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Rationality of Learning Algorithms in Repeated
Normal-Form Games
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Abstract—Many learning algorithms are known to con-
verge to an equilibrium for specific classes of games if the
same learning algorithm is adopted by all agents. However,
when the agents are self-interested, a natural question
is whether the agents have an incentive to unilaterally
shift to an alternative learning algorithm. We capture such
incentives as an algorithm’s rationality ratio, which is the
ratio of the highest payoff an agent can obtain by unilater-
ally deviating from a learning algorithm to its payoff from
following it. We define a learning algorithm to be c-rational
if its rationality ratio is at most c irrespective of the game.
We show that popular learning algorithms such as fictitious
play and regret-matching are not c-rational for any constant
¢ > 1. We also show that if an agent can only observe the
actions of the other agents but not their payoffs, then there
are games for which c-rational algorithms do not exist. We
then propose a framework that can build upon any existing
learning algorithm and establish, under mild assumptions,
that our proposed algorithm is (i) c-rational for a given
¢ > 1 and (ii) the strategies of the agents converge to an
equilibrium, with high probability, if all agents follow it.

Index Terms—Game theory, learning in games, agents-
based systems.

. INTRODUCTION

SE OF automated learning agents is increasing in various
U online applications such as automated trading and online
auctions. Intuitively, these agents play a game repeatedly and
update their strategies to converge to some equilibrium con-
cept. Various multi-agent learning algorithms with desirable
convergence properties have been proposed, such as fictitious
play, regret-matching, gradient descent, etc. [1], [2], [3]. A
natural question in such situations is whether any individual
agent has an incentive to rewrite its algorithm unilaterally to
increase its payoff. Recent works have considered this question
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and have shown that a strategic agent can indeed exploit the
knowledge of the underlying learning algorithm to increase
its payoff [4], [5], [6]. Intuitively, this is because the learning
algorithms themselves do not constitute equilibrium behavior
of the corresponding repeated game. In response, [7] intro-
duced the notion of a learning equilibrium that requires that
the learning algorithms themselves be rational in that self-play
for that algorithm is a symmetric equilibrium of the repeated
game and proposed algorithms that exhibit this property.
However, [7] assumes a uniform bound on game payoffs and
does not evaluate whether conventional learning approaches,
such as fictitious play or regret-matching, are already (nearly)
in equilibrium in self-play and if not, whether we can induce
this property in a way that is outcome-equivalent to these
algorithms in self-play. In a related work, [8] proposed an
algorithm that is non-exploitable in the sense that it ensures
a payoff above a certain value if the other agent deviates
from the algorithm. However, it restricts the strategies of the
deviating agent.

Designing learning algorithms that are rational in self-play
is challenging since such algorithms may not even exist for
certain classes of games [7]. Thus, a quantifiable metric that
characterizes how much an agent may benefit by deviating
from its learning algorithm is required to allow the system
designer to compare various algorithms and choose one.

To this end, we consider a two-agent repeated game frame-
work and introduce the concept of rationality ratio, defined
as the ratio of the most an agent can obtain by unilaterally
deviating from a learning algorithm to their payoff from
following it. For a constant ¢ > 1, a learning algorithm is
c-rational if its rationality ratio is no more than c in the worst-
case. We first show that there does not exist any constant
¢ > 1 for which classic learning algorithms such as fictitious
play and regret-matching are c-rational. We also establish
that there exist games for which c-rational algorithms do not
exist if an assumption of perfect monitoring does not hold.
We then design and analyze an algorithm that builds on any
existing learning algorithm and, under mild assumptions, is
provably c-rational, for a given ¢, while converging to the same
equilibrium as the underlying algorithm. Similar to [7], [8],
to deter an agent from deviating from the specified learning
algorithms, we utilize an approach by which the agents punish
this deviating agent. Such punishment strategies are acceptable
since for automated agents following a prescribed algorithm,
strategic manipulation is most salient ex-ante and the primary
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requirement is to avoid creating incentives for the owner of
such agents to rewrite the learning algorithms being used.

Our work is related to the growing area of strategizing
against learning agents [9], [10]. These works primarily focus
on optimization approaches for a single agent whereas we
consider a game theoretic setting. Another closely related
line of work considers rational learning in which the agents
best-responds to the belief over the strategies of the other
agent [11]. However, it has been argued that rational learning
does not converge to Nash equilibrium in general [12].
Unlike [11] our agents do not use Bayesian belief updates.

This letter is organized as follows. Section II formally
describes the model. Section III establishes that some classical
learning algorithms are not c-rational and Section IV estab-
lishes non-existence of any c-rational algorithm if a perfect
monitoring assumption does not hold. Section V presents
our algorithm that is provably c-rational for a given ¢ and
Section VI provides additional numerical insights.

II. MODEL AND DEFINITIONS
A. Preliminaries

We begin by defining a stage game.

Definition 1 (Stage Game): A two agent stage game G is a
tuple (A1, Az, R1, R2), where A; denotes a finite set of actions
available and R; : A| x Ay — R is the payoff function, both
for agent i, i € {1,2}. A mixed strategy m; for agent i is a
probability distribution over its action set A;. A pure strategy
is a strategy in which the probability of selecting a particular
action is one.

Following standard notation, when referring to an agent i,
we will refer to the other agent as —i. Stage games for two
agents can be described using a bi-matrix whose rows (resp.
columns) correspond to the possible actions of the first (resp.
second) agent. The (j, k) entry of the bi-matrix is the pair
of values (r]1 . rjz’ ©)» Where r]’ « denotes the payoffs to agent i
when agent 1 plays action j and agent 2 plays action k. We
use R’ to denote the payoff matrix of agent i that is obtained
by collecting the entries r.l’  and r/% &> Tespectively.

Definition 2 (Nash Equilibrium): For a stage game, a strat-
egy profile (7, w*;) is a Nash equilibrium, and the pair
(Ri(r}, m*), R_i(m}, m*,)) is a Nash outcome, if

R,'(n,-*, nfl-) > Ri(m, nfl-),‘v’m #£nl Vie(l, 2}

A popular model for how agents can learn these equilibria
is that of a repeated game in which the agents play a given
stage game repeatedly. At each iteration or time step, the
agent observes its (and possibly the other agent’s) rewards and
actions and updates its strategy based on its observations. One
can categorize the observations of the agents as perfect or
imperfect monitoring. With perfect monitoring, an agent can
observe the actions selected and the payoffs obtained by all
the agents. With imperfect monitoring, an agent observes the
actions of all the agents but can observe only its own payoffs.
The payoff matrix R’ is said to be completely known to agent
i if agent i has the information of all entries of R’. Similarly, a
row j (resp. column k) of R’ is said to be completely known to

agent i if agent i has the information of the all of the entries
of jth row (resp. kth column) of R'.

B. Fictitious Play and Regret-Matching

A learning algorithm for agent i is a mapping from the
available observations to an action a; € A; at every iteration
of the repeated game. Two classical learning algorithms are
fictitious play and regret-matching, that are known to converge
to the Nash and correlated equilibria, respectively, for a wide
class of stage games [13], [14].

Fictitious Play: Let a_;(t) denote the vector of empirical
frequencies of actions a_; € A_; played until time ¢. Then, in
fictitious play, agent i selects action according to

aj(t) = argmax R;(a, a_i(t — 1)). (1
acA;

Regret-matching: Define the instantaneous regret of agent
i at time ¢ for action a € A; as 8/(a) = Ri(a,a—i(t)) —
Ri(ai(t),a—;i(t)) and define the average regret of agent i for
action a € A; at time T as S;Yf(a) = %Zleé;(a). Let
8+ (a) = max{0, S;Yl.g(a)} and let | - | denote the cardinality of
a set. Then, the regret-matching algorithm requires agent i to

select action a € A; with probabilities

84 (a) . avg/
pi (a) — Za/eAi S4+(d)’ if Za’EAi 6+ (a ) > 0’ (2)
! ﬁ, otherwise.

C. Model Considered

We consider an infinitely repeated stage game G under
perfect monitoring where, at the first iteration, the agents
do not have any information about their own and the other
agent’s payoff matrices. To make our framework applicable to
existing learning algorithms, we follow a common model for
the rewards in terms of their long term average as follows.
Let A; and A_; denote the learning algorithm followed
by agent i and agent —i, respectively. Given a stage game
G, the value for agent i is defined as U;(G, A;, A_;) =
liminfr_ o IE[% ZIT:() Ri:], where R;; is the payoff received
by agent i at time ¢. For notational ease, we drop the
dependence on G and write the term as U;(A;, A—;). Note that
Ui(A;, A_;) > 0 since R; > 0. We say that agent i deviates
from a prescribed learning algorithm A if its selects its actions
according to any other algorithm A’ in at least one interval
of times [t1, t2] for any #, > #; > 0. The following quantity
characterizes how much an agent i gains by deviating from an
algorithm A.

Definition 3 (Rationality Ratio): Suppose both agents are
prescribed an algorithm A4 and agent i deviates from A to
algorithm A’. Then, for any i € {1, 2}, the rationality ratio of
algorithm A is defined as

Ui(A', A)
AL A = —2L, 3
s(A A) Ui(A, A) ©)
Given a constant ¢ > 1, the algorithm A is c-rational if
sup s(A’, A) < c. “)
g.A

Finally, an algorithm A is perfectly rational if ¢ = 1.
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(ri1,2) an
Agent 1
(31.1) (5.5)

Fig. 1. A2 x 2 game G for the proof of Theorem 1.

The value of using a multiplicative, rather than additive,
measure to characterize incentives for deviation is that it is
not sensitive to scale of the payoffs as opposed to typical
additive measures, such as game-theoretic regret [15]. Further,
c-rational algorithms provide a constant factor guarantee to the
worst-case and thus, provides insights into whether (and by
how much) the agents have an incentive to deviate from the
algorithm in the worst-case.

Problem Statement. The aim of this letter is to
determine whether the fictitious play and regret-matching
algorithms are c-rational. If not, then to design and ana-
lyze c-rational algorithms with minimum ¢, especially in
a manner that preserves convergence guarantees of such
algorithms.

[1l. IRRATIONALITY OF EXISTING ALGORITHMS

In this section, we provide discouraging results; for
fictitious play and regret-matching algorithms, a strate-
gic agent has unbounded incentive to deviate from these
algorithms.

Theorem 1: Regret-matching algorithm is not c-rational for
any given constant ¢ > 1.

Proof: Observe that the supremum in equation (4) is over
G and any other algorithm .A’. We will construct a G and an
algorithm A’ for which equation (4) does not hold for any
¢ > 1, even if the agents know the payoff matrices at the first
iteration of the game G. Without loss of generality, suppose
agent 1 deviates from regret-matching algorithm. Consider a
2 x 2 bi-matrix game G as shown in Figure 1 with entry r%’l =
5(c + 1) and ri’] > ’"},r It can be verified that when both
agents follow algorithm A4, the strategies converge to the pure
Nash equilibrium or the (2,2) entry. Thus, U;(A, A) = 5.
Next, consider Algorithm A’ which, at each time ¢, has agent
1 play row j = 1. Suppose that at time 7, agent 2 selects
action k = 1. The instantaneous regret for agent 2 for not

selecting column k = 2 is 85(2) = r% = r% | = —1. Similarly,
if agent 2 selects action k = 2, then the instantaneous regret

for not selecting column k = 1is 85(1) = 7, —ri, = L.

Since the action of agent 1 does not change at any time ¢, it
follows that at every time ¢ at which agent 2 selects column 2,
agent 2 experiences a positive regret. Thus, as t — oo, from
equation (2), p7, (1) — 1. This implies Uj(A’, A) = r| .
Since r{ | = 5(c+ 1), it follows that s(A’, A) = ¢+ 1 which
implies supg 4 s(A’, A) > c¢+1. This means that equation (4)
can never hold for any given constant ¢ > 1. |

Theorem 2: Fictitious play algorithm is not c-rational for
any given constant ¢ > 1.

Proof: The proof is analogous to the proof of Theorem 1
and is omitted due to space constraints. |

2411
Agent 2 Agent 2
(5,8) 19 (5,10) (1,9
Agent 1 Agent 1
3.3) (2,10) (3,10(c +2)) | (2,10(c + 1))
(a) Game Gj. (b) Game Go.

Fig. 2. Games G4 and G for the proof of Theorem 3. The equilibrium
entries are highlighted in bold.

IV. NONEXISTENCE OF RATIONAL ALGORITHMS UNDER
IMPERFECT MONITORING

We now establish that, under imperfect monitoring, no
c-rational algorithms exist for certain classes of games.

Theorem 3: Under imperfect monitoring, there exist games
for which no algorithm is c-rational for any ¢ > 1.

Proof: Similar to the proof of Theorem 1, we will construct
two stage games G; and G, and show that by restricting
ourselves to only two stage games, no c-rational algorithms
exist. The result would then follow given the supremum
operator. Further, we will prove the result in a restrictive
setting that the agents know that the game is either G; or G,
and the payoff matrices associated with these games. As the
original setting considered in this letter is a generalization, the
result naturally will hold for the general setting as well.

Without loss of generality, suppose that agent 2 deviates
from an algorithm .4 and follows algorithm .A’. Consider two
stage games G; and G, as depicted in Figure 2. In game G
(resp. G»), the entry (2,2) (resp. entry (1, 1)) is the only
possible equilibrium because of domination. Suppose that, if
both agents select their actions according to an algorithm A,
their respective strategies converge to the entries corresponding
to the equilibrium of the game.

Suppose agent 2 always selects column 2 and the game
is Gy. Further, even by assuming that Algorithm A has the
information that the game selected is either G; and G, and
completely knows its own payoff matrices, .4 cannot determine
the actual game being played by the agents. This is because
of the imperfect monitoring setting and that the payoffs for
agent 1 is identical in both G| and G,. Thus, given that agent
1 can only observe agent 2’s actions and since agent 2 selects
only column 2, algorithm A selects row 2 for agent 1. This is
because, given that agent 2 selects column 2, selecting row 1
yields a lower payoff for agent 1. This means that U (A, A") =
10(c + 1). Thus, even by restricting the set of games to only
G1 and Gy, it follows that supg, g, a s(A, A") = c+1 for any
constant c. This implies that supg 4 s(A, A’) = ¢+ 1 and the
result follows. ]

Given these negative results, it is natural to ask whether any
c-rational learning algorithms exist. Fortunately, the answer is
in the affirmative. In the next section, we present an algorithm
that utilizes any existing learning algorithm (e.g., fictitious
play or regret-matching) and is provably perfectly rational
under mild assumptions.

V. RATIONAL LEARNING ALGORITHMS

In light of Theorem 3, we impose the following assumption
for the rest of this letter.
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Assumption 1 (Perfect Monitoring): Every agent perfectly
observes the payoffs and the actions of the other agent at each
time.

Note that there exists many classes of games, such as zero-
sum games or common interest games, which implicitly have a
perfect monitoring setting. Let A denote any existing learning
algorithm. Our algorithm, which we call Algorithm Rational-
A, takes A as an input and specifies two strategies in a way
akin to the grim trigger strategies [16]. The first is a strategy
that is followed by agent i as long as agent —i follows the
prescribed algorithm. However, if agent —i is detected to
deviate, agent i switches to a prescribed punishment strategy.
Thus, Algorithm Rational-A can consist of two phases; the
self-play phase and the punishment phase. Since the agents
do not have any information about the payoff matrices of the
stage game G, the self-play phase itself needs to consist of
two sub-phases, as described below.

Exploration Sub-Phase: In the exploration sub-phase,
every agent maintains and updates a local estimate of the
payoff matrix of the other agent. To this end, the agents select
their actions according to a joint sequence specified at time 0.
Specifically, at time 1 < ¢ < |A;]||A2|, agent 1 sequentially
selects each row 1 < j < |Aj|, starting with the first row,
|A2| number of times. Simultaneously, agent 2 selects each
column sequentially. Once agent 2 selects the last column,
it repeats the sequence. This ensures that each entry of the
payoff matrices is revealed sequentially over time. Further,
since the exploration strategy for both agents is deterministic,
any deviation is guaranteed to be detected.

Exploitation Sub-Phase: The agents enter this sub-phase
once the exploration sub-phase ends and if no agent has
deviated from the prescribed algorithm. In this sub-phase, the
agents select their actions based on Algorithm .4 until an agent
detects that the other agent has deviated from it.

If the strategy prescribed for the agents is deterministic,
such as in the exploration sub-phase or due to some specific
A, the detection of whether an agent deviated or not is ensured
due to Assumption 1. Thus, to describe how to detect whether
an agent i has deviated or not, we assume that the strategy
followed by the agent i is stochastic. In this case, agent —i
must compare the empirical probability distribution over the
actions selected by agent i with the probability distribution
over the actions that agent i should have selected its actions
from. To achieve this, the exploitation sub-phase of Algorithm
Rational-A runs in epochs, each consisting of a finite number
of N, iterations. As the payoff matrices are completely known
in the exploitation sub-phase, given algorithm 4, agent i
determines the probability distribution over the actions of
agent —i as well as agent i. Let ¢;' and ¢, ' denote the
probability distribution over the actions from which agent i
and agent —i, respectively, must choose their actions from, if
they were following algorithm A. In every iteration n < N; of
epoch ¢, agent i selects action according to ¢! and observes
the action selected by agent —i. Once the epoch ends, i.e.,
after V; iterations, agent i computes the empirical cumulative
distribution function (CDF), denoted as F, _i, from the observed
actions of agent —i. Let ft_"(x) denote the CDF determined
using ¢, '. Then, after computing the empirical CDF, agent i

checks whether the following condition holds at the end of
epoch t:
sup | F, ' — F;| > &, ®)
xeR
where €, = % If condition (5) holds, agent i proceeds to the
next epoch ¢+ 1. If not, agent i enters the punishment phase.
We now briefly comment on the choice of N, and ;.

If Algorithm A is such that it selects actions for an agent

. c1log(‘2)
1. Otherwise, N; = ——%—,

where y € (0,1) and ¢; > 0 and ¢ > 1 are somg real
numbers satisfying 2 > ¢,121~!. Although the choice of N;
will be clear from the proof of Theorem 4, we provide an
intuition behind this choice. On one hand, we require that in
case agent i does not deviate, then the equilibrium strategies
of Algorithm Rational-4 must converge to that of when the
agents would have selected actions according to A. To achieve
this, we must ensure that equation (5) holds with very low
probability (almost 0), when agent i does not deviate. On the
other hand, in case agent i deviates, we require the algorithm
to enter the punishment phase. Thus, motivated from [17], we
select N; (resp. €;) such that it increases (resp. decreases) in
every epoch t.

Without loss of generality, we assume that agent 1 deviates
and refer to it as the adversary. Further, we denote the local
estimate of the payoff matrix of agent 1 that agent 2 maintains
as R'. Note that, when the payoff matrix of agent 1 is
completely known to agent 2, R' = R'.

Punishment phase: The idea is to punish the adversary
for not adhering to the algorithm. Since the adversary can
deviate from the algorithm either during the exploration or the
exploitation sub-phase, the punishment strategy depends on
when the adversary deviates. We begin with the definition of
the minimax strategy which is used in the punishment phase.

Definition 4: The minimax value for agent 1 on some
matrix Q is defined as V;(Q) = minycy Max.ecz y' Qz, where
Y (resp. Z) denotes the set of all probability distributions
over the pure strategy |A| (resp. |Az|) and the corresponding
policy y* is called the minimax strategy for agent 1. Analogous
definition holds for agent 2.

Let ¢ denote the time when the punishment phase begins.
In the exploitation sub-phase, the payoff matrices R! and R?
are completely known by agent 2. Therefore, if the deviation
is during the exploitation sub-phase, the punishment strategy
is to select an action for agent 2 by computing the minimax
strategy on matrix R' and execute it for all time 7 > 7.

Given the punishment strategy when an adversary deviates
during the exploitation phase, an adversary might be tempted
to deviate during the exploration phase. This is because, since
the agents do not know the game payoff completely, computing
the true minimax strategy is not possible. Consequently, it may
be possible that the adversary may obtain a better payoff upon
deviating from the exploration phase as opposed to deviating
in the exploitation phase. To address this, we now describe the
punishment strategy for when the adversary deviates during
the exploration phase.

If agent 1 deviates during the exploration sub-phase, since
the payoff matrix R! is not completely known to agent 2,

deterministically, then N; =
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the minimax strategy on R' cannot be computed. Agent 2
constructs a payoff matrix R' corresponding to the local
estimate of the adversary’s original payoff R' such that the
entries that are known in R! are the same in R, while the
entries that are not known in R! are substituted as 0. Then,
agent 2 selects an action with equal probability of ﬁ until

at least one of the rows of matrix R! is completely known,!

updating the unknown entries of R! as they are revealed. If
agent 2 deviates instead of agent 1, then agent 1 selects an
action with equal probability of |Al_1| until at least one of the

columns of matrix R? is completely known. Once at least one
of the rows of R! is completely known, agent 2 then computes
and executes the minimax strategy on matrix R'. If no new
entry of matrix R! is revealed, agent 2 continues to play the
computed minimax strategy. Otherwise, agent 2 updates R!
and R! and recomputes the minimax strategy on R'.

Lemma 1: Let A denote an algorithm that incorporates
punishment phase and suppose agent i deviates. Let ‘_/f =
min, ;cA_; MaXgea, r;l_’aii. Then, for a given ¢ > 1, algorithm
A is perfectly rational if V' < cU;(A, A) holds.

Proof: Without loss of generality, suppose that agent 1
deviates from algorithm .A. First, consider that algorithm A
enters the punishment phase from the exploitation sub-phase.
Then, agent 2 selects action according to the minimax strategy,
defined in Definition 4, on matrix R! = R!. As t — oo,
Up(A', A) — Vi(RY). Since VI (R") > Vi (R") [18] and given
the condition in Lemma 1, we obtain

GA) _ B R
Ui (A, A Ui(A,A) ~ Ui(A A —

Equation (6) holds even in the case when algorithm .4 enters
the punishment phase from the exploration sub-phase and there
exists a time 7 at which the matrix R' is completely known
by agent 2. In the case when none of the rows of the payoff
matrix R! is completely known by agent 2, at any time 7,
there is a positive probability that a new entry of R' will be
revealed. Thus, there exists a time ¢ at which at least one of
the row of matrix R! will be completely known by agent 2.
Thus, in what follows, we consider the case for which the
following jointly hold: (i) algorithm A enters the punishment
phase from the exploration sub-phase, (ii) at least one of the
rows of R! (say the j-th row) is completely known by agent 2,
and (iii) the matrix R' is not completely known by agent 2 at
any time 7. Let T denote the time when an entry of matrix R'
was revealed for the last time. As t — oo and since no new
entry of R is revealed after time 7, U;(A’, A) — Vi(RY).
Since V{(R!) > Vi(R!) [18], we now show that V}(R") <
VI (R"). Suppose that entry (', k) for any j' # j of matrix R!
is not known by agent 2. Let le, denote the matrix if the entry

(/, k) was known by agent 2. Then, if rjl,’k > rjl’k, it follows
that V7 (R},) > VI(R'). This is because the entry rjl,’ , =0in
matrix R'. Further, if rjl,’k < rjl’ o it follows that ‘_/11) (I?;,) =
\7‘;’ (R"). Thus, for any (, k) entry that is not known by agent
2, V7 (ie;,) > VP(R') which implies that V] (R!) > V7'(R!) and
the result follows. |

IThe agent skips this step if any one row of R! is known to begin with.

Remark 1: In this letter, we consider agents to be rational,
i.e., agent that always pursue its best interest, as opposed to an
adversary. The punishment strategy acts only as a threat for the
automated agents as it ensures that there is no incentive for an
agent to deviate from its prescribed learning algorithm. This
implies that, if there is no incentive for an agent to deviate
from an algorithm, the agents do not enter the punishment
phase. Since we consider automated learning agents in this
letter, such strategies provide credible threats. However, such
strategies may not be credible against an adversarial agent that
may not aim to maximize its payoff.

Theorem 4: Let A be any existing learning algorithm for
repeated games and let 7" and 77 denote the strategies of
agent 1 and agent 2, respectively, if they selected actions
according to A. Then, for a given y € (0,1) and a given
constant ¢ > 1, Algorithm Rational-A is

1) c-rational if Lemma 1 holds.

2) If #f and 7} converge to an equilibrium then, with
probability at least 1 — y, so does the strategies of the
agents when they follow Algorithm Rational-A4.

Proof: Without loss of generality, suppose that agent 1
deviates from Algorithm Rational-A. If agent 1 deviates during
exploration sub-phase, then any deviation is guaranteed to
be detected and Algorithm Rational-A is sure to enter the
punishment phase. Thus, Lemma 1 yields that, in this case,
Algorithm Rational-A is perfectly rational. We now consider
the case when an agent deviates during the exploitation sub-
phase and that A represents an algorithm that selects an action
based on a probability distribution. Observe that in any epoch
t and in the worst-case, agent 1 can select its action such that
at after V; iterations, the condition sup, g |.7-'l1 x)—F ,1 @) > €
does not hold. Further, for any epoch #, as €; = %, it follows
that as t — 00, €; — 0. Thus, for a high value of ¢, there are
two cases.

Case 1: Suppose after some epoch ¢, since €, &~ 0, the
condition defined in equation (5) holds. Then, the algorithm
enters punishment phase and (1) holds from Lemma 1.

Case 2: The second case is that, since ¢, — 0 as t —> 00,
agent 1 starts selecting actions according to Algorithm A
and does not deviate. This means that from this moment
on, both agents select their actions according to Algorithm
A. For any epoch ¢, using [19, Th. 1], the probability that
condition defined in equation (5) holds is at most 2e=2Niet
By taking the union bound over all #, the probability that
the condition in equation (5) never holds is at least 1 —
tZe_ZN’GtZ , which reduces to at least 1 — # given the

choice of N;. By selecting ¢ and ¢ such that # >y,
with probability at least 1 — y, the condition in equation (5)
never holds until epoch ¢ and Algorithm Rational-A does
not enter the punishment phase until epoch r. Hence, if 7}
and 75 converge to an equilibrium, then so do the strategies
obtained from Rational-A. The proof when no agent devi-
ates and the strategies obtained from Algorithm Rational-.A
converges to the equilibrium, with probability 1 — y, if 7}
and 7} converge to an equilibrium is analogous to that of
Case 2. Finally, the proof when A represents an algorithm
that selects an action determinisitically is similar to that when
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Fig. 3. Value of agent 1 (adversary) over time. Since U4 (SBR, SBR) =
Uy (R-SBR, R-SBR), the curve for U; (SBR, SBR) is not shown.

the agents deviate during exploration phase and has been
omitted. |

Algorithm Rational-.A not only incorporate algorithms that
are known to converge to an equilibrium, but also algorithms
for which convergence results are not currently known.

Remark 2: Our work easily extends to the case of n agents
if a central entity can inform the agents about the deviation. In
this case, all the remaining agents can jointly punish the agents
who have deviated. Our work also extends to stochastic games
under the assumption that the current state and the transition
probabilities is known, the agents follow stationary strategies
and the underlying game is irreducible.

VI. NUMERICAL RESULTS

For the numerical results, we consider that agents are
prescribed smoothed best-response (SBR) algorithm [3] and
Rational-SBR algorithm with smoothing parameter set to 1.
We consider the game analogous to that in Figure 1. It can
be checked that for this game, the condition described in
Lemma 1 holds with ¢ = 1. We provide additional numerical
results in [20]. Note that when agent i deviates during the
exploration (resp. exploitation) sub-phase, then the algorithm
followed by agent i is denoted as A, ;. (resp. A"). Further,
as the agents follow SBR and since Rational-SBR detects a
deviation with high probability, all of our numerical results
represent the mean over 50 runs.

Figure 3 illustrates the value of agent 1 when (i) both agents
follow Rational-SBR (R-SBR), (ii) agent 1 deviates and agent
2 follows SBR, (iii) agent 2 follows R-SBR and agent 1
deviates in the exploitation phase, and (iv) agent 2 follows R-
SBR and agent 1 deviates in the exploration phase. The time
at which the adversary deviates was set to t = 3 and ¢t = 50 for
the exploration and the exploitation sub-phase, respectively.
We consider that agent 1 deviates to the strategy described
in [4] which may be sub-optimal against SBR algorithm.

Figure 3 illustrates that even deviating to a sub-
optimal strategy, agent 1 achieves a higher payoff. This
means that there exist games for which Algorithm SBR
may not be c-rational, for ¢ > 1. Further, from
Figure 3, Uj(A,R-SBR) < U;(R-SBR,R-SBR) and

U1 (Alypjore- R-SBR) < U (R-SBR, R-SBR). This implies that

Algorithm R-SBR is perfectly rational (Theorem 4).

VIlI. CONCLUSION

We considered a two-agent non-cooperative repeated game
framework and defined the rationality ratio as the most an
agent can obtain by deviating from a learning algorithm to
their payoff from following it. A learning algorithm is called
c-rational if its rationality ratio is at most c. We first established
that fictitious play and regret-matching algorithm are not
c-rational for any given constant c. We also established that
there exist classes of games in which a c-rational algorithm
does not exist under imperfect monitoring. We then presented
an algorithm that is provably c-rational for a given ¢ > 1 under
mild assumptions.
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