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Abstract

The last several years have witnessed remarkable
progress in video-and-language (VidL) understanding.
However, most modern VidL approaches use complex and
specialized model architectures and sophisticated pretrain-
ing protocols, making the reproducibility, analysis and com-
parisons of these frameworks difficult. Hence, instead of
proposing yet another new VidL model, this paper conducts
a thorough empirical study demystifying the most important
factors in the VidL model design. Among the factors that we
investigate are (i) the spatiotemporal architecture design,
(ii) the multimodal fusion schemes, (iii) the pretraining ob-
jectives, (iv) the choice of pretraining data, (v) pretraining
and finetuning protocols, and (vi) dataset and model scal-
ing. Our empirical study reveals that the most important de-
sign factors include: temporal modeling, video-to-text mul-
timodal fusion, masked modeling objectives, and joint train-
ing on images and videos. Using these empirical insights,
we then develop a step-by-step recipe, dubbed VINDLU,
for effective VidL pretraining. Our final model trained us-
ing our recipe achieves comparable or better than state-of-
the-art results on several VidL tasks without relying on ex-
ternal CLIP pretraining. In particular, on the text-to-video
retrieval task, our approach obtains 61.2% on DiDeMo,
and 55.0% on ActivityNet, outperforming current SOTA
by 7.8% and 6.1% respectively. Furthermore, our model
also obtains state-of-the-art video question-answering re-
sults on ActivityNet-QA, MSRVTT-QA, MSRVTT-MC and
TVQA. Our code and pretrained models are publicly avail-
able at: https://github.com/klauscc/VindLU .

1. Introduction
Fueled by the growing availability of video-and-text

data [2, 8, 9, 24, 41, 43, 48] and advances in the Transformer
model design [12, 54], the last few years have witnessed
incredible progress in video-and-language (VidL) under-
standing [26,31,40,64,75,80]. Since the initial transformer-
based models for VidL, such as ClipBERT [26], the text-to-
video retrieval accuracy has improved from 22.0%, 22.4%,
and 21.3% on MSR-VTT [65], DiDeMo [1], and Activi-

A Recipe for Video-Language Pretraining

Step 1: Add temporal attention to an image transformer.

Step 2: Add a multimodal fusion encoder.
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Step 3: Add video-text matching, masked video modeling, 
and masked language modeling pretraining objectives.

Step 4: Add images for joint 
image-video pretraining.
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Figure 1. We present a recipe for effective video-language pre-
training. Our recipe starts with image and text transformer en-
coders trained on video-text pairs using a contrastive objective
(VTC). We then progressively add more components to our frame-
work while also studying the importance of each component along
the way. Our final recipe includes the steps for (1) adding temporal
attention, (2) injecting a multimodal fusion encoder, (3) incorpo-
rating masked modeling pretraining objectives, (4) jointly training
on images and videos, (5) using more frames during fine-tuning
and inference, and lastly, (6) scaling up the data and the model.

tyNet [23] to > 45% R@1 accuracy on all three of these
datasets, thus, marking an extraordinary relative improve-
ment of more than 100% in less than 2 years.

At the same time, the model architectures and pretrain-
ing/finetuning protocols used by modern VidL approaches
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Method Model Design Pretraining Data #Frames

Temporal
Modeling

Multimodal
Fusion

Pretraining
Objectives Dataset Size Modality PT FT Eval

UniVL [39] Joint Att. [5] 2-layer TR VTC+VTM+MLM+MFM+LM HT 136M V 48 48 48
VideoCLIP [64] 1D-Conv+TR ✗ VTC HT 136M V 32 32 32
ClipBert [26] Mean Pooling BERT MLM+VTM COCO+VG 0.2M I 1 16 16
Frozen [2] Temp. Attn [5] ✗ ITC C5M 5M I+V 1 → 4 4 4
MERLOT [75] Joint Attn RoBERTa VTC+MLM+FOM YT 180M V 16 16 16
VIOLET [16] Window Attn [37] BERT VTC+VTM+MLM+MVM YT+C5M 185M I+V 4 5 5
MV-GPT [47] Joint Attn 2-layer TR MLM+LM HT 136M V - - -
ALL-in-one [55] Token Rolling [55] ViT VTC+VTM+MLM HT+W2 172M V 3 3 9
Singularity [25] Late Temp. Attn 3-layer TR VTC+VTM+MLM C17M 17M I+V 1 → 4 4 12
LAVENDER [32] Window Attn [37] BERT MLM C17M+IN 30M I+V 4 5 5
OmniVL [57] Temp. Attn 2×BERT VTC+VTM+LM C17M 17M I+V 1 → 8 8 8
ATP [6] ✗ ✗ VTC CLIP 400M I 1 16 16
CLIP4Clip [40] Late TR ✗ VTC CLIP 400M I 1 12 12
ECLIPSE [34] Late TR ✗ VTC CLIP 400M I+A 1 32 32
CLIP2TV [18] CLIP 4-layer TR VTC+VTM CLIP 400M I 1 12 12
CLIP-Hitchhiker [3] Late Attn ✗ VTC CLIP 400M I 1 16 120
CLIP-ViP [66] Prompt Attn [66] ✗ VTC CLIP 500M I+V 1 → 12 12 12

TR: Transformer; Late: Late fusion; Attn: Attention. V: Video; I: Image; A: Audio; 1 → 4: 1 frame for stage-1 training and 4 frames for stage-2.
VTC: Video-text contrastive; VTM: Video-text matching; MLM: Masked language modeling; MFM: Masked frame modeling; LM: Language
modeling. HT: HowTo100M [41]; C5M, C17M: see supplementary; YT: YT-Temporal [75]; W2: WebVid-2M [2]; COCO: [33], VG: Visual
Genome [24]; IN: An internal dataset.

Table 1. An overview of the existing VidL methods. Significant differences exist among these methods, making it challenging to reproduce,
analyze and compare these methods. This motivates us to answer the question “What are the key steps to build a highly performant VidL
framework” by investigating various components in the VidL framework design.

have become significantly more complex and specialized
over the last several years. As a result, it is increasingly dif-
ficult to reproduce, analyze and compare most recent VidL
frameworks. For example, several recent approaches [25,
32, 66] propose new architectures, new initialization strate-
gies, pretraining objectives, pretraining datasets, and opti-
mization protocols. Due to the large computational cost
of ablating all these factors, it is difficult to understand
which components are critical to the success of the pro-
posed frameworks. Similarly, the key success factors of
many other recent VidL approaches [6, 16, 32, 57] are also
often obfuscated, which hinders future research.

In Table 1, we illustrate the complexity of modern VidL
frameworks by dissecting them along multiple dimensions,
including temporal modeling schemes, multimodal fusion
modules, pretraining objectives, the source of the pretrain-
ing data, and the number of frames for pretraining, finetun-
ing and inference. Based on this analysis, we observe that
there exist significant differences among these VidL meth-
ods. Unfortunately, it’s not clear which differences are im-
portant for the overall VidL performance and which are not.

The recent METER [13] work studies a subset of these
components in the context of image-language modeling.
However, their analysis is limited to images and, thus, ig-
nores various aspects related to video modeling, such as
spatiotemporal architecture design, video pretraining ob-

jectives, video pretraining data, and video-specific finetun-
ing/evaluation protocols such as the number of frames. As
we will show in our experimental section, many of the find-
ings presented in the image-based studies [13] do not hold
for video. Beyond image-based analysis, we note that the
concurrent work in [17] conducts an empirical study of
VidL transformers. However, unlike our work, which cov-
ers a broad range of VidL design factors, their analysis is
focused predominantly on masked visual modeling objec-
tives, which we also study in this work.

Our main objective in this work is to answer the ques-
tion “What are the key steps needed to build a highly per-
formant VidL framework?” To do this, we conduct a thor-
ough empirical study that demystifies the importance of var-
ious VidL design choices and ultimately leads to a VidL
framework that achieves state-of-the-art results on various
VidL benchmarks. Using our empirical insights, we then
develop a step-by-step recipe for effective VidL pretrain-
ing. Our recipe, dubbed VINDLU (VIdeo aND Language
Understanding), starts from a standard Vision Transformer
(ViT) [12] and uses a simple progressive expansion scheme
where at each step, we investigate a particular aspect of
VidL framework design (e.g., architecture, pretraining ob-
jective, pretraining data, etc.), and choose the best perform-
ing option. In particular, we study the following VidL de-
sign components: (i) the spatiotemporal architecture design,
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Figure 2. We progressively expand an image transformer baseline
(e.g., ViT) to a performant video-and-language (VidL) model. We
do so by investigating the importance of many VidL design choices
such as (i) temporal modeling, (ii) multimodal fusion modules,
(iii) pretraining objectives, (iv) the source of the pretraining data,
(v) the number of pre-training frames, (vi) multi-stage pretraining,
and (vii) scaling of the data and model. Each bar depicts an aver-
age text-to-video retrieval Recall@1,5,10 accuracy across MSR-
VTT [65], DiDeMo [65], ActivityNet [23]. The red bars denote
the best-performing design choice in each subgroup. Our final
VidL framework, dubbed VINDLU, outperforms our initial image
Transformer baseline by 23.2%. The figure was inspired by [36].

(ii) the multimodal fusion schemes, (iii) the pretraining ob-
jectives, (iv) the source of the pretraining data, (v) fine-
tuning/inference protocols, and (vi) scaling of the data and
model. We present our recipe in Fig. 1.

The key findings of our empirical study include:
• Contrary to the conclusions of several prior works [6,25]

that a single frame is sufficient for VidL modeling, we
discover that temporal modeling using multiple frames
leads to a significant improvement over the spatial-only
baselines (+6% averaged video retrieval accuracy on
MSR-VTT, DiDeMo, and ActivityNet).

• Multimodal fusion module incorporating video features
into text is critical for good VidL performance (+3.6%).
Conversely, adding text features to the video representa-
tion is not useful.

• Masked language modeling objective significantly im-
proves performance (+6.2%) while masked video mod-
eling objective brings an additional +1% improvement.

• Pretraining jointly on images and videos is beneficial
(+2.7%). Also, contrary to prior methods [2,57], we find
multi-stage training unnecessary.

• Pretraining with a small number of frames (e.g., 4) is suf-
ficient and it can significantly reduce the computational
cost of large-scale pretraining. Pretraining with more
frames does not lead to a substantial performance boost.

• Compared to many recent CLIP-based [45] VidL ap-
proaches [3, 40, 66], our recipe achieves comparable or
even better performance with 20× less pretraining data.

Our final model, trained using our VINDLU recipe,
achieves state-of-the-art results on several VidL bench-
marks. Specifically, on the video retrieval task, our
method achieves 46.5%, 61.2%, 55.0% R@1 accuracy
on MSR-VTT, DiDeMo, and ActivityNet outperforming
the state-of-the-art by 7.8% and 6.1% on the latter two
datasets. Also, our approach obtains state-of-the-art video
question-answering results on ActivityNet-QA, MSRVTT-
QA, MSRVTT-MC and TVQA, where we achieve top-1 ac-
curacy of 44.7%, 44.6%, 97.1%, and 79.0% respectively.

We want to make it clear that, in this paper, we do not
claim technical novelty behind any of the individual de-
sign choices (i.e., different subsets of these design choices
were already used by prior VidL methods as shown in Ta-
ble 1). Instead, our main contribution, which we believe
might be equally if not more important than proposing yet
another specialized or obfuscated VidL model, is to inves-
tigate these components collectively and validate their im-
portance. We also do not claim superiority over previous
methods (despite better results). Due to the implementa-
tion complexities of each method, fair and complete com-
parisons are difficult and not our intent. Instead, we hope
that our recipe for building an effective VidL framework
will provide useful insights for future research on VidL un-
derstanding. To enable the VidL community to build on our
work, we release our code and pretrained models.

2. Related Work

Image-and-Language Pretraining. Recent years have
witnessed remarkable progress in image-and-language pre-
training [7, 10, 20, 22, 29, 38, 45, 49, 51, 59–61, 69, 70, 74,
76–79]. However, most modern methods such as ViL-
BERT [38], UNITER [10], CoCa [71], LEMON [20], BEiT-
3 [61] employ complex transformer architectures and pre-
training objectives. Thus, it is difficult to decipher which
components are critical for good performance. A recent
empirical study on image-language modeling METER [13]
studies a variety of components. However, since their anal-
ysis is done exclusively on images, it is unclear whether
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these findings generalize to video. In comparison, our
work thoroughly investigates various video-specific design
choices for effective video-language pretraining.

Video-and-Language Pretraining. In recent years, the
large-scale VidL pretraining [6,16,26,32,57,58] has shown
strong transfer learning ability to downstream VidL tasks
such as text-to-video retrieval [1,23,26,35,40,65,72], video
question answering [63, 72, 73], video captioning [21, 23,
50, 56, 81], etc. Several methods [3, 18, 40, 66] achieve im-
pressive results by building on the popular image-language
pretrained model CLIP [45]. Additionally, several recent
approaches [25, 32, 57] propose more sophisticated VidL
frameworks to achieve comparable performance as CLIP-
based methods without large-scale CLIP pretraining. How-
ever, with the impressive results, these methods also require
more complex architectures and specialized video pretrain-
ing protocols (as shown in Table 1). The complexity of
these frameworks and the large computational cost of VidL
pretraining makes it challenging to decipher which VidL
framework components are truly needed for good perfor-
mance. Moreover, unlike in the image-language domain,
there are few empirical studies investigating various VidL
design components collectively. For instance, the concur-
rent work of Fu [17] only studies masked video modeling
pretraining objectives and is based on a slightly older VIO-
LET [16] method. Furthermore, the recent works [6,25] fo-
cus predominantly on spatial biases in modern VidL bench-
marks. In contrast to these approaches, our work investi-
gates the importance of various factors in VidL framework
design. We then use our empirical insights to provide a de-
tailed step-by-step recipe for effective VidL pretraining.

3. A Recipe for Video-Language Pretraining
In this section, we describe our recipe for video-and-

language (VidL) pretraining. We begin with a standard im-
age transformer (e.g., ViT [12]) and progressively expand
it to a model that achieves state-of-the-art results on vari-
ous VidL datasets and tasks. At each step of our recipe, we
study how various design choices affect VidL performance.
In particular, we are interested in answering the following
questions about the VidL pretraining design:
• Does a VidL model need temporal modeling, especially

since most VidL benchmarks are spatially biased [6,25]?
If so, what is the best temporal modeling scheme?

• What is the most effective way to do multimodal fu-
sion? Some approaches [16, 32, 55] use bidirectional
while others [25, 57] employ unidirectional multimodal
fusion modules. Which of these schemes works the best?

• Which pretraining objectives are most useful for VidL
representation learning? Prior methods use video-text
contrastive (VTC) [28], video-text matching (VTM)
[28, 31, 39], masked-language-modeling (MLM) [11], or

masked-video-modeling (MVM) [52]. Are all of these
objectives needed for the best performance?

• What pretraining data is most useful for training VidL
models (e.g., video-only or images and videos)? Is it nec-
essary to use curriculum learning [2, 55, 57] or is single-
stage pretraining sufficient?

• How many frames are needed for pretraining, fine-tuning,
and inference? Several approaches [6, 25] claimed that
single frame pretraining is sufficient while others [57,66]
pretrained their models with 8 or even more frames.
Should we finetune the pretrained VidL models using the
same number of frames as during pretraining or is it help-
ful to use more frames during fine-tuning and inference?

Motivated by these questions, we next present our recipe
while also studying these questions in more detail.

Step 0: Starting Ingredients

Image Transformer Baseline. We start with a stan-
dard ViT-B/16 [12] transformer trained on single frames of
WebVid-2M [2]. We use BERT [11] as our text encoder
for all experiments. Formally, given the paired video and
text input (v, t), The image transformer randomly selects
a single frame from the video as input to extract the video
embeddings. A text encoder encodes the text t to extract
the text embeddings. We then use a video-text contrastive
(VTC) loss to maximize the agreement between the paired
video and text embeddings as in [2, 45]. Following [25],
we use BEiT [4] initialization for our image transformer,
whereas the text encoder is initialized with BERTbase.

Experimental Setup. As our initial pretraining data, we
use WebVid-2M [2] unless noted otherwise. We then fine-
tune and evaluate our pretrained model on the three popular
text-to-video retrieval datasets: MSR-VTT [65], DiDeMo
[1], and ActivityNet-Captions [23], which include short and
long videos. We report the averaged top-1, top-5, and top-
10 text-to-video retrieval accuracies across these datasets as
our evaluation metric. As shown in Fig. 2, our Image Trans-
former baseline achieves an average accuracy of 50.4%.

Over the next several subsections, we progressively ex-
pand this baseline by adding more components of increas-
ing complexity. In particular, we start by incorporating (i)
temporal modeling blocks, (ii) a multimodal fusion encoder,
and (iii) additional pretraining objectives. Afterward, we
investigate the choice for the (iv) pretraining data, (v) fine-
tuning and inference protocols, and (vi) dataset and model
scaling schemes. We would like to note that due to the large
computational cost, we cannot ablate the order of the steps
in our recipe. Thus, the order of the steps is primarily deter-
mined by the computational cost (i.e., the steps that can be
implemented most efficiently are studied first then, moving
to the more computationally costly steps).
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Step 1: Temporal Modeling
In the first step of our recipe, we extend our initial image

transformer to video via a temporal modeling mechanism,
which enables training our model on multiple frames. We
experiment with several temporal modeling schemes:
• Mean Pooling (MP). In this variant, the visual encoder

processes input frames independently and averages their
frame-wise scores for the video-level score as in [40].

• Late Temporal Attention (L-TA). Following [25,40,42]
we use a late temporal modeling scheme by attaching 2
Transformer layers to an image encoder, which then ag-
gregates temporal information across all input frames.

• Temporal Convolution (TC). Many prior methods [14,
44, 62] used 3D convolutions for temporal modeling. To
validate its effectiveness, we inject 3D convolution [53]
before the spatial attention to each Transformer Layer.

• Temporal Attention (TA). Inspired by TimeSformer [5],
we experiment with divided space-time attention, which
we insert before spatial attention as in [5].

As shown in the upper part of Fig. 2 and the Table below,
the temporal modeling capability is critical for good VidL
performance. This is indicated by a +6.3% accuracy boost
of our temporal attention variant (TA) over the spatial-only
baseline. We also observe that late temporal modeling (L-
TA) has nearly no effect. We conjecture that this is due
to the limited temporal modeling capacity (i.e., only two
layers) and the lack of temporal fusion in the early lay-
ers. Lastly, our results suggest that TA outperforms TC by
2.1%, which might indicate that long-range temporal atten-
tion is more useful than local 3D convolutions.

Mean Pooling L-TA TC TA
acc.(%) 49.8 50.2 54.6 56.7

Interestingly, we note that our findings contradict the
conclusions of several recent methods [6, 25], claiming that
temporal modeling is not needed for many VidL tasks. We
hypothesize that even on the spatially-biased datasets, tem-
poral modeling is useful for resolving spatial ambiguities
caused by appearance variations across different frames.

Takeaway #1: We adopt Temporal Attention (TA) as our
temporal modeling mechanism and pretrain our model with
4-frame inputs unless otherwise noted.

Step 2: Multimodal Fusion Encoder
Building on the model from Step 1, we next analyze the

role of multimodal fusion modules. The multimodal fusion
encoder aims to fuse multimodal cues from video and lan-
guage for a more discriminative VidL feature representa-
tion. As shown in Fig. 3, we experiment with several vari-
ants of multi-modal fusion encoders:
• Video-to-Text Multimodal Fusion (V2T-MF). As illus-

trated in Fig. 3a, V2T-MF injects relevant video cues
into the textual features using Cross-Attention. For a fair

Video 
Encoder

Text
Encoder

V2T-MF

VTM loss

VTC loss

Cross Attention

Video 
Encoder

Text
Encoder

T2V-MF

VTM loss

VTC loss

Cross Attention

(a) V2T-MF (b) T2V-MF

Figure 3. An illustration of (a) video-to-text (V2T-MF), and (b)
text-to-video (T2V-MF) multimodal fusion schemes. The video-
text matching (VTM) loss is attached to the multimodal fusion
encoder, whereas video-text contrastive (VTC) loss is added to the
video and text encoders.

comparison with previous baselines [2,25], we do not add
any extra layers but instead re-purpose the last m layer of
our text encoder for V2T fusion. Specifically, a cross-
attention operation is inserted into each of the m last lay-
ers in the text encoder between Self-Attention and MLP.
This scheme was also previously used by [25, 57].

• Text-to-Video Multimodal Fusion (T2V-MF). Similar
to V2T-MF, we build T2V-MF (Fig. 3b) by re-purposing
the last m layers of the vision encoder and using cross-
attention to incorporate text cues into the video features.

• Bidirectional Multimodal Fusion (B-MF). Prior ap-
proaches [16,32,55,75] feed the concatenated visual and
textual features to a m-layer Transformer. However, this
is often computationally infeasible in the video domain
due to many input frames. Instead, we implement B-MF
by combining T2V-MF and V2T-MF.

To train each variant, we add the video-text matching
(VTM) loss (see Sec. 3) as in [16,55,57]. In the table below
and Figure 2, we report that the V2T-MF scheme performs
the best (i.e., +3.6% improvement). Surprisingly, the re-
verse T2V-MF scheme substantially decreases performance
(-1.3%). We conjecture that predicting the matching video-
text pairs using a pretrained language rather than a visual
representation is easier. We also note that the B-MF scheme
yields no improvement compared to V2T-MF.

w/o. MF T2V-MF V2T-MF B-MF
acc.(%) 56.7 55.4 60.3 60.3

Takeaway #2: For our remaining experiments, we use
V2T-MF as our multimodal fusion encoder.

Step 3: Pretraining Objectives
Building on Step 2, we next study the following pretrain-

ing objectives:
• Visual-Text Contrastive Learning (VTC). VTC aims to

learn independent representations for video and text by
maximizing the agreement between positive (visual, text)
pairs while minimizing the agreement between negative
pairs. Note that this objective is already used in previous
steps, and thus, not included in Figure 2.
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• Visual-Text Matching (VTM). VTM objective is imple-
mented as a standard cross-entropy loss that encourages
a VidL model to produce binary predictions indicating
whether a given video-text pair matches. Following [30],
we attach this loss to our multimodal fusion encoder and
use hard negative mining during training as in [25]. The
VTM objective is already used in Step 2 (i.e., the multi-
modal fusion step) and thus, not included in Figure 2.

• Masked Language Modeling (MLM). MLM objective
aims to predict the masked words by leveraging infor-
mation from both visual and textual features. We mask
50% text tokens using the same masking strategy as in
BERT [80] and attach a linear layer to our multimodal
fusion encoder (T2V-MF) to predict the masked words.

• Masked Video Modeling (MVM). The MVM objective
aims to recover the masked video tokens [15, 19, 37, 52].
To implement MVM, we apply a linear layer on the vi-
sion encoder and predict the masked tokens as in [46].

In the Table below and Fig. 2, we report that the MLM
pretraining objective leads to a substantial boost in perfor-
mance (+6.2%). Furthermore, adding MVM loss further
improves the accuracy by 1%. However, adding the MVM
objective slows the training by about 40% (due to additional
forward and backward passes). Thus, to speed up the train-
ing, we don’t use MVM loss in our remaining experiments.

objectives acc.(%)
VTC (Step 1) 56.7
VTC+VTM (Step 2) 60.3
VTC+VTM+MLM 66.5
VTC+VTM+MLM+MVM 67.5

Takeaway #3: For the remaining experiments, we use
VTC, VTM, MLM as our pretraining objectives.

Step 4: Pretraining Data
In this section, we analyze the effect of (i) the pretraining

data, and (ii) pretraining protocols.

Datasets. Recent methods [2, 16] suggest that jointly pre-
training on images and videos leads to better performance.
To investigate this, we consider an additional image-based
CC3M [48] consisting of 3M image-text pairs. Specifically,
we experiment with pretraining our model on the (i) image-
only (CC3M), (ii) video-only (WebVid2M), and (iii) joint
image and video (CC3M + WebVid2M) datasets. When
pretraining on images, we replace our previously introduced
temporal attention module with an identity connection. As
shown in the Table below and Fig. 2, training on videos is
more beneficial than training on images (+2.7%). Further-
more, jointly pretraining on images and videos leads to an
additional 2.7% boost, which suggests that a stronger spa-
tial representation is useful for VidL modeling.

Images Videos Images+Videos
acc.(%) 64.8 67.5 70.2

The Number of Input Frames for Pretraining. Prior
approaches [2, 16, 57, 75] use a different number of input
frames for pretraining (i.e., from 1 to 16). Thus, we next
study how many frames are needed for effective VidL pre-
training. From the Table below and Fig. 2, we observe that
multi-frame pretraining using 4 frames leads to 1.7% im-
provement compared to a single-frame pretraining. How-
ever, we also observe that the performance saturates with
4-frame inputs while the computational cost of pretraining
with more frames increases significantly, i.e., pre-training
with 4 frames is 2.5× faster than pretraining with 16 frames.

1 frame 4 frames 8 frames 16 frames
acc.(%) 68.5 70.2 70.2 70.2
speedup 4.6× 2.5× 1.7× 1×

Multi-stage Curriculum Pretraining. Lastly, we validate
the necessity of multi-stage curriculum pretraining, which
was used in several prior VidL approaches [2, 57]. Specifi-
cally, we experiment with two different pretraining proto-
cols: (i) a two-stage pretraining that first trains a model
for 10 epochs using single frames, and then for 5 addi-
tional epochs using 4-frame inputs, and (ii) a three-stage
pretraining that builds on (i) by adding a third stage where
the model is trained for additional 3 epochs using 8-frame
inputs. Our results in the Table below and Figure 2, indi-
cate that multi-stage pretraining does not lead to any sig-
nificant performance boost, contrary to the findings of prior
approaches [2, 57]. We believe that this happens because
prior approaches [2, 57] train their model for only several
epochs at each stage, whereas we train it until convergence.
We also note that compared to the 4-frame one-stage pre-
training, the two-stage 1 → 4 has a comparable pretraining
cost as the latter model is trained for more epochs.

frames 4 1 → 4 1 → 4 → 8 4 → 8
acc.(%) 70.2 69.6 69.5 70.4
speedup 1.7× 1.7× 1.2× 1×

Takeaway #4: We adopt a single-stage pretraining on
joint image and video datasets while using 4-frame inputs.

Step 5: Finetuning & Inference
Existing methods typically use the same number of

frames either between pretraining and finetuning [2, 25, 75]
or finetuning and inference [16, 57, 75]. Here, we study us-
ing a different number of frames at different phases.

Finetuning. We experiment with finetuning our 4-frame
pretrained model with K = 1, 4, 8, 12, 24, 32-frame inputs
while using M frames during inference. We use M = 12
for all K ≤ 12 and M = K for K > 12. Based on the
results in the Table below, we observe that while finetuning
with more frames leads to higher accuracy (70.5%) the per-
formance saturates with about 12 frames. We also note that
finetuning with a single-frame input is 22.4× faster than
with 32 frames but has a 5% lower accuracy. On the other
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hand, finetuning with 12 frames yields only 0.3% lower ac-
curacy but 2.6× speedup compared to finetuning with 32
frames. Therefore, due to the favorable accuracy-cost trade-
off, we finetune most of our models with 12-frame inputs.

# frames 1 4 8 12 24 32
acc.(%) 65.5 68.1 69.2 70.2 70.1 70.5
speedup 22.4× 7.1× 3.9× 2.6× 1.5× 1.0×

Inference. Next, we experiment with 12, 24, 32, 64 frames
for testing our 4-frame pretrained and 12-frame finetuned
model. We report the averaged accuracies on DiDeMo
(D) / ActivityNet (A), which contain longer videos. Using
more frames for inference helps, but the accuracy saturates
quickly, and the inference cost becomes large.

# frames 12 24 32 64
D/A acc.(%) 73.4/70.4 73.0/72.1 72.7/72.6 73.8/72.8
speedup 10.6× 3.1× 2.1× 1×

Takeaway #5: Considering the trade-off between compu-
tational cost and accuracy, we use 12 frames for finetuning
and inference on all datasets except ActivityNet. On Activi-
tyNet, we use 12 and 32 frames for finetuning and inference.

Step 6: Scaling Up

Lastly, we scale up the pretraining data and the model.

Pretraining Data. For the pre-training data, we experiment
with (a) adding 12M images from CC12M for a 17M Cor-
pus, and (b) additional 10M videos from WebVid10M for a
25M Corpus. The results in the Table below and in Fig. 2
indicate that scaling our corpus from 5M → 17M improves
the performance by 2.2%. Furthermore, scaling the corpus
from 17M → 25M leads to an additional boost of 1.2%.

# corpus 5M 17M 25M
acc.(%) 70.2 72.4 73.6

Model Size. We also experiment with scaling the video en-
coder (ViTbase → ViTlarge) or text encoder (BERTbase →
BERTlarge). Due to the large computational cost, we only
conduct these experiments on the 5M corpus. We report
that scaling the vision encoder brings larger improvement (
+3.0%) than scaling the text encoder (+1.0%).

encoders base ViTlarge BERTlarge

acc.(%) 70.2 73.2 71.2

Final Takeaway: Our final scaled-up VINDLU model
improves the initial image transformer baseline by 23.2%.

4. Experimental Results
We validate our VINDLU recipe on two mainstream

VidL tasks. See implementation details and dataset descrip-
tions in the supplementary material.

Text-to-Video Retrieval. We compare our results with
existing methods on three spatially-biased datasets MSR-
VTT, DiDeMo, and ActivityNet and two temporally-heavy
datasets, SSv2-label, and SSv2-template as shown in Tab. 2
and Tab. 3 respectively. Our method outperforms previous
methods by a large margin on multiple datasets, achieving
averaged accuracies of 79.3% (+5.6%), 75.4% (+4.7%),
84.6% (+4.6%) on DiDeMo, ActivityNet-Captions and
SSv2 respectively. Our results on MSR-VTT are worse
(66.5% vs. 68.6%) than OmniVL [57] but our pretrain-
ing framework is significantly cheaper (i.e., 82 vs. 169
V100 GPU days). We also note that our method is sig-
nificantly cheaper than other top-performing approaches
including LAVENDER [32], All-in-one [55], and CLIP-
ViP [66] (82 vs. 640, 448, 984 V100 GPU days for pretrain-
ing respectively). Additionally, our cheapest VINDLU vari-
ant requires only 15 V100 GPU days for pre-training, which
is the second cheapest model among all listed approaches,
and it still achieves competitive results on all three bench-
marks. Furthermore, compared to the other leading VidL
approaches such as OmniVL and Singularity, which rely on
a multi-stage curriculum pretraining, our framework is sim-
pler since it can be trained in a single stage. We also include
the results of our scaled up variant VINDLU-L that uses
ViTlarge as its video encoder, and report that it achieves
74.5% averaged retrieval accuracy, thus, outperforming all
other approaches. Lastly, our results on the SSv2 dataset
in Table 3 indicate that VINDLU performs well not only
on spatially-biased datasets but also on temporally-heavy
datasets, which require sophisticated temporal modeling ca-
pabilities. For fairer comparisons, we de-emphasize CLIP-
based methods since they use a lot more pre-training data.

Video Question-Answering. In Table 4, we also
present our results for the video question-answering task
on ActivityNet-QA [73], MSRVTT-QA [63], MSRVTT-
MC [72] and TVQA [27]. Our results indicate that
compared to prior state-of-the-art approaches, VIN-
DLU achieves competitive results across all four of these
datasets. In particular, our method outperforms existing ap-
proaches by 0.6% on ActivityNet-QA, 0.3% on MSRVTT-
QA, 3.4% on MSRVTT-MC and 0.3% on TVQA. For fair
comparison, we de-emphasize FrozenBiLM [68], since it is
a lot larger than our model (1.2B vs. 201M parameters) and
uses a lot more pretraining data (400M vs. 25M).

5. Conclusion

In this work, we demystify the importance of vari-
ous components used in modern VidL framework design.
Throughout our empirical study, we find that temporal mod-
eling, multimodal fusion, masked modeling pretraining ob-
jectives, and joint training on images and videos are criti-
cal for good performance on the downstream VidL under-
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Method Pretrain MSRVTT DiDeMo ActivityNet-Captions Avg
#Data #Frames Time R1 R5 R10 Avg R1 R5 R10 Avg R1 R5 R10 Avg

ClipBERT [26] 5.4M 1 32 22.0 46.8 59.9 42.9 20.4 48.0 60.8 43.1 21.3 49.0 63.5 44.6 43.5
VideoCLIP [64] 136M 960 8 30.9 55.4 66.8 51.0 - - - - - - - - -
Frozen [2] 5M 1 → 4 35∗ 31.0 59.5 70.5 53.7 34.6 65.0 74.7 58.1 - - - - -
ALPRO [28] 5M 8 24∗ 33.9 60.7 73.2 55.9 35.9 67.5 78.8 60.7 - - - - -
VIOLET [16] 138M 4 83 34.5 63.0 73.4 57.0 32.6 62.8 74.7 56.7 - - - - -
All-in-one [55] 138M 3 448 37.9 68.1 77.1 61.0 32.7 61.4 73.5 55.9 22.4 53.7 67.7 47.9 54.9
LAVENDER [32] 30M 4 640 40.7 66.9 77.6 61.7 53.4 78.6 85.3 72.4 - - - - -
Singularity [25] 17M 1 → 4 29 42.7 69.5 78.1 63.4 53.1 79.9 88.1 73.7 48.9 77.0 86.3 70.7 69.3
OmniVL [57] 17M 1 → 8 169∗ 47.8 74.2 83.8 68.6 52.4 79.5 85.4 72.4 - - - - -
CLIP4Clip [40] 400M 1 768∗ 44.5 71.4 81.6 65.8 42.8 68.5 79.2 63.5 40.5 72.4 83.4 65.4 64.9
ECLIPSE [34] 400M 1 768∗ - - - – 44.2 - - - 45.3 75.7 86.2 69.1 -
CLIP-Hhiker [3] 400M 1 768∗ 47.7 74.1 82.9 68.6 - - - - 44.0 74.9 86.1 68.3 -
CLIP-ViP [66] 500M 1 → 12 984∗ 54.2 77.2 84.8 72.1 50.5 78.4 87.1 72.0 53.4 81.4 90.0 74.9 73.0

VINDLU
5M

4
15 43.8 70.3 79.5 64.5 54.6 81.3 89.0 75.0 51.1 79.2 88.4 72.9 70.8

17M 38 45.3 69.9 79.6 64.9 59.2 84.1 89.5 77.6 54.4 80.7 89.0 74.7 72.4
25M 82 46.5 71.5 80.4 66.1 61.2 85.8 91.0 79.3 55.0 81.4 89.7 75.4 73.6

VINDLU-L 25M 4 178 48.8 72.4 82.2 67.8 59.8 86.6 91.5 79.3 55.9 82.3 90.9 76.4 74.5

Table 2. Comparison to the state-of-the-art text-to-video retrieval methods on MSRVTT, DiDeMo and AcitivityNet-Captions. Pretraining
time is measured in V100 GPU days, where * means our estimated time based on FLOPs, pretraining data, and the number of epochs for
the methods that do not report their pretraining time. VINDLU uses ViT-B/16 while VINDLU-L uses ViT-L/16 as video encoders. For fair
comparisons, we de-emphasize the CLIP-based methods since they use a lot more pretraining data than all other approaches. Our results
indicate that VINDLU achieves competitive or even better than state-of-the-art results while also being simple and efficient.

Method #PT SSv2-label SSv2-template Avg
R1 R5 R1 R5

CLIP4Clip [40] 400M 43.1 71.4 77.0 96.6 77.9
Singularity [25] 17M 47.4 75.9 77.6 96.0 80.0

VINDLU
5M 51.2 78.8 82.2 98.9 82.7

17M 53.0 80.8 86.2 99.4 84.6
25M 53.1 81.8 83.3 100 84.4

Table 3. Comparison with state-of-the-art text-to-video retrieval
methods on the temporally-heavy SSv2-Label [25] and SSv2-
Template datasets [25]. #PT denotes the amount of pretraining
data. Averaged numbers are the average of Recal@{1,5,10} on
these two datasets. CLIP-based models are de-emphasized for
fairer comparisons. We observe that VINDLU achieves the best
performance, which demonstrates its ability to reason about com-
plex temporal dependencies in the video data.

standing tasks. Our empirical insights enable us to de-
velop a step-by-step recipe for effective video-language
(VidL) pretraining, which leads to a highly performant VidL
model, dubbed VINDLU. Compared to the existing VidL
approaches, our method achieves competitive or even bet-
ter results on 9 VidL benchmarks while also being simpler
and more efficient. While our paper does not provide any
novel individual contributions, we believe that our empiri-
cal insights and our VidL pretraining recipe will be useful
and help advance further research in the VidL domain.

Method #PT ANet MSR-QA MSR-MC TVQA

ClipBERT [26] 0.2M - 37.4 88.2 -
ALPRO [28] 5M - 42.1 - -
JustAsk [67] 69M 38.9 41.5 - -
VideoCLIP [64] 136M - - 92.1 -
All-in-one [55] 138M - 44.3 92.0 -
MERLOT [75] 180M 41.4 43.1 90.9 78.7
VIOLET [16] 138M - 43.9 91.9 -
Singularity [25] 17M 44.1 43.9 93.7 -
OmniVL [57] 17M - 44.1 - -
HERO [31] 7.5M - - - 74.2
FrozenBiLM [68] 400M 43.2 47.0 - 82.0

VINDLU
5M 44.2 43.6 95.4 79.0

17M 44.6 43.8 93.8 78.8
25M 44.7 44.6 95.5 79.0

Table 4. Comparison with state-of-the-art video question-
answering methods on ActivityNet-QA (ANet), MSRVTT-QA
(MSR-QA), MSRVTT-MC (MSR-MC) and TVQA. #PT denotes
the amount of pretraining data. We gray out FrozenBiLM [68] as
it is much larger than our model (1.2B vs 207M parameters). VIN-
DLU achieves competitive results across all four datasets.
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