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Consistent observations across recording modalities, experiments, and neural 

systems find neural field spectra with 1/f-like scaling, eliciting many alternative 

theories to explain this universal phenomenon. We show that a general dynamical 

system with stochastic drive and minimal assumptions generates 1/f-like spectra 

consistent with the range of values observed in vivo, without requiring a specific 

biological mechanism or collective critical behavior. 

 

1  Introduction 
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Transient oscillations are a prominent feature of macroscopic neural field activity 

(Buzsaki, 2011), linked to brain function (Buzsaki & Draguhn, 2004) and dysfunction 

(Gibbs & Lennox, 2002; Uhlhaas & Singer, 2012). Oscillations appear as narrowband 

increases in the spectrum above an aperiodic background in which the power 𝑃 

decreases proportional to the frequency 𝑓 raised to an exponent 𝛽: 𝑃 ∝ 𝑓𝛽. 

Characterizing oscillations while accounting for the aperiodic background is important for 

understanding neural spectra (Donoghue et al., 2020). Sophisticated methods 

(Donoghue et al., 2020; Wen & Liu, 2016; L. E. Wilson et al., 2022) support estimation of 

the 1/f-like, scale-free (He, 2014) or power-law (Newman, 2005) behavior of neural field 

spectra. Changes in 𝛽, the aperiodic exponent, have been investigated in many domains, 

including sleep (Bódizs et al., 2021; Freeman & Zhai, 2009; G. Horváth et al., 2022; 

Lendner et al., 2020), aging (Cesnaite et al., 2023; Schaworonkow & Voytek, 2021; 

Voytek et al., 2015), and disease (Lanzone et al., 2022; Numan et al., 2022; Robertson 

et al., 2019). While many factors impact estimation of the aperiodic exponent (e.g., the 

frequency range analyzed (Gerster et al., 2022; Stumpf & Porter, 2012)), values of the 

exponent reported at higher frequencies (>20 Hz) typically range between −4 and −2 

(Table 1). 
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Table 1: Example aperiodic exponents for human voltage spectra reported in the literature. The mean value of the 

aperiodic exponent (𝛽) reported in the reference listed in column Reference. Additional details include recording modality, 

number of subjects 𝑛, frequency range analyzed, and experimental condition. Considering only those studies with minimum 

frequencies ≥20 Hz (yellow highlighted rows), the aperiodic exponent has mean -3.1, lower quartile -4, and upper quartile 

-2.5. 

 

𝜷 Reference Recording modality Frequency Experimental condition 

−𝟎.𝟎𝟖 (Colombo et al., 2019) Scalp EEG (n=5) 20-40 Hz Anesthesia (Ketamine) 

−𝟏.𝟏𝟐 (Lanzone et al., 2022) Scalp EEG (n=16) 1-40 Hz Eyes closed 

 −𝟏. 𝟑 (Adelhöfer et al., 2021) Scalp EEG (n=74) 2-40 Hz Behavioral experiments 

−𝟏.𝟒𝟒 (Adelhöfer et al., 2021) Scalp EEG (n=74) 2-40 Hz Behavioral experiments 

−𝟏.𝟒𝟖 (Lanzone et al., 2022) Scalp EEG (n=18) 1-40 Hz Stroke patients 

−𝟏.𝟓𝟏 (Robertson et al., 2019) Scalp EEG (n=78) 4-50 Hz Resting state 

−𝟏.𝟔𝟕 (Robertson et al., 2019) Scalp EEG (n=76) 4-50 Hz Resting state 

−𝟏.𝟖𝟒 (Lendner et al., 2020) Scalp EEG (n=9) 30-45 Hz Wakefulness 

−𝟏.𝟖𝟔 (Fransson et al., 2013) Scalp EEG (n=7) 0.2-30 Hz Sleep 
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−𝟏.𝟖𝟕 (Lendner et al., 2020) Scalp EEG (n=14) 30-45 Hz Resting state 

−𝟐.𝟎𝟑 (Colombo et al., 2019) Scalp EEG (n=5) 20-40 Hz Wakefulness 

−𝟐.𝟎𝟕 (Fransson et al., 2013) Scalp EEG (n=15) 0.2-30 Hz Sleep 

−𝟐.𝟑𝟐 (Freeman et al., 2000) Intracranial EEG (n=5) 0.5-150 Hz Resting state 

−𝟐.𝟑𝟑 (Bódizs et al., 2021) Scalp EEG (n=175) 2-48 Hz NREM sleep 

−𝟐.𝟒𝟒 (He et al., 2010) Intracranial EEG (n=5) 1-100 Hz Wakefulness 

−𝟐.𝟒𝟖 (Colombo et al., 2019) Scalp EEG (n=5) 20-40 Hz Wakefulness 

−𝟐.𝟕𝟏 (G. Horváth et al., 2022) Scalp EEG (n=251) 2-48 Hz NREM sleep 

−𝟐.𝟕𝟑 (Bódizs et al., 2021) Scalp EEG (n=175) 2-48 Hz NREM sleep 

−𝟐.𝟕𝟓 (Lendner et al., 2020) Intracranial EEG (n=12) 30-45 Hz Wakefulness 

−𝟐.𝟖𝟕 (He et al., 2010) Intracranial EEG (n=5) 1-100 Hz Slow wave sleep 

−𝟐.𝟗𝟗 (Lendner et al., 2020) Intracranial EEG (n=10) 30-45 Hz Wakefulness 

−𝟑. 𝟏 (Lendner et al., 2020) Scalp EEG (n=9) 30-45 Hz Anesthesia 

−𝟑.𝟏𝟑 (Colombo et al., 2019) Scalp EEG (n=5) 20-40 Hz Wakefulness 

−𝟑.𝟒𝟔 (Lendner et al., 2020) Scalp EEG (n=14) 30-45 Hz N3 Sleep 

−𝟑.𝟓𝟗 (Colombo et al., 2019) Scalp EEG (n=5) 20-40 Hz Anesthesia (Xenon) 
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−𝟑.𝟔𝟕 (Lendner et al., 2020) Scalp EEG (n=14) 30-45 Hz N2 Sleep 

−𝟑.𝟔𝟗 (Lendner et al., 2020) Intracranial EEG (n=10) 30-45 Hz N3 Sleep 

 −𝟒 (Miller et al., 2009) Intracranial EEG (n=20) 80-500 Hz Behavioral experiments 

−𝟒.𝟏𝟓 (Lendner et al., 2020) Intracranial EEG (n=10) 30-45 Hz REM sleep 

−𝟒.𝟑𝟒 (Lendner et al., 2020) Intracranial EEG (n=12) 30-45 Hz Anesthesia 

−𝟒.𝟑𝟔 (Colombo et al., 2019) Scalp EEG (n=5) 20-40 Hz Anesthesia (Propofol) 

−𝟒.𝟕𝟑 (Lendner et al., 2020) Scalp EEG (n=14) 30-45 Hz REM sleep 
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The universal observation of 1/f-like neural field spectra with a restricted range of 

aperiodic exponents across different recording modalities, experiments, and neural 

systems suggests a common generative mechanism. However, many complex, specific 

mechanisms have been identified to generate this phenomenon. These include 

excitatory/inhibitory balance (Gao et al., 2017), low-pass frequency filtering by dendrites 

(Buzsáki et al., 2012) or the extracellular medium (Bédard et al., 2006), nonideal resistive 

components in the cell membrane (Bédard & Destexhe, 2008), stochastic firing of 

neurons convolved with an exponential relaxation process (Bédard et al., 2006; Miller et 

al., 2009; Milstein et al., 2009), stochastic synaptic conductances (Rudolph et al., 2005), 

stochastically driven damped oscillators with different relaxation rates (Evertz et al., 

2022), local homogenous connectivity (Jirsa, 2009), combinations of many transient 

oscillations at different frequencies and amplitudes (He et al., 2010), or network 

mechanisms linking slower rhythms to broad neuronal recruitment and therefore larger 

amplitude field potentials (Buzsáki et al., 2012). Theoretically, scale-free phenomena – 

with 1/f-like behavior – have been linked to fractal properties (Pritchard, 1992), critical 

transitions (Newman, 2005; O’Byrne & Jerbi, 2022), and self-organized criticality (Bak et 

al., 1987; Cocchi et al., 2017). How these proposed biological and mathematical 

mechanisms contribute – separately or combined – to the range of aperiodic exponents 

observed across diverse neural field spectra remains unclear. 

 

Here we demonstrate how, in general, a dynamical system with stochastic drive 

generates 1/f-like behavior at higher frequencies in neural field spectra. We show that two 
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noise terms – representing correlated and uncorrelated noise inputs – produce the range 

of aperiodic exponents observed in vivo. We illustrate these general results in nonlinear 

models of neural and non-neural activity to demonstrate the ambiguity in determining the 

specific mechanisms given only the observed 1/f-like behavior in the spectrum. While 

more complex underlying mechanisms may exist, we instead illustrate how the range of 

aperiodic exponents observed in vivo occurs in general for dynamical systems with 

stochastic drive, without requiring a specific biological mechanism or tuning to collective 

critical behavior. 

 

2  Results 
 

 

 

As a general model of neural activity, we consider the n-dimensional dynamical system: 

 

 𝑑𝑋𝑘

𝑑𝑡 = 𝑓𝑘(𝑋1,𝑋2, … , 𝑋𝑛) + ∑𝐵𝑘𝑗 𝜖𝑋,𝑗

𝑚

𝑗=1

 (1) 

 

where, for each 𝑘 = {1, 2,… , 𝑛}, 𝑋𝑘 is a 1-dimensional variable, 𝑓𝑘 is a nonlinear function, 

𝐵𝑘𝑗 is a constant, and 𝜖𝑋,𝑗 is an independent Gaussian white noise source with mean 0 

and variance 𝜎𝑋,𝑗
2 . We assume the variable 𝑋1 (i.e., 𝑘 = 1) is an observable quantity (e.g., 

the voltage recorded in the EEG or LFP) and all other variables (𝑋2,𝑋3,… ,𝑋𝑛) represent 

n-1 unobserved or latent variables impacting the observable dynamics. The unspecified 

model (1) is general and therefore consistent with diverse models of neural activity. To 
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derive the main result from this general model requires no specific biophysical 

mechanism. In what follows, we illustrate these general results by making specific model 

choices for the variables (𝑋𝑘) and functions (𝑓𝑘). 

 

We assume an equilibrium exists in the noise-free model so that (𝑑𝑋1
𝑑𝑡

, 𝑑𝑋2
𝑑𝑡

, … , 𝑑𝑋𝑛
𝑑𝑡

) =

(0,0,… , 0) at (𝑋1, 𝑋2,… ,𝑋𝑛) ≡ 𝑋⃗0. Near this equilibrium, the dynamics for one variable (𝑋𝑘) 

of the nonlinear system (1) can be approximated by the corresponding linear system, 

 

 𝑑𝑥𝑘 
𝑑𝑡 =  (

𝜕𝑓𝑘
𝜕𝑋1

|
𝑋⃗⃗0

) 𝑥1 + (
𝜕𝑓𝑘
𝜕𝑋2

|
𝑋⃗⃗0

) 𝑥2 + ⋯ + (
𝜕𝑓𝑘
𝜕𝑋𝑛

|
𝑋⃗⃗0

) 𝑥𝑛 + ∑𝐵𝑘𝑗 𝜖𝑋,𝑗

𝑚

𝑗=1

 (2) 

 

where 𝑥𝑘 represent small deviations of the variable 𝑘 from the equilibrium 𝑋𝑘
0, we evaluate 

the partial derivatives of the nonlinear function 𝑓𝑘 at the equilibrium 𝑋⃗0 (Guckenheimer, 

John & Holmes, Philip, 1983; Izhikevich, E, 2007), and we include the same stochastic 

perturbations as in the nonlinear system (1). We express the system (2) as 

 

 𝑑
𝑑𝑡 𝑥 =  𝑨 𝑥⃗ + 𝑩 𝜖 , (3) 

 

where 𝑥 is the 𝑛-by-1 vector of deviations from the equilibrium, 𝜖 is the 𝑚-by-1 vector of 

independent 𝛿-correlated Gaussian white noise sources, 𝑨 is the 𝑛-by-𝑛 Jacobian matrix 

of the nonlinear system (1) evaluated at the equilibrium, and 𝑩 is the 𝑛-by-𝑚 noise matrix, 
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𝑩 =  

[
 
 
 
 
𝐵11 𝐵12 𝐵13 … 𝐵1𝑚
𝐵21 𝐵22 𝐵23 … 𝐵2𝑚
𝐵31 𝐵32 𝐵33 … 𝐵3𝑚
⋮ ⋮ ⋮ ⋱ ⋮

𝐵𝑛1 𝐵𝑛2 𝐵𝑛3 … 𝐵𝑛𝑚]
 
 
 
 
 , 

 

where the parameter 𝐵𝑖𝑗 determines the contribution of noise source 𝑗 to variable 𝑖. We 

assume that 𝑨 satisfies the conditions required for the linear system (3) to accurately 

approximate the dynamics of the noise-free nonlinear system (1) near the equilibrium 

(i.e., we assume 𝑨 has no eigenvalues with zero real part and the equilibrium is therefore 

hyperbolic (Guckenheimer, John & Holmes, Philip, 1983; Izhikevich, E, 2007)).  

 

For the linear system (3), the cross-spectral matrix 𝑺[𝜔] can be obtained from the 

expression (Gardiner, C, 2004; Kleeman, 2011; Thomas & Lindner, 2019), 

 

 𝑺[𝜔] =
1

2 𝜋 (𝑨 + 𝑖𝜔𝑰)−1 (𝑩 𝑩𝑇)(𝑨𝑇 − 𝑖𝜔𝑰)−1 , (4) 

 

where 𝑨 is real, 𝑰 is the identity matrix, 𝑖 =  √−1, and 𝜔 = 2𝜋𝑓 is the frequency. Evaluating 

the asymptotic behavior of the cross-spectral matrix at high frequencies (𝜔 larger than 

any frequency associated with a natural rhythm of the linear system in (3)), the spectrum 

of the observable variable 𝑋1 is 

 

 𝑆11[𝜔] =  (𝐵11
2 + 𝐵12

2 + ⋯+ 𝐵1𝑚
2 )𝒪(𝜔−2) + 𝒪(𝜔−4) , (5) 
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where 𝒪(𝜔𝑘) indicates the limiting behavior of the spectrum as a function of the kth power 

of 𝜔 as 𝜔 → ∞; see Appendix.  

 

The result in (5) shows that, at high frequencies, the aperiodic exponent 𝛽 depends on 

the relative noise to the observable variable. Without stochastic drive to the observable 

variable 𝑋1 (i.e., with 𝐵1𝑘 = 0 for all 𝑘 in {1,2,…𝑚}), 

  

 𝑆11[𝜔] = 𝒪(𝜔−4) ,  

 

so that the aperiodic exponent 𝛽 = −4 at high frequencies (i.e., as 𝜔 → ∞). Alternatively, 

with stochastic drive to the observable variable 𝑋1 (i.e., with 𝐵1𝑘 ≠ 0 for any 𝑘 in 

{1,2,… 𝑚}),  

 

 𝑆11[𝜔] = 𝒪(𝜔−2) ,  

 

so that the aperiodic exponent 𝛽 = −2 at high frequencies (i.e., as 𝜔 → ∞). We note that, 

in this case, random walk dynamics dominates the spectrum at high frequencies, with 

well-known power-law behavior (e.g., see (Milotti, 2002)). 

 

To summarize, we consider a general, n-dimensional nonlinear dynamical system with 

stochastic drive (1). We assume an equilibrium exists in this system with dynamics well-

approximated by the linearized system (2). Near this equilibrium, the dynamics produce 

aperiodic exponents between −4 and −2 at high frequencies (i.e., frequencies beyond 
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the natural frequencies or spectral peaks of the system) consistent with the range of 

values observed in vivo. The value of the aperiodic exponent depends on the noise in the 

observed and latent variables; when noise in the observable variable 𝑋1 dominates, the 

aperiodic exponent ≈ −2, while when the noise in the latent variables dominates, the 

aperiodic exponent ≈ −4. 

 

The main result (5) and implications for the aperiodic exponent (−4 ≤ 𝛽 ≤ −2) are for the 

general model (1). These general results do not require a specific biophysical model of 

neural activity. In what follows, we illustrate the generality of these results in four example 

models, in which we choose the nonlinear functions 𝑓𝑘 in model (1) and assume a square 

diagonal noise matrix 𝑩 to simplify the presentation of numerical simulation results. In 

doing so, we show that each model produces aperiodic exponents consistent with in vivo 

data (−4 ≤ 𝛽 ≤ −2) but with different physical interpretations.  

 

2.1  A reduced model of single neuron activity  

 

We first consider a reduced Hodgkin-Huxley type model (Hodgkin & Huxley, 1952; 

Izhikevich, E, 2007) to simulate the subthreshold dynamics of a single neuron. The model 

equations describe the dynamics of an observable voltage (𝑉) and a latent membrane 

current (𝑀), 

 

 𝑑𝑉
𝑑𝑡

=  𝐼0 + 𝑔𝑀𝑀(𝐸𝑀 − 𝑉) + 𝜖𝑉 (6) 
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𝑑𝑀
𝑑𝑡 =  𝛼𝑀[𝑉](1 − 𝑀) − 𝛽𝑀[𝑉]𝑀 + 𝜖𝑀 . 

 

In the first equation, three terms drive the voltage dynamics: a constant input current (𝐼0), 

a dynamic membrane current (𝑔𝑀𝑀(𝐸𝑀 − 𝑉)), and voltage noise (𝜖𝑉, Gaussian distributed 

with mean 0 and variance 𝜎𝑉
2). In the second equation, the dynamics of the latent 

membrane current depend on forward (𝛼𝑀[𝑉]) and backward (𝛽𝑀[𝑉]) rate functions, 

 

 𝛼𝑀[𝑉] =
0.02

1 + exp(−𝑉 − 20
5 )

 

 

𝛽𝑀[𝑉] = 0.01 exp(
−𝑉 − 43

18 ) . 

 

 

We choose these functions to simulate a muscarinic receptor suppressed potassium 

current (M-current, see Table A2 of (Traub et al., 2003)) (Kopell et al., 2011; Kramer, 

Roopun, et al., 2008). We omit other membrane currents (e.g., fast sodium and potassium 

currents) to focus on the subthreshold membrane dynamics without action potential 

generation. A stochastic drive also impacts the membrane current dynamics (𝜖𝑀, 

Gaussian distributed with mean 0 and variance 𝜎𝑀
2 ).  

 

Choosing the model parameters 𝐼0 = 1,  𝑔𝑀 = 4, and 𝐸𝑀 = −95, we find an equilibrium of 

the noise-free model (6) at  
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(𝑉0,𝑀0) ≈ (−48.15,0.00534) . 

 

The noise-driven linearized system near this equilibrium is approximately, 

 

 𝑑𝑉̅
𝑑𝑡 =  −0.0213 𝑉̅ − 187.38 𝑀̅ + 𝜖𝑉 

 

𝑑𝑀̅
𝑑𝑡 =  0.0000181 𝑉̅ − 0.0134 𝑀̅ + 𝜖𝑀 , 

 

 

and the equilibrium is hyperbolic with eigenvalues −0.0174 ± 0.0581 𝑖. 

 

Consistent with the general theory, we expect this nonlinear Hodgkin-Huxley type model 

(6) to produce spectra with aperiodic exponents −4 ≤ 𝛽 ≤ −2, depending on the values 

of the stochastic drives (𝜖𝑉, 𝜖𝑀). To show this, we simulate the Hodgkin-Huxley type model 

(6) and estimate the spectrum of the voltage variable 𝑉 with fixed current noise (𝜎𝑀 =

0.01) and variable voltage noise (0 ≤ 𝜎𝑉 ≤ 30). In agreement with the general theory 

(Figure 1), as the voltage noise increases, the aperiodic exponent increases from near 

𝛽 ≈ −4 when 𝜎𝑉 = 0 to 𝛽 ≈ −2 when 𝜎𝑉 = 30. 

 

We conclude that this nonlinear model of single neuron subthreshold dynamics (6) 

produces aperiodic exponents consistent with the range of values observed in vivo. In 

agreement with the general theory, the value of the aperiodic exponent depends on the 



 14 

relative noise in the observable voltage variable and latent current variable. In this case, 

when noise in the membrane current dominates, the aperiodic exponent approaches −4; 

when noise in the voltage dominates, the aperiodic exponent approaches −2. 

 

 

Figure 1: In a reduced model of single neuron activity, the aperiodic exponent 

increases from approximately −𝟒 to −𝟐 with the voltage noise. (A,B) Example 

voltage time series when (A) the voltage noise is 0 (i.e., 𝜖𝑉 = 0), or (B) the voltage noise 

is non-zero (i.e., 𝜎𝑉 = 20). (C,D) The corresponding spectra (black) and linear fits (red, 
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50 Hz to 250 Hz) for the time series in (A,B). (E) Estimates of the aperiodic exponent for 

increasing values of voltage noise. Black (red) indicates mean (standard deviation) of 

estimates across 100 simulations. In all simulations, the current noise (𝜎𝑀 = 0.01) is fixed 

and numerical integration is performed using the Euler–Maruyama method with timestep 

0.01 ms. Code to simulate the model and create this figure is available at 

https://github.com/Mark-Kramer/Aperiodic-Exponent-Model 

 

  

2.2  A 2-dimensional model of neural population activity 

 

We now consider the Wilson-Cowan equations as a model of neural population activity 

(H. R. Wilson & Cowan, 1972). The equations describe the interacting dynamics of an 

excitatory (𝐸) and inhibitory (𝐼) neural population, 

 

 
𝜏𝑒

𝑑𝐸
𝑑𝑡 = −𝐸 + (𝑘𝑒 − 𝑟𝑒 𝐸) 𝒮𝑒[𝑐1𝐸 − 𝑐2𝐼 + 𝑃] + 𝜖𝐸  

 

𝜏𝑖
𝑑𝐼
𝑑𝑡 = −𝐼 + (𝑘𝑖 − 𝑟𝑖 𝐼)   𝒮𝑖[𝑐3𝐸 − 𝑐4𝐼 + 𝑄] + 𝜖𝐼 , 

 

(7) 

 

where 𝒮 is the sigmoid function, 

 

 𝒮𝑘[𝑥] =
1

1 + exp(−𝑎𝑘 (𝑥 − 𝜃𝑘))
 − 

1
1 + exp(𝑎𝑘 𝜃𝑘)

 , 

 

https://github.com/Mark-Kramer/Aperiodic-Exponent-Model
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and 𝜖𝐸 and 𝜖𝐼 are noise terms (Gaussian distributed with mean 0 and variances 𝜎𝐸
2 and 

𝜎𝐼
2, respectively). We choose the parameters to produce damped oscillatory behavior 

(see Figure 10 of (H. R. Wilson & Cowan, 1972) and the caption of Figure 2 for the 

parameter values used here). With these parameters, we find an equilibrium of the noise-

free model (7),  

 

(𝐸0, 𝐼0) ≈ (0.1511, 0.1585) .  

 

The noise-driven linearized system near this equilibrium is approximately, 

 

 𝑑𝐸̅
𝑑𝑡 =  1.482 𝑉̅ − 2.660 𝐼 ̅ + 𝜖𝐸  

 

𝑑𝐼̅
𝑑𝑡 =  3.963 𝑉̅ − 1.981 𝐼 ̅ +  𝜖𝐼 , 

 

 

and the equilibrium is hyperbolic, with eigenvalues −0.250 ± 2.75 𝑖. 

 

According to the general theory, we expect the nonlinear system (7) near the equilibrium 

(𝐸0, 𝐼0) to produce spectra with aperiodic exponents −4 ≤ 𝛽 ≤ −2, depending on the 

values of the stochastic drives (𝜖𝐸, 𝜖𝐼). To show this, we simulate the nonlinear system (7) 

and estimate the spectrum of the excitatory variable 𝐸 with fixed inhibitory noise (𝜎𝐼 = 0.1) 

and variable excitatory noise (0 ≤ 𝜎𝐸 ≤ 0.3). In agreement with the general theory (Figure 
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2), as the excitatory noise increases, the aperiodic exponent increases from near 𝛽 ≈ −4 

when 𝜎𝐸 = 0 to 𝛽 ≈ −2 when 𝜎𝐸 = 0.3. 

 

We conclude that this nonlinear model of neural population activity (7) produces aperiodic 

exponents consistent with the range of values observed in vivo. In this model, the value 

of the aperiodic exponent depends on the relative noise in the observable variable 𝐸 and 

latent variable 𝐼. When noise in the inhibitory population dominates, the aperiodic 

exponent approaches −4; when noise in the excitatory population dominates, the 

aperiodic exponent approaches −2. 
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Figure 2: In a 2-dimensional model of neural population activity, the aperiodic 

exponent increases from approximately −𝟒 to −𝟐 with the excitatory noise. (A,B) 

Example excitatory population time series when (A) the excitatory noise is 0 (i.e., 𝜖𝐸 = 0), 

or (B) the excitatory noise is non-zero (i.e., 𝜎𝐸 = 0.2). (C,D) The corresponding spectra 

(black) and linear fits (red, 20 Hz to 250 Hz) for the time series in (A,B). (E) Estimates of 

the aperiodic exponent for increasing values of excitatory noise. Black (red) indicates 

mean (standard deviation) of estimates across 100 simulations. In all simulations, the 

inhibitory noise (𝜎𝐼 = 0.1) is fixed. We use the model parameters: 𝑐1 = 15, 𝑐2 = 15, 𝑐3 =
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15, 𝑐4 = 7, 𝑎𝑒 = 1, 𝜃𝑒 = 2, 𝑎𝑖 = 2, 𝜃𝑖 = 2.5, 𝜏𝑒 = 50, 𝜏𝑖 = 50, 𝑟𝑒 = 1, 𝑟𝑖 = 1, 𝑘𝑒 = 1, 𝑘𝑖 =

1,𝑃 = 1.25,𝑄 = 0, and perform numerical integration using the Euler–Maruyama method 

with timestep 0.1 ms. Code to simulate the model and create this figure is available at 

https://github.com/Mark-Kramer/Aperiodic-Exponent-Model. 

 

 

2.3  A 10-dimensional model of neural population activity 

 

To illustrate an application of the main result (5) to a higher-dimensional neural model, 

we consider a mean-field model of neural population activity consisting of the coupled 

differential equations: 

 

 
𝜏𝑘

𝑑ℎ𝑘

𝑑𝑡 = (ℎ𝑘
𝑟𝑒𝑠𝑡 − ℎ𝑘) + 𝜓𝑒𝑘[ℎ𝑒] 𝐼𝑒𝑘 + 𝜓𝑖𝑘[ℎ𝑖] 𝐼𝑖𝑘 

 

(
𝑑
𝑑𝑡 + 𝛾𝑘)

2

𝐼𝑘𝑙 = ( 𝑁𝑘𝑙
𝛽  𝑆𝑘[ℎ𝑘] + 𝑃𝑘𝑙 ) 𝐺𝑘 𝛾𝑘 𝑒 

(8) 

where 𝑘 = {𝑒, 𝑖} and 𝑙 = {𝑒, 𝑖} denote excitatory (𝑒) and inhibitory (𝑖) neural populations, 

𝜓𝑘𝑙 are normalized weighting functions, and 𝑆𝑘[ℎ𝑘] are sigmoidal transfer functions (M. L. 

Steyn-Ross et al., 2003). The model variables simulate the macrocolumn-averaged 

transmembrane soma voltage of an excitatory (ℎ𝑒) and inhibitory (ℎ𝑖) neural population, 

and synaptic input (𝐼𝑘𝑙) from population 𝑘 to population 𝑙. Expressing the second-order 

differential equations for the synaptic inputs 𝐼𝑘𝑙 as first-order differential equations results 

in a system of 10 coupled first-order differential equations. The variable ℎ𝑒 is observable 

https://github.com/Mark-Kramer/Aperiodic-Exponent-Model
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(M. L. Steyn-Ross et al., 1999) and the other variables are latent. We include independent 

stochastic drive to the dynamics of the observable variable (mean 0 and variance 𝜎ℎ𝑒
2 ) 

and each latent variable (mean 0 and variance 𝜎𝐿
2 to all latent variables). Applications of 

the model include simulating electroencephalogram (EEG) dynamics during sleep (D. 

Steyn-Ross et al., 2005; M. L. Steyn-Ross et al., 2005; M. T. Wilson, Steyn-Ross, et al., 

2006), seizures (Kramer et al., 2005, 2007; M. L. Steyn-Ross et al., 2012; M. T. Wilson, 

Sleigh, et al., 2006), and anesthesia (M. L. Steyn-Ross et al., 1999, 2003). 

 

Fixing all model parameters to the default values in (M. L. Steyn-Ross et al., 2003), a 

stable equilibrium exists (M. L. Steyn-Ross et al., 2003). We therefore expect, consistent 

with the general theory, the model (8) to produce spectra with aperiodic exponents −4 ≤

𝛽 ≤ −2, depending on the values of the stochastic drives. To show this, we simulate the 

model (8) and estimate the spectrum of the voltage variable ℎ𝑒 with fixed noise (𝜎𝐿 = 50) 

to all latent variables and variable noise to the observable variable (ℎ𝑒, 0 ≤ 𝜎ℎ𝑒 ≤ 1). In 

agreement with the general theory (Figure 3), as the noise to the excitatory neural 

population increases, the aperiodic exponent increases from near 𝛽 ≈ −4 when 𝜎ℎ𝑒 = 0 

to 𝛽 ≈ −2 when 𝜎ℎ𝑒 = 1. 

 

We conclude that this high-dimensional (10th order) nonlinear model of macroscopic 

neural population activity (8) produces aperiodic exponents consistent with the range of 

values observed in vivo. In agreement with the general theory, the value of the aperiodic 

exponent depends on the relative noise in the observable variable (ℎ𝑒) and latent 

variables. In this case, when noise outside of the excitatory population dominates, the 
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aperiodic exponent approaches −4; when noise in the excitatory population (ℎ𝑒) 

dominates, the aperiodic exponent approaches −2. 

 

 

Figure 3: In a 10-dimensional model of neural population activity, the aperiodic 

exponent increases from approximately −𝟒 to −𝟐 with increasing noise to the 

excitatory neural population. (A,B) Example excitatory neural population activity when 

(A) noise to the excitatory neural population is 0 (i.e., 𝜖ℎ𝑒 = 0), or (B) non-zero (i.e., 𝜎ℎ𝑒 =

1). (C,D) The corresponding spectra (black) and linear fits (red, 50 Hz to 1000 Hz) for the 
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time series in (A,B). (E) Estimates of the aperiodic exponent for increasing values of 

excitatory neural population noise. Black (red) indicates mean (standard deviation) of 

estimates across 100 simulations. In all simulations, the latent noise terms (𝜎𝐿 = 50) are 

fixed and numerical integration performed using the Euler–Maruyama method with 

timestep 0.1 ms. Code to simulate the model and create this figure is available at 

https://github.com/Mark-Kramer/Aperiodic-Exponent-Model 

 

2.4  A model of predator-prey interactions 

 

To illustrate the generality of the main result (5) beyond models of neural activity we 

consider a nonlinear model of predator-prey interactions, 

 

 𝑑𝑥
𝑑𝑡 =

 𝑥(𝛾 − 𝑥)
𝛾 −  𝑥 𝑦 + 𝜖𝑥 

 

𝑑𝑦
𝑑𝑡 =  −𝛼 𝑦 +  𝑥 𝑦 + 𝜖𝑦 ,  

(9) 

 

where 𝑥 and 𝑦 represent prey and predator populations, respectively, and the prey 

population includes self-regulation; (𝛼, 𝛾) are positive constants; and 𝜖𝑥 and 𝜖𝑦 are noise 

terms (Gaussian distributed with mean 0 and variances 𝜎𝑋
2 and 𝜎𝑌

2, respectively) 

(Edelstein-Keshet, 2005). The non-trivial equilibrium of the deterministic system is,  

 

(𝑥0, 𝑦0) = (𝛼 ,1 −
𝛼
𝛾) , 

https://github.com/Mark-Kramer/Aperiodic-Exponent-Model
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and we require 𝛾 > 𝛼 so that the equilibrium predator population is positive. The linearized 

system near this equilibrium is, 

 

𝑑
𝑑𝑡 (

𝑥̅
𝑦̅) =  𝑨(

𝑥̅
𝑦̅) + (

𝜖𝑥
𝜖𝑦

) ,  

 

where 𝑨 = (
− 𝛼

𝛾
−𝛼

1 − 𝛼
𝛾

0
). Because the trace of 𝑨 = − 𝛼

𝛾
  is negative, and the determinant 

of 𝑨 = 𝛼𝑦0 is positive, the equilibrium is stable and hyperbolic (Edelstein-Keshet, 2005). 

 

Consistent with the general theory, we expect this predator-prey model (9) to produce 

spectra with aperiodic exponents −4 ≤ 𝛽 ≤ −2, depending on the values of the stochastic 

drives (𝜖𝑥, 𝜖𝑦). To show this, we simulate the predator-prey model (9) over a range of 

parameters (𝛼, 𝛾) and estimate the spectrum of the prey variable 𝑥 with fixed predator 

noise (𝜎𝑦 = 1) and variable prey noise (0 ≤ 𝜎𝑥 ≤ 0.005). In agreement with the general 

theory, the values of the aperiodic exponent in this non-neural model lie within the range 

−4 ≤ 𝛽 ≤ −2, depending on the relative noise in the prey variable (Figure 4). As the prey 

noise increases, the aperiodic exponent increases from near 𝛽 ≈ −4 when 𝜎𝑥 = 0 to 𝛽 ≈

−2 when 𝜎𝑥 = 0.005 across a range of model parameters (𝛼, 𝛾).  

 

We note that, mathematically, three of the four models are essentially the same; the 

Hodgkin-Huxley type model (6), the 2-dimensional neural population model (7), and the 
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predator-prey model (9) are all planar models with independent additive noise in the two 

variables. We choose to illustrate the theory with these example simulations to 

demonstrate the difficulty of interpreting the biological mechanism producing the aperiodic 

exponent. While the four models (6-9) simulate different neural and non-neural dynamics, 

each model produces 1/f-like scaling with aperiodic exponents consistent with in vivo 

observations of neural activity. The interpretation of the mechanism affecting the 

aperiodic exponent depends on the model choice; the aperiodic exponent 𝛽 approaches 

−2 with increasing voltage noise in (6), noise to an excitatory neural population in (7) and 

(8), or prey noise in (9). Because each model satisfies the general conditions (i.e., a 

hyperbolic equilibrium exists), the spectral results derived for the general model in (5) 

capture the 1/f-like spectrum for each specific, biophysical model considered here. 
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Figure 4: In a predator-prey population model, the aperiodic exponent increases 

from approximately −𝟒 to −𝟐 with the prey noise. (A,B) Example prey population 

dynamics when (A) the prey noise is 0 (i.e., 𝜖𝑥 = 0), or (B) the prey noise is non-zero (i.e., 

𝜎𝑥 = 0.01). (C,D) The corresponding spectra (black) and linear fits (red, 50 Hz to 250 Hz) 

for the time series in (A,B). (E) Estimates of the aperiodic exponent for increasing values 

of prey noise. Black (color) indicates mean (standard deviation) of estimates across 100 

simulations. In all simulations, the predator noise (𝜎𝑦 = 1) is fixed and the model 
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simulated for 250,000 steps with numerical integration performed using the Euler–

Maruyama method with timestep 0.0002 a.u; to avoid an initial large amplitude transient, 

we omit the first 50,000 steps of simulated data from analysis. In (A-D), the parameters 

are 𝛼 = 0.25, 𝛾 = 0.6. In (E), colors indicate simulations at 𝛼 = {0.0, 0.1,… , 0.5}. For each 

fixed 𝛼, we simulate 10 instances of the model at 10 different values of 𝛾 =

{0.1,0.2, 0.3,… ,1.0} for a total of 100 simulations. Code to simulate the model and create 

this figure is available at https://github.com/Mark-Kramer/Aperiodic-Exponent-Model 

 

 

3  Discussion 
 

 

 

A universal feature of neural field potential spectra is 1/f-like scaling at high frequencies. 

To produce this power-law, many generative mechanisms have been proposed with 

diverse biological implementations and interpretations. Here, we do not propose a specific 

biological mechanism produces 1/f-like scaling. Instead, to understand how different 

neural mechanisms can produce similar 1/f-like scaling, we consider a general nonlinear 

dynamical system with stochastic drive. We show that dynamics near a (hyperbolic) 

equilibrium in this general model of neural activity produce aperiodic exponents between 

−4 and −2, consistent with the range of values reported in vivo for higher frequencies 

(e.g., >20 Hz). We illustrate these results in neural and non-neural models. We propose 

that the range of aperiodic exponents observed across recording modalities, experiments, 

and neural systems is a natural consequence of a noise driven dynamical system. 

https://github.com/Mark-Kramer/Aperiodic-Exponent-Model
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We considered here a single statistic – the aperiodic exponent – reflecting the 1/f-like 

feature of the neural field spectrum. We note that many different models can explain the 

same observed statistic. For example, observations from neural systems can produce 

spectra with broadband peaks in the gamma band (approximately 30-80 Hz) (Fries et al., 

2007). Many approaches exist to explain these observed spectral peaks, including 

statistical approaches (e.g., an autoregressive model of order two (Spyropoulos et al., 

2020)), mechanical approaches (e.g., a damped driven oscillator (Spyropoulos et al., 

2020)), or biophysical approaches (e.g., the interneuron network model, or the pyramidal-

interneuron network model (Whittington et al., 2000)). Our understanding of the gamma 

rhythm in a particular experiment depends on the model choice. In the same way, 

observations from neural systems produce spectra with 1/f-like scaling at high 

frequencies, and many models exists to explain this scaling. Our results show 

mathematically why many models can produce the range of aperiodic exponents 

observed in vivo (−4 ≤ 𝛽 ≤ −2). Due to the general nature of this mathematical result, it 

is not surprising that many different proposals exist to explain the 1/f-like spectrum. In 

practice, we expect biological mechanisms must exist to create the scaling observed in 

vivo. Identifying these biological mechanisms, and their expression in the diverse 

observations of 1/f-like scaling reported, remains an important challenge. 

 

Our results are consistent with previous work showing that power-law scaling occurs in 

simple stochastic or physical systems. For example, in (Gao et al., 2017) the authors 

relate estimates of the aperiodic exponent to changes in the balance between excitation 
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and inhibition. To do so, the authors simulate the local field potential as the summed 

synaptic current generated by independent stochastic spiking excitatory and inhibitory 

cells. In (Bédard et al., 2006) the authors propose that 1/f-like scaling in the spectrum 

does not rely on critical states, but instead depends on the filtering properties of the 

extracellular medium (although this mechanism remains debated (Logothetis et al., 

2007)). In (Touboul & Destexhe, 2010) the authors show that simple models of stochastic 

processes (high-frequency shot-noise processes or Ornstein-Uhlenbeck processes) 

produce peak-amplitude distributions consistent with power-law distributions. In 

(Priesemann & Shriki, 2018) the authors show that inhomogeneous Poisson processes 

can produce approximate power law distributions in the size and duration distributions of 

avalanches (i.e., activity cascades). Consistent with our results, these examples generate 

power-law scaling without requiring a sophisticated biological or mathematical 

mechanism. Distinct from these previous works, we consider an (unspecified) n-

dimensional dynamical system and show that, near a (hyperbolic) equilibrium, stochastic 

drive produces aperiodic exponents consistent with values observed in vivo.  

 

Under the general framework considered here, the range of aperiodic exponents reflects 

different types of noise. The observable dynamics (e.g., variable 𝑋1 in (1)) depend directly 

on the stochastic drives to the observable variable, and indirectly on the stochastic drives 

to the latent variable(s). The latent dynamics introduce correlations in the uncorrelated 

latent noise process before this noise reaches the observable dynamics. Therefore, the 

observable dynamics depend on both uncorrelated and correlated noise inputs, and we 

may interpret the aperiodic exponent in terms of these different types of noise; an 
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aperiodic exponent near 𝛽 = −4 indicates correlated noise inputs dominate the high 

frequency observable dynamics, while 𝛽 = −2 indicates uncorrelated noise dominates 

the high frequency observable dynamics. These general results are independent of a 

specific biophysical mechanism, and a biophysical interpretation of the relationship 

between different types of noise and the aperiodic exponent depends on the specific 

model choice. 

 

Some observations report aperiodic exponents greater than −2 (i.e., β > −2), beyond 

the range of aperiodic exponents derived here. Experimental factors, such as 

measurement noise, which flattens the spectrum and shifts β towards 0, might contribute 

to these observations. In addition, analysis factors may impact reported results. For 

example, the frequency range considered varies widely across studies (see discussion of 

fitting ranges in (Gerster et al., 2022)). In general, larger aperiodic exponents (more 

negative β) occur at higher frequencies (Bédard et al., 2006; Colombo et al., 2019; Ibarra 

Chaoul & Siegel, 2021; Racz et al., 2021), although not always (Chaudhuri et al., 2018). 

In the framework considered here, the result −4 ≤ β ≤ −2 holds in the high frequency 

limit (when the measured frequency exceeds any natural frequency of the neural 

population) and near an equilibrium of the dynamical system. In lower frequency bands 

(e.g., below the natural frequency), our simplifying asymptotic arguments no longer apply, 

and the relationship between power and frequency will depend on the model parameters. 

In addition, we note that the aperiodic exponent reported in lower frequency bands is 

more difficult to interpret. To assess low frequency rhythms requires long durations of 

data, which increases the chance of nonstationarity. Artifacts (e.g., slow drifts) and 
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analysis choices (e.g., whether to subtract the signal mean) also impact the low frequency 

power. Finally, while power-law features at low frequencies may reflect the same power-

law features at high frequencies, these different phenomena unlikely reflect the same 

neural mechanisms. We also expect analyzing dynamics away from an equilibrium of the 

dynamical system will increase the aperiodic exponent. Away from an equilibrium, 

nonlinear terms in the model have a greater impact on the dynamics and resulting 

spectrum. These nonlinearities may increase power at high frequencies (e.g., (Kramer, 

Tort, et al., 2008)) and therefore increase the aperiodic exponent beyond the range 

derived for the linear dynamics near the equilibrium. 

 

Here we considered additive Gaussian noise as the stochastic inputs to the dynamical 

models. However, alternative noise sources would provide more accurate approximations 

of biological systems. For example, for conductance based neural models, more 

biophysically plausible noise sources would include noise in the membrane current 

dynamics with variance proportional to the opening and closing rates of ion channels (Pu 

& Thomas, 2020, 2021). For models of neural population activity, stochastic perturbations 

may be scaled by the square root of the population size (Benayoun et al., 2010; Candia 

et al., 2021). For models of ecological population dynamics, noise may be scaled 

proportional to the birth and death rates (Barendregt & Thomas, 2023; Huynh et al., 2023; 

Strang et al., 2019). Understanding the impact of more biologically realistic noise (e.g., 

state-dependent noise) on the power-law behavior remains an important topic for future 

investigation.   
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Many well-supported observations of power-laws appear in neuroscience (e.g., 

avalanches of population voltage discharges (Beggs & Plenz, 2003), amplitudes of 

narrowband oscillations (Linkenkaer-Hansen et al., 2001)). Here, we consider one type 

of power-law: the 1/f-like neural field spectrum and a general, noise-driven dynamical 

system. Under this general model, the aperiodic exponent represents the impact of noise 

in the observable and latent dynamics, without requiring a sophisticated biological or 

dynamical mechanism. We propose that the range of aperiodic exponents −4 ≤ 𝛽 ≤ −2 

observed in vivo represents the expected dynamics near an equilibrium in a nonlinear 

dynamical system driven by noise. The generality of the model is consistent with the 

universality of 1/f-like field spectra, reflecting a basic dynamical feature present in many 

different neural systems. However, this simplicity may also limit the computational utility 

of this mechanism and the role of the aperiodic exponent in measuring neural 

computations.  
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To estimate the aperiodic exponent 𝛽, we first compute the spectrum in the standard way. 

To a simulated voltage time series (𝑉𝑡) with sampling interval Δ and duration 𝑇, we 

subtract the mean, apply a Hanning taper, compute the Fourier transform (𝑉𝑓), and 

multiply by the complex conjugate (𝑉𝑓
∗): 

 

𝑃 =  
2 Δ2

𝑇  𝑉𝑓 𝑉𝑓
∗ . 

 

We note that the square of the Fourier coefficients is essential for consistent interpretation 

of the aperiodic exponent across studies; omitting the square is a common mistake 

identified in previous work (see discussion in (Milotti, 2002)). For frequencies 𝑓, we fit a 

linear model to the logarithm base 10 of the spectrum (log10 𝑃) with predictor logarithm 

base 10 of the frequency (log10 𝑓), 

 

log10 𝑃 = 𝑐 + 𝛽 log10 𝑓 , 

 

where 𝛽 is the estimate of the aperiodic exponent. Code to compute the spectrum and 

estimate the aperiodic exponent is available at https://github.com/Mark-

Kramer/Aperiodic-Exponent-Model. 

 

 

https://github.com/Mark-Kramer/Aperiodic-Exponent-Model
https://github.com/Mark-Kramer/Aperiodic-Exponent-Model


 33 

Appendix 
 

 

 

Derivation of the asymptotic behavior of the cross-spectral matrix 

 

Consider the two terms of (4) that involve the Jacobian, 

 

(𝑨 + 𝑖𝜔𝑰)−1  and (𝑨𝑇 − 𝑖𝜔𝑰)−1. 

 

In general, these 𝑛-by-𝑛 matrices are complicated expressions of the constants in 𝑨 and 

powers of 𝜔. To characterize the limiting behavior of these matrices for large values of 𝜔, 

we express each of these two terms using asymptotic notation, 

 

[
 
 
 
 𝒪(𝜔−1) 𝒪(𝜔−2) 𝒪(𝜔−2) ⋯ 𝒪(𝜔−2)
𝒪(𝜔−2) 𝒪(𝜔−1) 𝒪(𝜔−2) ⋯ 𝒪(𝜔−2)
𝒪(𝜔−2) 𝒪(𝜔−2) 𝒪(𝜔−1) ⋯ 𝒪(𝜔−2)

⋮ ⋮ ⋮ ⋱ ⋮
𝒪(𝜔−2) 𝒪(𝜔−2) 𝒪(𝜔−2) ⋯ 𝒪(𝜔−1)]

 
 
 
 

 

 

where terms on the diagonal grow proportional to 𝜔−1 and terms off the diagonal grow 

proportional to 𝜔−2 as 𝜔 → ∞. The noise matrix 𝑩 enters the calculation only as a 

symmetric matrix 𝑫, 
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𝑫 = 𝑩 𝑩𝑇 =  

[
 
 
 
 
𝐷11 𝐷12 𝐷13 … 𝐷1𝑛
𝐷12 𝐷22 𝐷23 … 𝐷2𝑛
𝐷13 𝐷23 𝐷33 … 𝐷3𝑛
⋮ ⋮ ⋮ ⋱ ⋮

𝐷1𝑛 𝐷2𝑛 𝐷3𝑛 … 𝐷𝑛𝑛]
 
 
 
 
 , 

 

and we note 𝐷11 = 𝐵11
2 + 𝐵12

2 + ⋯+ 𝐵1𝑚
2 , the sum of each squared element in the first row 

of 𝑩. 

 

The first row of  

(𝑨 + 𝑖𝜔𝑰)−1 𝑫 

 

then becomes, 

 

[𝐷11𝒪(𝜔−1) + (𝐷12 + 𝐷13 + ⋯+ 𝐷1𝑛)𝒪(𝜔−2),
𝐷12𝒪(𝜔−1) + (𝐷22 + 𝐷23 + ⋯+ 𝐷2𝑛)𝒪(𝜔−2),
𝐷13𝒪(𝜔−1) + (𝐷23 + 𝐷33 + ⋯+ 𝐷3𝑛)𝒪(𝜔−2),

⋮
𝐷1𝑛𝒪(𝜔−1) + (𝐷2𝑛 + 𝐷3𝑛 + ⋯+ 𝐷𝑛𝑛)𝒪(𝜔−2)] .

 

 

To determine the spectrum of the observable variable (𝑆11[𝜔]), we compute the first entry 

of the cross-spectral matrix 𝑺[𝜔] in (4)  

 

 (𝑨 + 𝑖𝜔𝑰)−1 𝑫 (𝑨𝑇 − 𝑖𝜔𝑰)−1 , 

 

which corresponds to multiplying the two vectors, 
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[𝐷11𝒪(𝜔−1) + (𝐷12 + 𝐷13 + ⋯+ 𝐷1𝑛)𝒪(𝜔−2) ,
𝐷12𝒪(𝜔−1) + (𝐷22 + 𝐷23 + ⋯+ 𝐷2𝑛)𝒪(𝜔−2),
𝐷13𝒪(𝜔−1) + (𝐷23 + 𝐷33 + ⋯+ 𝐷3𝑛)𝒪(𝜔−2),

⋮
𝐷1𝑛𝒪(𝜔−1) + (𝐷2𝑛 + 𝐷3𝑛 + ⋯+ 𝐷𝑛𝑛)𝒪(𝜔−2)]

 and 

[𝒪(𝜔−1),
𝒪(𝜔−2),
𝒪(𝜔−2),

⋮
𝒪(𝜔−2)]

 

 

element by element. Doing so, we find, 

 

 𝑆11[𝜔] =  𝐷11𝒪(𝜔−2) + 𝒪(𝜔−4) ,  

 

or 

 

 𝑆11[𝜔] = (𝐵11
2 + 𝐵12

2 + ⋯+ 𝐵1𝑚
2 )𝒪(𝜔−2) + 𝒪(𝜔−4) , (A1) 

 

where we note that the 𝒪(𝜔−3) terms vanish due to the symmetry of 𝑫. 

 

To illustrate these general results, we consider a 2-dimensional dynamical system with 

 

𝑨 = (𝑎 𝑏
𝑐 𝑑)  and  𝑩 = (𝐵11 𝐵12

𝐵21 𝐵22
) . 

 

Evaluating the cross-spectral matrix (4) for the observable variable (𝑆𝑋𝑋[𝜔]) we find, 

 

 𝑆𝑋𝑋[𝜔]

=
1

2 𝜋 
𝑏2 (𝐵21

2 + 𝐵22
2 ) − 2 𝑏 𝑑 (𝐵11𝐵21 + 𝐵12𝐵22) + (𝐵11

2 + 𝐵12
2 )(𝑑2 + 𝜔2)

(𝑏 𝑐 − 𝑎 𝑑)2 + (𝑎2 + 2 𝑏 𝑐 + 𝑑2)𝜔2 + 𝜔4  . 
(A2) 
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Isolating the 𝜔2 term in the numerator, this expression becomes, 

 

𝑆𝑋𝑋[𝜔] =  
𝒪(1) + (𝐵11

2 + 𝐵12
2 )𝒪(𝜔2)

𝒪(𝜔4) =  (𝐵11
2 + 𝐵12

2 )𝒪(𝜔−2) +  𝒪(𝜔−4) ,  

 

as 𝜔 → ∞, equivalent to the general expression (A1). 

 

To illustrate the cross-spectral matrix 𝑆𝑋𝑋[𝜔] for a specific 2-dimensional dynamical 

system, we consider the predator-prey model (9). In this case, 𝐵11 = 𝜎𝑥, 𝐵12 = 𝐵21 = 0, 

and 𝐵22 = 𝜎𝑦 = 1, so that (A2) becomes, 

 

 
𝑆𝑋𝑋[𝜔] =

1
2 𝜋 

𝑏2  + 𝜎𝑥
2 (𝑑2 + 𝜔2)

(𝑏 𝑐 − 𝑎 𝑑)2 + (𝑎2 + 2 𝑏 𝑐 + 𝑑2)𝜔2 + 𝜔4 .  

 

Fixing 𝛼 = 0.25 and 𝛾 = 0.6 as in Figure 5A-D, we find 

 

𝑎 = −
0.25
0.6  , 𝑏 =  −0.25 , 𝑐 = 1 −

0.25
0.6  , 𝑑 = 0 , 

 

so that the cross-spectrum for the observable (prey) variable becomes, 
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𝑆𝑋𝑋[𝜔] =

1
2 𝜋 (

 𝜎𝑥
2 𝜔2

0.0212674 − 0.118056 𝜔2 + 𝜔4

+ 
0.0625 

0.0212674 − 0.118056 𝜔2 + 𝜔4 ). 

(A3) 

 

We show in Figure 5A this cross-spectrum for different values of prey noise (𝜎𝑥). When 

𝜎𝑥 = 0, the first term in (A3) is zero and the  𝜔−4 term dominates the spectrum (red curve 

in Figure 5A). When 𝜎𝑥 increases to 0.001, the first term in (A3) becomes non-zero, and 

the 𝜔−2 term impacts the spectrum. However, because 𝜎𝑥 is small, the effect of the 𝜔−2 

term only appears at large 𝜔, where the second term of 𝑆𝑋𝑋[𝜔] in (A3) is small (green 

curve in Figure 5A). As 𝜎𝑥 increases, the impact of the first (𝜔−2) term increases and 

emerges above the second (𝜔−4) term at lower frequencies (orange and blue curves in 

Figure 5A). A knee in the curve occurs at the transition from 𝜔−4 behavior (at lower 

frequencies) to 𝜔−2 behavior (at higher frequencies). We note that estimating a single 

aperiodic exponent over the high frequency range produces a single estimate for the 

slope of 𝑆𝑋𝑋[𝜔]; a more representative approach would instead identify the knee in the 

curve and estimate the two separate slopes. However, in practice, noisy spectral 

estimates from time series data obfuscate this change in aperiodic exponent (example in 

Figure 5B).      
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Figure 5: Analytic and estimated spectra for the predator-prey model. (A) The 

analytic spectrum (A3) for the prey variable at different values of prey noise (𝜎𝑥, see 

legend). When prey noise is 0, the aperiodic exponent is −4 at high frequencies (red 

curve). As the prey noise increases, a knee appears in the curve and the aperiodic 

exponent becomes −2 at high frequencies. (B) Spectra estimated from numerical 

simulations of the predator-prey model at the same values of prey noise (𝜎𝑥, see legend). 

The shift to an aperiodic exponent of −2 at high frequencies becomes difficult to detect. 

For all curves, we fix 𝛼 = 0.25, 𝛾 = 0.6, and 𝜎𝑦 = 1, and perform numerical integration 

using the Euler–Maruyama method with timestep 0.0002 a.u. Code to create this figure 

is available at https://github.com/Mark-Kramer/Aperiodic-Exponent-Model 
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