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Abstract

There is growing interest in searching for information
from large video corpora. Prior works have studied rele-
vant tasks, such as text-based video retrieval, moment re-
trieval, video summarization, and video captioning in iso-
lation, without an end-to-end setup that can jointly search
from video corpora and generate summaries. Such an end-
to-end setup would allow for many interesting applications,
e.g., a text-based search that finds a relevant video from
a video corpus, extracts the most relevant moment from
that video, and segments the moment into important steps
with captions. To address this, we present the HIREST
(HIerarchical REtrieval and STep-captioning) dataset and
propose a new benchmark that covers hierarchical infor-
mation retrieval and visual/textual stepwise summarization
from an instructional video corpus. HIREST consists of
3.4K text-video pairs from an instructional video dataset,
where 1.1K videos have annotations of moment spans rel-
evant to text query and breakdown of each moment into
key instruction steps with caption and timestamps (totaling
8.6K step captions). Our hierarchical benchmark consists
of video retrieval, moment retrieval, and two novel moment
segmentation and step captioning tasks. In moment segmen-
tation, models break down a video moment into instruction
steps and identify start-end boundaries. In step caption-
ing, models generate a textual summary for each step. We
also present starting point task-specific and end-to-end joint
baseline models for our new benchmark. While the baseline
models show some promising results, there still exists large
room for future improvement by the community.'

1. Introduction

Encouraged by the easy access to smartphones, record-
ing software, and video hosting platforms, people are in-
creasingly accumulating videos of all kinds. To fuel the
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subsequent growing interest in using machine learning sys-
tems to extract and summarize important information from
these large video corpora based on text queries, progress has
been made in video retrieval [2,17,18,41,42], moment re-
trieval [10, 16, 17], video summarization [9, 24,33, 34], and
video captioning [13,20,41,42]. Previous works have gen-
erally focused on solving these tasks independently; how-
ever, all these tasks share the common goal of retrieving in-
formation from a video corpus, at different levels of scales
and via different modalities. Hence, in this work, we intro-
duce a new hierarchical benchmark that combines all four
tasks to enable novel and useful real-world applications.
For example, a text-based search service that finds a rele-
vant video from a large video corpus, extracts the most rel-
evant moment from that video, segments the moment into
important steps, and captions them for easy indexing and
retrieval. To support this, we introduce HIREST, a hierar-
chical instructional video dataset for a holistic benchmark
of information retrieval from a video corpus (see Sec. 3).
HIREST consists of four annotations: 1) 3.4K pairs of text
query about open-domain instructions (e.g., ‘how to make
glow in the dark slime’) and videos, 2) relevant moment
timestamps inside the 1.1K videos, where only a part of
the video (< 75%) is relevant to the text query, 3) moment
breakdown in several instructional steps with timestamps
(7.6 steps per video, total 8.6 K steps), and, 4) an manually
curated English caption for each step (e.g. ‘pour shampoo
in container’). We collect fine-grained step-wise annota-
tions of HIREST in a two-step annotation process with on-
line crowdworkers on instructional text-video pairs from the
HowTol100M [23] dataset (see Sec. 3.1). The instructional
videos often come with clear step-by-step instructions, al-
lowing fine-grained segmentation of the videos into short
steps. While there are existing video datasets with step an-
notations, they are based on a small number of predefined
task names [36,46] (thus step captions are not diverse), or
are limited to a single topic (e.g. cooking [45]). HIREST
covers various domains and provides diverse step captions
with timestamps written by human annotators (see Table 1),
presenting new challenging and realistic benchmarks for hi-
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(Query: “How to Make Glow in the Dark Slime”

1) Video Retrieval

2) Moment Retrieval

3) Moment Segmentation
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Figure 1. Overview of four hierarchical tasks of our HIREST dataset (Sec. 3). 1) Video retrieval: find a video that is most relevant to a
given text query. 2) Moment retrieval: choose the relevant span of the video, by trimming the parts irrelevant to the text query. 3) Moment
segmentation: break down the span into several steps and identify the start-end boundaries of each step. 4) Step captioning: generate

90s| Pour glow stick in shampoo [104s

4) Step Captioning Break glow stick

step-by-step textual summaries of the moment.

erarchical video information retrieval.

Using the HIREST dataset, we benchmark four tasks:
1) video retrieval, 2) moment retrieval, 3) moment segmen-
tation, and 4) step captioning (see Fig. 1 and Sec. 3.3). In
the video retrieval task, models have to identify a video that
is most relevant to a given text query. In the moment re-
trieval task, models have to select the relevant span of the
video, by trimming the parts irrelevant to the text query
(blue boundary in Fig. 1). In the moment segmentation task,
models have to break down the relevant portion into sev-
eral instructional steps and identify the start-end boundaries
of each step (green boundaries in Fig. 1). Finally, in the
step captioning task, models have to generate step captions
(e.g. ‘spray the warm water on carpet’) of the instructional
steps. To provide good starting points to the community
for our new task hierarchy, we show the performance of re-
cent baseline models on HIREST. For baselines, we use
strong models including CLIP [27], EVA-CLIP [§8], Frozen-
in-Time [2], BMT [13], and SwinBERT [20]. On all four
tasks, we find that finetuning models on HIREST improve
performance; however, there exists a large room to improve
performance.

We summarize our contributions in this paper: 1) We
present HIREST dataset and propose a new benchmark that
covers hierarchy in information retrieval and visual/textual
summarization from an instructional video corpus. 2) Un-
like existing video datasets with step captions based on
predefined task names or limited to a single topic, our
HIREST provides diverse, high-quality step captions with
timestamps written by human annotators. 3) We provide
a joint baseline model that can perform moment retrieval,
moment segmentation, and step captioning with a single ar-
chitecture. 4) We provide comprehensive dataset analyses

and show experiments with baseline models for each task,
where there is a large room to improve model performance.
We hope that HIRES'T can foster future work on end-to-end
systems for holistic information retrieval and summariza-
tion on large video corpus. In addition, our manually an-
notated step captions can also be a good source for training
and testing the step-by-step reasoning of large multimodal
language models [40,44].

2. Related Work
2.1. Text-based Information Retrieval from Video

With growing interest in building machine learning sys-
tems to search for useful information from large video cor-
pora via text searches, several lines of work have been pro-
posed. In text-to-video retrieval, a system finds the most
relevant videos from a list of videos with a given text
query [2,17,18,41,42]. In moment retrieval, a system finds
the most relevant moments (usually a few seconds of frame
spans), from a single video [10, 16, 17]. In query-focused
video summarization, which is a text-conditional version
of generic video summarization [9, 34], a system finds the
most relevant frames from a video with text query [24, 33].
In video captioning, a system generates a short textual de-
scription of a given video [13,20,41,42]. While all these
tasks share common goals, information retrieval and sum-
marization from a video corpus, previous works have fo-
cused on systems that are specialized in a single task. In this
work, we introduce a holistic setup that combines video re-
trieval, moment retrieval, query-focused video summariza-
tion (called moment segmentation), and generating a step-
wise textual summary of short clip (called step captioning),
so that users can search for the most relevant video, the most
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relevant moment inside the video, and get the stepwise text
summarization of the moment.

2.2. Instructional Video Datasets

Recently, there have also been several efforts towards
creating instructional video datasets [15,23,31, 36, 38,45,
46]. While many of these datasets do a good job of pro-
viding high-quality instructional videos, they primarily only
target a single domain [15,31,38,45]. There have been re-
cent strong efforts towards developing more diverse instruc-
tional datasets [23, 36,46]. Datasets like HowTo100M [23]
provide diverse instructional videos but lack specific step-
by-step annotations. Some previous works such as [36,46]
provide step-level annotations for open domain videos,
however, are restricted to a set of predefined steps that
are reapplied across several videos. Our HIREST dataset
provides step annotations on diverse instructional videos,
where all step captions are manually written to answer the
input text query by human annotators (see Table 1).

3. HIREST: Hierarchical Retrieval and Step-
Captioning Dataset

We present HIREST, a video dataset consisting of 3.4K
text-video pairs, 1.8K moments, and 8.6K step caption an-
notations. It covers the hierarchy of video/moment retrieval
and stepwise captioning from a diverse instructional video
corpus. Previous step annotations in video datasets used
predefined task descriptions with small vocabulary [36,46]
or limited to a single domain (e.g. cooking [45]). In con-
trast, the step captions of HIREST are manually written by
a human annotator and cover diverse domains with a large
vocabulary (see Table 1). We describe the data collection
process (Sec. 3.1), dataset analysis (Sec. 3.2), and four hi-
erarchical tasks that stem from our dataset (Sec. 3.3).

3.1. Dataset Collection

In the following, we describe the two-stage data collec-
tion process. In the appendix, we provide screenshots of the
data collection interface for each stage and worker qualifi-
cation process.

Stage 1: Video and Moment Retrieval. We collect
the pairs of text queries and relevant videos from the
HowTol00M [23] dataset. Since videos were originally
automatically collected from YouTube, we ensure that all
videos are actually relevant to the query through human an-
notation. We employ crowdworkers from Amazon Mechan-
ical Turk” and ask them to label whether or not the video
correctly answers/solves the associated text query.

If the video is labeled as relevant to the text query, then
we collect relevant ‘moment’ annotation from the video, by
asking the crowdworkers to trim the video to the parts that

2https://www.mturk.com

are directly associated with the text (i.e. remove video parts
unrelated to the text query, such as intro or other topics).
We define a video as clippable to a moment, if the moment
relevant to the query is less than 75% of the original video
length. A system that can retrieve moments from videos
would help people directly watch the video portion they are
interested in and save time. For the retrieved moments, we
collect more fine-grained annotations by dividing the mo-
ment into steps and captioning each step. We explain the
moment annotation below.

Stage 2: Moment Segmentation and Step Captions. In
this stage, we collect fine-grained, stepwise annotations of
the retrieved moments. We ask crowdworkers to watch re-
trieved moments, divide them into several steps and mark
the start timestamp of each step. Then, for each of the
marked moment segments, they are asked to write a step
caption that describes the specific step to complete (e.g.
“add crayons to the candle”, “melt it in bowl with hot
water”, “stir it well until dry”). Our text queries from
HowTol100M [23] are instructional questions starting with
“how to”, and we want the step captions to serve as short
textual summaries of moments/steps. we ask crowdworkers
to start each caption with an action verb (e.g. “add”, “ap-
ply”) and limit the length of the captions to seven words.

3.2. Dataset Analysis

Task Category Distribution. Our videos and text queries
are collected from the HowTo100M [23] dataset, and hence
our category labels match theirs. As shown in Fig. 2,
the most frequently occurring categories (for all text-video
pairs and just videos with step captions) are “Hobbies and
Crafts”, “Food and Entertaining”, and “Home and Garden”.
While these are the most common categories (similar to
HowTo100M’s most common categories), other categories
still have a presence in our dataset.

Dataset Statistics. We collected a total of 3.4K text-video
pairs, which are 287 seconds long on average, with a total
duration of 270 hours. Out of 3.4K videos, 1.8K videos are
clippable to a moment; i.e., only a short clip (<75% of the
original video) is relevant to the text query. The average
moment length is 148 seconds, which is 55% of the origi-
nal videos. Out of the 1.8K moments, we provide moment
segmentation and step caption annotations for the randomly
chosen 1.1K moments. The 1.1K moments are broken down
to 7.6 steps on average, totaling 8.6K steps. Each step is
annotated with a start-end timestamp and a step caption.
The step captions are on average 4.42 words long and have
633 unique starting verbs with 3382 unique words. Fig. 4
shows the most frequent starting verbs and the most fre-
quent words in the step captions (not counting the starting
word and stop words). Fig. 3 shows the first three words of
50 random step caption samples (ignoring stop words). As
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. . . # Steps # Words # Unique  Avg. Duration (s)
Dataset Domain  Step caption # Videos / # Steps per Moment  per Caption  Captions Video / Step
COIN [36] Open Predefined steps 11.8K /46K 39 4.8 0.8K 142/14.9
CrossTask [46] Open Predefined steps 4.7K /21K 7.4 24 0.1K 297/9.6
YouCook2 [45]  Cooking Manually written 2K /14K 7.7 8.8 13K 316/19.7
HIREST (Ours) Open Manually written  3.4K (1.1K w/ steps) / 8.6K 7.6 4.4 7.9K 263/18.9

Table 1. Comparison of HIREST and other video datasets with step annotations. While smaller in terms of the total number of videos than
other datasets, HIREST covers various open-domain videos with many step annotations per video and high-quality step captions written
by human annotators.

Home and Garden (10.62%

Hobbies and Crafts (39.46% Hobbies and Crafts (33.10%

(a) all videos (b) videos with step caption annotations

Figure 2. Task category distribution of HIREST text queries. There are a wide variety of categories for our videos. The most frequent
categories are “Hobbies and Crafts”, “Food and Entertaining”, and “Home and Garden”. The task categories are from HowTo100M [23].

shown in the visualizations, the manually written step cap-
tions of HIREST cover open domain instruction steps and
have a diverse vocabulary.

Comparisons to Other Datasets with Step Captions. Ta-
ble 1 compares our HIREST dataset to other video datasets
with step annotations. HIREST covers various open-
domain videos with many step annotations per video and
high-quality step captions written by human annotations.
While COIN [36] and CrossTask [46] also provide step-
level annotations for open-domain videos, however, they are
restricted to a set of predefined steps. In contrast, all the step
captions of HIREST are manually written to answer the in-
put text query.

Data Splits. Since there are cases where multiple videos
are retrieved from the same query, we split our dataset into
train/val/test splits by query instead of video. We split
our queries into 546/292/546 (1507/477/1391 videos) for
train/val/test splits, respectively.

Figure 3. Distribution of HIREST step captions by their first three
words for 50 random samples. Words are often related to actions
or objects. We remove stop words (e.g. ‘the’, ‘it’, etc.).

3.3. Hierarchical Tasks Enabled by HIREST

In the following, we introduce four tasks connected in a
hierarchy based on our HIREST dataset. See Fig. 1 for an
overview and visual examples of the tasks.

4.2K test split videos (1.4K videos paired with text queries
+ 2.8K distractor videos from HowTol100M [23]). Distrac-

Video Retrieval. This task gives models an instructional ~ (OF Videos serve as negative examples (hence “distractors’),

text query (e.g. “How to make a memory jar”’), and the mod-
els need to determine which videos are relevant and retrieve
the top results. The models must retrieve videos among

similar to Revaud et al. [30]. We include these distractors
to help increase the difficulty of our video retrieval task.

Moment Retrieval. In this task, the goal is to extract the
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Figure 4. (a) Top 10 most common starting verbs in HIREST
step captions. (b) Top 10 most common words in HIREST step
captions (excluding the starting words and stop words). The top
words typically refer to objects (e.g. water) or quantities (e.g. all).

portion of the video that is directly relevant to the given text
query (i.e. to remove any unnecessary information from the
start/end of the video).

Moment Segmentation. In this task, models should iden-
tify all relevant key ‘steps’ from the retrieved relevant mo-
ment of the video. Models should generate a list of start and
end times for every key step in a given video.

Step Captioning. This task requires models to generate
short textual step captions for each retrieved step in a video.
Models are provided with the source video and start/end
times of each step. They should then generate a short in-
structional step caption for every step.

4. Experiments

For all four HIREST tasks, we conduct experiments
with task-specific baseline models (Sec. 4.1), a joint base-
line model (Sec. 4.2), and evaluate them with different stan-
dard metrics (Sec. 4.3). We represent each video as 32
frames with uniform intervals, if not specified.

4.1. Task-specific Models

Video Retrieval. = We experiment with CLIP (ViT-
B/32) [27], EVA-CLIP (ViT-G/14) [8], Frozen-in-Time [2],
and MIL-NCE (S3D) [22], which are pretrained text-
to-image (CLIP/EVA-CLIP) and text-to-video (Frozen-in-
Time/MIL-NCE) retrieval models, respectively. For CLIP
and EVA-CLIP, we obtain a video embedding by averag-
ing frame embeddings. We compute the matching score by
taking the cosine similarity between video and text query
embedding. Following the original setup, we use 4 frames
for Frozen-in-Time and 32 frames for MIL-NCE.

Moment Retrieval. We experiment with two CLIP-
based heuristics methods and the event proposal module
of BMT [13], a dense video captioning model pretrained
on ActivityNet Captions [14]. With CLIP, we compute
the cosine similarity between all frames and the text query
and find the frame with the highest score. Then we deter-
mine the start/end boundary of a moment with two different
heuristics: 1) picking the frames where the similarity score
drops from the highest scoring frame by a certain threshold
(e.g., 0.10); 2) picking the 8 frames to the left and right, to-
taling up to 17 (= 8+1+8) frames (see appendix for details).
Furthermore, we experiment with the BMT [13] event pro-
posal module, which predicts video event proposals with
center/length/confidence values. We allow BMT to gener-
ate various events and then take the minimum start time and
maximum end time across the events as the retrieved mo-
ment. For BMT, we give the model the I3D [5] RGB+Flow
features and VGGish [1 1] audio features of the entire video,
extracted at 1fps.

Moment Segmentation. We experiment with 1) frame-
wise difference with the Structural Similarity Index Mea-
sure (SSIM) [39], and 2) the event proposal module of
BMT [13]. For SSIM, if two adjacent frames have an SSIM
below a certain threshold (e.g., 0.85), we mark that as a step
boundary. For BMT, we feed the model I3D and VGGish
features (extracted at 1fps) of the entire video and directly
use the video event proposal prediction.

Step Captioning.

We experiment with BMT and SwinBERT [20], a pre-
trained video captioning model. For BMT, we use 13D
and VGGish features of each step, extracted at 1fps. We
do not use its event proposal module for this task, as we
give the features within the ground-truth step boundaries.
For SwinBERT, we use YouCook?2 [45] checkpoint and 32
video frames from each step as input to the model.

4.2. Joint Model

We also experiment with an end-to-end joint baseline
model that handles moment retrieval, moment segmen-
tation, and step captioning tasks with a single architec-
ture. As shown in Fig. 5, our model is built on four ex-
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Figure 5. Illustration of our joint model that handles moment retrieval, moment segmentation, and step captioning tasks (Sec. 4.2). We learn
a shallow multimodal transformer encoder layer that adapts the four pretrained models: EVA-CLIP (frozen), Whisper (frozen), MiniLM

(frozen), and CLIP4Caption (finetuned).

isting pretrained models: EVA-CLIP [8], Whisper [28],
MiniLM [29], and CLIP4Caption [35]. EVA-CLIP visual
encoder maps a video frame into a visual embedding, EVA-
CLIP text encoder maps a text query into a text embedding,
Whisper extracts speech transcription from audio, MiniLM
text encoder maps the speech transcription into a text em-
bedding. To adapt the video, text, and audio embeddings,
we finetune a two-layer multimodal encoder and a two-
layer text decoder, which are initialized from CLIP4Caption
(MSRVTT [41] checkpoint). We train the joint model in
a multi-task setup in a round-robin fashion, by sampling a
batch from one of the data loaders at each step [6].

Input Embedding. We construct the multimodal input
embedding to the transformer by combining 1) EVA-CLIP
video frame embedding, 2) EVA-CLIP text query embed-
ding (tiled to the number of video frames), 3) and MiniLM
speech transcription embedding (temporally warped into
each frame), and 4) task-specific mask embeddings. For
moment retrieval and moment segmentation tasks, we feed
the same multimodal embeddings while masking out the
frames that are outside of interest.

Moment Retrieval & Moment Segmentation. Following
the span-based text question answering models [7, 32], we
learn linear layers that predict the boundaries of moments
and steps. Concretely, we use three linear layers predicting
moment start, moment end, and step boundaries. For the
moment retrieval, our joint start and end predictor predicts
the moment boundary in parallel, and we do not mask out
the video inputs. For the moment segmentation, our joint
model autoregressively predicts each step’s boundaries with
masking; i.e., we mask out 1) frames that are outside of
the moment and 2) frames that are included in the previous
steps. For both tasks, we feed the video in 1fps.

Step Captioning. Following CLIP4Caption [35], we sam-
ple 20 frames from each step. The autoregressive text de-
coder attends to the multimodal encoder output via cross-
attention and generates each step caption independently.

Model Frames FT R@l1 R®@5 R@10
CLIP-B/32 1 114 20.7 27.3
CLIP-B/32 4 125 28.8 37.4
CLIP-B/32 10 13.0 317 39.9
CLIP-B/32 20 13.0 333 41.2
CLIP-B/32 32 126  33.0 41.8
Frozen-in-Time 4 7.0 19.4 26.7
MIL-NCE (S3D) 32 13.9  31.1 41.4
CLIP-B/32 1 v 11.5 227 27.1
CLIP-B/32 4 v 139 295 39.4
CLIP-B/32 10 v 114 313 41.4
CLIP-B/32 20 v 123 31.7 41.6
CLIP-B/32 32 v 13.0 32.1 41.9
EVA-CLIP-G/14 1 189 326 37.5
EVA-CLIP-G/14 4 20.7 436 53.7
EVA-CLIP-G/14 10 260 485 58.8
EVA-CLIP-G/14 20 264 51.1 61.5
EVA-CLIP-G/14 32 26.0 50.0 61.4

Table 2. Video retrieval results on HIREST test split. CLIP/EVA-
CLIP results are based on temporal average pooling. FT: finetun-
ing on HIREST, R@k: Recall@k. MIL-NCE was trained on the
HowTo100M dataset, which is the video source of HIREST.

4.3. Metrics

Video Retrieval. Following previous work [2, 17-19,42],
We evaluate models on Recall @k metrics: R@1, R@5, and
R@10.

Moment Retrieval. Following previous work [16, 17], we
evaluate model outputs against the ground-truth (GT) mo-
ment spans with Recall@1 with Intersection over Union
(IoU) thresholds (0.5 and 0.7).

Moment Segmentation. Following previous work [16, 1 7],
we evaluate models on how similar the generated step spans
are to the GT spans using IoU. We then compute the recall
and precision with IoU thresholds (0.5 and 0.7).
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Model FT R@0.5 R@0.7
CLIP-B/32 (threshold=0.05) 21.01 9.02

CLIP-B/32 (8 frames left/right) 34.02 15.72
EVA-CLIP-G/14 (threshold=0.10) 19.33 7.86

EVA-CLIP-G/14 (8 frames left/right) 38.27 19.33
BMT 43.56 10.57
BMT v 7191 39.18
Joint (Ours) v 7332 32.60

Table 3. Moment retrieval results on HIREST test split. CLIP
(threshold): determines the start/end frames, by picking the frames
where the similarity score drops from the highest scoring frame
with a certain threshold (e.g., 0.05). CLIP (8 frames left/right): de-
termines the start/end frames by eight frames to the left and to the
right of the highest scoring frame. FT: Finetuning on HIREST,
R@IoU: Recall@ ] with a threshold of IoU.

Model FT Recall@IoU Precision@IoU
0.5 0.7 0.5 0.7
SSIM@0.75 (32 frames) 1224 527 26.32  10.05
SSIM@0.85 (32 frames) 25.03 9.79 37.38 13.80
BMT (1fps) 824 371 20.95  7.96
BMT (1 fps) v 3407 1235 24.71 8.93
Joint (Ours) (1 fps) v 3750 14.76 28.52  10.834

Table 4. Moment segmentation results on HIREST test split. We
perform zeroshot evaluation with BMT, and then also provide re-
sults of using SSIM. SSIM is given 32 frames. FT: Finetuning
on HIREST, Recall/Precision@loU: Recall@ [/Precision with a
threshold of loU, SSIM@k: SSIM with a score threshold of k.

Step Captioning. Following previous work [13,19,20,41],
we evaluate with the N-gram metrics: CIDEr [37], ME-
TEOR [3], and SPICE [I] with the language_evaluation
package.> We also report two sentence-level embedding-
based metrics BERTScore [43] and CLIPScore [12].

For BERTScore, we use the RoOBERTa-Large [21]. For
CLIPScore, we CLIP ViT-B/32 [27] and report the aver-
age of frame-caption cosine similarities using 4 frames uni-
formly sampled from each step. In addition, we com-
pute the entailment of generated sentences to the GT sen-
tences using the ELMo [26]-based Decomposable Atten-
tion model [25] pretrained on SNLI [4] with 3 labels:
{entailment, contradict, neutral}.* We use the
ratio of entailment prediction as the entailment score.

5. Results and Discussions

In the following, we present the experiment results on
the four tasks and the visualization of the pipelined model
predictions. Our baseline models show promising initial re-

3https://github.com/bckim92/language-evaluation

4https : / / docs . allennlp . org / models / main /
models /pair_classification/models /decomposable_
attention/

Model FT METEOR CIDEr SPICE Entail. (%) BERT-S CLIP-S

BMT 223 1.04 1.41 1.17 0.83 0.21
SwinBERT 5.12 1331 4.65 5.86 0.85 0.23
BMT v 3.84 6.72 1.05 30.68 0.82 0.20
SwinBERT v/ 5.94 24.66 6.67 35.09 0.86 0.23
Joint (Ours) v 4.13 23.01 3.54 43.88 0.86 0.23

Table 5. Step captioning results on HIREST test split. We finetune
each model on HIREST and evaluate them on our test split. F7-
Finetuning on HIRES'T, Entail: Entailment, BERT-S: BERTScore,
CLIP-S: CLIPScore.

sults, but there exists some gap between the current model
performance and the upper bound accuracies, leaving large
room for future improvements.

Video Retrieval. Table 2 shows the video retrieval results.
Increasing input frames increases the recall until 20 frames.
Although CLIP was not trained on a video dataset, CLIP
outperforms Frozen-in-Time (4 frames) shows comparable
performance with MIL-NCE (32 frames). This is likely due
to the fact that CLIP was trained on a much larger dataset
than Frozen-in-Time. Finetuning CLIP on HIREST does
not show a big difference. EVA-CLIP, a larger CLIP archi-
tecture with 1B parameters, outperforms all the other mod-
els with a big margin. Thus, we use EVA-CLIP as our video
retrieval model and use its features for the three downstream
tasks for our joint model.

Moment Retrieval. Table 3 shows the results for mo-
ment retrieval. Among the cosine similarity-based zero-
shot methods, the 8-frame left/right method outperforms the
similarity score drop difference method for both CLIP and
EVA-CLIP. BMT achieves better R@0.5 than the zero-shot
methods, and the finetuning improves both recall metrics.
Our joint model outperforms finetuned BMT on the R@0.5,
while finetuned BMT achieves a higher score on R@0.7.

Moment Segmentation. Table 4 shows the results for the
moment segmentation task. In the zero-shot setting, BMT
fails to adapt the span distribution of HIREST, and simple
SSIM methods could outperform the BMT model on both
recall and precision. But after finetuning, BMT shows sig-
nificant improvement over its zero-shot version and SSIM
methods on recall metrics. Our joint model achieves a bet-
ter performance than BMT on both recall and precision.

Step Captioning. Table 5 shows the results of the step
captioning task. For both BMT and SwinBERT, zero-
shot inference did not result in a good result in N-gram
(e.g., CIDEr) and entailment metrics, indicating the do-
main gap between their pretraining datasets (ActivityNet
caption and YouCook2) and HIREST is not negligible. For
example, their captions are longer than step captions of
HIREST. Finetuning brings a performance boost to BMT
and SwinBERT in N-gram and entailment metrics but not in
sentence-level embedding-based metrics (BERTScore and
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Figure 6. Comparison of our joint model prediction and ground truth annotation for moment retrieval, moment segmentation, and step
captioning. The video is paired with a text query ‘How to make butter biscuits’.

Moment Retrieval Moment Segmentation  Step Captioning

Model FT
R@0.5 R@0.7 R@0.7 P@0.7 CIDEr
With Audio
BMT v 71.9 39.2 12.4 8.9 6.7
Joint (Ours) v 733 32.6 14.8 10.8 23.0
Without Audio
BMT vV 62.6(-93) 3234(-6.8) 10.4(-2.0) 7.4(-1.6) 6.1 (-0.6)
Joint (Ours) v 70.7 (-2.6) 20.6(-12.0) 13.5(-1.3) 10.0(-0.8) 152 (--7.8)

Table 6. Ablation of using audio inputs. Removing audio input
drops the performance of all three tasks for both models.

CLIPScore). Compared to SwinBERT, our joint model
achieves similar CIDEr and sentence-level embedding-
based metrics. Notably, our joint model outperforms Swin-
BERT significantly on the entailment metric. Future work
on our dataset can also hopefully explore the complemen-
tary strengths of SwinBERT and our joint model.

Audio Ablation. Table 6 shows the ablation study about
using (top rows) and not using (bottom rows) audio in-
put with BMT and our joint model. Overall, both models
show a performance drop without audio input. For moment
retrieval and moment segmentation, removing audio input
significantly drops the scores for both models, indicating
that audio is very helpful for the tasks that require models
to detect the boundaries of events. For the step captioning
task, removing audio input significantly drops the score for
our joint model, while BMT does not show a big difference.

Visualization of Hierarchical Model Pipelining. In Fig. 6,
we visualize the model prediction results and ground-truth
annotation for moment retrieval, moment segmentation, and
step captioning tasks on a video associated with a query
‘How to make butter biscuits’. The retrieved moment
matches with the video moment about making the batter
(36-159s) with the ground truth (GT) annotations. The
predicted step boundaries and step captions also show se-
mantic correspondence with GT annotations and the video.
For example, the predicted caption ‘mix it’ matches the
GT captions ‘add the mixture’ (84-87s) and ‘mix it’ (106-

117s). The model also captions ‘take one cup sugar’ during
that part where ingredients are added (47-55s). The model
makes mistakes by missing the end of the dough cutting
and the final cooking process (160-213s) during moment re-
trieval. In this period, we find that a human instructor stands
up and describes the process, making the frames visually
very different from the previous batter-making process.

6. Conclusion

In this work, we present the HIREST dataset and pro-
pose a new benchmark that covers hierarchy in information
retrieval and summarization from an instructional video cor-
pus. Our benchmark consists of four tasks: video retrieval,
moment retrieval, and our new moment segmentation and
step captioning tasks. Different from existing video datasets
with step captions, our HIREST provides unique, diverse,
high-quality instruction steps with timestamps written by
human annotators. We provide comprehensive dataset anal-
ysis and present experiments with several task-specific and
end-to-end joint baseline models for each task as starting
points. We hope that HIREST can foster future work on
multimodal systems for holistic video information retrieval,
summarization, and step-by-step reasoning.
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