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Abstract. In geographical image segmentation, performance is of-
ten constrained by the limited availability of training data and a lack
of generalizability, particularly for segmenting mobility infrastruc-
ture such as roads, sidewalks, and crosswalks. Vision foundation
models like the Segment Anything Model (SAM), pre-trained on
millions of natural images, have demonstrated impressive zero-shot
segmentation performance, providing a potential solution. However,
SAM struggles with geographical images, such as aerial and satel-
lite imagery, due to its training being confined to natural images
and the narrow features and textures of these objects blending into
their surroundings. To address these challenges, we propose Geo-
graphical SAM (GeoSAM), a SAM-based framework that fine-tunes
SAM using automatically generated multi-modal prompts. Specif-
ically, GeoSAM integrates point prompts from a pre-trained task-
specific model as primary visual guidance, and text prompts gen-
erated by a large language model as secondary semantic guidance,
enabling the model to better capture both spatial structure and con-
textual meaning. GeoSAM outperforms existing approaches for mo-
bility infrastructure segmentation in both familiar and completely un-
seen regions by at least 5% in mloU, representing a significant leap
in leveraging foundation models to segment mobility infrastructure,
including both road and pedestrian infrastructure in geographical im-
ages. The source code is publicly available.

1 Introduction

While a substantial amount of research [7, 43, 17, 28, 13] has fo-
cused on road infrastructure segmentation from geographical and re-
mote sensing imagery like aerial and satellite images, pedestrian in-
frastructure, such as sidewalks or crosswalks, has received compara-
tively little attention, despite its importance in daily life. Historically,
research efforts have predominantly focused on assisting drivers in
navigation rather than pedestrians [18]. Existing accessibility studies
often use simplified road data, but accurate segmentation of pedes-
trian infrastructure can better reveal accessible routes and destina-
tions, especially for people with disabilities.

Rooted in historical context, mobility infrastructure segmentation
has predominantly relied on traditional models, including Convolu-
tional Neural Networks (CNNs) [31, 45, 20, 27] and Vision Trans-
former (ViT) models [14, 11]. These models typically require large
collections of human-labeled data for task-specific training [18, 3],
something that is oftentimes a luxury for these tasks, and are often
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Figure 1. Mobility infrastructure segmentation: (a) Traditional models
need large task-specific datasets, (b) struggle with narrow, texture-similar
objects, yielding subpar results. Fine-tuning a promptable foundation model
with limited data and prompts achieves on-par performance.

too sensitive to changes in data. However, the scarcity of high-quality
labeled datasets remains a major challenge, especially in the context
of mobility infrastructure, limiting scalability and adaptability to di-
verse tasks.

Traditional models, when trained on limited and homogeneous
datasets(Figure 1a), often fail to distinguish fine-grained classes
such as sidewalks and roads, which exhibit subtle visual differ-
ences like thin boundaries, similar textures, and frequent occlu-
sions (Figure 1b). Moreover, their learned representations are typ-
ically domain-specific, resulting in poor generalization when de-
ployed in unseen regions or datasets with different visual characteris-
tics. Even minor shifts in data distribution, such as moving from one
geographic region to another, often lead to significant performance
degradation. In contrast, vision foundation models, pre-trained task-
agnostically on large-scale and diverse image distributions [21, 26],
offer a promising alternative with superior generalization ability
across varying domains. These models adapt to new downstream
tasks without re-training, relying on user-provided prompts for con-
textual guidance. In this work, we leverage the Segment Anything
Model (SAM) [21], a promptable vision foundation model, to over-
come the limitations of traditional approaches and enable effective
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segmentation of mobility infrastructure, even with limited labeled
data and across geographically diverse regions.

However, unlike compact objects in natural images, where a sin-
gle point (e.g., placed on a dog’s body) often suffices for segmenta-
tion, spatially extensive structures like roads and sidewalks usually
require multiple iterative prompts to capture their full extent. This
process is often exhaustive and error-prone, and even with multiple
prompts, zero-shot SAM struggles in remote sensing tasks due to its
pre-training on natural images, which lack the large, texture-similar
structures common in geographical data [21]. Nonetheless, SAM’s
general segmentation capability can be adapted to geographical im-
agery via fine-tuning on limited data (bottom of Figure 1), allowing it
to learn domain-specific patterns and remain effective under regional
distribution shifts. Capitalizing on this strength, we introduce Geo-
graphical SAM (GeoSAM), an end-to-end model tailored for seg-
menting mobility infrastructure through multi-class segmentation of
road and pedestrian infrastructure.

To address these challenges, we propose Geo-Point Generation
(GPG), an automated prompt generation technique that generates
point prompts for geographical images from a domain-specific pre-
trained model for precise spatial guidance. It is complemented by text
prompts for semantic clarity to resolve ambiguities inherent in point-
based guidance. Point prompts focus the model on specific pixels,
but a single pixel can often belong to multiple objects. Text prompts,
containing semantic information about the class, clarify the object of
interest and provide a broader understanding [37]. This complemen-
tary design ensures precise geometrical guidance from point prompts
and broader contextual understanding from text prompts, enhancing
segmentation accuracy.

These multi-modal prompts fine-tune SAM through its lightweight
decoder. By integrating spatial precision with semantic context, we
introduce Geographical SAM (GeoSAM), an end-to-end SAM-
based model fine-tuned for multi-class segmentation of roads and
pedestrian infrastructure. GeoSAM outperforms traditional CNN-
based approaches [18, 17, 43], not only improving segmentation ac-
curacy but also demonstrating the potential of combining natural lan-
guage and visual interaction within foundation models for geograph-
ical imagery. Our contributions are three-fold: (1) We pioneer the
use of SAM for multi-class mobility infrastructure segmentation, in-
tegrating point and text prompts in geographical imagery. (2) We in-
troduce fine-tuning and automated prompt generation techniques that
inject domain knowledge from traditional models via multi-modal
prompts. (3) We conduct extensive evaluations on datasets from two
cities, demonstrating GeoSAM’s strong performance and generaliz-
ability across diverse locations.

2 Related Work
2.1 Traditional Geographical Methods

Before the emergence of foundation models, traditional task-specific
works, such as UNet-based approaches like [17, 28] and more ad-
vanced encoder-decoder-based works like [43, 7, 13] were devel-
oped to execute various geographical image segmentation tasks. Fur-
thermore, CNN-based work such as [18] focuses more on pedestrian
infrastructure segmentation in aerial images. Researchers have also
explored machine learning techniques to enhance CNN-based seg-
mentation for geographic objects [5, 1], along with transfer learning
approaches that leverage pretrained models [41]. While these efforts
improve remote sensing segmentation, they often rely on extensive
supervision and retraining. Accuracy gains aside, they fall short in
addressing the core challenge of generalizing to new locations.

2.2 Geographical Foundation Models

Task-agnostic vision foundation models address traditional segmen-
tation limitations by using prompts to adapt to unseen classes across
diverse tasks. While their use in geographical imagery, such as SAM,
remains limited, some studies have begun exploring its potential.
Works like [34, 23, 25] leverage SAM’s zero-shot capabilities for
tasks beyond segmentation, with [25] employing a hybrid zero-shot
and one-shot learning approach for geographical imagery segmen-
tation. However, these approaches are largely effective for objects
with well-defined boundaries and distinguishable physical contexts,
relying primarily on sensible prompts without requiring extensive
domain-specific knowledge.

Most research focuses on manual human prompting during in-
ference, though automated prompt generation has gained atten-
tion. Studies like [4, 35, 40] develop automated prompt-generation
techniques requiring substantial training data, while others, such
as [39, 25], use text queries in two-stage pipelines to generate bound-
ing box prompts for SAM. Direct integration of natural language text
prompts for improving SAM in geographical imagery remains unex-
plored. Methods like [22, 44] eliminate the need for prompts using
additional networks, but require extensive training data, while [36]
depends on auxiliary inputs like trajectory points, making it road-
specific and less generalizable to other classes.

To address domain-specific challenges, some works have fine-
tuned SAM using Parameter Efficient Fine-Tuning (PEFT) tech-
niques [19]. In geographical imagery, studies like [38, 10, 4, 12]
explore fine-tuning for diverse downstream tasks, yet no work, to
our knowledge, focuses on fine-tuning SAM specifically for mobil-
ity tasks such as pedestrian infrastructure segmentation. This critical
gap presents an opportunity for significant social impact in underper-
forming tasks.

2.3 Domain-Specific Geographical Foundation
Models

Researchers have also explored training domain-specific foundation
models on large-scale geographical imagery for targeted tasks. Sim-
ilar to SAM, works like [3, 32] develop non-promotable foundation
models using scaled ViT architectures, focusing on specific tasks
without user interaction. In a related effort, [38] employs a SAM-like
architecture trained on a massive remote sensing dataset. While many
of these studies target road segmentation, they overlook the critical
task of mobility infrastructure segmentation, such as sidewalks and
crosswalks. Moreover, the lack of public source code makes it diffi-
cult to evaluate their effectiveness for pedestrian infrastructure.

3 Method
3.1 Problem Definition

Given a geographical or remote sensing image i.e. aerial or satel-
lite imagery dataset D containing n sample images, where each
image I € R¥*W>3 represents a standard high-resolution RGB
image with height H, width W, and 3 color channels. We imple-
ment GeoSAM (illustrated in Figure 2a), which produces a multi-
class segmentation map S € R™*" for each input image, where
each pixel stores the predicted class index (e.g., background, pedes-
trian infrastructure, or road infrastructure). For training purposes,
we convert this into a one-hot encoded multi-channel representa-
tion S € {0, 1}#*WXC \yhere C is the number of classes, and
S’i, j.e = Lif pixel (%, j) belongs to class ¢, and 0 otherwise.
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3.2 SAM: Background

Segment Anything Model (SAM) consists of an image encoder
(Encr), a prompt encoder (Encp), and a mask decoder (Decwm).
Given an input image I € R¥*W>*3 and a set of prompts P,
SAM encodes the image as F; = Enci(I) and the prompts as
Tp = Encp(P). These embeddings are passed to the decoder, which
performs attention-based interactions and predicts the segmentation
mask:
S = DeCM(F}7 Tp).

Prompt embeddings T'» guide the decoder using both spatial and se-
mantic information.

3.3  Multi-Modal Prompt Generation

Point Prompts To segment sparse and spatially extensive struc-
tures like roads and sidewalks in remote sensing images, GeoSAM
leverages point prompts as its primary guidance mechanism. Unlike
bounding boxes, which are often impractical for such objects due
to their large spatial extent, point prompts enable precise localiza-
tion with minimal input. We introduce GPG, an automated approach
(Figure 2b) that generates multiple foreground and background point
prompts from a pre-trained traditional model fpr.. Each point is a 2D
spatial coordinate on the image, serving as either a foreground cue to
guide the model’s attention or a background cue to indicate regions
to avoid. Using multiple points helps reduce ambiguity and enables
the model to more accurately localize the target object, especially in
complex or overlapping areas.

The input image I € RF*W>3 is processed by the pre-trained
model fpre, Which outputs a pseudo-label segmentation map of the
same size:

Mpseudo - fpre(1)7 Mpseudo[i,j] S {07 1, ey C1pre - 1}, (1)

where Cp. is the number of semantic classes in the pre-trained
model, and each pixel in Mpseudo is assigned one of these class la-
bels.

We decompose the pseudo-label map Mpseudo into multiple binary
masks, one for each semantic class, as illustrated in Figure 2b. For

each class-specific mask, we randomly sample a set of point prompts
x = {x;}F_,, where each point z; is a 2D coordinate in the image
domain Q; C R?. The total number of sampled points per class is
denoted by k, and these points are used as point prompts to guide the
segmentation model. Then the set x is partitioned into foreground
and background points:

fe = {l’z € QI ‘ Mpseudn(xi) € Cfg}7 |:Cfg| = k17
Ibg = {xz € ‘ Mpseudo(xi) S Cbg}, ‘xbg| = k27 2)
z = 2% U™,
where £ = ki1 + ko denotes the total number of sampled point

prompts and Cr, and Cpg are the sets of class labels corresponding
to foreground and background, respectively. These point prompts are
transformed into high-dimensional embeddings of dimension C' us-
ing the frozen prompt encoder Encp.

T, = Encp(z) € RF*€. 3)

The pre-learned position embeddings from SAM’s pre-training (in-
dicating whether a point is in the foreground or background) are
appended with the 7. Here, the accuracy of Mpseuqo is not criti-
cal; as long as the generated points are approximately within the
foreground or background regions of the class, they can effectively
guide the focus of the segmentation process. For our experiments,
we adopt a standard semantic segmentation model fyr as the pre-
trained traditional model, which produces a multi-class segmenta-
tion map containing class sets of: Cig*' = {road}, Cr destrian
{sidewalk, crosswalk}, Cps = {background} Each binary seg-
mentation task, either between C“’ad and Cpg, Or between C’pede“" an
and Cypg, uses its corresponding foreground and background point
prompts to provide GeoSAM with class-specific spatial guidance.
Text Prompts In addition to geometric guidance from point prompts,
GeoSAM incorporates semantic context through text prompts ¢, en-
hancing the model’s ability to distinguish between overlapping ob-
jects. While point prompts indicate specific pixel locations, a single
pixel may belong to multiple classes (e.g., both road and crosswalk
at the same time). To resolve such ambiguities, text prompts provide
class-specific descriptions of the target object.
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Each text prompt follows the format: “[class]: Description.”,
where [class] denotes the target class (e.g., roads or side-
walks/crosswalks). For example, a generated prompt might be
“Roads: paved surfaces, vehicle lanes” (as can be seen in Figure 2a).
To improve robustness and avoid overfitting to static descriptions,
we dynamically generate diverse class-specific text prompts during
training using OpenAI’s GPT-4 [24]. These prompts are generated
solely based on the class name, without any access to image con-
tent, ensuring variability [9] in phrasing while maintaining class rele-
vance. The following instruction is provided to GPT-4 to create these
class definitions:

“role: system, content: You are a creative assistant, skilled in
providing detailed visual descriptions of objects as seen in
aerial imagery.”

“role: user, content: Print out a visual description (don’t men-
tion their names) that can be seen from aerial images of [CLS]
(in one line, 4 to 5 words, not more, not less).”

For each class, we generate a set of ¢, text prompts ¢ =
{t1,t2, ..., 1, }, which are encoded using CLIP’s text encoder [26]
to produce text embeddings T; € R'»*¢. CLIP (Contrastive Lan-
guage—Image Pretraining) is a vision-language model trained to align
image and text pairs in a shared embedding space. We leverage
CLIP’s inherent ability to project text and image inputs into a shared
embedding space for effective cross-modal alignment. To enhance
class discrimination, we append a learnable class-specific embed-
ding Egs € R to each text embedding, where C' = 512 is the
embedding dimension of CLIP. This mitigates the variability intro-
duced by natural language descriptions (e.g., from GPT-4) by allow-
ing the model to learn a consistent, discriminative representation for
each class. The resulting embeddings are L2-normalized along the
feature dimension and subsequently projected to match SAM’s em-
bedding dimension of 256 using a trainable linear projection layer
W, € RCX256:

T; = NORM| fuip (t)]W; € R™ ™%, 4)

Joint Multi-Modal Prompts As text prompt embeddings 73 encode
the semantic representation of the target class, they naturally com-
plement the foreground point embeddings 7, which capture precise
spatial localization. The two types of prompt embeddings are then
concatenated along the batch (prompt) dimension to form the joint
prompt embedding:

_ Ty (k+n)xC
Tp = |:Tt:| cR .

This design allows 7, to provide geometric position cues, while 7%
enriches the representation with high-level semantic information, en-
abling the model to reason more effectively about the target object.
Then, Tp along with F; are concatenated and supplied to the de-
coder.

3.4 Fine-Tuning the Decoder

Decoder Architecture The decoder utilizes a combination of bidi-
rectional transformers, where image embeddings (F7) are updated
through repeated Self Attention (SA) and Cross Attention (CA)
with prompts. The self-attention operation on 7, enables interac-
tion among different prompts, allowing them to exchange informa-
tion and refine their representations before attending to the image
features.

Tp = SA(Tp),
Tp = Tp +MLPp(CA(Th, F1)), )
Fy = F; + MLP;(CA(F;, Tp)),

where Tp represents the refined set of prompt embeddings, and Fy
denotes the updated set of visual embeddings after refining the em-
beddings by attending to the positional and semantic information of
the prompts, enabling context-aware representations that ultimately
produce the segmentation map. GeoSAM fine-tunes only the decoder
while keeping the rest of the model frozen; a common strategy in
foundation model adaptation [19]. This PEFT approach leverages
the encoder’s general representation capabilities while reducing the
computational overhead of a large foundation model by restricting
updates to the task-specific decoder.

Segmentation Map Adaptation SAM is originally a binary-class
segmentation model, producing a map that distinguishes only fore-
ground from background for a single class. GeoSAM extends this by
generating a multi-channel segmentation map, where each channel
corresponds to a target class, such as road or pedestrian infrastruc-
ture. Both classes are processed jointly throughout the pipeline by a
single shared decoder, and the model outputs all channels simulta-
neously. This design makes the framework easily extensible to addi-
tional classes, and the loss is computed by comparing the resulting
multi-channel outputs with one-hot encoded ground truth maps.
Loss Function We employ Dice Focal Loss, a synergistic combina-
tion of Dice Loss and Focal Loss, to address the challenges inher-
ent in segmenting high-resolution remote sensing images. Given that
mobility infrastructure occupies only a small fraction of these im-
ages, Dice Focal Loss effectively balances the need for precise over-
lap accuracy while mitigating the impact of severe class imbalance.
Let S¢ € [0,1]Y and G € {0,1}" denote the predicted and
ground-truth binary masks for class c, flattened over all N pixels.
Dice Loss is defined as:

230 (S°,G°)
SISl +11Ge]r)

where (-, -) denotes the dot product and || - ||1 the ¢1-norm (sum of
elements).

Focal Loss applies a balancing factor a.. and focusing parameter v
to emphasize hard examples:

LDice =1-

6

C
EFocal = — Z Qe (1 - SC),y GC IOg(SC)’ (7)

c=1

The total loss is computed as:

EDiceF()cz\l = [:Dice + ['Focal- (8)

4 Experiments

Our objective is to confirm the efficacy of the newly proposed
GeoSAM in enhancing segmentation performance across various
metrics. This will be accomplished by conducting a comprehensive
set of experiments designed to answer critical research inquiries.
QI: Does GeoSAM outperform the current state-of-the-art (SOTA)
methods in terms of performance in mobility infrastructure segmen-
tation? Q2: Can GeoSAM demonstrate superior generalizability by
performing effectively on previously unseen datasets? Q3: Is auto-
mated prompt generation necessary in the case of mobility infras-
tructure segmentation?
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Table 1. Details of the datasets used in this study. Diin and Dyegt are
collected from Washington, D.C., while Degey is used to evaluate
generalization performance on Cambridge, MA.

o | g | o[ St | e s |
Duun | WashingtonDC | 50088 TTONOD | 512512 | 2240 | 60
Dew | Washington DC | F3008000 TN | (12.512) | 1isa | 206
Deen Cambridge | 4300008 1081308 | (256.256) | 38080 | 2380

Washington DC
Image Ground Truth Image
*

Cambridge
Ground Truth

Figure 3. Randomly picked examples of Washington, D.C. and Cambridge
from the datasets (yellow = road, blue = pedestrian infrastructure).

4.1 Datasets

We define the training dataset as Diin {Iiain, Grain }» Where
Tirain and Girain represent n images and corresponding segmentation
ground truths (masks for roads and pedestrian infrastructure). Sim-
ilarly, the test dataset is denoted as Dyt = {liest, Giest}» and the
generalization dataset as Dgen = {Zgen, Gaen }-

These datasets are constructed from high-resolution orthorectified
aerial images and publicly available GIS data [8, 2], following the
methodology in [18]. Orthorectified tiles are aerial images that have
been geometrically corrected to ensure uniform scale and true top-
down perspective, enabling accurate spatial measurements. These
tiles [33] are downloaded using geographical bounding boxes and ap-
propriate zoom levels (e.g., zoom level O spans the entire world). The
GIS data, provided by respective local government authorities, con-
tains accurate coordinate information on urban infrastructure such
as roads and sidewalks, enabling reliable mask generation for the
two infrastructure classes. We additionally perform manual inspec-
tion and correction on the generated masks to fix any potential in-
consistencies or missing annotations. GeoSAM is trained and tested
in separate regions of Washington, D.C., with an additional test con-
ducted in Cambridge, MA, to evaluate generalization. We first down-
load the base images at their native resolutions (Table 1) and stitch
adjacent base image tiles within each region to form input images of
size 1024 x 1024, using zoom level 20. This resolution corresponds
to high-detail aerial imagery, capturing fine-grained urban structures
like lanes and sidewalks, consistent with standard geographical map-
ping scales. Figure 3 provides a couple of examples, and the dataset
preparation is explained further in Appendix A.3 [30].

4.2 Implementation Details

Experiments Setup We adopted ViT-H [11] as the encoder ver-
sion of SAM and initialized the model with pre-trained weights
from SAM’s ViT-H version. Following the original SAM paper set-
tings [21], the choice of optimizer was the AdamW (5, = 0.9,

1 Pedestrian Infrastructure

Initial Qutput Pust-Pm:msrd:

m‘ B

E.I:l_ili_hll

ed | Ground Truth

Figure 4. Postprocessing on two classes, with each row showing a
randomly selected test image for (a) road infrastructure and (b) pedestrian
infrastructure segmentation. Circles indicate cosmetic improvements.

B2 = 0.999), with an initial learning rate set at 10~> and weight
decay of 0.1, and no data augmentation techniques were applied. Fol-
lowing our experimentation on various values, we chose 0.8 for the
balancing factor («v) and 2 for the focusing parameter () loss func-
tion. To have an adaptable learning rate, a cosine annealing learning
rate scheduler was employed with a maximum learning rate decaying
smoothly to a minimum value (10~7) over the course of training. A
pre-trained nnU-Net [20] model (trained on the training dataset) has
been selected as the pre-trained traditional model for point prompt
generation. We adopted CLIP’s ViT-B version [26] as the text en-
coder. Finally, for point prompt generation, we selected 2000 fore-
ground and 1000 background points. All the experiments were con-
ducted on an NVIDIA GeForce RTX 4090 GPU with 24 GB of mem-
ory and Python 3.10.9. We use a total of 100 epochs to train GeoSAM
as well as the other baseline models. The source code can be found
in this publicly accessible GitHub repository [29].

Postprocessing We apply postprocessing uniformly to all model out-
puts, aiming to improve the structural coherence of segmentation
maps, with a particular emphasis on ensuring path connectivity over
precise pixel-wise correctness. Morphological operations like ero-
sion and dilation address common segmentation issues. Erosion re-
moves isolated regions, ensuring cleaner segmentation of pedestrian
paths, while dilation connects disjointed paths to improve route con-
tinuity. These operations are performed with a (10x10) filter over
a (1024 x1024) resolution map and iterated 10 times for effective
refinement. Figure 4 illustrates these techniques, showing improved
connectivity and alignment with the ground truth. Comparisons be-
tween initial and postprocessed outputs highlight the removal of iso-
lated regions and enhanced path continuity.

Benchmark Models We compare GeoSAM against several popular
semantic segmentation models from both CNN- and ViT-based, and
SAM-based approaches. All benchmarks follow GeoSAM’s train-
ing setup, using the same postprocessing and no data augmentation
for fair comparison. CNN-based baselines include UNet [27], nnU-
Net [20], UNet++ [45], DeepLabv3+ [6], and HRNet [31]. ViT-based
models include UNETR [15], Swin UNETR [14], SwinUNETR-
V2 [16], and nnFormer [42]. Additionally, we compare GeoSAM
with zero-shot SAM initialized with pre-trained weights (supple-
mented with point prompts created) and two notable SAM-based
geographical segmentation works, such as RSPrompter [4] and UV-
SAM [40]. We train each of the models from scratch using their de-
fault settings on Dirin described in Section 4.1. The summary of each
of the models can be found in Appendix A.4 [30]. During inference,
we evaluate these models on both Diey and Dy, datasets. For each
class, we compute the Intersection over Union (IoU) using a fixed
threshold to binarize predictions, and the Average Precision (AP) by
integrating over all possible thresholds.
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GeoSAM evaluation results against benchmark models (“Ped.” for Pedestrian, “Infras.” for Infrastructure). Washington, D.C. used for Testing, and
Cambridge, MA used for evaluating generalizability. The best results are in bold, and the second-best results are in underlined.

Dyet (Washington, D.C.) Dygen (Cambridge, MA)

ToU AP ToU AP
Method Road Ped. mloU Road Ped. mAP Road Ped. mloU Road Ped. mAP

Infras. | Infras. Infras. | Infras. Infras. | Infras. Infras. | Infras.
UNet [27] 0.45 0.17 0.31 0.44 0.22 0.33 0.24 0.12 0.18 0.11 0.05 0.08
nnU-Net [20] 0.65 0.32 0.49 0.56 0.32 0.45 0.25 0.15 0.21 0.05 0.09 0.07
UNet++ [45] 0.61 0.30 0.45 0.54 0.34 0.43 0.24 0.08 0.16 0.12 0.06 0.09
DeepLabv3+ [6] 0.47 0.18 0.32 0.46 0.22 0.34 0.10 0.06 0.08 0.05 0.04 0.04
HRNet [31] 0.50 0.19 0.34 0.49 0.23 0.36 0.13 0.08 0.10 0.08 0.06 0.06
UNETR [15] 0.48 0.20 0.34 0.50 0.27 0.38 0.27 0.11 0.18 0.12 0.05 0.08
Swin UNETR [14] 0.63 0.26 0.44 0.57 0.29 0.43 0.13 0.09 0.11 0.09 0.04 0.06
SwinUNETR-V2 [16] 0.66 0.22 0.43 0.54 0.26 0.40 0.15 0.08 0.12 0.09 0.04 0.06
nnFormer [42] 0.60 0.21 0.41 0.52 0.30 0.41 0.16 0.09 0.13 0.11 0.05 0.08
Zero-shot SAM [21] 0.30 0.18 0.24 0.34 0.23 0.27 0.25 0.12 0.18 0.11 0.06 0.08
RSPrompter [4] 0.46 0.20 0.33 0.49 0.25 0.37 0.09 0.07 0.08 0.08 0.04 0.06
UV-SAM [40] 0.57 0.21 0.39 0.55 0.26 0.40 0.11 0.07 0.09 0.08 0.05 0.06
GeoSAM (Ours) 0.70 0.39 0.54 0.61 0.42 0.51 0.34 0.18 0.26 0.20 0.16 0.18
Input Ground Truth GeoSAM Zero-shot SAM UV-SAM nnU-Net Swin UNETR |

Figure 5. Comparative qualitative segmentation results: GeoSAM vs. other benchmark models. Different colors (blue=pedestrian infrastructure, yellow=road
infrastructure) indicate distinct classes in the multi-class output. Each row displays a randomly selected image from the test dataset.

4.3  Results and Discussion

GeoSAM’s Superiority Over Other Methods (Q1) Figure 5
presents a qualitative comparison of GeoSAM with zero-shot SAM,
UV-SAM, nnU-Net, and Swin UNETR on randomly selected test
images. The results highlight the limitations of zero-shot SAM
on geographical images outside its training domain, particularly
with thin boundary objects, as noted in Section 1. In contrast,
GeoSAM demonstrates significantly improved segmentation accu-
racy, closely matching the ground truth. GeoSAM also outperforms
UV-SAM, nnU-Net, and Swin UNETR, particularly in handling in-
tricate boundaries by achieving results closest to the ground truth,
underscoring its superiority for mobility infrastructure segmentation.

In Table 2, we compare GeoSAM’s performance with established
semantic segmentation models (CNN- and ViT-based) and SAM-
based models. On the Washington, D.C. test set, GeoSAM outper-
forms SOTA models across both classes, surpassing the second-best
model, nnU-Net, by 5% in mIloU and 6% in mAP. Compared to Zero-
shot SAM, GeoSAM achieves a remarkable improvement of 30% in
mloU and 24% in mAP, highlighting SAM’s limitations with geo-

graphical images. GeoSAM significantly outperforms UV-SAM and
RSPrompter, the leading SAM-based models in this domain. These
results confirm GeoSAM’s effectiveness, even when trained in limited
data scenarios.

Generalization Performance of GeoSAM (02) GeoSAM’s perfor-
mance on the generalization dataset from Cambridge, MA, reveals a
decline across all models due to data shifts between regions. How-
ever, GeoSAM consistently outperforms SOTA models, achieving at
least double the performance of the second-best model. This high-
lights the limitations of traditional models, whose generalization is
constrained by training data, particularly in visually distinct regions
like Cambridge. Foundation models like SAM exhibit better adapt-
ability to diverse scenarios, and GeoSAM, enhanced by automated
guided prompts, further improves this adaptability, achieving 5% and
9% higher mloU and mAP than the second-best model. These results
validate GeoSAM'’s scalability and superior generalization capabil-
ities, leveraging the strengths of a foundation model.

Necessity of Auto Prompt Generation (Q3) Table 3 shows the ef-
fect of varying the number and ratio of point prompts on GeoSAM’s
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Table 3. Segmentation performance of GeoSAM using different numbers
and foreground-to-background ratios of point prompts.

Point Prompts TIoU
Foreground  Background Ratio Road Pedestrian
Points Points Infrastructure  Infrastructure

100 50 2:1 0.64 0.31
1000 500 2:1 0.65 0.33
2000 2000 1:1 0.67 0.34
2000 1000 2:1 0.70 0.39
2000 4000 1:2 0.66 0.27

performance. Since these prompts simulate user input, we identify
the optimal configuration generated by our automated system. A
2:1 foreground-to-background ratio with 2000:1000 points performs
best, likely due to the large image resolution (1024 x 1024), where
extensive foreground coverage helps segment large structures like
roads and sidewalks while fewer background points reduce ambigu-
ity. We use this as the default in GeoSAM. Even with 150 total points
(first row), pedestrian infrastructure performance drops by 8%, high-
lighting the model’s sensitivity to the number of prompts. Our cho-
sen 2:1 ratio is further supported by the characteristics of mobility
infrastructure: roads and sidewalks are spatially extensive yet sparse,
requiring dense sampling across fragmented regions, while the back-
ground is semantically redundant. Over-sampling background re-
duces the learning signal, but increasing foreground beyond this ratio
can lead to over-segmentation, where disconnected regions may be
incorrectly predicted as continuous infrastructure. These findings un-
derscore the necessity of automated prompt generation, as manually
crafting such a large number of prompts is practically infeasible.

Table 4. Components ablation study: examining the effects on
performance based on various model components.

Components TIoU
Point Text Fine-tuning | Road  Pedestrian
Prompts  Prompts Decoder Infras. Infras.
v v v 0.70 0.39
v X v 0.66 0.31
X v v 0.31 0.17
v X X 0.24 0.13

Ablation Study Table 4 evaluates the impact of key components on
GeoSAM, including point prompts, text prompts, and a fine-tuned
decoder. Using only point prompts results in an 8% decrease in
pedestrian infrastructure segmentation, emphasizing the critical role
of text prompts in providing semantic understanding to resolve am-
biguities. However, text prompts alone lead to a 22% performance
drop, demonstrating their insufficiency for nuanced segmentation
tasks due to the text encoder’s semantic limitations. Instead, text
prompts serve as effective secondary prompts, adding context to the
decoder. As secondary prompts, they effectively enhance the model’s
focus by providing additional context to the decoder during seg-
mentation. Removing the fine-tuned decoder further degrades per-
formance, with zero-shot SAM showing a 26% drop in pedestrian
infrastructure segmentation, highlighting the original SAM decoder’s
inadequacy for geographical images. Fine-tuning adapts the decoder
to the unique challenges of this domain.

Table 5 demonstrates that the choice of backbone used to gen-
erate point prompts is not overly critical. We observe only minor
performance drops when replacing nnU-Net [20] (our default) with
UNet [27] or Swin UNETR [14]. While the overall framework re-
mains robust, we note that pedestrian infrastructure shows slightly
higher sensitivity to backbone changes than roads. Because of its
structural variability and weaker visual cues, it can become more

Table 5. Backbone ablation study: performance comparison with different
backbones as the traditional pre-trained model to generate automated point

prompts for GeoSAM.
Pre-trained IoU AP
c-frame Road Pedestrian Road Pedestrian
Backbone Infras. Infras. Infras. Infras.
UNet [27] 0.67 0.35 0.59 0.38
nnU-Net [20] 0.70 0.39 0.61 0.42
Swin UNETR [14] 0.69 0.37 0.62 0.39

reliant on accurate spatial guidance. Nonetheless, as long as the
backbone provides reasonably well-positioned foreground and back-
ground points, GeoSAM maintains strong performance. Even with
different backbones, GeoSAM consistently outperforms all state-of-
the-art models listed in Table 2.

Table 6. Average inference time of different models on Dyese With
1024 x 1024 input images. Inference times are reported based on the
implementation and settings described in this work; results may vary under
different configurations.

Model Tuned Inference Time
Params. (M) (sec./image)
nnUNet [20] 7.8 2.01
DeepLabV3+ [6] 54 2.86
Swin UNETR [16] 6.3 3.44
GeoSAM (ours) 4.2 3.06

Further, as shown in Table 6, GeoSAM attains competitive in-
ference speed, being only marginally slower than nnUNet [20] and
DeepLabV3+ [6], despite leveraging a foundation model-based en-
coder. This efficiency largely stems from our design choice to pre-
compute pseudo labels offline and load them from disk during in-
ference, enabling fast generation of point prompts without addi-
tional runtime overhead. Notably, GeoSAM outperforms Swin UN-
ETR [16] in inference time, underscoring its efficiency among re-
cent SOTA methods. Moreover, GeoSAM requires the fewest tunable
parameters during training, highlighting its suitability for resource-
constrained settings and real-world deployment.

5 Conclusion

GeoSAM adapts SAM for mobility infrastructure segmentation in
geographical images, with a strong social impact, particularly for
pedestrian safety. It integrates multi-modal prompts (point and text)
and fine-tunes SAM’s decoder. Unlike existing methods, our train-
ing and end-to-end inference pipeline is transferable across locations
and classes using any pre-trained traditional model. The approach is
generic, reproducible, and adaptable to various domain-specific seg-
mentation tasks.

Limitation and Future Work We aim to extend the application of
GeoSAM to a wider range of geographical regions by incorporating
datasets from various other cities, enabling a more comprehensive
analysis of its generalizability across diverse urban layouts and vi-
sual conditions. In addition, we plan to expand support for additional
object types such as stairs, islands/bridges, and potholes, as well as
explore its applicability to other imaging modalities.
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