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Abstract

Recognizing classroom dialogue acts has sig-
nificant promise for yielding insight into teach-
ing, student learning, and classroom dynamics.
However, obtaining K-12 classroom dialogue
data with labels is a significant challenge, and
therefore, developing data-efficient methods for
classroom dialogue act recognition is essential.
This work addresses the challenge of classroom
dialogue act recognition from limited labeled
data using a contrastive learning-based self-
supervised approach (SSCon). SSCon uses two
independent models that iteratively improve
each other’s performance by increasing the ac-
curacy of dialogue act recognition and mini-
mizing the embedding distance between the
same dialogue acts. We evaluate the approach
on three complementary dialogue act recogni-
tion datasets: the TalkMoves dataset (annotated
K-12 mathematics lesson transcripts), the Dai-
lyDialog dataset (multi-turn daily conversation
dialogues), and the Dialogue State Tracking
Challenge 2 (DSTC2) dataset (restaurant reser-
vation dialogues). Results indicate that our self-
supervised contrastive learning-based model
outperforms competitive baseline models when
trained with limited examples per dialogue act.
Furthermore, SSCon outperforms other few-
shot models that require considerably more la-
beled data 1.

1 Introduction

Dialogue analysis offers significant potential for
improving our understanding of classroom learn-
ing and teaching by modeling dialogue between
students and teachers. Studies of classroom dia-
logue can provide deep insight into how students
learn most effectively and engage with each other
and with teachers (Mercer et al., 2019; Mercer,
2010; Resnick et al., 2010; Hmelo-Silver, 2004). A
long-standing goal in analyzing classroom dialogue

1Our code is available at https://gitlab.com/
vkumara/SSCon

is to understand how student-student and student-
teacher dialogues lead to better student learning
outcomes (Wendel and Konert, 2016). This work
addresses the problem of dialogue act recognition
in K-12 classroom dialogues.

Dialogue act recognition has garnered consid-
erable attention and is useful for many tasks such
as dialogue generation and understanding (Chen
et al., 2022; Lin et al., 2021; Goo and Chen, 2018).
Recent efforts in dialogue act recognition are built
on large-scale pre-trained language models (Qin
et al., 2021, 2020; Wang et al., 2020; Raheja and
Tetreault, 2019; Chen et al., 2018). These models
demonstrate high performance on standard datasets
but require substantial labeled training data and,
in some cases, combine other corroborative labels
such as sentiment. Finding labeled public datasets
of K-12 classroom dialogues is challenging for sev-
eral reasons. First, there are concerns about partici-
pants’ privacy and security. Second, researchers of-
ten develop individualized coding schemes specific
to their design framework, and research context
(Mercer, 2010; Song et al., 2019; Hao et al., 2020;
Song et al., 2021). Therefore, even when labeled
datasets are available, the assortment of coding
schemes makes it challenging to cross-train across
datasets. Third, classroom dialogue utterances are
usually specific to a given subject matter, making
generic labeled dialogue datasets less useful as aux-
iliary data. It is, therefore, essential to develop the
capability to build dialogue act recognition models
from limited labeled training data.

Our research addresses the lack of large-scale
labeled classroom dialogue datasets by using a
self-supervised contrastive learning-based model
(SSCon) trained using limited labeled data. SS-
Con uses contrastive learning to transform the dia-
logue utterance representation into a new embed-
ding space where identical dialogue acts cluster
together, and distinct dialogue acts are pushed fur-
ther apart. The system iteratively improves per-
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formance, as the contrastive learning step benefits
self-supervision, even when presented with lim-
ited labeled data. Experiments show that SSCon
outperforms competitive baselines with just tens
of labeled examples per dialog act in both a K-12
mathematics classroom dataset and an everyday
conversation dataset, DailyDialog. Our key contri-
butions are the following:

• We propose a novel self-supervised con-
trastive learning dialogue act recognizer.

• We test our model on multiple datasets in dis-
tinctly different domains under label-scarce
settings. Our experiments show that our
model outperforms strong baselines.

• We illustrate with an ablation study why our
model outperforms the baseline.

2 Contrastive Learning Model

2.1 Problem Definition

A dialogue D = (u1, u2, · · · , uN ) in a dialogue
dataset consists of a sequence of N utterances,
and a set of dialogue acts A. Dialogue act recog-
nition (DAR) is defined as a classification prob-
lem, that involves recognizing the dialogue act
dai = DAR(ui|ui→1, · · · , ui→m) for utterance ui,
given its context, a set of previous m utterances,
where dai → A. The task is formalized as a multi-
class classification problem and sometimes a multi-
label classification problem, depending on the cod-
ing scheme used.

2.2 Approach and Assumptions

While our approach is primarily evaluated on the
multi-class classification problem, we also test our
model on the multi-label dataset DSTC2 (Hender-
son et al., 2014), with promising results.

Since we test a few-shot learning scenario, we
start with a small set of labeled utterance examples
I and the remaining training set U of unlabeled
utterances. We also have a set of labeled utterances
T set aside as a validation set.

2.3 SSCon Overview

In this section, we describe the architecture of our
model, the self-supervised contrastive learning (SS-
Con) based multi-class classifier, shown in Figure
1. Our model operates in multiple stages. We

begin by finetuning a large pre-trained transformer-
based language model (PLM) trained on large pub-
licly available dialogue datasets using our domain-
specific dialogue dataset. We use the finetuned
PLM to generate dialogue embeddings for our
model. In Stage 1, we use the finetuned PLM to en-
code the utterance and its dialogue history. We also
use sentence-BERT (Reimers and Gurevych, 2019)
to create a latent representation of each utterance.
A classifier built on the latent representation makes
an initial soft prediction of the dialogue act. We
distill the initial high-confidence predictions as soft
labels for Stage 2. In Stage 2, the soft labels from
Stage 1 train an encoder using contrastive learn-
ing. It translates the latent representations from
Stage 1 into a vector in a different encoding space
where identical dialogue acts cluster together while
distinct dialogue acts are separated. In Stage 3,
we pass the utterance representations through the
encoder trained in Stage 2 to get the embeddings,
which will be the input to classify the dialogue acts.
The high probability soft labels from the Stage 3
classifier are sent back to Stage 1 as input to self-
supervise the model in the next iteration.

2.4 Pretraining

For our pretraining stage, we finetune DialoGPT
(Zhang et al., 2020), a dialogue PLM built on
GPT2 (Radford et al.) and trained on 147M Red-
dit and other online conversations, licensed un-
der MIT License. Given an utterance ui and its
context of a set of previous m utterances, the di-
alogue PLM is finetuned to maximize the con-
ditional probability for the subsequent utterance,
P (ui+1|ui, ui→1, · · · , ui→m). For pretraining, we
create a dataset consisting of target utterances and
its context consisting of preceding m utterances.
SSCon uses the finetuned PLM’s hidden state as
the representation of the utterance ui given its dia-
logue context (ui→1 · · ·ui→m).

2.5 Stage 1: Context Classifier

The Stage 1 classifier concatenates the pretrained
dialogue PLM’s last layer embedding Hi ↑ R

768

with the sentence-BERT embedding Si ↑ R
384 of

the utterance ui and predicts the dialog act, ystage1i
for the utterance,

y
stage1
i = CLstage1(Xi,!) (1)

Xi = [Hi;Si] (2)

Hi = DialoGPT (ui, ui→1, · · · , ui→m) (3)
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Figure 1: Self-supervised contrastive learning (SSCon) multiclass classifier

Si = SentenceBERT (ui) (4)

Where ystage1i is the predicted dialogue act class
for the last utterance ui and CLstage1 is the Stage 1
multi-class classifier with trainable weights !. The
concatenated vector Xi represents the utterance ui

as an independent sentence and in the context of its
dialogue (ui→1, · · · , ui→m). The output of Stage 1
is a dialogue act label (and the corresponding pre-
diction probability) for each utterance in the dataset.
For the choice of classifier, we explored both MLP
classifiers (Haykin, 1994) and XGBoost (Chen and
Guestrin, 2016); however, any reasonable classifier
can be utilized. We chose the XGBoost classifier
as it was faster to train and run without any impact
on the performance of our model. However, for
one of the datasets (DSTC2), where an utterance
could have multiple labels, we used an MLP-based
multi-label classifier.

In the first iteration of the self-supervision pro-
cess, the training data used for the classifier is lim-
ited to the number of available labeled samples,
usually between ten to a hundred examples per
class. In subsequent iterations, the number of sam-
ples increases based on the soft labels from earlier
iterations.

2.6 Stage 2: Contrastive Encoder

The prediction from the Stage 1 classifier,
CLstage1, is used as (soft) ground truth for Stage 2.
Specifically, we use the dialogue act labels with the
highest confidence in terms of prediction probabil-
ity as new soft labels along with the initial labeled
examples used in Stage 1. Including high confi-
dence, soft-labeled samples increases the effective
size of the training set with each iteration. Using
this data, we adopt a contrastive training approach.

This training process creates a network that can en-
code the finetuned PLM latent representation into
a space where utterances with the identical dia-
logue act class are close together while utterances
with distinct dialogue act labels are farther apart.
The labeled samples are paired to generate positive
and negative triplets P = (Xi, Xj , Pij) where Xi

(Equation 2) is the concatenated encoding defined
in the previous section for a given utterance ui, and
Pij is 1 if both the utterances map to the same di-
alogue act or -1 if they map to different dialogue
acts. In the case of multi-label utterances, Pij is
the cosine distance between the one-hot encoding
of the dialogue act vectors of the two utterances.
The encoder is a five-layer MLP that transforms the
Xi ↑ R

1152 concatenated latent representation into
an Ei ↑ R

384 encoding. We use a twin encoder
network to train on the positive/negative triplets P
using cosine similarity between output embeddings
as the similarity score. Given a triplet (Xi, Xj , Pij)
the network trains,

Ei = Bencoder(Xi) (5)

Ej = Bencoder(Xj) (6)

lij = cosine_similarity(Ei, Ej) (7)

lossij = MSE(lij , Pij) (8)

The trained encoder transforms each utterance,
into a new encoding, Ei = Bencoder(Xi), where
Ei ↑ R

384 is the generated embedding of the MLP
encoder (Bencoder).

2.7 Stage 3: Embedding Classifier

In this final stage of our model, we use the encoder
from the Contrastive Encoder network that was
trained in the previous stage to convert each Xi
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into the embedding Ei used as input to the Stage 3
classifier.

y
stage3
i = CLstage3(Ei,”) (9)

where y
stage3
i is the dialogue act labels for the ut-

terance ui and CLstage3 is a multi-class classifier
with trainable weights ”. Like Stage 1, we use
an XGBoost classifier. We use the dialogue act
labels with the highest confidence in terms of pre-
diction probability from Stage 1 as the soft label
for training the classifier.

The training starts with a small set of labeled ut-
terance examples L, and the remaining training set
U of unlabeled utterances. During every iteration
of the self-supervision process, the model labels
the unlabeled U utterances in our training set. We
filter out the utterances labeled with low confidence
(low prediction probability of CLstage3). The dis-
tilled silver-labeled instances are moved from U

to L, along with the initial labeled examples. The
updated L is the training set for Stage 1, starting
the next iteration of the self-supervision process.

3 Experimental Setup

3.1 Implementation Details

The pretraining stage involves fine-tuning the Di-
aloGPT model with utterance data from a given di-
alogue dataset. The training set uses nine previous
utterances as context. We finetune a HuggingFace
pre-trained “dialoGPT-small” base model on a sin-
gle GPU for four epochs. The version of DialoGPT
we used is a 12-layer transformer. We use the hid-
den state vector Hi of the end-of-sentence tag in
the 12th layer of the transformer as the embedding
representing the last utterance in the sequence.

Stage 1 of the model uses a dialog act classifier.
We implemented an MLP-based classifier and an
XGBoost classifier. There was no difference in
performance between the two classifiers, so we
picked XGBoost as it is a standard baseline. We
use the hidden state, Hi ,of the last layer as the
embedding to represent the dialogue context of
the utterance. For the sentence-BERT embedding
Si of the utterance we used a pre-trained network
("all-MiniLM-L6-v2") that is trained on roughly
1B sentence pairs (Reimers and Gurevych, 2019).
The input to the model is the concatenated vector
of Hi and Si. After running the model for various
distillation thresholds, a threshold of 0.85 was used
for high-probability soft-label distillation based on

Figure 2: Improvement of performance over a baseline
XGBoost classifier by our SSCon classifier.

a simple grid search on the threshold parameter as
discussed in the appendix.

Stage 2 of the model is a contrastive encoder net-
work. Each encoder network in the twin network is
a 5-layer MLP with a 20% dropout between the lay-
ers and an output embedding vector of dimension
384. About 1.2 million similarity pairs are used to
train the twin network for 4–6 epochs on a single
GPU. Stage 3 is an XGBoost classifier head on top
of the encoder trained in Stage 2. The iterative self-
supervision process continues until we show no
improvement in the validation data. We run 5–10
iterations. In our experiments, we use a validation
set to determine when to stop the iterations. We
report the results on the test set.

3.2 Datasets

We use three datasets in our experiments: the
TalkMoves, the DailyDialog, and the Dialogue
State Tracking Challenge 2 datasets. The Talk-
Moves dataset (Suresh et al., 2022a) consists of
567 human-annotated class video transcripts of K-
12 mathematics lessons between teachers and stu-
dents. A human-transcribed dataset consists of
174,186 teacher utterances and 59,874 student ut-
terances. The dialogue act labels in the dataset have
an inter-rater agreement score above 90% for all
labels. The dialogue acts for student utterances in-
clude ‘relating to another student’, ‘asking for more
information’, ‘making a claim’, and ‘providing ev-
idence’. The dialogue acts for teacher utterances
include: ‘keeping everyone together’, ‘getting stu-
dents to relate’, ‘restating’, ‘revoicing’, ‘pressing
for accuracy’, and ‘pressing for a reason’. For the
TalkMoves dataset, we train our model on student
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utterances.
DailyDialog is a multi-turn dialogue dataset (Li

et al., 2017) consisting of everyday conversations.
The dataset consists of 13,118 conversations be-
tween multiple people. Four categories of dialogue
acts are coded in the dataset. They are ‘inform’
(45%), ‘questions’ (29%), ‘directives’ (17%), and
‘commissive’ (9%).

To evaluate our approach on multi-label data set,
we train on the DSTC2 dataset (Henderson et al.,
2014). This dataset contains dialogues between
crowdsourced workers and automated dialogue sys-
tems in the restaurant reservations domain, with
1000 train and test dialogues and about 21 dialogue
acts.

3.3 Baselines

We run our experiments on different datasets de-
scribed above. The TalkMoves dataset does not
yet have many published baselines for dialogue act
recognition, so we compare our approach against
multiple baseline models. One is a baseline XG-
Boost classifier using the same utterance represen-
tation input as our model. This classifier is the
same as our Stage 1 classifier. The second baseline
is a self-supervised XGBoost classifier similar to
SSCon without the contrastive learning in Stage
2. For the third baseline, we use an embedding
prototype distance-based classifier. The average
sentence embedding vector for labeled examples
from each class represents a prototype for each
label. We then measure the cosine distance of ev-
ery utterance’s sentence embedding in our test set
against each class-prototype embedding. An ut-
terance is assigned the class label of the closest
prototype in the embedding space. To validate SS-
Con against current state-of-the-art dialogue act
recognition models, we compare our results on the
DailyDialog dataset against a few-shot learning
model and a model that uses all available labeled
training data. The state-of-the-art Co-GAT model
(Qin et al., 2021) uses all training data available,
including related sentiment labels on the utterance.
Trained on very limited data, we do not expect our
model to beat Co-GAT but use its performance as
an upper bound. ProtoSeq (Guibon et al., 2021) is a
sequential prototypical network trained to work in a
few-shot fashion. However, they do use all training
data to train their network. We use this model for
comparison purposes as our approach is a type of
few-shot learner using a small number of samples.

Figure 3: Heatmaps show the median cosine distance
between embedding examples (TalkMoves dataset) for
each dialog act type (8–relating to another student; 9-
Asking for more info; 10-making a claim; 11-providing
evidence/reasoning). The left heatmap corresponds to
the input embeddings. The right heatmap corresponds
to the Contrastive Encoder embeddings

We also compare SSCon to standard XGBoost as
we do for the TalkMoves dataset. We also compare
SSCon dialogue act recognition results on DSTC2,
a multi-label problem, against the self-supervised
student-teacher approach by (Mi et al., 2021a).

3.4 Evaluation Metrics

The various baselines are compared with SSCon
using four metrics. The Matthews Correlation Co-
efficient (MCC) for multi-class classification has a
range of -1 to 1 and handles imbalanced datasets
well. In some cases, the baselines only report the
F1 (macro) score, the arithmetic mean of individual
class F1 scores giving equal weight to all classes.
We also report macro-averaged precision and re-
call.

4 Results

The first dataset we consider is the TalkMoves
dataset. To evaluate the models in a few-shot learn-
ing scenario, we experiment using 10-70 labeled
instances per dialogue act type (less than 1% of the
overall data). Table 1 shows our results. SSCon
shows an improvement of about 7-10% over the
Utterance Embedding XGBoost baseline and the
Prototype Distance Classifier when trained on 70
labeled examples. When SSCon is compared with
the self-supervised XGBoost classifier without con-
trastive learning, it shows an improvement of 1%
for the 70 labeled examples case but an improve-
ment of more than 60% for the 10 labeled example
case. This difference in performance suggests that
contrastive learning is more beneficial when work-
ing with fewer labeled examples. Besides the three
baselines, we also report the performance of a pub-
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Dataset Model Type

Labeled

Examples

per Class

MCC F1 (macro) Precision

(macro)

Recall

(macro)

TalkMoves
Student

SSCon Classifier
10 0.295±0.042 0.412±0.044 0.454±0.034 0.512±0.016
30 0.383±0.035 0.495±0.033 0.492±0.032 0.588±0.012
70 0.457±0.015 0.566±0.015 0.534±0.014 0.652±0.011

Utterance Embedding XGBoost 70 0.421±0.025 0.507±0.023 0.502±0.019 0.615±0.015
Self Supervised XGBoost with-
out Contrastive Learning

10 0.183±0.047 0.327±0.037 0.361±0.024 0.397±0.031
70 0.451±0.021 0.514±0.021 0.535±0.015 0.609±0.016

Prototype Distance Classifier 70 0.369±0.015 0.463±0.022 0.457±0.009 0.558±0.011
Transformer for Seq Classifier
(Suresh et al., 2022b)

All training 0.6716 0.7312 - -
70% training 0.588±0.005 0.653±0.005 - -

Daily
Dialog

SSCon Classifier
10 0.409±0.065 0.471±0.037 0.550±0.064 0.510±0.044
30 0.488±0.046 0.564±0.043 0.608±0.013 0.619±0.039
70 0.601±0.022 0.660±0.018 0.663±0.009 0.687±0.015

Utterance Embedding XGBoost 70 0.567±0.013 0.638±0.008 0.639±0.008 0.671±0.009
ProtoSeq (Guibon et al., 2021) Few-shot 0.392±0.023 0.352±0.030 - -

Co-GAT (Qin et al., 2021) All training - 0.794 0.81 0.781

DSTC2
SSCon Classifier

1% 0.293±0.025 0.322±0.041 0.293±0.007
10% 0.447±0.008 0.456±0.024 0.449±0.011

ToD-BERT-ST (Mi et al.,
2021b)

1% 0.285±0.040 - -
10% 0.405±0.090 - -

Table 1: Comparison of results for the Daily Dialog, TalkMoves and DSTC2 dataset against baselines.

lished model that uses 100% (21K labeled samples)
and 70% of the labeled training data. SSCon works
in a label-scarce scenario, so our results are lower
than the model using the complete labeled data
set. Figure 2 shows the impact of labeled example
counts on the overall performance of the SSCon
classifier and an XGBoost classifier. While our
iterative approach increases the performance on av-
erage by almost 50% over the baseline for a small
training size (10 labels per class), it is about 9% for
a larger labeled set size (70 labels per class). We
notice that the overall performance improvement
using SSCon is more with small labeled sets, and
the improvement tapers as the labeled examples
count increases.

The second dataset we consider is the DailyDia-
log dataset with four possible dialogue acts. Like
the TalkMoves dataset, we consider 10 to 70 la-
beled examples per class. Table 1 shows that our
performance, with just 70 instances per class (0.6%
of 21521 labeled examples), is within 16% of the
state-of-the-art dialogue act recognition model (Qin
et al., 2021) that uses 100% of all the training data
labels plus auxiliary sentiment labels. We also
show that we outperform the other few-shot learn-
ing model, ProtoSeq (Guibon et al., 2021), by a
significant margin even though they train using the

entire labeled dataset. We investigate the change in
performance of SSCon with increasing size of the
labeled training set (Figure 2). As before, the per-
formance improvement of SSCon over a standard
XGBoost classifier is more significant for smaller
label sets and less so as the number of samples
increases. With ten samples per class, SSCon per-
formance improvement over the baseline classifier
is almost 41%. With seventy labels per class, the
improvement is only about 9%.

We also compare our results on the DSTC2
dataset on restaurant inquiries. This dataset dif-
fers from the other two as each utterance can have
multiple dialogue act labels. SSCon performs
better on the DSTC2 dataset than the baseline
self-supervising student-teacher model ToD-BERT-
ST (Mi et al., 2021a) by 3 to 10%, depending
on the size of the labeled training dataset. The
ToD-BERT-ST model uses a data augmentation
approach, while we use a contrastive learning ap-
proach. Both these approaches are complementary,
and future work should explore using them together.
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Figure 4: Confusion matrix with counts normalized by
actual label counts (TalkMoves Dataset) for the SSCon
classifier (70-samples per class training set). Dialog acts:
8–relating to another student; 9-Asking for more info;
10-making a claim; 11-providing evidence/reasoning.

5 SSCon Component Analysis

5.1 Clustering in Embedding Space

The fundamental intuition behind our approach is
that contrastive learning brings similar utterances
close to each other and dissimilar utterances fur-
ther apart in the embedding space. Figure 3 shows
the spatial clustering of labels in the embedding
space of the trained Contrastive Encoder for one
iteration with the TalkMoves dataset. Each square
in the heatmap corresponds to the median cosine
similarity distance between individual dialogue act
class examples. To compute this distance, we take
utterances from each dialogue act class and cal-
culate the median cosine distance between their
embeddings. Each cell in the heatmap shows a
scaled distance, with the blue color correspond-
ing to closer embeddings and red corresponding to
the embeddings being farther away. The heatmap
on the left corresponds to the distance matrix be-
tween embeddings provided as input to Stage 2.
The heatmap to the right corresponds to the dis-
tance matrix for embeddings that the Contrastive
Encoder has transformed. Please note that the fig-
ure uses scaled distance values, and we show four
student dialog act classes.

When looking at the heatmap on the left for the
input feature space, instances belonging to the di-
alogue act "relating to another student" (first row,
label 8) are closer to the instances belonging to the
dialogue act, "making a claim" (third row, label 10)
than among themselves. After being transformed
by the Contrastive Encoder (heatmap on the right),
the smallest distances for each dialogue act fall on

Classifier LastUtterance(ui)

"relating to another"
predicted as "making a

claim"

"Reciprocal"
"I don’t agree, I measured them’
"by five"

"relating to another"
predicted as "relating

to another"

"He didn’t show his work"
"You don’t know that’
"The first one"

"making a claim" pre-
dicted as "making a

claim"

"Two fifths"
"Y intercept’
"power of three"

Table 2: : Examples of true positive and false negative
for a couple of the TalkMoves dialog acts

the diagonal (blue), as one expects with clustered
labels. The diagonal corresponds to utterances with
the same label. The non-diagonal terms, which are
utterances with different labels, are pulled farther
apart (red).

5.2 Classifier Performance by Dialogue Act

Figure 4 shows a confusion matrix with counts
normalized by the ground truth label counts. In the
TalkMoves dataset, the classifier struggles the most
with the dialogue act corresponding to “relating to
another student” (label 8). It is not able to clearly
distinguish between “relating to another student”
and “making a claim” (label 10). Label-scarce
training suggests we only cover a limited variety
of examples for each dialogue act class. In Table 2,
we show some examples of correct and incorrect
predictions. The first row shows utterances of the
type "relating to another" mislabeled as “making
a claim”. The other two rows are true positive
examples. We can see that the example utterances
are hard to distinguish between “making a claim”
or “relating to another” even for a human. The
difference is in the context of the dialogue, and
with limited training data, such distinctions are
hard to make and might lead to overfitting.

5.3 Labeled Sample Selection

The initial set of labeled samples, in essence, drives
the final performance of SSCon. Figure 5 shows
the performance distribution of the baseline, XG-
Boost, for multiple runs for different sample sizes.
Two trends are evident as the number of samples in-
creases for every dataset. The first trend is that the
performance improves as more samples are avail-
able for training. The improvement in performance
with sample size is an expected trend as more ex-
amples indicate more information for the classifier
to model. The second trend is that the variance
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Figure 5: Drift in performance as we increase the num-
ber of labeled samples (TalkMoves dataset).

in performance decreases as the number of sam-
ples increases. One can assume a certain level of
variability in the labeled training sets data’s pat-
tern of utterances for each dialogue act class. The
dataset can only capture some of the variances in
the data when the number of labeled examples is
small. Hence, the classifier’s performance can vary
considerably depending on included examples for
smaller training sets.

6 Related Work

Kalchbrenner and Blunsom (2013) proposed a
hierarchical network architecture that combines
CNN and RNN models to capture discourse struc-
ture. Subsequent work on dialogue act recognition
(DAR) followed a similar approach using hierarchi-
cal architectures combining CNN and LSTM (Lee
and Dernoncourt, 2016; Ji et al., 2016; Liu et al.,
2017). More recently, researchers enhanced the
model architecture by adding a CRF layer for clas-
sification (Kumar et al., 2018; Chen et al., 2018).
Raheja and Tetreault (2019) build on earlier work
that solves DAR as a sequential labeling problem
using deep hierarchical networks by adding context-
aware self-attention with promising results on stan-
dard benchmark datasets. More recent work has
built off publicly available large pre-trained lan-
guage models, significantly reducing the required
training data. Qin et al. (2020) showed that com-
bining associated labels such as sentiment with
DAR can improve performance. However, all the
above architectures require significant training data
to achieve peak performance. Our model (SS-
Con) works with limited training data as it builds
on dialogue context captured by a finetuned pre-
trained language model. We use an iterative self-

supervised training approach combined with a con-
trastive learning step to accommodate the lack of
large labeled training datasets.

The idea of using pre-trained models to learn a
few examples has been shown to be successful for
natural language processing (Miller et al., 2000;
Fei-Fei et al., 2006; Brown et al., 2020), and specif-
ically, task-oriented dialogue systems (Liu et al.,
2021b; Wu et al., 2020). Using few-shot learning,
Mi et al. (2022) show they can improve dialogue
state tracking, intent recognition, and natural lan-
guage generation with limited labeled data using
talk-specific instructions through prompts. Guibon
et al. (2021) propose a prototypical network for
sequence labeling on conversational data. While
their network is trained to support few-shot DAR,
they still require significant data for episodic train-
ing. The approaches mentioned above are not suit-
able for label-scarce situations. We show that SS-
Con outperforms their model’s performance on the
benchmark dataset with limited labeled data.

Pretrained language models have been used for
classifying texts in the K-12 math education con-
text. Shen et al. (2021) applied a BERT-based
model to classify knowledge components in de-
scriptive math texts. Loginova and Benoit (2022)
employed an LSTM model to predict math prob-
lem difficulty trained on a question-answer dataset.
These models work on descriptive text samples, a
distinct use case from classroom dialogues. Okur
et al. (2022) developed a speech dialogue system
using MathBERT for natural language understand-
ing, trained on significant pre-labeled data, differ-
ing from our limited labeled data scenario.

Self-supervision is a viable approach for DAR
with limited training data. Mi et al. (2021a) use
a teacher-student model iterative approach to im-
prove performance. They use a novel text aug-
mentation technique that adds to each iteration’s
training data. We show that SSCon improves upon
their results on standard datasets. Our model uses
contrastive learning (Hadsell et al., 2006) to cluster
the different classes. A contemporary work by Tun-
stall et al. (2022) uses a similar contrastive learning-
based approach for few-shot text classification. Liu
et al.’s (2021a) trans-encoder combines two learn-
ing paradigms, cross, and bi-encoder, in a joined
iterative framework to build state-of-the-art sen-
tence similarity models. Our self-supervised con-
trastive learning-based (SSCon) based multiclass
classifier also combines two learning paradigms
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like the trans-encoder by Liu et al. (2021a). An
embedding-based classifier, and a twin network,
trained to leverage different training goals, help
each other improve. One model uses the whole
dialogue context captured in a hidden layer em-
bedding to train a classifier. At the same time, the
other is a twin neural network taking the contrastive
representation learning approach, clustering same
dialogue acts and separating distinct dialogue acts
within the embedding space.

7 Conclusion

Classroom dialogue analysis can yield significant
insight into student learning. However, collect-
ing and coding classroom dialogue datasets is very
labor-intensive. To address this problem, we intro-
duce a novel self-supervised contrastive learning
approach that can automate a portion of this pro-
cess and make it more efficient even when limited
labeled is available. We show that our approach
improves on other methods that work on limited
labeled datasets. The results also show that our
approach can match and exceed the performance of
some models trained on the fully labeled dataset.

Limitations

Selecting a representative set of examples to label
becomes essential when working with limited la-
beled data. In this work, we use uniform sampling
for our results, which might not be the best ap-
proach. We discuss these limitations in more detail
in the appendix.

While we evaluate our model on a multi-label
dataset (DSTC2) and show improvement over stan-
dard baselines, the effectiveness of our approach
on such problems needs more investigation.

Ethical Considerations

While our algorithm is primarily a tool for improv-
ing classifier performance in label-scarce settings
and uses publicly available, anonymized datasets,
we acknowledge the potential ethical implications
it may carry. Despite the neutral nature of our tool,
it could unintentionally propagate or amplify bi-
ases favoring certain styles of communication. If
used in real-time settings or without proper checks
in place, it could inadvertently alter the natural dy-
namics of the classroom as teachers or students
might modify their behavior based on how they be-
lieve the classifier categorizes their utterances. Like
any other, we recognize that our tool could make

mistakes or be misused by over-relying on quantita-
tive aspects over qualitative aspects of instruction.
Therefore, real-world application requires continu-
ous vigilance and open dialogue with practitioners
and stakeholders to ensure its use benefits teaching
and learning.
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Figure 6: The model’s performance changes with each
iteration for multiple runs. Each run starts with different
labeled data sets of 10 examples per class (TalkMoves
dataset).

Two aspects determine the decision to stop the it-
eration. Figure 6 shows the model’s performance
in subsequent iterations for the TalkMoves dataset,
starting from a label set of size ten examples per
dialog act. A held-out dataset was used to calibrate
the model’s performance. One can see that the
performance improvement is non-monotonic. In
most cases, stopping after just one or two iterations
is necessary to get maximum performance. The
system is trying to improve based on minimal infor-
mation in the labeled set, so as the size of the label
set is small, there is a potential for over-fitting to
the information contained in the label set. Another
implementation detail is the selection of threshold
confidence levels to distill soft labels as we expand
the training set of the next model at the end of an
iteration. Figure 7 shows the performance of our
model for various prediction probability distillation
thresholds. As mentioned earlier in the main paper
and observed in Figure 7, 85% is the distillation
threshold with the best performance distribution.

B Sample Selection by Active Learning

We experimented with using active learning tech-
niques to pick labeled examples (Ren et al., 2021).
We first trained a model with just ten initial labeled
examples per class. We used the model to find a
new set of ten samples for each class with the least
confidence and added them to the labeled set using
human labels. Figure 8 compares our active learn-
ing with uniform random selection approaches as
a baseline. We can see that the random approach
has much more variance for every label set size.
However, we also note that the best-performing
model was a random set for every label size. This
difference in performance might be because our ap-

Figure 7: The figure shows our model’s performance
distribution for different soft label distillation thresholds.
The runs were for 70 labeled samples per class as the
initial training set from the TalkMoves dataset.

Figure 8: Comparison between active learning selection
vs uniform random selection of labeled samples.
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proach for active sample selection was naive. When
we add a new sample based on low prediction con-
fidence, there is no guarantee that we will improve
the model. The new sample might be predicted
with low confidence either because our model has
limited information to decide or because the sam-
ple itself is an outlier. If it is the former adding
the sample might help, but if it is the latter, adding
the sample increases the number of outliers in our
training set. As our training data is limited, out-
liers in the input data disrupt overall performance.
We plan to experiment with more sophisticated ac-
tive learning techniques for sample selection in the
future.
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