations and scales that are learned
jointly with other unknowns.

The semivariogram is a theoretical construct that
would be hard to specify a priori even with expert
knowledge, but simple to observe empirically given
data. One estimate of an empirical semivariogram
could be obtained by binning the data by distance
and calculating sample covariances within those

bins. Let N(h) = {(xi,xj) : Hxl- —xj” IS Ik} where
Il = [0, ]’ll],Iz = (l’ll, I’lz], ,Ik = (]’lk_l, I’lk] denote a
neighborhood structure striated by bands of distance
0, Ry, ..., he. Then estimate

Sy = — L )2
= N > i-yi) (6)

(%, )eN(h)

As defined continuously for any h, 7(h) is a step func-
tion. However it is customarily visualized discretely as a
scatter plot with (h; + h;;1)/2 as the x-axis coordinate. The
middle panel of Figure 1 shows these as dots for the 1d
problem introduced in the left panel of Figure 1 using a bin
size (hiy1 — h;) of 0.05.

One can then match these empirical observations of
spatial covariance with a parameterized form for the pop-
ulation semivariogram. Here, similar constructs are used
to model spatial dependence as the kernels introduced
earlier (4). Let y(0) = 0 and for h > 0, power exponential
and Matérn model semivariograms are often, respectively,
written as

Phy=12+0?(1—expl — h !

Vo) =1 p R

iy — 2 v or(12 27 (/2 2
]/a(h)—l'k+6<1 F(v)<h R)]Cv(h R>>

(7

Semivariogram parameters are known as nugget (ﬂ:,f),2
partial sill (¢%), and range (R).

* A subscript k is not standard; we added it to distinguish with the GP
scale 72.
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Taking y(0) = 0 is a contentious choice outside of the
geospatial modeling literature. It implies that there is no
intrinsic variance in measurements. In part this is because
such measurements are inherently unrepeatable in cer-
tain contexts; you cannot dig a borehole in the same place
twice. But if you could, it stands to reason that you would
get different measurements for such replicates for all sorts
of reasons, for example, even without operator error the
drill bit might interact with the surface and ore body dif-
ferently the second time. Primordial process producing the
ore body are subject to uncertainties that are best char-
acterized as random variables even if the process is not
inherently stochastic. Thus, it is acknowledged that there
will be small-scale variability between nearby observations
that are best described by noise. This noise, at all distances
h = € > 0, is what is parameterized by the nugget r]f. The
distinction with the GP nugget g, which characterizes the
noise as 72g at h = 0, is thus subtle. Choosing y(0) = 0 has
an impact on the kriging equations (2), leading to discon-
tinuities at the training data locations, where an otherwise
smooth predictive surface would be pocked with spikes of
“interpolation.” We do not show these in the red curve by
deliberately omitting Xy values from our predictive grid X
for Figure 1 (left panel) for aesthetic reasons.

Kriging-versus-GP distinctions between the other two
kernel parameters are more superficial. The partial sill 62
controls the maximum covariance as h — oo. This has a
1:1 correspondence with 72 from earlier. Sometimes a sill
parameter, rlf + o2, is preferred by geostatisticians instead.
The range R controls the distance between maximum and
minimum covariance, and plays an identical role as the
square root lengthscale: R = \/5 It is not uncommon to
instead specify a decay parameter ¢ = 1/R, and such inver-
sions are common in the GP literature as well.

Each setting of these parameters could be used to over-
lay a curve onto the middle panel of Figure 1. For example,
using the MLE hyparameters from our earlier GP analysis
yields the curve in blue. Alternatively, one could auto-
mate a search for the “best fitting” variogram parameter-
ization with a generalized/nonlinear (possibly weighted)
least-squares (NLS) criterion [20]. This corresponds to the
magenta curve. Observe that neither of these result in a
terrific fit to the semivariogram “data.” An outlying pair
of dots near h = 0.5 drags these variograms down, sacrific-
ing fit for smaller pairwise distances. One reason these are
outlying may be that we have many fewer long-distance
pairs in the data than short distance ones. A common rem-
edy would be to downweight or altogether ignore these
when fitting the variogram parameters, focusing only on
the short distance readings. We refer to one such fit as the
“eyeball” (or EB) variogram in the figure, although in prac-
tice NLS may similarly be deployed. This can lead to more
accurate predictions out-of-sample, as we demonstrate

momentarily. However it has the downside of introducing
non-statistical (e.g., NLS) and non-metric (determination
of outlying semivariogram estimates) criteria diminishing
reproducibility and automation, and incurring the expense
of human intervention. This enterprise is also sensitive to
other choices such as bin size h;,; — h; and a choice of max-
imum distance to calculate the empirical variogram. We
chose hyax = 0.5 for the middle panel of Figure 1, but could
have gone out to hpax = 1, producing a much “noisier”
empirical semivariogram.

The table in the right panel of Figure 1 details hyperpa-
rameter estimates for each of the three techniques. Length-
scale and range settings exhibit high agreement. For scale/-
partial sill, NLS and GP MLE values are “drawn down” by
the noisier higher distance bins relative to our EB alter-
native which ignored those values. The nugget is where
things start to substantially diverge: z2g > rlf means our
GP-MLE estimates more noise/less signal than the krig-
ing alternatives (EB and NLS). Notice that EB and NLS
nuggets are on different orders of magnitude. The tiny
NLS rlf may be attributed to a lack of small distance pairs,
and consequently the optimizer converged at the bound-
ary of our search space for that parameter: 10~*, meaning
very high signal/low noise. Although this seems innocu-
ous when it comes to the corresponding semivariograms
on the left in the figure, the implications out-of-sample are
severe.

In the left panel of Figure 1 the EB kriging fit (solid-red)
is visually similar to the GP-MLE fit (solid-blue) except
perhaps near x = 0.4. This is noteworthy in light of the dis-
parate parameterization and semivariograms in the middle
panel of Figure 1, and in particular the human interven-
tion required to ignore outlying values in favor of short dis-
tances. Qualitatively, the red curve may be more accurate
compared to the truth (black), but closer inspection reveals
a more pernicious concern despite higher accuracy: poor
uncertainty quantification. The red 90% PI (error-bars)
cover only about half of the training data locations, sug-
gesting that nominal coverage has not been achieved. In
contrast, the blue (GP-MLE) error-bars cover many more
of the data points. In the table residing in the right panel of
the figure, we use root mean squared error (RMSE, lower
is better) and score (higher is better) to compare methods
out-of-sample. Formulas and commentary are provided in
section 2 of our Appendix S1.

3 | LARGE-SCALE MODELING
VIA LOCALIZATION

In the modern age, datasets can easily push into the mul-
timillions and the methods described in Section 2 quickly
become infeasible. The reason is that likelihood-based GP
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inference for hyperparameters and prediction (2) requires
matrix decomposition for the inverse and determinant
of the covariance structure. Most kernels, for example,
Gaussian and Matérn, produce dense Ky (and thus Zy),
which require ©(N*) decomposition, say via Cholesky
(which furnishes both inverse and determinant). This is
prohibitive for N larger than a few thousand. For example,
decomposing a single 40,000 x 40,000 matrix on a worksta-
tion using 8 cores and specialized linear algebra libraries
(Intel MKL) takes about 10 min. Numerical optimiza-
tion of hyperparameters might require hundreds of such
decompositions in search of the MLE via BFGS. With cubic
scaling for larger N, computation time quickly explodes
to hours or days. O (N?) storage of the N XN matrix
can also become problematic even on the most powerful
workstations. Kriging-based inference for hyperparame-
ters via variography bypasses the need to work with an
N x N covariance matrix by binning the data. However,
Equation (2) still requires a dense N X N inverse to furnish
predictions, which is still cubic in computational order.

Consequently, there are increasingly many approaches
seeking a thrifty approximation to GP/kriging models.
Heaton et al. [21] give a thorough comparison of about
a dozen recently introduced spatial methods equipped to
handle large data. Here we focus on three representative
approaches as a means of spanning myriad alternatives
in a mining context: Ordinary kriging (OK) [1] is the
standard method in mining/geostats which makes local
(approximate) prediction after full-data variogram-based
hyperparameter estimation; Local Approximate Gaussian
Processes (LAGP) [23] can be seen as a likelihood-based
contemporary analog of OK developed in the surrogate
modeling community, making it a natural comparator
to OK; finally, the scaled Vecchia approximation (SVec-
chia) [5] uses a global approximation to estimate the full
covariance structure based on similar locality principles as
LAGP/OK. Details for each of these follow in subsections
below.

Last as a baseline, we consider subset GPs trained
via a randomly selected, computationally feasible, m <«
N-sized subset of the data points and use them to form
an approximation to the full model. Specifically, we build
(Xm> Ym) C (X, Yn), using the likelihood for hyperparam-
eter inference via using (X,,, Y;,) and prediction similarly
following (2). We consider m ranging from 1000 to 8000; we
show later in Figure 5 that m > 8,000 is very slow and not
competitive with the other methods in terms of accuracy
out-of-sample.

3.1 | Transductive modeling
Perhaps the most common solution to big-data matrix
issues when predicting via kriging is to deploy what is

known as ordinary kriging (OK) [1]. OK involves using
full-data variography to learn kernel hyperparameters, and
then a local application of that learned kernel through
predictive equations (2) conditioned only on a small sub-
set of the data nearby the predictive location(s) of inter-
est. Let x € X denote the coordinates of one such loca-
tion, and X,,(x) C Xy denote the m “closest” (e.g., via
Euclidean distance) members of Xy to x, and let Y, (x)
be the m-associated output values. These are sometimes
called the m-nearest neighbors (NN) to x in Xy. Then sim-
ply apply Equation (2) with (X,(x), Yi,(x)) rather than
(Xn,Yn). When N is so large that the requisite N X N
matrix decompositions are intractable, choosing m < N
like m = 50 can represent a thrifty-yet-accurate alterna-
tive acknowledging that the discarded points Xy \Xj,(x)
have vanishingly small impact on the predictive equations
especially when kernels involve exponential decay.

If a multitude of x € X are of interest, these may be
processed in serial or, as is increasingly common with
modern computing architectures, in parallel on multiple
cores of a workstation and/or nodes of a supercomputer.
Vast predictive grids X can be processed efficiently in
this manner. There are several variations on this theme,
many involving how the “neighborhood” X,,(x) and its
size m are defined. For example, one may work with
a radius r instead, implicitly defining m depending on
the local nature of design locations Xy nearby x. Suit-
able r from a modeling perspective may be selected by
the estimated range R of the semivariogram. However,
this does not guarantee a suitably-sized m for all x. One
may end up with too small of a neighborhood to make
computationally stable calculations/reliable low-variance
predictions, or too large of one to be carried out effi-
ciently from a computational perspective. Consequently,
there are many hybrids that are often deployed in this
space [24].

The idea of tailoring a statistical calculation to a predic-
tive task, using different data and possibly different calcu-
lations depending on the predictive location x of interest,
is now known as transductive learning [25]. The transduc-
tive moniker is meant to contrast with the more typical
inductive learning setup where one trains first and predicts
second. Under transductive learning, the training hap-
pens bespoke to each x € X, and usually on-demand/in
real time. Examples span the gamut of statistical model-
ing enterprises, often offering both speed and accuracy
gains over the inductive analog. Reviewing these would
be a distraction here. Instead, we note that OK is an
example of transductive learning ahead of its time, albeit a
somewhat limited one. Hyperparameter learning with OK
is inductive, whereas posterior predictive conditioning is
transductive. It is this latter stage where the nonparametric
flexibility really comes from, although one might wonder
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whether things could improve by enhancing the degree
transductively, as it were.

A prime example of transductive GP modeling from
the wider statistical learning literature is the local approx-
imate Gaussian process (LAGP) [23]. LAGP is similar to
OK, using Xn,(x) ¢ Xy and Y, (x) analogously for pre-
diction, but it is different in that it extends the notion
of locality to hyperparameter inference via the (local)
likelihood. That is, the entire process conditions only
on (Xy(x), Yiu(x)) for inference and prediction (2). All
inference is off-loaded to numerical optimization. When
the response surface is nonstationary, for example, ben-
efiting by longer lengthscales for some x and shorter
for others, LAGP offers enhanced reactivity compared
to single, global setting of hyperparameters. Any varia-
tion tailored to the full-GP is easy to port to the local
setting because LAGP is just many small GPs. Hybrids
are possible too. One such example alluded to ear-
lier involves pre-scaling or rotating/projecting [16, 26]
to handle non-axis-aligned anisotropy. However, the
biggest difference between LAGP and OK does not lie
in potential for extension; it is how the neighborhood is
defined.

Given fixed m, usually chosen via computational con-
siderations (a common default is m = 50), it has been
known for sometime that the m-NNs in Xy to x, whether
via Euclidean distance or otherwise, do not comprise of an
optimal conditioning set (X, (x), Y;,(x)) under any reason-
able criteria [27]. Example criteria include (Fisher) infor-
mation about unknown hyperparameters or, as is usu-
ally more relevant when predictive accuracy is concerned,
predictive uncertainty (a.k.a., mean-squared prediction
error). We note that this, in turn, means that the OK pre-
dictor is also sub-optimal as a transductive learner. How-
ever searching for the best conditioning set (X, (x), Y (X)),
again under almost any criteria, represents a computation-

ally daunting task because there are <In\;> alternatives to

explore.

Here, another modern statistical learning idea comes
in handy: active learning (AL). AL is a branch of reinforce-
ment learning/optimal control, or may be viewed as a mod-
ern take on sequential design of experiments. In the AL
literature, one can often show that a one-step-at-a-time,
greedy selection of training data is nearly as good as
an exhaustive optimization of some criteria if it obeys
a submodularity property [28]. For example, it can be
shown that repeatedly acquiring training data (X1, Yn+1)
such that x; maximizes the predictive variance X, =
argmax, o2(x) of a GP (2) or neural network model train-
ing only on {(x;,y;)};_, obtained previously (e.g., via sim-
ilar greedy optimization), well-approximates a so-called
maximum entropy design, that is, maximizing Shannon

information about unknown hyperparameters (GP length-
scales) for the entire selectioni = 1, ... , N, say. Thisideais
due to [29] for neural networks, and dubbed ALM by [30]
in extension to GPs.

Intuitively, selecting points which have maximum vari-
ance will result in a space-filling design because vari-
ance is higher away from the training data. Also intu-
itively, spreading points out will increase accuracy and
reduce uncertainty throughout the input space. But this
is coincidental. Guaranteeing reduced predictive variance
everywhere, or at a particular location (for choosing an
LAGP neighborhood), requires a criteria that squarely tar-
gets reduced variance in the region of interest. A com-
mon choice is integrated mean-squared predictive error
(IMSPE) [2]:

IMSPE(xn+1) = /O-ﬁ_'.l(x) dxz 2 6£+1(x)

¥ XEX ¢

= ALC(xn+1 s Xref)~ (8)

The integral is usually taken over the entire input
space, but X could be any set. This could be interpreted as
a criteria for the entire design X, 11 = [X,,; X117, or simply
to select the next input x,; in an active learning context:
Xp41 = argmin ., IMSPE(x). Due to submodulatirty, both
(approximately) optimize the IMSPE criteria over all X, ;.
Cohn [31] developed this for neural networks, and Seo
etal. [30] extended it to GPs. Notice that ALC approximates
the integral as a quadrature over a discrete reference set
Xref- This is not necessary for GPs, because the integral is
analytic when following Equation (2), but it is for neural
networks.

For LAGP, the goal is to get as accurate of a prediction
at x as possible, which can be interpreted as a single-
ton {x} = X = Xi.s, effectively discarding the sum or inte-
gral. We can select a new x,41 = argminxn+1 ALC(xy41,X%),
and repeated applications will approximate a “local”
optimal design for predicting at x. This would usually
be applied for selecting new training data in an AL
context, but for LAGP we already have a fixed train-
ing data set (Xy,Yny) and so we desire a subsample
instead: X,y = argminaneXN\Xn ALC(xp41,%), which is
even easier than a continuous search everywhere in the
input space.

In practice, early ALC acquisitions (small n) result in
neighborhoods that are indistinguishable from NN. How-
ever, later acquisitions (larger n) tend to concentrate on
“satellite” points farther away. Information farther afield
becomes more valuable as NNs accumulate near x: you
want x,41 to be both close to x but far from X,,. At the start
the former dominates, but eventually the latter has higher
weight in the criteria. The end result for n = 50, seen in
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FIGURE 2  ALC neighborhood for n = 50 on simulated

borehole data.

Figure 2, involves 10 or so satellite points, departing from
an OK or NN subdesign set of the same size.

To a certain extent, LAGP has a “chicken or the egg”
problem when dealing with anisotropy. Neighborhoods
selected for x are based on Euclidean distance to deter-
mine hyperparamters, like 8)(x), but those values con-
trol notions of distance differently in each input coor-
dinate through the kernel. OK experiences this problem
too, albeit to a lesser extent when anisotropy is han-
dled by the practitioner as a pre-processing step. Sev-
eral remedies have been proposed. The original LAGP
paper [23] suggested initializing with a default, isotropic
0, for all testing locations x, upon which neighborhoods
are built (e.g., via ALC) and local, anisotropic é\(x) are
learned through local MLEs separately for each x. This
can then be repeated, with neighborhoods based on those
6(x), until things stabilize. Subsequently, a simpler/bet-
ter approach was promoted by Sun et al. [26] that is
more akin to OK pre-processing, but still completely auto-
mated. Liu & Hung [32] showed that unbiased (global)

lengthscales 0= (51, ,§d> can be estimated via MLEs

from carefully constructed data subsets of large Xy with-
out expense cubic in N. Once these have been learned,
they can be used to pre-scale inputs X as X/ \/@ S0
that the implied MLE global lengthscale is 8o = 1 under
squared-distance kernels like in Equation (4). In this trans-
formed space, Euclidean distance can be used to determine
neighborhoods. This pre-scaled LAGP has become the
default setup, and has since been extended to other input
“warpings” [16].

Taken as a predictive field over a densely gridded test-
ing set of x-values, both OK and LAGP (NN or ALC) are

discontinuous. Prediction at each point x € X’ is processed
independently, both in a statistical and computation sense.
So two testing locations right next to each other may
have substantively different predictions (in mean and/or
variance) because different neighborhoods are used for
conditioning. This can be an asset when the response sur-
face exhibits regime/abrupt changes. In tamer, more sta-
tionary settings, a non-smooth prediction could be detri-
mental to statistically efficient and aesthetically pleasing
analysis.

3.2 | The scaled Vecchia approximation
To address that potential downside, the Vecchia GP
approximation [33] borrows the neighborhood idea while
providing a global model for smooth predictions. It relies
on a familiar identity for joint distributions:

p®) = ppM2ly1) ... POuly1:Y2,Y3, -+ Yn-1)
N

p (}’i [Vka) )

where k() =1{j:Jj<i}

]
_

where c(i) C k(i) 9

2
—1=

p(vilyen)

i=1

The first line above (equality) is true for any
re-indexing of the variables y =y, ... ,y», and for any
y_not specifically for GPs. The approximation (second
line) arises from dropping some of those conditioning
variables. Let m denote the maximum size of those sets,
that s, so that | c(i) |= min(i — 1, m), controlling the fidelity
of the approximation—more severely for m < i. The
quality of this approximation is determined by the index-
ing (i.e., the ordering of the conditionals), size m, and
which of the conditioning variables k(i) are dropped in c(i)
when m < i.

Specifically for GPs, one may view the likelihood, in
this context:

N N T2
L(g; Yy) = HL(¢;yi Vewy) = @n)"2 <H512>
i=1

i=1

N
1 _
€Xp {_Z 507 01 = Z(6Xew) 2 (Xey Xew) "Vey) 2 }
i=1 i

(10)
where Z(-, -) is defined as in Section 2.1 and o-l.2 = 2(x;,X;) —
z (xl-, Xc(i) ) 2 (Xc(i) . Xc(i) ) _12 (Xc(i) » Xi ) is the predictive vari-
ance at location i given the conditioning set, c(i). Since
distance in the input space, via (-, -) is fundamental to GP
inference and prediction, one can think of ¢(i) as defining
a “neighborhood.” In that context it makes sense (as it did
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for OK and LAGP) to include in the neighborhood those
indices whose input values X,; are closer to x;.

Equation (10) is similar to the likelihood except
instead of performing one N X N matrix decomposition
(for inverse and determinant) in 6 (N3) time, the Vec-
chia approximation involves N smaller inversions of m X
m matrices, requiring O (Nm?) flops. If m is small, typi-
cally between 10 and 25 [34, 5], © (Nm?) is quasilinear in N
[35]. Further computational gains can be realized through
sparse-matrix libraries and parallelization by re-writing
the likelihood through a Cholesky decomposition of the
precision matrix of Yy, denoted as U:

N -3 N
L(¢; Yn) ~ 2n)" 2 <gai2> exp {—%Z(Y]\TJUiUiT YN)}
uut

- @t Eexp{—%(YJ\T]UUTYN) booan

where U; is a 1 X N vector whose j entry is:

1 0

: _1\ U
Ui(J) =4 — %(Z(xi,xj) <E(Xc(i)sXC(i)) 1) > j (S C(l)

0 otherwise.
(12)

Observe that there are no N X N matrix decomposi-
tions, and that any inverses are implicit in the sparse
Cholesky factor UUT.

One may maximize the likelihood (11) to estimate
hyperparameters [36]. Prediction follows the classical
setup (2), forming Y(X) | Yy by stacking training and test-
ing responses:

Yy w o||UUT = 2511 Ui U,-T Zfil UzZﬁil U{T
~ NN+ g
N N N
Y(X) 0 XU Xin UiT Ut =3 Ui’UiIT

Here we have introduced a new N’ x N’ matrix, U’
following Equation (12), via X rather than Xy. Then, the
analog of Equation (2) yields

-1

1N N
N (X) = —<U’ U’T> YU YUYy and
=1 i=1 (13)

X)) = U'UT.

So the Vecchia GP approximation provides a full joint
distribution. Moreover, a single prediction (X = {x}), after
training, requires just O (m?) additional time [5], assum-
ing cached values of U. A total of O ((N" + N)m?) flops
are required for inference and prediction, as opposed to

0 (N’3 + N3) for an ordinary GP.

All that remains is to determine the ordering of indices
i in y; and the composition of the neighborhood sets c(i),
since not all choices (when m < n) lead to equally good
approximations (9-10). One option is to follow the LAGP
playbook and attempt to optimize over these variables.
However this has proved elusive in the literature because
an exhaustive search over alternatives would be combi-
natorially cumbersome, and there is no obvious greedy
approach that enjoys submodularity for active learning.
Nevertheless there are rules of thumb that make sense
intuitively. Many orderings work well [27, 36, 37], but
there is a consensus in the literature [ 34, 38, 39] for random
indexing. Likewise, those authors prefer NN conditioning
sets c(i) comprised of indices j < i whose x;-values are clos-
est to x;. This choice has been dubbed NNGP by Datta et al.
[34], although it is important to note that NN are not being
used in the same way as LAGP or OK.

Since distances are involved in NN calculations, the
Vecchia approximation faces the same “chicken or the egg”
problem as LAGP in the face of anisotropy. To help, Katz-
fuss et al. [5] describe a scheme similar to pre-scaling for
LAGP which updates lengthscales 0y via Fisher scoring
[40], then re-scales inputs so that NNs can be recalculated,
and repeats. Katzfuss et al. [5] call this “scaled Vecchia”
(SVecchia), and argue that it works best with a maximin
[41] indexing. We adopt SVecchia as our preferred varia-
tion on this theme, in part because it is neatly packaged in
software (Section 4).

Figure 3 shows an illustration using simulated bore-
hole data, providing conditioning sets of size m = 10 for
two points, labeled with indices i = 4 (triangles) and i =
115 (circles) respectively. The left plot shows what the con-
ditioning sets look like in the raw, unscaled space while the
right is after scaling x; by %; both using the same maximin
ordering for easy comparison. The scaling has no effect on
the small indices, since point 4, for example, can only con-
dition on k(4) = c(4) = {1,2,3}. See that the lower indices
in c(4) (purple triangles) are spread out through space
because of maximin ordering. However, point 115 has
| k(115)|= 114 points to choose from for it’s neighborhood
c(115). Consequently, the conditioning sets are different
between the unscaled and scaled versions. Observe that
point 97 is closer than point 34 in the scaled plot, but
farther in the unscaled plot.

4 | EMPIRICAL EVALUATION ON
ORE DATA

Here we shall expand on our out-of-sample analysis to
illustrate how modern approximate GP and kriging alter-
natives (Section 3) compare on two, real and large-scale
ore data sets. The layout is as follows. Section 4.1 presents
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the data and our validation apparatus, which offers a
subtle twist on conventional methods to respect the
borehole nature of data acquisition/measurement. Here
we also provide results from our first sets of comparisons.
Finally, Section 4.2 presents one of several potentially more
nuanced analyses that, we believe, is only possible (with
ease) in the fully probabilistic GP setting: coping with
left-censoring prevalent in ore measurements. Implemen-
tation details are provided in section 4 of our Appendix S1.

4.1 | Validation exercise
Our ore data involve three-dimensional inputs, indi-
cated as longitude, latitude and depth in standard units.
Although these data record measurements (potential ore
outputs) for multiple elements, our analysis here focuses
on (log) gold concentration in parts per million. The two
data sets are for geographically disparate mining sites
that are characterized by different ore forming processes.
The first one records more than 150,000 measurements
from approximately 4000 boreholes; the second has N =
500,000 from 8000 boreholes. The second data set also has
a substantial number of left-censored values (i.e., thresh-
olded measurements below the detection limits of the
apparatus used to sample the core). For example, about
40% of the gold measurements in these data are recorded
as 0.05. There are a smaller number of higher limiting val-
ues as well. We shall detail how we handle this with two
different treatments in Sections 4.1 and 4.2. We are deliber-
ately being vague about many aspects of our data to honor
confidentiality agreements with mine operators.

We wish to draw an out-of-sample comparison
between the methods in Section 3 on these data. In addi-
tion to RMSE and proper score, we also report time,

considering both compute (machine) time and practi-
tioner (human) time. Machine time is measured precisely,
in seconds, for execution on an eight-core hyperthreaded
Intel Core i9-9900K CPU at 3.6GHz with 128GB RAM
and Intel MKL linear algebra subroutines. Human time is
more subjective/imprecise, and we shall have more to say
about that in due course. It is worth remarking that none
of the small-data/exact methods from Section 2 are appli-
cable when N > 10,000, as we have here. Approximation
is essential. One simple option is to (randomly) subset the
data to a manageable size and apply exact inference on
that subset. We consider variously sized “subset GPs” as a
benchmark.

As mentioned in Section 2, it is important to compare
metrics on out-of-sample data. In practice, out-of-sample
validation occurs by training the model on 90% of the data
and testing on the other 10%. A simple example is provided
in section 3 of our Appendix S1. Repeating that random-
ization multiple times mitigates the so-called Monte Carlo
(MC) error for metrics like RMSE and score, which are
shown in Section 2 of our supplement. Here we use K =
10-fold cross validation (CV) [42] to average over train-test
partitions while controlling MC error further by ensuring
that each data element is used exactly once for testing, and
complementarily exactly nine times for training. CV com-
mences by first shuffling the data, and then evenly dividing
it into a partition of K mutually-exclusive folds, then iter-
ating over those folds k =1, ... , 10, forming a testing set
of the data in the k™ fold while taking the complement
as the training set. In this way, K metric evaluations (like
RMSE, score or time) can be calculated and summarized
for comparison.

Early attempts at a CV evaluation of the methods
in Section 3, after this fashion, revealed a shortcom-
ing in the context of our borehole-driven ore data sets.
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Namely, the best predictors of a particular held-out testing
element were almost always comprised entirely of mem-
bers of the training data coming from the same borehole.
With boreholes “holding” approximately 30-60 data ele-
ments each, depending on the hole and the data set,
this meant that it was highly probable that an accurate
prediction could be made trivially just by those nearby
evaluations. This conveyed a substantial advantage to OK
and LAGP. We determined that it would be more realis-
tic, and more fair, to hold out entire boreholes for testing,
rather than partitioning the data on individual data ele-
ments regardless of which borehole they were in. The
idea is to simulate what might happen if we were to pre-
dict measurements for a new borehole that has not been
drilled yet.

Toward that end, we built a custom CV which ran-
domly partitioned our data into K folds of roughly
equally-sized boreholes instead. In this way, boreholes are
“tested” all at once, without being able to lean on other
data within the same borehole for training. Figure 4 shows
one such training and testing partition via a single fold of
this “borehole-preserving CV.” Finally, it is worth remark-
ing that all of our comparator methods use exactly the
same CV folds.

4.1.1 | Oredatasetone

With this setup, Figure 5 shows log RMSE, score and com-
pute time for each of our methods for the first, smaller
data set. The big takeaways are that SVecchia, OK and
SLAGP are all competitive with each other in terms of
RMSE; SLAGP and SVecchia are competitive in score
with similar medians. Observe that SLAGP improves upon
ordinary LAGP for both RMSE and score. Score for OK
could not be calculated because GSLIB does not furnish
predictive variances. GSLIB provides standard errors on
the mean of the prediction, but those can substantially
under-estimate out-of-sample variance. In terms of time,

SVecchia takes seconds and LAGP takes a couple minutes
to run, both with essentially zero “human time.” We report
that OK takes several hours of human time to perform a
variography analysis, choosing between competing kernel
formulations and parameterization and to determine an
appropriate rotation and pre-scaling of the data to cope
with an otherwise isotropic formulation. After that has
been done, training and prediction takes about the same
amount of time as (S)LAGP. It is interesting that SLAGP
is faster than LAGP despite involving more algorithmic
steps: first fit a global subset model, then local mod-
els on transformed inputs. The explanation is that, after
pre-scaling, local MLE calculations are easier: they require
many fewer iterations to converge. Computation time for
the subset-GP methods explodes with 0 (m?) flops as m
grows.

Our conclusion from this experiment is that, although
SLAGP edges out SVecchia on accuracy and UQ for this
problem, SVecchia is slightly better overall because of its
substantially lighter time commitment. However, for an
individual (or entire borehole) prediction, SLAGP times
are orders of magnitude faster—the times in the right
panel of Figure 5 are for all boreholes in the fold—because
each calculation is independent of others. For a one-off
prediction it is the clear winner. Although raw accu-
racy is similar compared to OK, the modern GP meth-
ods are hands-off, provide full UQ, and are faster to
train/predict.

41.2 | Oredata set two

A similar analysis for the second, larger data set, is
nuanced because of the substantial left-censoring. One
option is to ignore the censoring and treat the recorded
values as the actual values. If there were a small num-
ber of such values, sporadically located in the input space,
this might work well. However, there are a sizable num-
ber (more than 40%), and they cluster nearby one another.
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Having some responses smoothly vary in the input space,
with others “flatlining” at 0.05, say, for most or all of a
borehole represents an almost pathological contrast to typ-
ical smoothness assumptions underlying GP (and kriging)
methods. So to start with, we removed these values, and
dealt with borehole-preserving CV only on the remaining
259,555 data records. In Section 4.2 we shall discuss an
imputation scheme for bringing these observations back
into the fold. The remaining data still contain a moder-
ate degree of left-censoring which we largely ignore except
when an entire borehole contains the same (thresholded)
gold response. In that case, we collapse those records into
three data points—two ends and midway point—all with
the same gold value. This collapsing is especially impor-
tant for LAGP and OK because, due to their local nature,
those methods occasionally have neighborhoods consist-
ing of data from one or two boreholes only. If those mea-
surements lack diversity due to thresholding, training can
result in numerical singularities.

Even after such modifications, we found that LAGP
and OK struggled to predict at some testing sites. GSLIB,
implementing OK, would simply refuse to provide a pre-
diction in these instances, or similarly when there are no
training data points within a user-specified radius (regard-
less of m), returning an error code. In these data, that
amounts to about 300 testing sites per fold. The 1aGP soft-
ware would furnish a prediction, but when comparing
the corpus of other predictions in a fold it was obvious
that something was amiss, particularly with the estimated
(local) nugget parameter and, consequently, the predicted
variance. To investigate, we plotted a histogram of the esti-
mated nuggets from all of the local fits, shown in the
left panel of Figure 6, and compared these against the
global nugget(s) provided by subset and SVecchia meth-
ods. We observed that occasionally, local nuggets were
being estimated at the lower-threshold imposed by the
1aGP default search range (leftmost-bin in the histogram).
The local neighborhood for one, representative member
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of this group is shown on the right panel of the figure.
Observe that most of the points nearby have log gold val-
ues above 1 (are similar shades of blue) with some satellite
points having lower log gold values. Thus a prediction of
log gold a bit higher than 1 with low variance makes sense.
However, the true log gold value for this point is about 0.1,
meaning the prediction is confident and wrong—which
would lead to a poor score evaluation.

Of course, we cannot know this location provides a bad
prediction until we look at the testing value for this pre-
dictive location. So we decided to replace local nuggets
estimated at the lower-bound of 1aGP’s’ search range with
the median of the nuggets from the rest of the distribution.
This led to a substantial improvement in out-of-sample
scores, described momentarily. If this sounds ad hoc, that
is because it is. But a prediction with UQ that is based on
compromise and a limited degree of post-hoc human inter-
vention is better than no prediction at all (OK/ GSLIB).

Figure 7 shows these results with black boxplots. (The
red ones involve a study on imputation in Section 4.2, so
ignore those for now.) The story is similar to the first data
set in Figure 5: SLAGP, SVecchia, and OK outperform sub-
setting in terms of RMSE. Here, OK appears to be the most
accurate, but these RMSE calculations do not include any
error-coded outputs (representing more than 300 presum-
ably “bad” predictions per fold). So this is not a holistic
assessment of OK accuracy. By score, which again cannot
be calculated for OK, SVecchia is the clear winner, and the
second-fastest in this comparison. (S)LAGP, which is simi-
lar in spirit to OK, has inferior scores despite modifications
to address stability issues to do with the nugget (above).

4.2 | Imputation

It is unsatisfying to discard data. Even a coarsely
left-censored value contains information, which can be

used to enhance training. Perhaps even more importantly,
one may wonder how accurately those censored val-
ues may be predicted, thereby increasing the resolution
of those measurements, by borrowing information from
higher-accuracy (training) data measurements nearby.
This is a standard enterprise in statistical learning when
fully probabilistic generative modeling, like the GP, is used.
There are many options when handling “missing data,” of
which censoring is one example [43, 44].

One way to incorporate censored ore values, without
destroying smoothness or stationarity assumptions under-
lying GP spatial models, is through imputation, e.g. [44].
In our context, imputation basically means generating a
plausible response Y-value for censored locations that both
respects the censored measurement, and the smoothness
of the underlying spatial field learned through other, com-
pletely observed data. Once generated, the imputed value
may be treated as if it were a completely observed value
going forward, say for prediction. Of course, treating an
imputed value as observed ignores the uncertainty in the
imputation. Multiple imputation (MI) acknowledges that
uncertainty by randomly imputing several possible values
and performing inference based on the corpus of those
imputed values, for example, through averaging.

Ilustrating how this could work in our ore con-
text requires some notational scaffolding. Let Dy =
(Dobs»> Deens) represent the partition of the complete data set
into its fully observed and censored components, respec-
tively. For example, Dops = (Xobs, Yobs), may be the portion
of the second data set we were working with in Section 4.1,
and Dcens = (Xcens> Yeens) Was the part we (temporarily)
discarded. Imputed values Yimp(Xcens), may be used to
augment Dgbs t0 0btain Dimp = (Dobss (Xeens: Yimp)) Via
truncated Gaussian simulation

Yimp ~ =/VN (ﬂobs(Xcens), z:()bs(AX(:ens))]I{Y <Y, (14)
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where Iyy oy y is an indicator function, returning 1 if
Yimp < Yeens and 0 otherwise. Quantities pobs(Xcens) and
obs(Xcens) are the predictive moments (2) of a GP fit con-
ditioned on Dgy.

Although software exists to sample from a truncated
MVN directly, e.g. [45], such as those in (14), in practice
it can be difficult to generate a sufficient number of val-
ues below Yeens when Neeps is of modest size, for example
in the hundreds [46]. A more customized approach that
acknowledges the form of our (approximate/large-scale)
spatial surrogates helps. In the (S)LAGP context, we may
use Equation (9) to sample Yjn, from the truncated MVN
(14) one at a time, conditioning on the previously sampled
imputed values and the observed data. LAGP is designed
to look at each location in the testing set independently
which makes this setup work. On the other hand, SVec-
chia is designed to give a global model approximation, so
doing a similar one-at-a-time conditional imputation is too
crude. We instead prefer a bespoke rejection sampling [47]
scheme that proceeds in epochs: first generate posterior
samples from the MVN (14) unconstrained, keeping any
values that satisfy the censoring threshold. Then condition
on those imputations and the observed values, resampling
atlocations without an imputed value, repeating until Yjp,
is completely filled in.

An algorithm is provided in Section 5 of our supple-
ment with pseudo-code for concreteness, wrapping a sin-
gle imputation with a for to obtain M imputations [48].
indicates that M between two and 10 works well, so we
use M = 5 in our exercises. Each of the M imputed values
are plausible realizations of the censored measurements,
which correspond to M posterior/predictive Gaussian

distributions for each testing location. Thus we may use
Gaussian mixture moment equations [49] to report the
mean and variance predictions for the testing set:

M
MW%=$§M%

1M 1M 1M ’
“W”=M§*”+M§ﬁ“*(ﬂgwﬁ>
(15)

While this cannot completely account for all possi-
ble uncertainties due to imputation, because we have not
looked at all possible imputation values (only M), we can
always increase M if desired. It may be shown that these
equations give an unbiased estimate of mean and variance
for any M.

4.2.1 | Imputation in practice

To begin with an illustration in a simple, controlled set-
ting, the left panel of Figure 8 shows a classical GP
model with and without imputation. The true function
is f(x) = 2sin(4zx) + € where € ~ ./ (0,0.1) and an obser-
vation threshold of y = 1 with n = 20 randomly selected
training points. There are two main regions of censoring,
one in the center and one at the upper end of inputs. In
the center, the model with imputation gets closer in mean
to the truth. On the upper end, the variance of our predic-
tions is much lower when conditioning on imputed values.
Observe that the model with imputation is a better fit for
the true curve.
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When working with real data, we do not have the
luxury of knowing what the “true curve” is. Consequently,
it is much tougher to assess improvement in the qual-
ity of fit through imputation. RMSE and score on an
out-of-sample testing set, say via CV, are problematic
because censored data values—as elements of the testing
set—are not realizations from the same population as the
model/predictive quantities are (u,(x) and o2(x)). The only
“truth” we know about these points is that they are mea-
sured to be below the threshold. The best we can to is
determine if the model accurately predicted the “parity”
of its recorded value, either above or below the thresh-
old. The GP framework makes this transition simple. The
probability of accurate prediction under a threshold may
be obtained through inverse Gaussian CDF evaluated at
the threshold. The proper scoring mechanism [21] for
such probabilities is the logarithmic loss (LL) [50], also
known as cross-entropy loss in the neural network litera-
ture. Lower LL is better. When all of the testing data are
from one class (less than Yceys), LL boils down to:

1
LL(Xcens) = _N/ Z lOg(P(Y(x) < Yeens)
cens xeX,,, .
1 _
= _N(/:ens xE; | log(q> 1(Ycens; H(x), O'z(JC))).
(16)

Returning now to our second ore analysis from
Section 4.1, we describe our experience with MI on these
data. We only explore (S)LAGP and SVecchia in this con-
text. When dealing with the subset methods, imputation is
of limited additional value as completely observed data are
plentiful relative to the subset size. It is cumbersome, but
not impossible to entertain imputation under OK. Being
faithful to the imputation scheme would require human
intervention to re-fit variograms after each new imputa-
tion is obtained. That would result in over 100 K variogram
fits in this example! In this context, we see LAGP as an
equivalent, automatic variation on OK that can be more
easily entertained when working with censored values
and MI.

The right plot of Figure 8 demonstrates that our impu-
tation scheme yields improved LL (16) across the board.
For reference, —1og(0.001) = 6.9 and —log(0.2) = 1.6, so
fits leveraging imputation provide a probability of 0.2 for
being below thresholds, on average, compared to 0.001
or worse for the models without imputation. At first, it
is hard to square this improvement with what appears
to be contrary messaging from the imputation results in
Figure 7 (red boxplots). If a practitioner is certain that
a particular region is high in gold concentration, a pri-
ori, then dropping the censored values (i.e., no impu-
tation), which are all low-measurements, leads to more

accurate results. Yet dropping thresholded values exposes
the practitioner to confirmation bias: predictions appear
more accurate in one part of the space at the expense of
massive over-predictions in another. This is what the right
panel of Figure 8 shows.

5 | CONCLUSION

We showed that for large data sets, the automated GP mod-
eling approach is at least as accurate as kriging while elim-
inating much of the human intensive efforts, for example,
variography. GPs and kriging produce predictions in a
nearly identical manner with the main differences being
in hyperparameter estimation: likelihood versus variogra-
phy. Possibly in small data contexts, expert intervention
through variography can lead to (slightly) better fits, so
we are not suggesting the human should be eliminated
entirely. Identifiability issues [51, 52] inherent in sepa-
rating signal from noise (i.e., inferring the nugget), and
in determining smoothness (p and v), mean it is always
sensible to inspect outputs and challenge downstream
inferences against stylized facts about the system. But inti-
mate human involvement challenges reproducibility and
limits scope for extension, such as with censored data
in our mining context. Thus, we advocate for automatic,
likelihood-based approaches for hyperparameters using
modern GP methodology.
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