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Abstract

While large language models (LLMs) have
proven to be effective on a large variety of tasks,
they are also known to hallucinate information.
To measure whether an LLM prefers factually
consistent continuations of its input, we pro-
pose a new benchmark called FIB (Factual
Inconsistency Benchmark) that focuses on the
task of summarization. Specifically, our bench-
mark involves comparing the scores an LLM
assigns to a factually consistent versus a fac-
tually inconsistent summary for an input news
article. For factually consistent summaries, we
use human-written reference summaries that
we manually verify as factually consistent. To
generate summaries that are factually inconsis-
tent, we generate summaries from a suite of
summarization models that we have manually
annotated as factually inconsistent. A model’s
factual consistency is then measured according
to its accuracy, i.e. the proportion of documents
where it assigns a higher score to the factually
consistent summary. To validate the usefulness
of FIB, we evaluate 23 large language mod-
els ranging from 1B to 176B parameters from
six different model families including BLOOM
and OPT. We find that existing LLMs gener-
ally assign a higher score to factually consis-
tent summaries than to factually inconsistent
summaries. However, if the factually inconsis-
tent summaries occur verbatim in the document,
then LLMs assign a higher score to these factu-
ally inconsistent summaries than factually con-
sistent summaries. We validate design choices
in our benchmark including the scoring method
and source of distractor summaries.

1 Introduction

Factual inconsistency is a widespread problem in
natural language generation tasks (Maynez et al.,
2020; Weng et al., 2020; Devaraj et al., 2022). For
text summarization in particular, it has been shown
that models often hallucinate new information or

'We include our code in the supplementary
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A member of the public raised the
alarm after seeing the woman, aged in
her 50s, fall at Peveril Point, near
Swanage, on Saturday afternoon. She
was airlifted by the coastguard
helicopter to King George's Field park
\where she was treated by paramedics.

Distractor

Gold summary

A woman has been
airlifted to a park after
falling from Peveril Point.
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A middle-aged woman
was hospitalized after
falling from a cliff.
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Figure 1: A schematic diagram of FIB, where we mea-
sure whether an LLM assigns a higher score to a fac-
tually consistent document summary than a factually
inconsistent summary.

generate content that contradicts the source doc-
ument (Cao et al., 2018; Maynez et al., 2020).
These works usually study supervised summariza-
tion models that are either trained from scratch or
fine-tuned from a pre-trained language model (Wan
and Bansal, 2022). Recently, however, NLP has
experienced a paradigm shift towards using large
language models (LLMs) rather than supervised
models. LLMs are generally pre-trained on a large
corpus of unstructured text and then applied to a
task through instructive prompts. In light of this
new paradigm, our goal is to evaluate the factual
consistency of large language models using text
summarization as a testbed.

To achieve this goal, we propose FIB (the
Factual Inconsistency Benchmark) to measure how
often models prefer factually consistent summaries
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over factually inconsistent summaries. In FIB,
models are given a document and are evaluated
on whether they assign a higher score to a factually
consistent summary than a factually inconsistent
summary. Scores are assigned based on a model’s
assigned probability to the summary. We use accu-
racy on this binary classification task as a proxy for
how factually consistent a model is. FIB consists
of over 3,500 pairs of summaries that were all man-
ually annotated as either factually consistent or fac-
tually inconsistent. The benchmark is based on doc-
uments and summaries from the XSum (Narayan
et al., 2018b) and CNN/DM (Hermann et al., 2015)
datasets to test behavior on abstractive and extrac-
tive summarization, respectively. For factually con-
sistent summaries, we use reference summaries
from the datasets that we verify are factually con-
sistent or manually edit to make them factually con-
sistent. The factually inconsistent summaries were
generated from 22 models trained for summariza-
tion and then annotated as factually inconsistent.

To explore the behavior of existing models on
FIB, we evaluate 23 LLMs from 6 different model
families including BLOOM, OPT, GPT, and TO
(Radford et al., 2019; Zhang et al., 2022b; Sanh
et al., 2022; Chung et al., 2022; Lester et al., 2021;
Scao et al., 2022) ranging from 1B to 176B param-
eters. Next, we analyze whether the method used
to generate the factually inconsistent summaries af-
fects how often models prefers factually consistent
summaries over factually inconsistent summaries.
To do so, we evaluate these models on factually in-
consistent summaries from three additional sources:
(1) unedited reference summaries that we anno-
tated as factually inconsistent, (2) summaries edited
via FactCC (Kryscinski et al., 2020), and (3) sum-
maries produced by MFMA (Lee et al., 2022). In
addition, we test 4 different scoring functions: con-
ditional log-likelihood (LL), length-normalized LL,
pointwise mutual information (PMI), and length-
normalized PMI. Overall, we find that: (1) The
LLMs we consider typically assign a higher score
to factually consistent summaries than to factually
inconsistent summaries (e.g. 72.4% of the time for
BLOOM (Scao et al., 2022)), but (2) LLMs rarely
prefer factually consistent summaries over factually
inconsistent summaries copied verbatim from the
document (e.g. 9.6% of the time for BLOOM), (3)
LLMs generally become more factually consistent
as they are scaled up, and (4) FactCC-generated fac-
tually inconsistent summaries can fool some LLMs

at a similar rate to model-generated factually incon-
sistent summaries.

In summary, our contributions are: (1) a bench-
marking procedure and collection of annotated
summaries for probing the factual consistency of
LLMs and (2) a thorough evaluation of 23 LLMs
from 6 different model families of up to 176B pa-
rameters. We hope FIB and our results help shed
light on the factuality of LLMs.

2 Related Work

2.1 Factuality Evaluation Datasets

In the literature on text summarization, many
datasets with human-labeled factually consistent
and inconsistent summaries have been introduced
for meta-evaluation purposes (i.e., evaluating fac-
tuality evaluation metrics) or for training the met-
rics themselves. Pagnoni et al. (2021) introduced
the FRANK benchmark that contains 2250 model-
generated summaries with factuality labels for each
summary sentence. Similarly, Gabriel et al. (2021)
proposed the GO FIGURE meta-evaluation frame-
work that has 1500 model-generated summaries
that include factuality labels. Besides these two
benchmarks, many other works collected their own
small-scale factuality evaluation datasets for evalu-
ating their proposed metrics or analyzing the factu-
ality of summarization models (Falke et al., 2019;
Maynez et al., 2020; Kryscinski et al., 2020; Wang
et al., 2020a; Durmus et al., 2020; Lux et al., 2020).
Ribeiro et al. (2022) combined labeled datasets
from four works and formed the FactCollect dataset
with more than 9000 summary sentences and their
factuality labels. Additionally, a few other works
proposed to automatically obtain factually incon-
sistent summaries by perturbing the reference sum-
maries (Kryscinski et al., 2020; Lee et al., 2022),
e.g., entity swapping. However, Goyal and Dur-
rett (2021) showed that these automatic techniques
target inherently different error distributions than
those seen in actual model generations. Goyal and
Durrett (2020) considered model outputs at the
top of beam search as factual and bottom genera-
tions as non-factual. The aforementioned works
mainly focus on abstractive summarization; in con-
trast, Zhang et al. (2022a) introduced a factual-
ity evaluation dataset for extractive summarization
which we use as part of FIB. Previous datasets
do not annotate reference summaries and instead
only annotate model generations as factually con-
sistent or factually inconsistent. However, the ref-
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erence summaries are not always factually consis-
tent (Maynez et al., 2020; Bommasani and Cardie,
2020; Tejaswin et al., 2021) which means that
some of the factually inconsistent summaries might
not have any factually consistent summary to pair
with. Hence, we perform a manual verification
of reference summaries as factually consistent for
FIB. Additionally, FIB aims to evaluate the fac-
tual consistency of LLMs themselves instead of
meta-evaluating evaluation metrics.

Besides summarization, Devaraj et al. (2022)
proposed a factuality evaluation dataset for text sim-
plification. In addition, some datasets have been
introduced for checking a fact or claim against a
large knowledge base (Thorne et al., 2018; Augen-
stein et al., 2019); here, we instead focus on factual
consistency of conditional model continuations.

2.2 Factuality Evaluation Metrics

Many metrics have been proposed to evaluate
the factual consistency of model-generated sum-
maries. These metrics can be roughly catego-
rized into entailment-based metrics and question-
generation/answering (QA/QG)-based metrics.
Entailment-based metrics check whether each sum-
mary sentence (or a more fine-grained subsentence)
is entailed by the source document (Falke et al.,
2019; Kryscinski et al., 2020; Goyal and Durrett,
2020; Maynez et al., 2020). QA/QG-based met-
rics are designed based on the idea that a question
should have the same answer whether it is based on
the summary or the document (Wang et al., 2020a;
Durmus et al., 2020; Scialom et al., 2021). Relat-
edly, Goodrich et al. (2019) evaluated facutality
by checking factual tuples extracted by OpenlE
and Ribeiro et al. (2022) used the AMR graphs of
the summary and the document for assessing fac-
tual consistency. All these metrics were designed
to evaluate models trained specifically for summa-
rization. In this work, we focus more broadly on
evaluating the factual consistency of LLMs.

3 FIB: Factual Inconsistency Benchmark

Each example in FIB consists of a document and
two summaries: a factually consistent summary
and a factually inconsistent summary. Models are
evaluated based on the proportion of times they
assign a higher score to a factually consistent sum-
mary than to a factually inconsistent summary. We
define a factually consistent summary as a sum-
mary whose contents can be inferred solely from

the document. This means that even if a summary
contains true information, if the information is not
found in the document, then the summary is factu-
ally inconsistent. For example, the Gold summary
in fig. 1 is factually consistent as it is written, but if
we swapped Peveril Point with a cliff, then it would
no longer be factually consistent, even if Peveril
Point is technically a cliff, since this fact cannot be
inferred from the document.

We compare the factual consistency of mod-
els on both extractive and abstractive summaries.
Extractive summaries occur verbatim in the doc-
ument while abstractive summaries do not. We
use two summarization datasets as our testbed:
CNN/DM (See et al., 2017; Hermann et al., 2015)
for extractive summaries and XSum (Narayan
et al., 2018a) for abstractive summaries. CNN/DM
consists of English documents about the news
from CNN/Daily Mail and summaries that are
several sentences long with 287K/13K/11K ex-
amples for train/val/test.” XSum consists of En-
glish documents about the news from BBC and
short summaries with 204K/11K/11K examples for
train/val/test.” The CNN/DM dataset is distributed
under an Apache 2.0 license and XSum is under
a Creative Commons Attribution 4.0 International
license. Our use is consistent with the intended
use and we release our code under an Apache 2.0
license and the data for FIB under a Creative Com-
mons Attribution 4.0 International license.

3.1 Dataset Construction

We describe how we construct the factually consis-
tent and factually inconsistent summaries for FIB.
When performing annotations, each summary was
annotated by two annotators. Four of the authors
performed the annotations. Our inter-annotator
agreement was 91.3%. Whenever there was a dis-
agreement on a given summary, the two annotators
would discuss and resolve the disagreement. See
appendix A for annotator instructions.

Factually Consistent Summaries. Though the
summarization datasets we consider include ref-
erence summaries, the reference summaries are
not necessarily factually consistent with the doc-
ument (Maynez et al., 2020). To account for this,
we annotate reference summaries for 500 and 100
documents from XSum and CNN/DM respectively

2https://huggingface.co/datasets/cnn_
dailymail
3https://huggingface.co/datasets/xsum
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as either factually consistent or factually incon-
sistent. Then, we edit the factually inconsistent
reference summaries to be factually consistent us-
ing minimal edits. Factually inconsistent reference
summaries usually contain information that is true
but not found in the document. Thus, most edits
involve removing or changing certain keywords or
phrases not present in the document. Two anno-
tators then verified the edited summary was factu-
ally consistent. The percentage of factually consis-
tent summaries that were edited from the original
reference summary was roughly 90% for XSum
and 30% for CNN/DM. We denote these annotated
factually consistent reference summaries as Gold
summaries. See appendix B for some examples of
edited summaries.

Factually Inconsistent Summaries. To obtain
factually inconsistent summaries, we generate sum-
maries from models trained on a given summariza-
tion dataset and annotate the generated summaries
as factually consistent or factually inconsistent. We
then retain the model-generated summaries that
were annotated as factually inconsistent. We use
15 extractive models to generate summaries for
CNN/DM and 7 generative models to generate sum-
maries for XSum. See appendix D for the list of
models used to generate the summaries. For XSum,
we annotate the model-generated summaries our-
selves and for CNN/DM we source the factual-
consistency annotations from Zhang et al. (2022a).
See appendix C for some examples of factually
inconsistent model-extracted summaries.

For the dataset underlying our benchmark, we
create a paired example for every possible factu-
ally inconsistent summary with the Gold summary
for a given document. In the end, we have 3,124
factually consistent/inconsistent summary pairs
across 500 unique documents for XSum and 457
pairs across 96 unique documents for CNN/DM (4
CNN/DM documents were dropped since all the
models generated factually consistent summaries
for them). A model’s accuracy on FIB is then sim-
ply the proportion of summary pairs where the
model assigns a higher score to the Gold summary
than to the factually inconsistent summary.

3.2 Scoring Function

For FIB, we are primarily interested in a scoring
function to measure the consistency of the sum-
mary and the document. A natural scoring func-
tion is the model’s assigned log-likelihood (LL)

of the summary given the document, but LL has
two major issues. First, the log-likelihood has a
bias towards shorter summaries since the proba-
bility of each token in a summary is multiplied
together to obtain the log-likelihood of the entire
summary, and thus shorter summaries tend to pro-
duce higher log-likehoods. Second, if the summary
alone has a high likelihood, then the model might
assign a high likelihood to the summary, even if
the summary and the document are not that re-
lated. To address the first issue, we normalize by
the length of the summary. To address the second
issue, we use the pointwise mutual information
(PMI), which accounts for the likelihood of the
summary by subtracting the log-likelihood of the
summary alone from the log-likelihood of the sum-
mary conditioned on the document. Several recent
works have used the pointwise mutual information
(PMI) as a way of scoring a language model’s gen-
erations: Holtzman et al. (2021) used PMI to solve
multiple-choice tasks that probe for knowledge us-
ing GPT3 and Padmakumar and He (2021) used
PMI for unsupervised extractive summarization.
Concurrently, van der Poel et al. (2022) show that
optimizing for PMI during decoding can decrease
hallucinations in language models.

To address both these issues, we use the length-
normalized PMI as our default scoring function,
where the length normalization is performed by
averaging over tokens. Specifically, given docu-
ment d and summary s which consists of 7" tokens
{s1, 82, ..., s7}, the length-normalized PMI is de-
fined as

T
1
Tlogtzzlp(stld781>“'ast—l) (1

T
1
_T logt_zl P(3t|7 81509 St—l)

We ablate the impact of using different scoring
functions in section 4.4.

4 Experiments

Having defined our benchmark, we now evaluate
the factual consistency of various LLMs and com-
pare with several other methods for generating al-
ternative summaries and assigning scores to LM
generations.

4.1 Models

We evaluate 23 large language models (1B to 176B
parameters) from 6 different model families:
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Figure 2: Performance of various models on FIB.

¢ GPT: GPT2-XL (Radford et al., 2019), GPT-
Neo-1.3B, GPT-Neo-2.7B, GPT-NeoX-20B
(Black et al., 2022)

* OPT: OPT-1.3B, OPT-2.7B, OPT-6.7B, OPT-
13B, OPT-30B, OPT-66B, OPT-175B (Zhang
et al., 2022b)

« BLOOM: BLOOM-1.1B, BLOOM-1.7B,
BLOOM-3B, BLOOM-7B, BLOOM (Scao et al.,
2022)

« TO: TO-3B, TO (Sanh et al., 2022)

e FLAN-T5: FLAN-T5-XL, FLAN-T5-XXL
(Chung et al., 2022)

e TS5-LM-Adapt: T5-LM-Adapt-XL, T5-LM-
Adapt-XXL (Lester et al., 2021)

Our chosen models consist of both zero-shot mod-
els that were not trained on XSum or CNN/DM
(GPT, OPT, BLOOM, T5-LM-Adapt) and mod-
els that were trained on XSum and CNN/DM in
a multi-task fashion (TO, FLAN-TS). For each
model, we use the same 3 prompts and report
the median performance across prompts, follow-
ing Sanh et al. (2022). See appendix E for the
prompt templates used. We use a maximum se-
quence length of 512, which was also applied when
sampling 500 documents from XSUM for annotat-
ing factual consistency. We use Pytorch (Paszke
et al., 2019) and HuggingFace (Wolf et al., 2020)
to run the models, and use bitsandbytes (Dettmers
et al., 2022) to do 8-bit inference for the larger mod-
els. All experiments were run on NVIDIA A6000s
or 80GB NVIDIA A100s (depending on the model)
and took about two days.

4.2 Main Results

We show the performance of all the models on
XSum and CNN/DM in fig. 2. On XSum, we high-

light the following:

* Factual Consistency: Models generally pre-
fer Gold summaries over factually inconsistent
model-generated summaries, but the average ac-
curacy of any model is still far from 100%.

* Effect of Scale: Performance generally increases
slightly with scale within a given model family
with the exception of TO, where the 11-billion-
parameter model underperforms TO-3B. For zero-
shot LLMs, the performance is remarkably simi-
lar across model families.

e Effect of Training: Both FLAN-TS and TO un-
derperform the zero-shot models, which could be
because they were trained on the XSum dataset,
which had many reference summaries that were
factually inconsistent.

In contrast to our results on XSum, we find
that models rarely assign a higher score to factu-
ally consistent reference summaries than to factu-
ally inconsistent model-extracted summaries on the
CNN/DM dataset. However, if the factually consis-
tent summary is also model-extracted, then models
also assign higher scores to the factually consistent
model-extracted summary. This suggests that all
models have a strong preference for text copied
from the input regardless of its factual-consistency.

4.3 Generating Alternative Summaries

We also analyze the impact of the the method used
to generate factually inconsistent summaries. To
do so, we compare the model’s performance when
using different methods for generating the factu-
ally inconsistent summary. We note that Goyal and
Durrett (2021) showed that these automatic tech-
niques target inherently different error distributions
than those seen in actual model generations. We
experiment with the following alternative methods
for obtaining factually inconsistent summaries:

* MFMA, proposed by Lee et al. (2022), uses pre-
trained masked language models to generate fac-
tually inconsistent summaries. Specifically, sum-
maries are generated by reconstructing the refer-
ence summary conditioned on the document and
reference summary with « and 3 percent of the
entities masked out respectively. The MFMA pro-
cedure first fine-tunes a pre-trained masked LM
to reconstruct summaries in this setup and then
uses the fine-tuned model to generate new sum-
maries. For example, in fig. 1, if we masked out
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Figure 3: Preference for the Gold summary exhibited by BLOOM and TO when using different methods for

generating alternative choices.

Peveril Point in the reference summary and the
model generated the grand canyon instead, then
the factually-inconsistent MFMA-generated sum-
mary would be A middle-aged woman has been
driven by ambulance to a park after falling from
the grand canyon. We follow the setup in MFMA
and use T5-base (Raffel et al., 2020) and BART-
base (Lewis et al., 2020a) to generate the sum-
maries with & = 0.8 and 3 = 0.6. Since there is
no guarantee that the model-reconstructed sum-
maries are factually inconsistent, we annotate
their factual-consistency and only keep the ones
that are factually inconsistent. We construct fac-
tually inconsistent summaries from MFMA by
combining all factually inconsistent summaries
generated by T5-base and BART-base.

FactCC, proposed by Kryscinski et al. (2020),
generates factually inconsistent summaries via
heuristic perturbations to reference summaries.
FactCC uses two ways to perturb the reference
summary: entity swapping and sentence nega-
tion. Entity swapping replaces an entity (i.e.
pronouns, dates, numbers and named entities)
in the reference summary with a different en-
tity from the document and sentence negation
refers to negating a verb. For example, in fig. 1,
if we negated has to hasn’t, then the factually-
inconsistent FactCC-generated summary would
be A middle-aged woman hasn’t been airlifted to
a park after falling from Peveril Point.

FIR (factually inconsistent reference) summaries.
Since some of the original reference summaries
were factually inconsistent and had to be edited

to become factually consistent, we use these orig-
inal reference summaries as an alternative source
of factually inconsistent summaries.

As an additional baseline, we consider using
factually consistent model-generated summaries
rather than a factually inconsistent summary as the
alternative summary. This allows us to test whether
models prefer model-generated summaries over
Gold summaries. We call this setup of where the
alternative choice is a factually consistent model-
generated summaries FCMG (Factually-Consistent
Model-Generated summaries).

A comparison of different methods for generat-
ing alternative summaries is shown in fig. 3. We
only plot results for BLOOM and TO since the re-
sults for other decoder-only zero-shot LLMs are
similar to those for BLOOM and the results for
FLAN-TS are similar to TO. We highlight the fol-
lowing trends:

* Preference for factually consistent model-
generated summaries depends on whether sum-
maries are extractive: On XSum, models are
almost at chance when distinguishing between
factually consistent model-generated summaries
and Gold summaries. This is evident from the
accuracy on FCMG being around 50%. How-
ever, on CNN/DM, models consistently prefer
factually consistent model-extracted summaries
to Gold summaries. We conclude that models
prefer model-extracted summaries that occur ver-
batim in the document, regardless of their factual
consistency.
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Figure 4: Performance of various models on FIB when using different scoring functions.

* MFMA’s Ineffectiveness: On both XSum
and CNN/DM, models rarely assign MFMA-
generated summaries a higher score than Gold
summaries — the accuracy on MFMA is between
85% to 100% across all models.

* FactCC’s Effectiveness for zero-shot LLMs: On
XSum, BLOOM’s performance is similar when
either FactCC or model-generated factually in-
consistent summaries are used as an alternative,
and on CNN/DM, performance is similar for
FactCC and factually inconsistent reference sum-
maries. This suggests that FactCC generates
somewhat plausible factually inconsistent sum-
maries for zero-shot decoder-only LLM:s.

* FactCC'’s Effectiveness for other models: How-
ever, TO, FLAN-TS5, and T5-LM-Adapt (see ap-
pendix H for FLAN-TS and T5-LM-Adapt ac-
curacies) all perform better when using FactCC-
generated factually inconsistent summaries than
when using model-generated factually inconsis-
tent summaries. This indicates FactCC might
not be effective in generating plausible factually
inconsistent summaries across all model architec-
tures and training schemes.

* Preference for Edited Summaries: On XSum and
CNN/DM, models tend to prefer factually consis-
tent reference summaries over factually inconsis-
tent reference summaries. This is evident from
the accuracy on FIR being around 80% and indi-
cates that models tend to prefer factually consis-
tent summaries over factually inconsistent sum-
maries.

4.4 Scoring Function

In FIB, we use the length-normalized PMI as the
scoring function. To validate this choice, we com-
pare various alternative scoring functions: standard
log-likelihood, length-normalized log-likelihood,
and the non-length-normalized PMI. We show re-
sults for BLOOM, OPT-175B and TO on XSum and
CNN/DM using different scoring methods in fig. 4.
In general we see that the average PMI enables
models to best distinguish between factually con-
sistent and factually inconsistent summaries. We
also compare each scoring function on the alter-
nate sources of factually inconsistent summaries;
see appendix F for detailed results. We find that
log-likelihood works best when the factually in-
consistent summary was produced by FactCC or
is a model generation on CNN/DM. We hypothe-
size that log-likelihood works better than length-
normalized PMI on FactCC because the generated
summaries are often non-fluent and therefore are
assigned a low likelihood regardless of their fac-
tual consistency. For model-extracted summaries
on CNN/DM, we hypothesize that log-likelihood
works better than length-normalized PMI because
log-likelihood is not as biased towards summaries
extracted from the document as PMI is.

S Analysis

To get a better sense of what kind of factually
inconsistent model-generated summaries tend to
fool models into assigning a higher score than
the Gold summary, we show some examples for
BLOOM in table 1. These factually inconsistent
summaries consist of extrinsic hallucinations that
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Document

Factually Consistent
Summary

Factually Inconsistent
Summary

The $5m (3.2m) prize is supposed to be awarded
each year to an elected leader who governed well,
raised living standards and then left office. This is

The prize from Ibrahim for
good governance in Africa has
gone unclaimed yet again.

The winner of the prestigious
Africa Leadership Prize has
been announced by the African

the fourth time in five years there has been no
winner ... Sudan-born telecoms entrepreneur Mr
Ibrahim launched the prize in an attempt to
encourage African leaders to leave power peacefully.

Union’s executive committee.

The character with a huge papier mache head ...
Hundreds of people attended an unveiling ceremony
earlier, many in fancy dress for the occasion. Neil
Taylor, who helped raise the donations for the statue,
said its installation would mean that Frank will gaze
on the Timperley sunset forever-.. Frank Sidebottom
created a whole ...

A statue of the character Frank
Sidebottom has been unveiled

A statue of Timperley’s
character Frank Sidebottom has
been unveiled at a Manchester
museum.

in Timperley.

Table 1: Two examples where BLOOM assigns a higher score to the factually inconsistent model-generated
summaries than the Gold summary. These examples have id 24521870 and id 24601038 respectively.

BART-base 24.4 42.5 34.4 451 42.2

BART-large -63.5(24.4

BLOOM-560m +55.9 44.7 52.8 53.9 45.8 46.1
distil-BART 4 51 24.2 16.6 35.7 30.8
distil-PEGASUS -{62.9 34.1 32.4 19.7 18.9
PEGASUS 42.9 36.4 22.8

T5-large 443.2 50.7 46.1 51.5 49.8 31.7

Generating Model

29.5 39.4 32.2

Evaluated Model

Figure 5: Heatmap showing the rate at which an “evalu-
ated model* assigns a Gold summary on XSum a higher
score than a factually inconsistent summary generated
by the “generating model*.

add new information rather than intrinsic halluci-
nations that manipulate the information in the doc-
ument (Maynez et al., 2020). In addition, these fac-
tually inconsistent summaries contain information
that is actually false, not just information absent
from the document.

5.1 Factual Consistency of Models Used to
Generate Summaries

We take the models used to generate the factu-
ally inconsistent summaries for XSum and evaluate
them against each other using the same procedure
as in FIB. Specifically, we use factually inconsis-
tent summaries produced by a “generating model”
and measure how often an “evaluated model” as-
signs a higher score to the Gold summary than it

does to the factually inconsistent model-generated
summaries. The result is summarized in fig. 5, with
full results in appendix K. The accuracies down
the diagonal are the lowest, which means models
perform poorly when scoring their own factually
inconsistent summary. This is expected since mod-
els should give high scores to factually inconsistent
summaries they generate. In most cases, Gold sum-
maries are preferred less than 50% of the time,
suggesting that summarization models tend to as-
sign higher scores to model-generated factually
inconsistent summaries. However, certain mod-
els (BLOOM and T5-large) almost always produce
summaries that are assigned low scores by the other
models. We leave exploration of this trend to future
work.

6 Conclusion and Takeaways

We present FIB, a new benchmark for evaluating
the factual consistency of language models, and
evaluate 23 large language models on FIB. Our
takeaways are: (1) LLMs tend to assign higher
scores to factually consistent summaries than to fac-
tually inconsistent summaries, except that LLMs
almost always assign higher scores to extracted
summaries even if they are factually inconsistent
and (2) length-normalized PMI enables models to
most effectively detect factually inconsistent sum-
maries. Our results open new avenues for future
work, including a more fine-grained study on the
type of factually inconsistent errors different LLMs
make and investigating the effect training on sum-
marization has on the factual consistency of LLMs.
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7 Limitations

One limitation with FIB is that it only measures
the factual consistency of language models for the
task of summarization, and specifically news sum-
marization. It is not clear how well the results will
generalize, for example, to other domains such as
scientific article or other tasks such as question
answering.
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A Annotation Instructions

The annotators were instructed to mark a summary
as factually inconsistent if any information in the
summary was not implied in the document. We
assume no access to external knowledge so the
summary has to be implied solely from the docu-
ment. External knowledge is broadly defined as
any knowledge that cannot be inferred from com-
mon sense alone. For example, the capital of a
country or the rules of a sport would be external
knowledge.

B Sample Edited Summaries

We show some examples of documents with the
original factually inconsistent reference summary
and the edited factually consistent summary on
XSum in table 2.

C Sample Model-Extracted factually
inconsistent

We show some examples of documents with
model-extracted factually inconsistent summaries
on CNN/DM in table 3.

D Models Used to Generate Summaries

We use the following models to generate sum-
maries for XSum and include the respective Hug-
gingFace model name:

* BLOOM-560m (Scao et al., 2022)
mrm8488/bloom-560m-finetuned-news-
summarization-xsum

e BART-base (Lewis et al.,, 2020b)
VictorSanh/bart-base-finetuned-xsum

* distil-PEGASUS (Zhang et al.,, 2020)
sshleifer/distill-pegasus-xsum-16-8

* BART-large (Lewis et al, 2020b) -
facebook/bart-large-xsum

* PEGASUS (Zhang et al., 2020) -
google/pegasus-xsum

e distil-BART (Lewis et al.,, 2020b) -
sshleifer/distilbart-xsum-12-6

* T5-large (Raffel et al., 2020)-

sysresearch101/t5-large-finetuned-xsum

We use greedy decoding for all models with a max-
imum generation length of 50 tokens.

We use the following models to generate sum-
maries for CNN/DM. See Zhang et al. (2022a) for
more description of the models.

* Oracle (Lin, 2004)

* Oracle (discourse) (Xu et al., 2020)

RNN Ext RL (Chen and Bansal, 2018)

BanditSumm (Dong et al., 2018)
e NeuSumm (Zhou et al., 2018)

» Refresh (Narayan et al., 2018c)
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Document |  Original Ref. Summary | Edited Ref. Summary

West Midlands Ambulance Service said the car was A five-year-old girl has been A girl has been found in a
discovered on Sunday at 09:35 GMT by two cyclists | found with her dead father in a crashed car.
in Crakemarsh near Uttoxeter, Staffordshire. A crashed car which had been in a
spokesman said the black Ford Fiesta appeared to ditch “for some time”.

have hit a tree in very foggy conditions on the
B5030. The girl, in the back of the car, was treated
at hospital for minor injuries. The man, who was 25
and from the local area, has not yet been named ...

Aiden Webb, 22, from Norwich, was climbing A British man is missing in A British man is missing in
Fansipan mountain alone on Friday when he fell Vietnam after falling while Vietnam after falling while
down a ravine and lost his way ... in the fall on the attempting to climb the attempting to climb a mountain.
3,100m (10,300ft) high Fansipan mountain in the country’s highest mountain.

north of Vietnam ... A Foreign and Commonwealth
Office spokeswoman said: "We are supporting the
family of Aiden Webb, a British man reported
missing in Vietnam. We are working closely with
the local authorities leading the search.”

Table 2: These examples have id 34696511 and id 36459564 respectively.

Document Model-Extracted Factually Inconsistent
Summary
the california public utilities commission on thursday said it is ... 850 million will go to *“ gas transmission
ordering pacific gas & electric co. to pay a record 1.6 billion pipeline safety infrastructure improvements ,
penalty ... 850 million will go to ““ gas transmission pipeline the commission said . “ since the 2010
safety infrastructure improvements , ” the commission said ... explosion of our natural gas transmission
pg & e failed to uphold the public ’s trust , ” commission pipeline in san bruno , we have worked hard to
president michael picker said ... the company ’s chief executive | do the right thing for the victims , their families
officer said ... ““ since the 2010 explosion of our natural gas and the community of san bruno ...

transmission pipeline in san bruno , we have worked hard to do
the right thing for the victims , their families and the community
of san bruno , ” tony earley said ...

a passenger on an atlanta-bound air canada flight told a cnn oliver minatel , 22 , said he was sleeping on air
reporter on the plane friday that a stranger sitting behind him canada flight 8623 from toronto when he felt
tried to choke him . oliver minatel , 22 , said he was sleeping on | something around his neck . the man kept trying

air canada flight 8623 from toronto when he felt something to get out of his seat but other passengers yelled
around his neck ... ““1i forced it ( the cord ) down and then other at him whenever he tried to stand up . the
people came to help , and then i got out and he started saying suspect was escorted off the plane .

that we were here to kill him , ” minatel said . the man was not

restrained for the rest of the trip , but the flight crew told him to

stay seated with his seat belt on . the man kept trying to get out

of his seat but other passengers yelled at him whenever he tried
to stand up .

Table 3: Two examples of model-extracted factually inconsistent summaries. The annotations were sourced
from Zhang et al. (2022a). These examples have id 41c6edeceel27¢396d17e2e9115a4a89252cc52b and id
32655a04c9e4733alae4b210a045bc6e0d443d85 respectively. The first example uses Textrank (Mihalcea and
Tarau, 2004) to extract the summary. It is factually incorrect since *we’ refers to pg & e and not the commission.
The second example uses MatchSumm (Zhong et al., 2020) to extract the summary. It is factually inconsistent since
the man refers to the stranger and not Oliver Minatel.
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BERT+LSTM+PN+RL (Zhong et al., 2019)

e MatchSumm (Zhong et al., 2020)

HeterGraph (Wang et al., 2020b)

e [Lead3

Textrank (Mihalcea and Tarau, 2004)

* Textrank (ST) (Reimers and Gurevych, 2019)
* PacSum (tfidf) (Zheng and Lapata, 2019)

¢ PacSum (bert)

e MI-unsup (Padmakumar and He, 2021)

E Prompt Templates

We use the following 3 prompt templates for all
models, where [input] is replaced with the docu-
ment:

* "[input]"
e "The summary of "[input]" is "
* "Summarize: [input]"

F Accuracies Across All Scoring
Functions

We show the performance of all the models across
different scoring functions for XSum in table 4,
table 5, table 6, and table 7 and for CNN/DM in
table 8, table 9, table 10, and table 11.

G Accuracies from MFMA-Generated
Summaries

We show the performance of different models on
MFMA-generated summaries broken down by the
model used to generate the summary for XSum us-
ing different scoring functions in table 12, table 13,
table 14, and table 15.

H Accuracies from FactCC-Generated
Summaries

We show the performance of different models on
FactCC-generated summaries broken down by the
method used to generate the summary using differ-
ent scoring functions for XSum in table 16, table 17,
table 18, table 19 and for CNN/DM in table 20, ta-
ble 21, table 22, table 23.

I Accuracies from Factual
Model-Generated Summaries

We show the performance of different models on
factually consistent model-generated summaries
broken down by the model used to generate the
summary using different scoring functions on
XSum in table 24, table 25, table 26, and table 27
and on CNN/DM in table 28, table 29, table 30,
and table 31

J Accuracies from FIB Summaries

We show the performance of different models on
FIB broken down by the model used to generate
the summary using different scoring functions for
XSum in table 32, table 33, table 34, and table 35
and for CNN/DM in table 36, table 37, table 38,
and table 39.

K Accuracies from Models Used to
Generate Summaries

We show the performance of different models using
the same models to generate the alternative sum-
maries for XSum using different scoring functions
in table 40.
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Model FIR FCMG FIB FactCC MFMA

TO-3B 532 41.6 57.6 87.6 85.1
TO 29.6 349 46.6 89.8 83.9
FLAN-T5-x1 58.1 47.8 59.9 87.3 85.6
FLAN-TS5-xxl1 59.0 51.3 63.7 87.1 87.3

T5-LM-Adapt-x1 81.3 49.5 68.7 78.7 87.5
T5-LM-Adapt-xxl ~ 81.7 50.7 69.8 84.2 88.7
GPT-Neo-1.3B 88.0 45.7 72.1 68.9 87.1

GPT2-XL 84.9 46.3 69.2 71.5 83.2
GPT-Neo-2.7B 87.8 47.7 72.3 72.2 85.1
GPTJ-6B 88.0 51.2 75.4 74.0 87.3
GPT-Neox-20B 82.9 49.6 73.4 74.1 86.4
BLOOM 84.9 46.2 72.4 75.1 88.1
BLOOM-7B1 85.7 43.8 71.8 71.1 86.5
BLOOM-3B 89.3 43.2 72.6 70.4 86.6
BLOOM-1B7 88.9 429 70.5 67.8 87.1
BLOOM-1B1 87.5 413 68.8 64.0 85.3
OPT-175B 84.4 48.3 75.1 71.2 87.0
OPT-66B 83.5 47.8 73.9 70.8 87.2
OPT-30B 84.4 48.3 73.8 72.0 87.2
OPT-13B 85.1 49.0 72.9 71.6 86.5
OPT-6.7B 83.3 474 71.3 70.5 86.3
OPT-2.7B 84.4 48.1 71.3 70.5 85.8
OPT-1.3B 85.7 46.3 69.7 70.5 86.0

Table 4: The performance of the models on XSum with various alternative-choices using avg. PMI as the scoring
function.

Model FIR FCMG FIB FactCC MFMA
TO-3B 20.0 15.5 29.1 97.7 68.2
TO 14.9 214 33.0 96.9 732
FLAN-T5-x1 23.6 16.2 29.4 97.7 68.9
FLAN-TS5-xx1 21.6 17.6 32.1 98.1 72.0

T5-LM-Adapt-x1 34.1 17.7 239 93.1 62.3
T5-LM-Adapt-xx1 ~ 28.1 19.2 26.4 95.7 67.0
GPT-Neo-1.3B 374 18.1 24.7 94.7 59.1

GPT2-XL 33.6 19.3 26.0 95.3 60.7
GPT-Neo-2.7B 359 19.5 26.9 95.8 62.0
GPTJ-6B 28.3 21.1 28.4 96.8 68.9
GPT-Neox-20B 23.4 20.8 30.5 97.0 69.8
BLOOM 26.5 243 32.1 97.8 73.1
BLOOM-7B1 39.9 21.5 28.8 96.3 65.6
BLOOM-3B 443 20.5 28.2 95.7 63.9
BLOOM-1B7 49.0 20.8 27.1 94.7 61.2
BLOOM-1B1 51.4 204 274 93.0 59.7
OPT-175B 16.9 23.1 344 97.9 77.1
OPT-66B 18.7 22.8 323 97.5 75.1
OPT-30B 20.3 21.6 32.6 97.4 72.4
OPT-13B 22.5 214 31.0 96.6 73.2
OPT-6.7B 22.0 21.3 28.7 96.7 70.2
OPT-2.7B 29.0 20.1 28.4 96.7 68.7
OPT-1.3B 30.7 19.9 26.3 95.9 64.7

Table 5: The performance of the models on XSum with various alternative-choices using avg. LL as the scoring
function.
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Model FIR FCMG FIB FactCC MFMA

TO-3B 18.3 46.0 49.1 83.2 83.7
TO 16.7 36.8 45.6 89.0 83.7
FLAN-TS5-x1 16.7 52.0 49.0 82.0 82.9
FLAN-T5-xx1 16.7 51.2 53.6 81.3 85.6

T5-LM-Adapt-x1 39.0 52.6 54.7 69.9 83.8
T5-LM-Adapt-xxl  35.4 51.5 55.3 76.8 85.1
GPT-Neo-1.3B 58.4 46.5 572 60.5 83.9

GPT2-XL 56.1 51.6 549 64.5 80.2
GPT-Neo-2.7B 57.5 49.4 552 66.3 82.3
GPTJ-6B 55.7 549 57.8 66.7 84.3
GPT-Neox-20B 53.0 49.5 58.1 69.2 83.6
BLOOM 53.0 48.9 59.3 72.9 84.7
BLOOM-7B1 59.5 48.5 57.5 67.5 85.2
BLOOM-3B 59.5 493 59.9 65.7 85.3
BLOOM-1B7 63.3 46.2 56.6 63.9 83.4
BLOOM-1B1 60.8 44.7 54.9 58.6 82.3
OPT-175B 50.3 50.5 60.0 65.2 86.1
OPT-66B 535 50.9 57.5 65.1 84.5
OPT-30B 58.1 49.8 57.6 66.6 85.4
OPT-13B 54.6 51.3 56.6 65.3 83.7
OPT-6.7B 56.3 50.5 55.5 65.3 84.3
OPT-2.7B 56.6 52.1 55.4 66.2 84.2
OPT-1.3B 572 48.9 54.0 64.7 82.6

Table 6: The performance of the models on XSum with various alternative-choices using PMI as the scoring
function.

Model FIR FCMG FIB FactCC MFMA
TO-3B 452 15.9 344 98.5 73.5
TO 34.7 23.0 389 97.9 78.0
FLAN-T5-xI 52.8 18.5 35.6 98.3 74.9
FLAN-T5-xx1 49.4 18.5 39.2 98.3 78.1
T5-LM-Adapt-x1 82.6 23.8 44.6 98.1 71.4

T5-LM-Adapt-xxl ~ 72.2 22.0 43.4 98.3 75.1
GPT-Neo-1.3B 83.3 222 46.9 97.0 66.1

GPT2-XL 78.6 22.1 45.6 97.3 67.9
GPT-Neo-2.7B 81.3 23.1 46.8 97.1 67.6
GPTJ-6B 72.2 22.9 47.2 98.0 74.6
GPT-Neox-20B 68.2 26.9 47.7 97.9 75.9
BLOOM 70.6 245 48.6 98.5 78.8
BLOOM-7B1 81.7 244 48.4 97.6 71.9
BLOOM-3B 85.1 24.4 48.6 97.3 68.5
BLOOM-1B7 87.3 254 48.5 96.2 65.1
BLOOM-1B1 90.4 24.7 49.3 96.2 64.2
OPT-175B 532 26.4 48.1 98.3 81.8
OPT-66B 61.0 25.5 474 98.3 80.2
OPT-30B 60.6 25.6 47.0 98.1 78.3
OPT-13B 66.8 24.6 46.3 98.1 78.8
OPT-6.7B 66.1 259 45.6 97.6 75.7
OPT-2.7B 72.6 24.6 45.7 98.1 73.2
OPT-1.3B 71.3 23.1 45.2 97.4 71.8

Table 7: The performance of the models on XSum with various alternative-choices using LL as the scoring function.
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Model FIR FCMG FIB FactCC MFMA

TO-3B 65.6 7.0 17.7 82.4 98.0
TO 50.0 4.4 11.4 79.9 92.0
FLAN-T5-x1 65.6 7.4 16.0 79.7 100.0
FLAN-TS5-xxl1 59.4 6.3 13.8 76.5 100.0

T5-LM-Adapt-x1 62.5 4.9 12.7 79.6 99.0
T5-LM-Adapt-xx]1  59.4 6.0 12.0 76.8 99.0
GPT-Neo-1.3B 78.1 6.4 8.7 7.7 100.0

GPT2-XL 78.1 8.2 9.8 79.5 99.0
GPT-Neo-2.7B 78.1 7.9 10.1 78.2 99.0
GPTJ-6B 78.1 7.5 8.1 82.0 99.0
GPT-Neox-20B 71.9 8.6 10.5 76.2 97.0
BLOOM 75.0 10.8 9.2 79.3 99.0
BLOOM-7B1 84.4 9.8 10.3 81.8 99.0
BLOOM-3B 78.1 8.0 79 78.2 100.0
BLOOM-1B7 84.4 6.8 9.2 76.3 99.0
BLOOM-1B1 84.4 7.5 11.2 75.8 100.0
OPT-175B 71.9 11.9 10.7 75.2 98.0
OPT-66B 71.9 8.8 9.2 75.9 99.0
OPT-30B 71.9 11.1 9.0 77.3 100.0
OPT-13B 75.0 8.2 9.6 79.5 99.0
OPT-6.7B 81.2 10.2 9.9 79.8 99.0
OPT-2.7B 75.0 7.8 9.6 74.1 98.0
OPT-1.3B 78.1 6.8 8.1 75.3 100.0

Table 8: The performance of the models on CNN/DM with various alternative-choices using avg. PMI as the scoring
function.

Model FIR FCMG FIB FactCC MFMA
TO-3B 40.6 33 11.6 90.3 100.0
TO 375 22 8.3 90.8 100.0
FLAN-T5-x1 40.6 1.7 9.0 91.4 100.0
FLAN-TS5-xx1 40.6 1.1 6.1 88.9 100.0

T5-LM-Adapt-x1 40.6 1.6 6.6 88.2 99.0
T5-LM-Adapt-xxl  31.2 1.2 53 89.8 100.0
GPT-Neo-1.3B 46.9 0.7 1.3 93.6 99.0

GPT2-XL 56.2 0.9 2.6 925 99.0
GPT-Neo-2.7B 50.0 0.8 1.8 92.9 97.0
GPTJ-6B 46.9 0.5 2.0 952 99.0
GPT-Neox-20B 40.6 0.2 1.8 94.2 98.0
BLOOM 40.6 0.3 1.8 93.8 99.0
BLOOM-7B1 50.0 1.0 2.8 95.9 100.0
BLOOM-3B 53.1 1.2 22 93.5 100.0
BLOOM-1B7 53.1 0.9 2.2 92.9 99.0
BLOOM-1B1 62.5 1.3 2.6 93.6 98.0
OPT-175B 40.6 0.6 2.2 91.4 99.0
OPT-66B 43.8 0.9 22 92.8 99.0
OPT-30B 43.8 0.8 2.0 94.1 99.0
OPT-13B 43.8 0.9 1.8 95.5 99.0
OPT-6.7B 56.2 0.9 2.6 94.6 98.0
OPT-2.7B 43.8 1.2 2.6 92.9 98.0
OPT-1.3B 46.9 1.2 2.0 925 98.0

Table 9: The performance of the models on CNN/DM with various alternative-choices using avg. LL as the scoring
function.
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Model FIR FCMG FIB FactCC MFMA

TO-3B 46.9 1.6 8.5 76.6 100.0
TO 28.1 1.2 6.1 759 96.0
FLAN-T5-xI 40.6 1.6 72 74.6 100.0
FLAN-TS5-xxl1 34.4 1.7 5.9 69.9 100.0

T5-LM-Adapt-x1 ~ 344 1.1 6.1 69.4 98.0
T5-LM-Adapt-xxl  34.4 0.9 53 68.4 99.0
GPT-Neo-1.3B 50.0 0.5 3.7 69.8 99.0

GPT2-XL 43.8 0.4 35 69.8 99.0
GPT-Neo-2.7B 46.9 0.4 2.6 66.9 99.0
GPTJ-6B 59.4 0.5 2.4 73.6 99.0
GPT-Neox-20B 56.2 0.4 24 69.0 99.0
BLOOM 40.6 0.5 2.4 69.7 99.0
BLOOM-7B1 56.2 0.5 29 73.9 100.0
BLOOM-3B 56.2 0.5 2.9 71.1 100.0
BLOOM-1B7 53.1 0.5 33 64.8 98.0
BLOOM-1B1 59.4 0.5 35 68.4 99.0
OPT-175B 53.1 0.7 2.8 70.4 98.0
OPT-66B 59.4 0.5 2.4 68.1 99.0
OPT-30B 53.1 0.6 3.1 71.9 99.0
OPT-13B 43.8 0.6 3.1 71.3 98.0
OPT-6.7B 53.1 0.5 24 72.6 99.0
OPT-2.7B 56.2 0.5 3.1 66.0 98.0
OPT-1.3B 53.1 0.5 3.7 69.3 99.0

Table 10: The performance of the models on CNN/DM with various alternative-choices using PMI as the scoring
function.

Model FIR FCMG FIB FactCC MFMA
TO-3B 71.9 45.1 52.7 98.7 97.0
TO 62.5 374 42.7 97.4 97.0
FLAN-T5-x1 75.0 42.8 48.6 98.4 98.0
FLAN-TS5-xx1 68.8 26.9 355 97.0 99.0

T5-LM-Adapt-x1 90.6 39.7 45.1 97.0 89.0
T5-LM-Adapt-xxl ~ 68.8 314 32.6 98.7 94.0
GPT-Neo-1.3B 78.1 243 20.1 97.4 99.0

GPT2-XL 81.2 26.9 26.5 96.6 97.0
GPT-Neo-2.7B 75.0 24.1 19.9 97.0 98.0
GPTJ-6B 78.1 21.0 18.6 97.9 99.0
GPT-Neox-20B 75.0 22.5 204 98.0 99.0
BLOOM 59.4 16.7 16.6 98.3 100.0
BLOOM-7B1 78.1 22.1 21.0 97.6 100.0
BLOOM-3B 78.1 252 20.6 98.0 98.0
BLOOM-1B7 81.2 234 20.1 97.0 98.0
BLOOM-1B1 84.4 26.2 232 974 98.0
OPT-175B 65.6 259 20.8 97.3 99.0
OPT-66B 68.8 26.7 23.6 97.9 99.0
OPT-30B 75.0 25.3 21.0 97.9 100.0
OPT-13B 68.8 28.1 243 97.9 100.0
OPT-6.7B 78.1 294 26.7 98.7 100.0
OPT-2.7B 71.9 29.5 25.8 98.3 100.0
OPT-1.3B 75.0 27.8 23.8 98.3 100.0

Table 11: The performance of the models on CNN/DM with various alternative-choices using LL as the scoring
function.
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Model BART-base  T5-base

TO-3B 934 74.9
TO 94.2 71.2
FLAN-T5-x1 94.8 74.3
FLAN-T5-xx1 95.0 77.9
T5-LM-Adapt-x1 94.2 79.3
T5-LM-Adapt-xx1 95.0 81.0
GPT-Neo-1.3B 93.6 79.1
GPT2-XL 91.7 72.9
GPT-Neo-2.7B 94.4 73.7
GPTJ-6B 94.2 78.8
GPT-Neox-20B 95.2 75.7
BLOOM 95.0 79.6
BLOOM-7B1 94.6 76.5
BLOOM-3B 94.4 77.1
BLOOM-1B7 95.0 77.4
BLOOM-1B1 93.2 75.7
OPT-175B 94.6 77.7
OPT-66B 95.2 77.4
OPT-30B 94.8 779
OPT-13B 95.0 76.0
OPT-6.7B 95.0 75.7
OPT-2.7B 94.0 75.7
OPT-1.3B 93.8 76.5

Table 12: The performance of the models on XSum with MFMA-generated alternative-choices using avg. PMI as
the scoring function.

Model BART-base T5-base
TO-3B 79.7 54.2
TO 83.0 61.2
FLAN-T5-x1 81.0 54.2
FLAN-TS5-xx1 82.8 58.7
T5-LM-Adapt-x1 71.2 514
T5-LM-Adapt-xxl 74.9 57.3
GPT-Neo-1.3B 65.6 51.1
GPT2-XL 66.5 53.6
GPT-Neo-2.7B 69.6 52.8
GPTJ-6B 76.8 59.2
GPT-Neox-20B 76.0 62.3
BLOOM 80.1 64.5
BLOOM-7B1 72.3 57.5
BLOOM-3B 71.4 54.7
BLOOM-1B7 69.4 51.1
BLOOM-1B1 67.9 49.7
OPT-175B 83.0 69.9
OPT-66B 81.8 67.0
OPT-30B 78.7 64.8
OPT-13B 79.5 65.6
OPT-6.7B 76.0 63.1
OPT-2.7B 74.1 62.0
OPT-1.3B 70.8 57.3

Table 13: The performance of the models on XSum with MFMA-generated alternative-choices using avg. LL as the
scoring function.
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Model BART-base  T5-base

TO-3B 93.6 71.5
TO 94.2 70.9
FLAN-T5-x1 93.2 70.4
FLAN-T5-xx1 94.4 74.9
T5-LM-Adapt-x1 91.9 74.0
T5-LM-Adapt-xx1 93.6 74.6
GPT-Neo-1.3B 92.3 73.7
GPT2-XL 91.1 66.8
GPT-Neo-2.7B 92.3 70.1
GPTJ-6B 93.2 73.5
GPT-Neox-20B 934 71.5
BLOOM 93.2 74.3
BLOOM-7B1 93.8 74.6
BLOOM-3B 94.0 74.6
BLOOM-1B7 934 71.2
BLOOM-1B1 91.7 70.7
OPT-175B 94.0 76.5
OPT-66B 934 73.7
OPT-30B 94.4 74.3
OPT-13B 94.2 70.9
OPT-6.7B 93.0 73.7
OPT-2.7B 93.6 72.6
OPT-1.3B 92.1 70.9

Table 14: The performance of the models on MFMA-generated alternative-choices using PMI as the scoring
function.

Model BART-base T5-base
TO-3B 85.9 58.4
TO 88.2 65.6
FLAN-T5-x1 87.4 59.5
FLAN-T5-xx1 89.6 64.0
T5-LM-Adapt-x1 80.3 60.6
T5-LM-Adapt-xxl1 84.7 63.4
GPT-Neo-1.3B 73.3 57.3
GPT2-XL 75.4 58.7
GPT-Neo-2.7B 75.8 57.5
GPTJ-6B 83.2 64.0
GPT-Neox-20B 83.2 67.0
BLOOM 86.3 69.6
BLOOM-7B1 78.3 64.0
BLOOM-3B 76.4 58.9
BLOOM-1B7 72.0 56.7
BLOOM-1B1 72.3 54.2
OPT-175B 88.6 73.5
OPT-66B 86.1 72.9
OPT-30B 86.1 68.7
OPT-13B 86.1 69.8
OPT-6.7B 84.3 65.1
OPT-2.7B 81.2 63.4
OPT-1.3B 78.5 63.7

Table 15: The performance of the models on XSum with MFMA-generated alternative-choices using LL as the
scoring function.
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Model Date Swap  Entity Swap  Negation Number Swap  Pronoun

TO-3B 76.4 86.6 94.5 76.5 78.7
TO 85.5 86.9 93.9 92.6 84.8
FLAN-T5-xI 72.7 86.0 96.1 82.4 72.6
FLAN-TS5-xxl1 76.4 85.5 972 85.3 67.1
T5-LM-Adapt-x1 67.3 75.9 89.9 60.3 65.2
T5-LM-Adapt-xx1 69.1 81.4 94.5 70.6 72.0
GPT-Neo-1.3B 52.7 66.3 75.5 42.6 72.0
GPT2-XL 60.0 69.2 82.1 41.2 63.4
GPT-Neo-2.7B 65.5 65.7 81.2 544 70.7
GPTJ-6B 60.0 70.6 85.1 54.4 63.4
GPT-Neox-20B 61.8 68.9 86.2 559 62.8
BLOOM 60.0 72.1 83.4 67.6 66.5
BLOOM-7B1 60.0 71.5 76.8 529 65.9
BLOOM-3B 50.9 69.5 75.7 574 69.5
BLOOM-1B7 54.5 65.1 70.5 60.3 73.8
BLOOM-1B1 582 63.1 65.9 54.4 66.5
OPT-175B 56.4 64.8 83.2 61.8 59.8
OPT-66B 582 63.7 84.0 60.3 57.3
OPT-30B 61.8 65.1 84.5 63.2 59.1
OPT-13B 65.5 68.6 81.6 63.2 55.5
OPT-6.7B 63.6 66.9 80.1 60.3 57.9
OPT-2.7B 60.0 65.1 82.7 51.5 59.1
OPT-1.3B 63.6 63.1 83.2 574 58.5

Table 16: The performance of the models on XSum with FactCC-generated alternative-choices using avg. PMI as
the scoring function.

Model Date Swap  Entity Swap  Negation Number Swap  Pronoun
TO-3B 96.4 96.5 98.7 94.1 99.4
TO 100.0 95.3 96.7 97.1 99.4
FLAN-T5-x1 100.0 96.2 98.7 92.6 99.4
FLAN-T5-xxl 98.2 95.9 99.1 98.5 99.4
T5-LM-Adapt-x1 92.7 91.0 92.8 89.7 100.0
T5-LM-Adapt-xx1 94.5 93.3 96.9 89.7 100.0
GPT-Neo-1.3B 96.4 89.5 97.6 88.2 99.4
GPT2-XL 96.4 91.3 97.8 86.8 100.0
GPT-Neo-2.7B 96.4 92.4 98.2 86.8 100.0
GPTJ-6B 98.2 93.9 98.9 88.2 100.0
GPT-Neox-20B 98.2 93.6 99.3 89.7 100.0
BLOOM 98.2 95.3 99.6 92.6 100.0
BLOOM-7B1 98.2 92.7 99.1 85.3 100.0
BLOOM-3B 92.7 91.6 99.1 85.3 100.0
BLOOM-1B7 92.7 89.8 98.5 83.8 99.4
BLOOM-1B1 90.9 86.9 96.7 85.3 99.4
OPT-175B 100.0 95.6 99.3 92.6 100.0
OPT-66B 98.2 94.8 99.6 89.7 100.0
OPT-30B 98.2 95.1 98.9 91.2 100.0
OPT-13B 98.2 94.8 97.8 88.2 100.0
OPT-6.7B 98.2 95.1 98.5 83.8 100.0
OPT-2.7B 98.2 93.9 98.9 86.8 100.0
OPT-1.3B 96.4 91.9 98.5 89.7 99.4

Table 17: The performance of the models on XSum with FactCC-generated alternative-choices using avg. LL as the
scoring function.
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Model Date Swap  Entity Swap  Negation Number Swap  Pronoun

TO-3B 83.6 83.7 84.2 80.9 80.5
TO 87.3 86.0 92.3 91.2 86.0
FLAN-T5-xI 80.0 78.8 87.1 83.8 74.4
FLAN-T5-xx1 78.2 79.9 86.2 86.8 69.5
T5-LM-Adapt-x1 70.9 70.9 69.8 64.7 70.1
T5-LM-Adapt-xx1 74.5 75.0 79.9 72.1 75.0
GPT-Neo-1.3B 63.6 63.4 57.1 38.2 72.0
GPT2-XL 65.5 64.0 68.5 42.6 63.4
GPT-Neo-2.7B 65.5 64.8 67.8 544 70.7
GPTJ-6B 69.1 66.9 69.4 529 63.4
GPT-Neox-20B 65.5 66.0 76.4 559 62.8
BLOOM 65.5 69.5 79.9 64.7 66.5
BLOOM-7B1 63.6 67.4 71.3 50.0 65.9
BLOOM-3B 582 65.4 67.4 529 69.5
BLOOM-1B7 54.5 63.7 63.2 529 73.8
BLOOM-1B1 582 59.9 56.2 50.0 66.5
OPT-175B 54.5 61.9 71.1 64.7 59.8
OPT-66B 67.3 58.7 73.3 60.3 57.3
OPT-30B 61.8 62.5 73.3 64.7 59.1
OPT-13B 67.3 64.5 69.4 63.2 55.5
OPT-6.7B 67.3 62.8 70.7 574 57.9
OPT-2.7B 63.6 65.4 722 50.0 59.1
OPT-1.3B 67.3 60.5 71.1 559 58.5

Table 18: The performance of the models on XSum with FactCC-generated alternative-choices using PMI as the
scoring function.

Model Date Swap  Entity Swap  Negation Number Swap  Pronoun
TO-3B 98.2 96.8 100.0 95.6 99.4
TO 98.2 95.6 99.1 98.5 98.8
FLAN-T5-x1 100.0 96.2 100.0 94.1 99.4
FLAN-T5-xxl 98.2 95.6 100.0 98.5 99.4
T5-LM-Adapt-x1 98.2 95.9 100.0 91.2 100.0
T5-LM-Adapt-xx1 98.2 96.8 100.0 89.7 100.0
GPT-Neo-1.3B 96.4 93.9 99.8 88.2 99.4
GPT2-XL 96.4 95.1 99.6 86.8 100.0
GPT-Neo-2.7B 96.4 94.8 99.1 88.2 100.0
GPTJ-6B 98.2 96.2 100.0 88.2 100.0
GPT-Neox-20B 98.2 95.9 99.8 89.7 100.0
BLOOM 100.0 97.1 99.8 91.2 100.0
BLOOM-7B1 98.2 95.3 100.0 86.8 100.0
BLOOM-3B 92.7 94.8 100.0 88.2 100.0
BLOOM-1B7 90.9 93.0 99.3 88.2 99.4
BLOOM-1B1 94.5 922 99.6 86.8 99.4
OPT-175B 100.0 96.2 99.8 92.6 100.0
OPT-66B 98.2 97.1 100.0 89.7 100.0
OPT-30B 98.2 96.5 99.6 91.2 100.0
OPT-13B 100.0 96.8 99.8 86.8 100.0
OPT-6.7B 100.0 96.2 99.6 83.8 100.0
OPT-2.7B 100.0 96.5 100.0 86.8 100.0
OPT-1.3B 98.2 94.8 100.0 88.2 99.4

Table 19: The performance of the models on XSum with FactCC-generated alternative-choices using LL as the
scoring function.
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Model Date Swap  Entity Swap  Negation Number Swap  Pronoun

TO-3B 81.8 78.3 91.6 75.0 80.0
TO 81.8 73.9 94.0 66.7 73.3
flan-t5-x1 78.2 75.4 92.8 77.8 66.7
flan-t5-xxl1 76.4 71.0 90.4 69.4 66.7
t5-lm-adapt-x1 80.0 81.2 84.3 75.0 71.1
t5-lm-adapt-xxl 80.0 71.0 86.7 75.0 66.7
GPT-Neo-1.3B 72.7 75.4 85.5 75.0 75.6
GPT2-XL 78.2 79.7 86.7 75.0 71.1
GPT-Neo-2.7B 74.5 73.9 85.5 80.6 75.6
GPTJ-6B 80.0 76.8 91.6 83.3 75.6
GPT-Neox-20B 67.3 72.5 88.0 77.8 71.1
BLOOM 80.0 754 85.5 77.8 75.6
BLOOM-7B1 81.8 78.3 84.3 80.6 84.4
BLOOM-3B 80.0 79.7 75.9 80.6 75.6
BLOOM-1B7 78.2 73.9 77.1 77.8 75.6
BLOOM-1B1 80.0 71.0 78.3 77.8 73.3
OPT-175B 70.9 72.5 84.3 75.0 68.9
OPT-66B 69.1 72.5 83.1 75.0 77.8
OPT-30B 74.5 68.1 88.0 77.8 77.8
OPT-13B 80.0 78.3 84.3 72.2 77.8
OPT-6.7B 76.4 84.1 88.0 66.7 71.1
OPT-2.7B 65.5 76.8 81.9 69.4 68.9
OPT-1.3B 72.7 75.4 79.5 72.2 73.3

Table 20: The performance of the models on CNN/DM with FactCC-generated alternative-choices using avg. PMI
as the scoring function.

Model Date Swap  Entity Swap Negation Number Swap  Pronoun
TO-3B 92.7 89.9 91.6 86.1 88.9
TO 92.7 92.8 94.0 80.6 86.7
flan-t5-x1 94.5 92.8 91.6 86.1 88.9
flan-t5-xxl1 92.7 88.4 94.0 80.6 82.2
t5-Im-adapt-x1 89.1 88.4 89.2 86.1 86.7
t5-lm-adapt-xx1 90.9 92.8 88.0 88.9 86.7
GPT-Neo-1.3B 87.3 97.1 97.6 86.1 93.3
GPT2-XL 87.3 94.2 95.2 88.9 93.3
GPT-Neo-2.7B 89.1 95.7 94.0 91.7 91.1
GPTJ-6B 92.7 95.7 97.6 91.7 95.6
GPT-Neox-20B 90.9 95.7 96.4 91.7 93.3
BLOOM 92.7 94.2 95.2 88.9 95.6
BLOOM-7B1 92.7 97.1 98.8 91.7 95.6
BLOOM-3B 94.5 95.7 95.2 83.3 93.3
BLOOM-1B7 92.7 95.7 94.0 86.1 91.1
BLOOM-1B1 90.9 97.1 95.2 86.1 93.3
OPT-175B 89.1 92.8 94.0 91.7 86.7
OPT-66B 87.3 94.2 95.2 91.7 93.3
OPT-30B 89.1 94.2 97.6 94.4 93.3
OPT-13B 94.5 95.7 96.4 94.4 95.6
OPT-6.7B 92.7 97.1 95.2 91.7 93.3
OPT-2.7B 89.1 95.7 95.2 88.9 91.1
OPT-1.3B 89.1 94.2 95.2 86.1 93.3

Table 21: The performance of the models on CNN/DM with FactCC-generated alternative-choices using avg. LL as
the scoring function.
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Model Date Swap  Entity Swap  Negation Number Swap  Pronoun

TO-3B 74.5 73.9 83.1 72.2 75.6
TO 78.2 72.5 88.0 63.9 66.7
flan-t5-xl1 76.4 73.9 79.5 75.0 64.4
flan-t5-xx1 74.5 65.2 80.7 66.7 55.6
t5-lm-adapt-x1 69.1 75.4 67.5 66.7 64.4
t5-Im-adapt-xx1 72.7 68.1 72.3 69.4 55.6
GPT-Neo-1.3B 63.6 76.8 68.7 63.9 71.1
GPT2-XL 74.5 75.4 67.5 66.7 60.0
GPT-Neo-2.7B 63.6 71.0 65.1 63.9 68.9
GPTJ-6B 69.1 72.5 74.7 86.1 68.9
GPT-Neox-20B 61.8 68.1 74.7 77.8 62.2
BLOOM 69.1 68.1 74.7 75.0 60.0
BLOOM-7B1 74.5 73.9 74.7 69.4 75.6
BLOOM-3B 74.5 76.8 65.1 722 66.7
BLOOM-1B7 65.5 69.6 57.8 66.7 66.7
BLOOM-1B1 70.9 68.1 67.5 66.7 68.9
OPT-175B 65.5 68.1 75.9 77.8 64.4
OPT-66B 61.8 68.1 71.1 69.4 68.9
OPT-30B 72.7 66.7 78.3 722 68.9
OPT-13B 74.5 73.9 71.1 69.4 64.4
OPT-6.7B 69.1 79.7 78.3 63.9 60.0
OPT-2.7B 65.5 73.9 63.9 58.3 62.2
OPT-1.3B 65.5 72.5 69.9 69.4 66.7

Table 22: The performance of the models on CNN/DM with FactCC-generated alternative-choices using PMI as the
scoring function.

Model Date Swap  Entity Swap Negation Number Swap  Pronoun
TO-3B 96.4 100.0 100.0 94.4 100.0
TO 96.4 100.0 100.0 88.9 95.6
flan-t5-x1 98.2 100.0 100.0 91.7 97.8
flan-t5-xxl1 96.4 98.6 98.8 88.9 97.8
t5-Im-adapt-x1 98.2 98.6 97.6 88.9 97.8
t5-lm-adapt-xx1 96.4 100.0 100.0 94.4 100.0
GPT-Neo-1.3B 90.9 100.0 100.0 91.7 100.0
GPT2-XL 92.7 97.1 98.8 94.4 97.8
GPT-Neo-2.7B 90.9 98.6 100.0 91.7 100.0
GPTJ-6B 94.5 98.6 100.0 94.4 100.0
GPT-Neox-20B 94.5 100.0 100.0 91.7 100.0
BLOOM 96.4 98.6 100.0 94.4 100.0
BLOOM-7B1 94.5 98.6 98.8 94.4 100.0
BLOOM-3B 96.4 100.0 100.0 88.9 100.0
BLOOM-1B7 94.5 98.6 98.8 94.4 95.6
BLOOM-1B1 94.5 100.0 98.8 91.7 97.8
OPT-175B 94.5 98.6 100.0 94.4 95.6
OPT-66B 94.5 98.6 100.0 94.4 100.0
OPT-30B 94.5 98.6 100.0 94.4 100.0
OPT-13B 94.5 98.6 100.0 94.4 100.0
OPT-6.7B 96.4 100.0 100.0 94.4 100.0
OPT-2.7B 94.5 100.0 100.0 94.4 100.0
OPT-1.3B 94.5 100.0 100.0 94.4 100.0

Table 23: The performance of the models on CNN/DM with FactCC-generated alternative-choices using LL as the
scoring function.
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Model BART- BART- BLOOM- distil- distil- PEGASUS  T5-

base large 560m BART PEGASUS large
TO-3B 62.2 33.7 90.5 322 17.5 25.8 94.1
TO 64.9 18.6 85.7 23.3 14.3 29.0 76.5
FLAN-T5-xI 64.9 384 90.5 389 254 38.7 82.4
FLAN-T5-xx1 70.3 46.5 90.5 42.2 28.6 35.5 82.4
T5-LM-Adapt-xI 56.8 453 76.2 44.4 31.7 35.5 82.4
T5-LM-Adapt-xx1 59.5 45.3 71.4 45.6 349 38.7 76.5
GPT-Neo-1.3B 59.5 384 66.7 533 28.6 22.6 76.5
GPT2-XL 62.2 40.7 61.9 50.0 27.0 33.9 529
GPT-Neo-2.7B 56.8 41.9 57.1 522 28.6 339 76.5
GPTJ-6B 64.9 40.7 71.4 61.1 38.1 29.0 64.7
GPT-Neox-20B 73.0 36.0 61.9 58.9 333 323 64.7
BLOOM 56.8 41.9 71.4 51.1 27.0 25.8 70.6
BLOOM-7B1 56.8 349 524 50.0 30.2 274 70.6
BLOOM-3B 64.9 30.2 57.1 50.0 23.8 32.3 64.7
BLOOM-1B7 70.3 33.7 524 45.6 222 29.0 70.6
BLOOM-1B1 62.2 32.6 57.1 43.3 222 30.6 58.8
OPT-175B 59.5 41.9 66.7 522 349 25.8 76.5
OPT-66B 75.7 38.4 52.4 57.8 31.7 22.6 70.6
OPT-30B 62.2 39.5 524 55.6 38.1 274 70.6
OPT-13B 64.9 44.2 57.1 54.4 38.1 22.6 70.6
OPT-6.7B 73.0 384 524 58.9 349 17.7 70.6
OPT-2.7B 64.9 37.2 52.4 54.4 38.1 29.0 70.6
OPT-1.3B 62.2 40.7 61.9 533 28.6 274 58.8

Table 24: The performance of the models on XSum with factually consistent model-generated alternative-choices
using avg. PMI as the scoring function.

Model BART- BART- BLOOM- distil- distil- PEGASUS  T5-

base large 560m BART PEGASUS large
T0-3B 27.0 23 95.2 33 7.9 32 52.9
TO 51.4 9.3 95.2 6.7 4.8 8.1 58.8
FLAN-T5-x1 27.0 23 95.2 22 79 8.1 529
FLAN-T5-xxl 37.8 5.8 95.2 4.4 4.8 4.8 52.9
T5-LM-Adapt-x1 324 7.0 38.1 11.1 17.5 12.9 29.4
T5-LM-Adapt-xxI ~ 40.5 5.8 47.6 7.8 15.9 16.1 41.2
GPT-Neo-1.3B 40.5 7.0 429 16.7 6.3 11.3 412
GPT2-XL 35.1 5.8 47.6 13.3 14.3 14.5 47.1
GPT-Neo-2.7B 35.1 10.5 38.1 18.9 9.5 12.9 412
GPTJ-6B 51.4 9.3 52.4 17.8 9.5 8.1 47.1
GPT-Neox-20B 51.4 5.8 52.4 21.1 9.5 8.1 47.1
BLOOM 51.4 10.5 66.7 20.0 9.5 12.9 58.8
BLOOM-7B1 432 5.8 57.1 20.0 15.9 9.7 47.1
BLOOM-3B 35.1 9.3 52.4 21.1 9.5 14.5 353
BLOOM-1B7 32.4 10.5 47.6 222 15.9 9.7 353
BLOOM-1B1 27.0 11.6 47.6 222 12.7 16.1 23.5
OPT-175B 56.8 7.0 66.7 20.0 11.1 9.7 47.1
OPT-66B 54.1 5.8 66.7 20.0 12.7 9.7 47.1
OPT-30B 48.6 7.0 61.9 18.9 9.5 9.7 52.9
OPT-13B 51.4 5.8 61.9 17.8 79 9.7 58.8
OPT-6.7B 51.4 4.7 47.6 15.6 12.7 12.9 58.8
OPT-2.7B 459 4.7 47.6 18.9 12.7 11.3 41.2
OPT-1.3B 432 5.8 52.4 17.8 12.7 9.7 412

Table 25: The performance of the models on XSum with factually consistent model-generated alternative-choices
using avg. LL as the scoring function.
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Model BART- BART- BLOOM- distil- distil- PEGASUS  T5-

base large 560m BART PEGASUS large
TO-3B 64.9 279 66.7 344 38.1 45.2 76.5
TO 64.9 18.6 81.0 222 222 323 824
FLAN-T5-xI 59.5 39.5 66.7 44.4 47.6 48.4 58.8
FLAN-T5-xx1 59.5 40.7 57.1 40.0 49.2 46.8 64.7
T5-LM-Adapt-xI 56.8 40.7 38.1 48.9 50.8 51.6 64.7
T5-LM-Adapt-xx1 59.5 41.9 429 43.3 47.6 51.6 58.8
GPT-Neo-1.3B 67.6 36.0 4.8 54.4 42.9 35.5 58.8
GPT2-XL 67.6 38.4 28.6 53.3 49.2 46.8 529
GPT-Neo-2.7B 64.9 372 9.5 56.7 46.0 43.5 58.8
GPTJ-6B 70.3 40.7 9.5 62.2 55.6 48.4 58.8
GPT-Neox-20B 73.0 314 19.0 55.6 46.0 45.2 58.8
BLOOM 67.6 453 14.3 444 413 40.3 70.6
BLOOM-7B1 62.2 40.7 9.5 533 42.9 40.3 64.7
BLOOM-3B 73.0 34.9 19.0 54.4 36.5 48.4 64.7
BLOOM-1B7 62.2 372 14.3 433 39.7 48.4 529
BLOOM-1B1 62.2 32.6 9.5 46.7 38.1 46.8 529
OPT-175B 67.6 40.7 9.5 54.4 49.2 38.7 70.6
OPT-66B 75.7 38.4 4.8 54.4 52.4 37.1 70.6
OPT-30B 67.6 43.0 14.3 522 46.0 38.7 58.8
OPT-13B 64.9 43.0 9.5 53.3 50.8 41.9 64.7
OPT-6.7B 73.0 384 4.8 58.9 524 37.1 529
OPT-2.7B 73.0 40.7 9.5 57.8 524 40.3 58.8
OPT-1.3B 64.9 43.0 4.8 522 44.4 43.5 471

Table 26: The performance of the models on XSum with factually consistent model-generated alternative-choices
using PMI as the scoring function.

Model BART- BART- BLOOM- distil- distil- PEGASUS  T5-

base large 560m BART PEGASUS large
T0-3B 21.6 4.7 100.0 5.6 6.3 4.8 47.1
TO 48.6 9.3 100.0 10.0 6.3 9.7 64.7
FLAN-T5-x1 27.0 7.0 100.0 4.4 6.3 11.3 52.9
FLAN-T5-xxl 32.4 7.0 100.0 4.4 32 12.9 47.1
T5-LM-Adapt-x1 324 12.8 95.2 15.6 14.3 11.3 47.1
T5-LM-Adapt-xx1 ~ 32.4 10.5 90.5 11.1 11.1 11.3 58.8
GPT-Neo-1.3B 37.8 9.3 85.7 23.3 6.3 11.3 353
GPT2-XL 324 8.1 85.7 16.7 9.5 14.5 52.9
GPT-Neo-2.7B 37.8 9.3 85.7 23.3 79 11.3 47.1
GPTJ-6B 35.1 7.0 95.2 222 11.1 8.1 52.9
GPT-Neox-20B 51.4 10.5 95.2 26.7 9.5 9.7 58.8
BLOOM 40.5 12.8 95.2 17.8 79 9.7 64.7
BLOOM-7B1 40.5 9.3 90.5 23.3 9.5 11.3 52.9
BLOOM-3B 37.8 10.5 90.5 233 11.1 12.9 412
BLOOM-1B7 40.5 12.8 85.7 25.6 11.1 12.9 412
BLOOM-1B1 324 16.3 81.0 233 9.5 12.9 47.1
OPT-175B 51.4 9.3 95.2 24.4 6.3 12.9 64.7
OPT-66B 432 11.6 95.2 21.1 79 11.3 64.7
OPT-30B 459 10.5 95.2 23.3 4.8 12.9 64.7
OPT-13B 48.6 9.3 95.2 20.0 6.3 9.7 64.7
OPT-6.7B 459 9.3 95.2 23.3 9.5 11.3 64.7
OPT-2.7B 37.8 12.8 95.2 20.0 79 11.3 58.8
OPT-1.3B 37.8 12.8 95.2 20.0 4.8 9.7 47.1

Table 27: The performance of the models on XSum with factually consistent model-generated alternative-choices
using LL as the scoring function.

5246



Model B BL HG L MS MI NS OD O PB PT R RE T TS
TO-3B 14 39 1.3 21 51 45 237 393 87 34 00 232 26 47 3.7
TO 2.7 39 00 11 25 6.1 105 214 43 11 14 87 39 47 T4
FLAN-T5-x1 1.4 39 1.3 00 38 30 250 286 00 23 14 232 53 62 56
FLAN-T5-xxl 2.7 2.6 1.3 1.1 25 30 145 357 00 00 14 159 6.6 47 19
T5-LM-Adapt-x1 54 2.6 00 0.0 0.0 30 184 357 00 00 00 203 26 31 19
T5-LM-Adapt-xxl 5.4 52 26 1.1 51 6.1 145 286 00 23 14 174 53 62 19
GPT-Neo-1.3B 1.4 1.3 00 1.1 3.8 45 355 321 22 1.1 27 203 26 31 00
GPT2-XL 1.4 2.6 26 1.1 25 6.1 447 143 00 23 27 406 26 00 19
GPT-Neo-2.7B 4.1 39 38 1.1 63 30 316 286 22 23 27 246 6.6 62 3.7
GPTJ-6B 4.1 52 51 21 51 6.1 250 143 22 34 68 203 6.6 62 3.7
GPT-Neox-20B 54 6.5 64 21 89 76 237 143 43 57 68 232 79 6.2 3.7
BLOOM 5.4 52 77 53 114 91 289 179 43 68 82 261 145 109 37
BLOOM-7B1 4.1 5.2 64 53 5.1 91 276 250 65 57 82 246 79 109 56
BLOOM-3B 54 52 38 32 38 45 289 286 22 45 41 203 53 7.8 3.7
BLOOM-1B7 2.7 2.6 26 11 38 30 276 321 22 23 27 232 53 47 19
BLOOM-1B1 2.7 2.6 1.3 00 5.1 45 316 321 22 1.1 41 275 79 47 0.0
OPT-175B 108 11.7 115 53 101 106 303 143 43 80 96 203 132 109 74
OPT-66B 9.5 9.1 90 32 89 6.1 197 107 43 57 82 159 92 78 5.6
OPT-30B 149 104 90 42 101 106 250 107 65 91 96 174 118 94 74
OPT-13B 6.8 6.5 51 21 63 76 237 143 22 45 82 203 79 7.8 3.7
OPT-6.7B 8.1 7.8 90 42 176 91 250 179 65 68 82 217 105 94 56
OPT-2.7B 6.8 52 51 1.1 38 6.1 263 179 43 45 55 203 6.6 78 19
OPT-1.3B 9.5 5.2 38 1.1 38 6.1 237 179 22 23 41 159 53 62 19

Table 28: The performance of the models on CNN/DM with factually consistent model-generated alternative-choices
using avg. PMI as the scoring function. The models are BanditSumm (B), BERT_LSTM_PN_RL (BL), Heter-Graph
(HG), Lead3 (L), MatchSumm (MS), MI-unsup (MI), NeuSumm (NS), Oracle (discourse) (OD), Oracle (O), Pacsum
(bert) (PB), Pacsum (tfidf) (PT), Refresh (R), RNN_Ext_RL (RE), Textrank (T), Textrank (st) (TS)

Model B BL HG L MS MI NS O O PB PT R RE T TS
TO-3B 14 00 00 11 13 15 132 143 22 00 14 87 53 31 37
TO 14 00 00 11 00 30 39 107 43 00 14 14 66 31 37
FLAN-T5-xI 1.4 00 00 00 00 00 53 00 43 00 00 58 00 47 37
FLAN-T5-xx1 00 00 00 00 00 15 13 36 22 00 00 14 00 31 37
T5-LM-Adapt-x1 00 00 00 00 00 00 53 71 22 00 14 58 26 31 19
T5-LM-Adapt-xx]I 14 00 00 00 00 15 13 36 22 00 14 14 53 31 00
GPT-Neo-1.3B 00 00 00 00 00 00 26 00 22 00 00 43 00 16 0.0
GPT2-XL 00 00 00 00 00 15 39 00 22 00 00 43 00 16 0.0
GPT-Neo-2.7B 00 00 00 00 00 00 39 00 22 00 00 43 00 16 0.0
GPTJ-6B 00 00 00 00 00 00 26 00 22 00 00 14 00 16 0.0
GPT-Neox-20B 00 00 00 00 00 00 0.0 00 22 00 00 00 00 16 0.0
BLOOM 00 00 00 00 00 00 13 00 22 00 00 00 00 16 0.0
BLOOM-7B1 00 00 00 00 00 15 39 00 22 00 00 43 00 16 19
BLOOM-3B 00 00 00 00 00 15 53 00 22 00 00 58 00 16 19
BLOOM-1B7 14 00 00 00 00 15 26 36 22 00 00 43 00 00 00
BLOOM-1B1 27 13 00 1.1 00 15 26 00 22 00 00 58 00 16 19
OPT-175B 14 00 00 00 00 15 13 00 22 00 00 14 00 16 0.0
OPT-66B 14 00 00 00 00 15 39 00 22 00 00 29 00 16 0.0
OPT-30B 00 00 00 00 00 15 39 00 22 00 00 29 00 16 0.0
OPT-13B 00 00 00 00 00 15 53 00 22 00 00 29 00 16 0.0
OPT-6.7B 00 00 00 00 00 15 66 00 22 00 00 14 00 16 0.0
OPT-2.7B 14 00 00 00 00 15 6.6 00 22 00 00 43 00 16 0.0
OPT-1.3B 14 00 00 00 00 15 66 00 22 00 00 43 00 16 0.0

Table 29: The performance of the models on CNN/DM with factually consistent model-generated alternative-choices
using avg. LL as the scoring function. The models are BanditSumm (B), BERT_LSTM_PN_RL (BL), Heter-Graph
(HG), Lead3 (L), MatchSumm (MS), MI-unsup (MI), NeuSumm (NS), Oracle (discourse) (OD), Oracle (O), Pacsum
(bert) (PB), Pacsum (tfidf) (PT), Refresh (R), RNN_Ext_RL (RE), Textrank (T), Textrank (st) (TS)

5247



Model B BL HG L MS MI NS OD O PB PT R RE T TS

TO-3B 14 13 00 00 00 00 13 214 65 00 00 14 00 47 19
TO 14 00 00 00 00 00 00 143 65 00 00 00 00 47 19
FLAN-T5-xI 00 13 00 00 00 00 13 107 43 00 00 00 00 47 19
FLAN-T5-xx1 14 00 00 00 00 00 00 143 43 00 00 00 00 31 19

T5-LM-Adapt-x1 00 00 00 00 00 00 00 179 43 00 00 00 00 47 19
T5-LM-Adapt-xx]I 0.0 00 00 00 00 00 00 143 43 00 00 00 00 31 19
GPT-Neo-1.3B 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19

GPT2-XL 00 00 00 00 00 00 00 36 22 00 00 00 00 16 19
GPT-Neo-2.7B 00 00 00 00 00 00 00 36 43 00 00 00 00 00 19
GPTJ-6B 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19
GPT-Neox-20B 00 00 00 00 00 00 00 36 43 00 00 00 00 00 19
BLOOM 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19
BLOOM-7B1 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19
BLOOM-3B 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19
BLOOM-1B7 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19
BLOOM-1B1 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19
OPT-175B 14 00 00 00 00 00 00 36 43 00 00 00 00 31 19
OPT-66B 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19
OPT-30B 00 00 00 00 00 00 00 36 43 00 00 00 00 31 19
OPT-13B 00 00 00 00 00 00 00 36 43 00 00 00 00 31 19
OPT-6.7B 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19
OPT-2.7B 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19
OPT-1.3B 00 00 00 00 00 00 00 36 43 00 00 00 00 16 19

Table 30: The performance of the models on CNN/DM with factually consistent model-generated alternative-choices
using PMI as the scoring function. The models are BanditSumm (B), BERT_LSTM_PN_RL (BL), Heter-Graph
(HG), Lead3 (L), MatchSumm (MS), MI-unsup (MI), NeuSumm (NS), Oracle (discourse) (OD), Oracle (O), Pacsum
(bert) (PB), Pacsum (tfidf) (PT), Refresh (R), RNN_Ext_RL (RE), Textrank (T), Textrank (st) (TS)

Model B BL HG L MS MI NS OD ) PB PT R RE T TS
T0-3B 31.1 247 423 253 443 47.0 98.7 75.0 21.7 30.7 35.6 88.4 64.5 312 29.6
TO 35.1 20.8 26.9 13.7 26.6 455 85.5 57.1 239 239 28.8 76.8 47.4 328 352
FLAN-T5-x1 31.1 26.0 372 21.1 329 48.5 94.7 53.6 19.6 30.7 28.8 91.3 56.6 359 333
FLAN-T5-xx1 20.3 11.7 16.7 8.4 15.2 36.4 76.3 46.4 13.0 12,5 17.8 55.1 382 15.6 20.4

T5-LM-Adapt-x1 52.7 41.6 28.2 12.6 22.8 60.6 94.7 57.1 17.4 21.6 23.3 82.6 48.7 20.3 222
T5-LM-Adapt-xx1 473 36.4 14.1 6.3 13.9 57.6 82.9 32.1 10.9 11.4 15.1 68.1 40.8 15.6 222

GPT-Neo-1.3B 31.1 24.7 9.0 2.1 8.9 36.4 85.5 25.0 2.2 9.1 17.8 63.8 19.7 14.1 16.7
GPT2-XL 35.1 27.3 7.7 7.4 6.3 50.0 89.5 25.0 0.0 11.4 16.4 69.6 27.6 12,5 16.7
GPT-Neo-2.7B 35.1 28.6 5.1 1.1 7.6 439 85.5 21.4 0.0 8.0 15.1 55.1 26.3 10.9 16.7
GPTIJ-6B 27.0 23.4 9.0 1.1 8.9 39.4 73.7 17.9 22 6.8 12.3 44.9 21.1 12,5 14.8
GPT-Neox-20B 28.4 24.7 10.3 4.2 10.1 31.8 72.4 21.4 4.3 9.1 13.7 449 27.6 18.8 16.7
BLOOM 18.9 14.3 7.7 0.0 5.1 27.3 579 21.4 0.0 45 12.3 36.2 25.0 9.4 14.8
BLOOM-7B1 31.1 22.1 6.4 32 6.3 394 80.3 214 0.0 9.1 13.7 46.4 23.7 12,5 14.8
BLOOM-3B 419 31.2 9.0 32 10.1 455 80.3 25.0 0.0 8.0 13.7 60.9 237 10.9 14.8
BLOOM-1B7 36.5 28.6 7.7 2.1 7.6 439 829 28.6 22 45 15.1 58.0 21.1 6.2 9.3
BLOOM-1B1 36.5 28.6 7.7 53 10.1 47.0 84.2 25.0 22 9.1 16.4 65.2 26.3 14.1 14.8
OPT-175B 459 338 115 1.1 8.9 485 78.9 25.0 22 10.2 123 55.1 25.0 14.1 16.7
OPT-66B 44.6 33.8 10.3 42 6.3 48.5 82.9 21.4 43 125 16.4 49.3 289 172 16.7
OPT-30B 44.6 312 7.7 32 6.3 47.0 81.6 21.4 22 9.1 15.1 56.5 224 14.1 16.7
OPT-13B 47.3 33.8 10.3 2.1 8.9 48.5 86.8 25.0 8.7 11.4 16.4 59.4 289 172 18.5
OPT-6.7B 44.6 33.8 11.5 42 8.9 54.5 89.5 28.6 6.5 12,5 19.2 623 27.6 203 20.4
OPT-2.7B 45.9 36.4 14.1 32 8.9 50.0 86.8 21.4 6.5 14.8 19.2 63.8 31.6 17.2 20.4
OPT-1.3B 459 40.3 10.3 32 8.9 50.0 85.5 17.9 2.2 12.5 16.4 63.8 21.1 15.6 18.5

Table 31: The performance of the models on CNN/DM with factually consistent model-generated alternative-choices
using LL as the scoring function. The models are BanditSumm (B), BERT_LSTM_PN_RL (BL), Heter-Graph (HG),
Lead3 (L), MatchSumm (MS), MI-unsup (MI), NeuSumm (NS), Oracle (discourse) (OD), Oracle (O), Pacsum
(bert) (PB), Pacsum (tfidf) (PT), Refresh (R), RNN_Ext_RL (RE), Textrank (T), Textrank (st) (TS)
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Model BART- BART- BLOOM- distil- distil- PEGASUS  T5-

base large 560m BART PEGASUS large
TO-3B 61.1 37.9 96.0 35.1 38.7 30.6 94.0
TO 55.7 19.6 91.0 20.2 19.7 15.1 92.5
FLAN-T5-xI 64.1 40.8 98.7 383 40.7 34.5 92.8
FLAN-T5-xx1 67.8 47.6 99.0 42.9 44.6 41.8 93.2
T5-LM-Adapt-xI 66.5 60.9 90.8 57.1 61.1 534 86.3
T5-LM-Adapt-xx1 70.6 61.6 95.4 56.3 59.0 53.0 87.0
GPT-Neo-1.3B 71.3 67.9 79.9 72.4 64.8 66.2 80.3
GPT2-XL 67.8 63.5 84.7 64.4 61.6 60.3 78.9
GPT-Neo-2.7B 71.9 65.9 87.0 67.3 65.4 64.8 81.2
GPTJ-6B 78.6 69.3 91.8 71.5 64.5 64.8 84.1
GPT-Neox-20B 76.5 64.7 89.3 70.5 64.1 61.9 83.6
BLOOM 72.1 65.0 92.7 65.1 62.9 59.6 85.1
BLOOM-7B1 71.5 64.7 86.4 66.8 63.6 63.7 83.0
BLOOM-3B 70.8 68.8 85.7 68.5 65.0 66.2 80.7
BLOOM-1B7 68.3 67.1 82.6 68.5 65.0 61.6 78.3
BLOOM-1B1 66.5 63.5 80.7 66.1 65.4 63.2 73.9
OPT-175B 78.8 66.4 91.0 67.8 65.2 63.2 89.4
OPT-66B 76.7 66.7 88.5 67.6 64.5 61.6 88.0
OPT-30B 78.4 65.0 89.3 68.5 63.2 61.0 87.2
OPT-13B 76.5 63.0 89.1 65.4 64.1 61.2 86.5
OPT-6.7B 73.9 60.6 86.2 65.1 63.6 60.0 85.9
OPT-2.7B 72.1 62.8 84.9 67.1 63.4 62.1 83.2
OPT-1.3B 71.3 63.3 81.6 62.7 61.6 62.8 81.2

Table 32: The performance of the models on XSum with FIB alternative-choices using avg. PMI as the scoring
function.

Model BART- BART- BLOOM- distil- distil- PEGASUS  T5-

base large 560m BART PEGASUS large
T0-3B 19.7 1.2 87.4 1.2 2.1 3.0 76.2
TO 33.9 53 80.3 5.4 5.7 32 84.1
FLAN-T5-x1 19.2 2.4 85.7 4.9 3.4 3.4 74.5
FLAN-T5-xxl 26.3 53 86.8 5.6 5.5 3.7 78.5
T5-LM-Adapt-x1 19.7 9.7 40.9 12.4 11.7 15.8 51.1
T5-LM-Adapt-xx1 ~ 23.8 8.9 51.2 12.0 10.1 9.6 61.3
GPT-Neo-1.3B 26.3 10.9 314 21.2 14.2 13.7 50.5
GPT2-XL 28.3 9.7 39.6 16.1 13.3 11.2 57.8
GPT-Neo-2.7B 32.0 10.6 36.5 20.5 12.8 12.1 58.0
GPTJ-6B 352 7.0 432 18.5 9.8 10.5 66.7
GPT-Neox-20B 39.1 8.5 46.3 20.0 9.6 10.5 71.4
BLOOM 42.8 8.5 50.9 20.7 9.8 10.7 72.5
BLOOM-7B1 32.6 10.9 43.0 20.7 13.3 13.9 60.9
BLOOM-3B 30.5 13.8 39.8 19.8 18.3 18.7 51.3
BLOOM-1B7 27.0 14.7 36.9 22.9 19.2 21.5 44.1
BLOOM-1B1 24.8 17.1 352 24.9 21.7 24.7 40.6
OPT-175B 48.8 8.7 56.0 20.7 9.8 7.8 78.9
OPT-66B 443 8.2 50.7 19.8 9.2 7.3 71.6
OPT-30B 45.6 7.7 50.7 20.7 9.6 8.4 76.6
OPT-13B 41.0 8.7 47.8 18.8 9.4 8.7 73.7
OPT-6.7B 37.1 8.0 434 17.8 8.2 8.7 69.6
OPT-2.7B 33.7 8.7 39.6 21.0 10.3 10.5 67.7
OPT-1.3B 29.8 8.5 37.7 17.6 11.2 10.7 62.3

Table 33: The performance of the models on XSum with FIB alternative-choices using avg. LL as the scoring
function.
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Model BART- BART- BLOOM- distil- distil- PEGASUS  T5-

base large 560m BART PEGASUS large
T0-3B 48.8 26.1 83.2 27.3 29.7 27.4 91.1
TO 53.8 16.4 91.2 19.3 18.1 16.0 91.9
FLAN-T5-x1 46.2 25.8 82.6 30.2 31.1 29.0 88.6
FLAN-T5-xxl 54.6 30.9 85.7 34.4 36.6 33.6 89.9
T5-LM-Adapt-x1 59.2 452 42.6 483 52.6 48.9 82.8
T5-LM-Adapt-xxl 60.5 42.5 54.7 483 48.7 43.6 84.5
GPT-Neo-1.3B 64.8 56.8 21.0 65.9 59.5 58.4 75.4
GPT2-XL 61.8 49.0 333 57.1 53.8 54.1 74.9
GPT-Neo-2.7B 63.9 51.7 239 60.2 55.1 55.7 76.2
GPTJ-6B 70.0 49.0 28.9 66.6 54.7 54.1 80.7
GPT-Neox-20B 68.5 51.0 29.4 65.6 55.8 53.4 82.6
BLOOM 65.2 51.0 45.1 58.5 55.8 54.3 83.0
BLOOM-7B1 64.8 53.4 30.6 61.2 56.8 56.6 79.1
BLOOM-3B 67.6 56.0 34.0 66.1 58.1 60.0 78.1
BLOOM-1B7 62.9 53.6 25.2 62.9 59.3 59.1 74.5
BLOOM-1B1 59.2 50.2 294 61.7 55.8 57.3 71.2
OPT-175B 71.9 50.0 39.8 61.5 55.8 53.7 85.7
OPT-66B 68.0 53.6 28.5 58.8 54.0 54.3 84.3
OPT-30B 69.5 48.3 33.8 59.8 533 54.1 83.2
OPT-13B 66.7 48.8 31.2 58.0 54.5 534 82.2
OPT-6.7B 64.8 47.8 26.2 59.8 51.0 55.9 82.4
OPT-2.7B 63.5 50.7 24.5 59.3 53.1 553 81.0
OPT-1.3B 63.5 50.0 22.6 57.1 51.9 55.7 77.0

Table 34: The performance of the models on XSum with FIB alternative-choices using PMI as the scoring function.

Model BART- BART- BLOOM- distil- distil- PEGASUS  T5-

base large 560m BART PEGASUS large
T0-3B 28.5 4.8 98.5 49 6.2 59 78.3
TO 42.8 10.4 98.7 8.3 7.3 59 84.9
FLAN-T5-x1 30.5 8.9 98.7 6.8 7.8 8.7 74.5
FLAN-T5-xx1 40.0 12.1 99.2 10.2 11.2 9.1 79.1
T5-LM-Adapt-xl1 39.1 29.7 97.3 26.3 26.1 27.6 58.2
T5-LM-Adapt-xxl ~ 42.1 242 97.7 232 20.1 21.2 65.8
GPT-Neo-1.3B 443 31.2 96.2 36.3 28.6 27.6 56.7
GPT2-XL 45.1 28.0 96.2 31.5 24.7 24.0 61.7
GPT-Neo-2.7B 48.2 28.3 96.0 339 254 26.5 61.3
GPTJ-6B 529 25.8 97.9 332 21.1 21.7 68.1
GPT-Neox-20B 54.6 24.6 97.9 339 20.4 20.1 72.7
BLOOM 54.0 26.1 98.1 324 23.6 22.1 73.7
BLOOM-7B1 49.2 30.2 97.5 334 28.8 29.7 62.1
BLOOM-3B 443 338 96.4 34.6 31.6 34.7 57.8
BLOOM-1B7 45.1 34.8 96.0 37.8 32.7 34.7 522
BLOOM-1B1 44.1 37.7 94.8 39.5 34.6 37.4 51.3
OPT-175B 59.0 234 98.3 30.5 17.4 16.4 80.5
OPT-66B 57.0 242 98.3 30.2 19.2 14.4 77.6
OPT-30B 55.7 229 97.9 30.2 18.3 16.0 772
OPT-13B 51.8 232 98.1 28.8 18.5 17.8 75.4
OPT-6.7B 52.7 23.7 97.1 29.3 18.1 16.7 714
OPT-2.7B 49.9 26.1 97.3 30.2 19.7 19.9 67.3
OPT-1.3B 45.8 26.6 97.1 30.5 224 23.1 62.5

Table 35: The performance of the models on XSum with FIB alternative-choices using LL as the scoring function.
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Model B BL HG L MS MI NS OD o PB PT R RE T TS

T0-3B 115 0.0 9.1 20.0 4.8 11.8 20.8 51.4 13.0 0.0 0.0 25.8 42 139 152
TO 7.7 0.0 45 0.0 4.8 8.8 12.5 375 9.3 0.0 0.0 9.7 0.0 8.3 8.7
FLAN-T5-x1 11.5 0.0 9.1 0.0 4.8 8.8 25.0 375 13.0 0.0 3.7 25.8 83 13.9 17.4
FLAN-T5-xx1 115 0.0 9.1 0.0 4.8 8.8 16.7 375 7.4 0.0 0.0 19.4 83 8.3 17.4
T5-LM-Adapt-x1 7.7 0.0 45 0.0 4.8 8.8 20.8 375 9.3 0.0 0.0 25.8 0.0 5.6 8.7
T5-LM-Adapt-xx1 11.5 0.0 9.1 0.0 4.8 14.7 20.8 30.6 7.4 0.0 0.0 9.7 8.3 8.3 10.9
GPT-Neo-1.3B 0.0 43 4.5 0.0 4.8 29 29.2 25.0 3.7 0.0 0.0 16.1 4.2 2.8 4.3
GPT2-XL 38 0.0 0.0 0.0 4.8 29 333 27.8 3.7 0.0 0.0 25.8 4.2 2.8 43
GPT-Neo-2.7B 7.7 0.0 9.1 0.0 4.8 59 29.2 23.6 3.7 0.0 0.0 16.1 8.3 5.6 8.7
GPTJ-6B 0.0 43 0.0 0.0 4.8 29 29.2 222 3.7 0.0 0.0 9.7 4.2 5.6 6.5
GPT-Neox-20B 115 0.0 9.1 20.0 9.5 59 20.8 23.6 5.6 0.0 0.0 16.1 8.3 5.6 8.7
BLOOM 11.5 43 9.1 0.0 9.5 59 16.7 19.4 5.6 8.3 0.0 12.9 8.3 5.6 43
BLOOM-7B1 7.1 8.7 0.0 0.0 4.8 29 20.8 25.0 9.3 0.0 0.0 12.9 8.3 5.6 10.9
BLOOM-3B 38 43 0.0 0.0 4.8 29 16.7 20.8 5.6 0.0 0.0 9.7 42 5.6 8.7
BLOOM-1B7 38 43 4.5 0.0 4.8 29 20.8 25.0 74 0.0 0.0 12.9 8.3 2.8 6.5
BLOOM-1B1 38 43 9.1 20.0 4.8 59 25.0 23.6 74 8.3 3.7 16.1 12.5 5.6 8.7
OPT-175B 7.7 43 9.1 40.0 9.5 8.8 12,5 23.6 5.6 8.3 0.0 9.7 8.3 83 10.9
OPT-66B 7.7 43 9.1 0.0 9.5 59 12.5 20.8 74 0.0 0.0 6.5 8.3 8.3 8.7
OPT-30B 7.7 43 9.1 0.0 4.8 59 16.7 19.4 5.6 0.0 0.0 9.7 83 8.3 8.7
OPT-13B 7.7 0.0 9.1 0.0 9.5 59 16.7 26.4 3.7 0.0 0.0 129 8.3 5.6 6.5
OPT-6.7B 7.7 43 45 20.0 4.8 59 16.7 23.6 5.6 8.3 0.0 6.5 12,5 5.6 10.9
OPT-2.7B 7.7 43 4.5 0.0 48 8.8 16.7 25.0 3.7 0.0 0.0 129 8.3 5.6 8.7
OPT-1.3B 38 43 4.5 0.0 4.8 59 20.8 19.4 5.6 0.0 0.0 12.9 8.3 2.8 4.3

Table 36: The performance of the models on CNN/DM with FIB alternative-choices using avg. PMI as the
scoring function. The models are BanditSumm (B), BERT_LSTM_PN_RL (BL), Heter-Graph (HG), Lead3 (L),
MatchSumm (MS), MI-unsup (MI), NeuSumm (NS), Oracle (discourse) (OD), Oracle (O), Pacsum (bert) (PB),
Pacsum (tfidf) (PT), Refresh (R), RNN_Ext_RL (RE), Textrank (T), Textrank (st) (TS)

Model B BL HG L MS MI NS oD (0] PB PT R RE T TS
TO-3B 0.0 0.0 0.0 0.0 0.0 59 12.5 333 7.4 0.0 3.7 25.8 0.0 8.3 17.4
TO 0.0 0.0 0.0 0.0 0.0 29 8.3 23.6 9.3 0.0 3.7 12.9 0.0 5.6 13.0
FLAN-T5-x1 0.0 0.0 0.0 0.0 0.0 8.8 12.5 25.0 5.6 0.0 0.0 12.9 0.0 8.3 15.2
FLAN-T5-xx1 0.0 0.0 0.0 0.0 0.0 29 4.2 18.1 3.7 0.0 0.0 6.5 0.0 5.6 15.2
T5-LM-Adapt-x1 0.0 0.0 0.0 0.0 0.0 29 4.2 18.1 74 0.0 3.7 9.7 0.0 2.8 13.0
T5-LM-Adapt-xx1 0.0 0.0 0.0 0.0 0.0 29 4.2 12.5 5.6 0.0 3.7 6.5 0.0 2.8 13.0
GPT-Neo-1.3B 0.0 0.0 0.0 0.0 0.0 0.0 4.2 42 0.0 0.0 0.0 0.0 0.0 2.8 22
GPT2-XL 0.0 0.0 0.0 0.0 0.0 0.0 4.2 5.6 3.7 0.0 0.0 6.5 0.0 2.8 43
GPT-Neo-2.7B 0.0 0.0 0.0 0.0 0.0 0.0 42 5.6 0.0 0.0 0.0 32 0.0 2.8 22
GPTIJ-6B 0.0 0.0 0.0 0.0 0.0 0.0 4.2 5.6 1.9 0.0 0.0 0.0 0.0 2.8 43
GPT-Neox-20B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6 1.9 0.0 0.0 0.0 0.0 2.8 43
BLOOM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42 1.9 0.0 0.0 0.0 0.0 2.8 6.5
BLOOM-7B1 0.0 0.0 0.0 0.0 0.0 0.0 42 8.3 3.7 0.0 0.0 0.0 0.0 2.8 6.5
BLOOM-3B 0.0 0.0 0.0 0.0 0.0 2.9 42 42 1.9 0.0 0.0 0.0 0.0 2.8 6.5
BLOOM-1B7 0.0 0.0 0.0 0.0 0.0 0.0 42 6.9 0.0 0.0 0.0 0.0 0.0 2.8 6.5
BLOOM-1B1 0.0 0.0 0.0 0.0 0.0 2.9 42 5.6 1.9 0.0 0.0 32 0.0 2.8 6.5
OPT-175B 0.0 0.0 0.0 0.0 0.0 2.9 42 42 1.9 0.0 0.0 32 0.0 2.8 4.3
OPT-66B 0.0 0.0 0.0 0.0 0.0 29 4.2 5.6 1.9 0.0 0.0 32 0.0 2.8 22
OPT-30B 0.0 0.0 0.0 0.0 0.0 0.0 4.2 5.6 1.9 0.0 0.0 32 0.0 2.8 22
OPT-13B 0.0 0.0 0.0 0.0 0.0 0.0 4.2 42 1.9 0.0 0.0 32 0.0 2.8 22
OPT-6.7B 0.0 0.0 0.0 0.0 0.0 29 4.2 8.3 1.9 0.0 0.0 32 0.0 2.8 22
OPT-2.7B 0.0 0.0 0.0 0.0 0.0 29 4.2 6.9 1.9 0.0 0.0 32 0.0 2.8 43
OPT-1.3B 0.0 0.0 0.0 0.0 0.0 29 4.2 42 0.0 0.0 0.0 6.5 0.0 2.8 22

Table 37: The performance of the models on CNN/DM with FIB alternative-choices using avg. LL as the
scoring function. The models are BanditSumm (B), BERT_LSTM_PN_RL (BL), Heter-Graph (HG), Lead3 (L),
MatchSumm (MS), MI-unsup (MI), NeuSumm (NS), Oracle (discourse) (OD), Oracle (O), Pacsum (bert) (PB),
Pacsum (tfidf) (PT), Refresh (R), RNN_Ext_RL (RE), Textrank (T), Textrank (st) (TS)
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Model B BL HG L MS MI NS oD [¢] PB PT R RE T TS

TO-3B 0.0 0.0 0.0 0.0 4.8 0.0 83 333 13.0 0.0 0.0 9.7 0.0 2.8 22
TO 0.0 0.0 0.0 0.0 4.8 0.0 0.0 222 13.0 0.0 0.0 32 0.0 2.8 43
FLAN-T5-x1 0.0 0.0 0.0 0.0 48 0.0 8.3 25.0 13.0 0.0 0.0 129 0.0 0.0 22
FLAN-T5-xx1 0.0 0.0 0.0 0.0 4.8 0.0 8.3 20.8 11.1 0.0 0.0 32 0.0 0.0 4.3

T5-LM-Adapt-xI 0.0 0.0 0.0 0.0 48 0.0 42 25.0 11.1 0.0 0.0 32 0.0 0.0 22
T5-LM-Adapt-xxI 0.0 0.0 0.0 0.0 4.8 0.0 0.0 222 9.3 0.0 0.0 32 0.0 0.0 22

GPT-Neo-1.3B 0.0 0.0 0.0 0.0 4.8 0.0 4.2 16.7 5.6 0.0 0.0 0.0 0.0 0.0 0.0
GPT2-XL 0.0 0.0 0.0 0.0 4.8 0.0 0.0 13.9 5.6 0.0 0.0 6.5 0.0 0.0 0.0
GPT-Neo-2.7B 0.0 0.0 0.0 0.0 4.8 0.0 0.0 11.1 5.6 0.0 0.0 0.0 0.0 0.0 0.0
GPTJ-6B 0.0 0.0 0.0 0.0 0.0 0.0 4.2 11.1 3.7 0.0 0.0 0.0 0.0 0.0 0.0
GPT-Neox-20B 0.0 0.0 0.0 0.0 4.8 0.0 0.0 8.3 5.6 0.0 0.0 32 0.0 0.0 0.0
BLOOM 0.0 0.0 0.0 0.0 4.8 0.0 0.0 9.7 3.7 0.0 0.0 32 0.0 0.0 0.0
BLOOM-7B1 0.0 0.0 0.0 0.0 4.8 0.0 42 11.1 5.6 0.0 0.0 0.0 0.0 0.0 0.0
BLOOM-3B 0.0 0.0 0.0 0.0 4.8 0.0 0.0 12.5 5.6 0.0 0.0 0.0 0.0 0.0 0.0
BLOOM-1B7 0.0 0.0 0.0 0.0 4.8 0.0 0.0 16.7 3.7 0.0 0.0 0.0 0.0 0.0 0.0
BLOOM-1B1 0.0 0.0 0.0 0.0 4.8 0.0 4.2 153 5.6 0.0 0.0 0.0 0.0 0.0 0.0
OPT-175B 0.0 0.0 0.0 0.0 4.8 0.0 0.0 11.1 5.6 0.0 0.0 32 0.0 0.0 0.0
OPT-66B 0.0 0.0 0.0 0.0 4.8 0.0 0.0 9.7 5.6 0.0 0.0 0.0 0.0 0.0 0.0
OPT-30B 0.0 0.0 0.0 0.0 4.8 0.0 0.0 12.5 7.4 0.0 0.0 0.0 0.0 0.0 0.0
OPT-13B 0.0 0.0 0.0 0.0 4.8 0.0 0.0 13.9 5.6 0.0 0.0 0.0 0.0 0.0 0.0
OPT-6.7B 0.0 0.0 0.0 0.0 4.8 0.0 0.0 9.7 5.6 0.0 0.0 0.0 0.0 0.0 0.0
OPT-2.7B 0.0 0.0 0.0 0.0 48 0.0 0.0 13.9 5.6 0.0 0.0 0.0 0.0 0.0 0.0
OPT-1.3B 0.0 0.0 0.0 0.0 4.8 0.0 0.0 16.7 7.4 0.0 0.0 0.0 0.0 0.0 0.0

Table 38: The performance of the models on CNN/DM with FIB alternative-choices using PMI as the scoring func-
tion. The models are BanditSumm (B), BERT_LSTM_PN_RL (BL), Heter-Graph (HG), Lead3 (L), MatchSumm
(MS), MI-unsup (MI), NeuSumm (NS), Oracle (discourse) (OD), Oracle (O), Pacsum (bert) (PB), Pacsum (tfidf)
(PT), Refresh (R), RNN_Ext_RL (RE), Textrank (T), Textrank (st) (TS)

Model B BL HG L MS MI NS OD o PB PT R RE T TS
TO-3B 26.9 21.7 45.5 40.0 429 61.8 75.0 81.9 29.6 333 48.1 74.2 54.2 44.4 54.3
TO 15.4 21.7 31.8 0.0 38.1 58.8 62.5 65.3 16.7 8.3 40.7 61.3 37.5 472 50.0
FLAN-T5-x1 23.1 30.4 31.8 20.0 47.6 61.8 75.0 68.1 18.5 16.7 40.7 74.2 58.3 472 56.5
FLAN-T5-xx1 7.7 17.4 18.2 0.0 23.8 47.1 50.0 68.1 13.0 0.0 18.5 452 29.2 41.7 478
T5-LM-Adapt-x1 38.5 47.8 36.4 0.0 38.1 64.7 70.8 65.3 14.8 16.7 29.6 61.3 37.5 41.7 478
T5-LM-Adapt-xx1 34.6 26.1 9.1 0.0 238 55.9 54.2 52.8 13.0 0.0 11.1 48.4 20.8 27.8 37.0
GPT-Neo-1.3B 115 13.0 9.1 0.0 14.3 41.2 62.5 19.4 3.7 0.0 74 452 12.5 16.7 239
GPT2-XL 23.1 17.4 9.1 0.0 19.0 47.1 66.7 25.0 9.3 0.0 18.5 54.8 292 22.2 28.3
GPT-Neo-2.7B 154 17.4 45 0.0 14.3 44.1 50.0 194 5.6 0.0 74 38.7 16.7 16.7 239
GPTIJ-6B 7.7 21.7 45 0.0 14.3 41.2 41.7 25.0 37 0.0 7.4 355 42 139 239
GPT-Neox-20B 0.0 13.0 45 0.0 143 47.1 50.0 26.4 3.7 0.0 14.8 323 42 25.0 283
BLOOM 7.7 13.0 45 0.0 143 38.2 29.2 20.8 5.6 0.0 3.7 29.0 16.7 13.9 21.7
BLOOM-7B1 19.2 17.4 0.0 0.0 9.5 44.1 45.8 222 7.4 0.0 11.1 41.9 16.7 19.4 26.1
BLOOM-3B 23.1 13.0 4.5 0.0 19.0 44.1 50.0 222 3.7 0.0 3.7 41.9 16.7 16.7 239
BLOOM-1B7 19.2 17.4 9.1 0.0 9.5 44.1 41.7 26.4 3.7 0.0 3.7 41.9 12,5 16.7 21.7
BLOOM-1B1 23.1 26.1 4.5 0.0 19.0 44.1 542 222 5.6 0.0 11.1 41.9 25.0 25.0 239
OPT-175B 23.1 34.8 4.5 0.0 19.0 50.0 45.8 19.4 3.7 0.0 7.4 323 16.7 16.7 21.7
OPT-66B 30.8 30.4 4.5 0.0 19.0 47.1 54.2 222 7.4 0.0 11.1 38.7 12.5 19.4 30.4
OPT-30B 26.9 34.8 4.5 0.0 14.3 50.0 45.8 20.8 3.7 0.0 3.7 355 12.5 13.9 26.1
OPT-13B 30.8 30.4 4.5 0.0 19.0 47.1 54.2 29.2 5.6 0.0 11.1 38.7 25.0 16.7 239
OPT-6.7B 30.8 39.1 4.5 0.0 19.0 50.0 58.3 26.4 74 0.0 18.5 38.7 29.2 27.8 26.1
OPT-2.7B 23.1 26.1 4.5 0.0 28.6 50.0 58.3 333 74 0.0 1.1 452 16.7 19.4 26.1
OPT-1.3B 26.9 30.4 9.1 0.0 19.0 44.1 62.5 25.0 74 0.0 74 452 16.7 16.7 239

Table 39: The performance of the models on CNN/DM with FIB alternative-choices using LL as the scoring function.
The models are BanditSumm (B), BERT_LSTM_PN_RL (BL), Heter-Graph (HG), Lead3 (L), MatchSumm (MS),
MI-unsup (MI), NeuSumm (NS), Oracle (discourse) (OD), Oracle (O), Pacsum (bert) (PB), Pacsum (tfidf) (PT),
Refresh (R), RNN_Ext_RL (RE), Textrank (T), Textrank (st) (TS)
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Model Scoring BART- BART- BLOOM- distil- distil- PEGASUS  T5-

Function base large 560m BART PEGASUS large
BART-base Avg. PMI 244 42.5 954 34.4 45.1 422 83.0
BART-base Avg. LL 0.0 22 97.1 0.5 3.4 5.5 50.1
BART-base PMI 17.7 26.6 64.8 27.1 35.0 34.7 77.4
BART-base LL 0.6 8.9 99.6 2.0 8.9 135 54.5
BART-large Avg. PMI 63.5 24.4 96.0 29.5 39.4 322 94.2
BART-large Avg. LL 32.8 0.0 96.9 44 25 3.0 71.0
BART-large PMI 52.9 17.9 62.3 26.8 323 29.2 91.1
BART-large LL 42.8 1.0 99.6 7.3 4.8 5.7 77.6
BLOOM-560m Avg. PMI 559 44.7 52.8 53.9 45.8 46.1 72.0
BLOOM-560m Avg. LL 18.6 6.0 0.4 11.7 6.6 7.5 50.9
BLOOM-560m PMI 49.5 36.5 10.7 483 40.7 422 68.9
BLOOM-560m LL 322 16.7 373 21.5 12.8 14.8 57.8
distil-BART Avg. PMI 51.0 24.2 94.5 16.6 35.7 30.8 93.4
distil-BART Avg. LL 11.0 0.0 97.7 0.0 2.1 4.3 72.5
distil-BART PMI 44.7 18.6 52.8 18.8 30.9 26.5 88.6
distil-BART LL 20.7 1.7 99.6 0.0 4.6 7.3 73.1
distil-PEGASUS  Avg. PMI 62.9 34.1 97.3 324 19.7 18.9 94.8
distil-PEGASUS  Avg. LL 16.4 1.9 88.9 2.0 0.0 0.7 74.1
distil-PEGASUS PMI 51.4 227 77.8 26.6 17.2 17.1 92.3
distil-PEGASUS LL 27.0 5.6 98.5 39 0.2 1.8 76.2
PEGASUS Avg. PMI 72.4 449 97.1 42.9 36.4 22.8 96.9
PEGASUS Avg. LL 294 1.7 87.8 2.9 0.5 0.0 84.3
PEGASUS PMI 65.4 29.7 79.9 373 26.8 19.2 94.2
PEGASUS LL 389 5.8 99.0 7.8 23 0.2 85.3
T5-large Avg. PMI 432 50.7 93.5 46.1 51.5 49.8 31.7
T5-large Avg. LL 8.6 12.3 94.8 10.2 133 18.9 0.2
T5-large PMI 34.1 345 59.3 36.3 42.1 42.0 27.7
T5-large LL 28.5 31.9 99.2 26.1 28.4 342 4.1

Table 40: The performance of the models on XSum using the same models to generate the factually inconsistent
summary.
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