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Consistent observations across recording modalities, experiments, and neural
systems find neural field spectra with 1/f-like scaling, eliciting many alternative
theories to explain this universal phenomenon. We show that a general dynamical
system with stochastic drive and minimal assumptions generates 1/f-like spectra
consistent with the range of values observed in vivo, without requiring a specific

biological mechanism or collective critical behavior.

1 Introduction




Transient oscillations are a prominent feature of macroscopic neural field activity
(Buzsaki, 2011), linked to brain function (Buzsaki & Draguhn, 2004) and dysfunction
(Gibbs & Lennox, 2002; Uhlhaas & Singer, 2012). Oscillations appear as narrowband
increases in the spectrum above an aperiodic background in which the power P
decreases proportional to the frequency f raised to an exponent B: P« f5.
Characterizing oscillations while accounting for the aperiodic background is important for
understanding neural spectra (Donoghue et al., 2020). Sophisticated methods
(Donoghue et al., 2020; Wen & Liu, 2016; L. E. Wilson et al., 2022) support estimation of
the 1/f-like, scale-free (He, 2014) or power-law (Newman, 2005) behavior of neural field
spectra. Changes in 3, the aperiodic exponent, have been investigated in many domains,
including sleep (Bddizs et al., 2021; Freeman & Zhai, 2009; G. Horvath et al., 2022;
Lendner et al., 2020), aging (Cesnaite et al., 2023; Schaworonkow & Voytek, 2021;
Voytek et al., 2015), and disease (Lanzone et al., 2022; Numan et al., 2022; Robertson
et al., 2019). While many factors impact estimation of the aperiodic exponent (e.g., the
frequency range analyzed (Gerster et al., 2022; Stumpf & Porter, 2012)), values of the
exponent reported at higher frequencies (>20 Hz) typically range between —4 and —2

(Table 1).



Table 1: Example aperiodic exponents for human voltage spectra reported in the literature. The mean value of the
aperiodic exponent (B) reported in the reference listed in column Reference. Additional details include recording modality,
number of subjects n, frequency range analyzed, and experimental condition. Considering only those studies with minimum

frequencies =20 Hz (yellow highlighted rows), the aperiodic exponent has mean -3.1, lower quartile -4, and upper quartile

-2.5.

B Reference Recording modality Frequency Experimental condition
—0.08  (Colombo et al., 2019) Scalp EEG (n=5) 20-40 Hz Anesthesia (Ketamine)
—1.12 | (Lanzone et al., 2022) Scalp EEG (n=16) 1-40 Hz Eyes closed
—1.3 | (Adelhdfer et al.,, 2021) Scalp EEG (n=74) 2-40 Hz Behavioral experiments
—1.44 | (Adelhodfer et al., 2021) Scalp EEG (n=74) 2-40 Hz Behavioral experiments
—1.48 | (Lanzone et al., 2022)  Scalp EEG (n=18) 1-40 Hz Stroke patients
—1.51 | (Robertson et al., 2019) Scalp EEG (n=78) 4-50 Hz Resting state
—1.67 | (Robertson et al., 2019) Scalp EEG (n=76) 4-50 Hz Resting state
—1.84 | (Lendner et al., 2020)  Scalp EEG (n=9) 30-45 Hz Wakefulness
—1.86 | (Fransson et al., 2013) Scalp EEG (n=7) 0.2-30 Hz  Sleep
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The universal observation of 1/f-like neural field spectra with a restricted range of
aperiodic exponents across different recording modalities, experiments, and neural
systems suggests a common generative mechanism. However, many complex, specific
mechanisms have been identified to generate this phenomenon. These include
excitatory/inhibitory balance (Gao et al., 2017), low-pass frequency filtering by dendrites
(Buzsaki et al., 2012) or the extracellular medium (Bédard et al., 2006), nonideal resistive
components in the cell membrane (Bédard & Destexhe, 2008), stochastic firing of
neurons convolved with an exponential relaxation process (Bédard et al., 2006; Miller et
al., 2009; Milstein et al., 2009), stochastic synaptic conductances (Rudolph et al., 2005),
stochastically driven damped oscillators with different relaxation rates (Evertz et al.,
2022), local homogenous connectivity (Jirsa, 2009), combinations of many transient
oscillations at different frequencies and amplitudes (He et al., 2010), or network
mechanisms linking slower rhythms to broad neuronal recruitment and therefore larger
amplitude field potentials (Buzsaki et al., 2012). Theoretically, scale-free phenomena —
with 1/f-like behavior — have been linked to fractal properties (Pritchard, 1992), critical
transitions (Newman, 2005; O’'Byrne & Jerbi, 2022), and self-organized criticality (Bak et
al.,, 1987; Cocchi et al., 2017). How these proposed biological and mathematical
mechanisms contribute — separately or combined — to the range of aperiodic exponents

observed across diverse neural field spectra remains unclear.

Here we demonstrate how, in general, a dynamical system with stochastic drive

generates 1/f-like behavior at higher frequencies in neural field spectra. We show that two



noise terms — representing correlated and uncorrelated noise inputs — produce the range
of aperiodic exponents observed in vivo. We illustrate these general results in nonlinear
models of neural and non-neural activity to demonstrate the ambiguity in determining the
specific mechanisms given only the observed 1/f-like behavior in the spectrum. While
more complex underlying mechanisms may exist, we instead illustrate how the range of
aperiodic exponents observed in vivo occurs in general for dynamical systems with
stochastic drive, without requiring a specific biological mechanism or tuning to collective

critical behavior.

2 Results

As a general model of neural activity, we consider the n-dimensional dynamical system:

dX;

m
W = fk(Xl)XZl ---;Xn) + Z Bk] EX'j (1)
j=1

where, for each k = {1, 2, ...,n}, X is a 1-dimensional variable, f; is a nonlinear function,
By;is a constant, and ey ; is an independent Gaussian white noise source with mean 0
and variance O')?,j' We assume the variable X, (i.e., k = 1) is an observable quantity (e.g.,
the voltage recorded in the EEG or LFP) and all other variables (X,, X5, ..., X,,) represent

n-1 unobserved or latent variables impacting the observable dynamics. The unspecified

model (1) is general and therefore consistent with diverse models of neural activity. To



derive the main result from this general model requires no specific biophysical
mechanism. In what follows, we illustrate these general results by making specific model

choices for the variables (X;) and functions (f).

) neey

dX, dX X
We assume an equilibrium exists in the noise-free model so that ( tl d—tz d—t”) =

(0,0, ...,0) at (X1, X, ..., X)) = X°. Near this equilibrium, the dynamics for one variable (X,)

of the nonlinear system (1) can be approximated by the corresponding linear system,

X Xy + ot
go) ! ;?o) 2 <5Xn

where x, represent small deviations of the variable k from the equilibrium X7, we evaluate

dt

dxi <0fk

0
) , (9%

) ZBk] €x,j

the partial derivatives of the nonlinear function f, at the equilibrium X0 (Guckenheimer,
John & Holmes, Philip, 1983; Izhikevich, E, 2007), and we include the same stochastic

perturbations as in the nonlinear system (1). We express the system (2) as

where X is the n-by-1 vector of deviations from the equilibrium, € is the m-by-1 vector of
independent §-correlated Gaussian white noise sources, A4 is the n-by-n Jacobian matrix

of the nonlinear system (1) evaluated at the equilibrium, and B is the n-by-m noise matrix,
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where the parameter B;; determines the contribution of noise source j to variable i. We
assume that A satisfies the conditions required for the linear system (3) to accurately
approximate the dynamics of the noise-free nonlinear system (1) near the equilibrium
(i.e., we assume A has no eigenvalues with zero real part and the equilibrium is therefore

hyperbolic (Guckenheimer, John & Holmes, Philip, 1983; Izhikevich, E, 2007)).

For the linear system (3), the cross-spectral matrix S[w] can be obtained from the

expression (Gardiner, C, 2004; Kleeman, 2011; Thomas & Lindner, 2019),
1
S[w] = o A+ ioD ' (BBH(AT —iwD™?t, (4)

where A is real, I is the identity matrix, i = v—1,and w = 2xf is the frequency. Evaluating
the asymptotic behavior of the cross-spectral matrix at high frequencies (w larger than
any frequency associated with a natural rhythm of the linear system in (3)), the spectrum

of the observable variable X, is

Sulw] = (Bfy + Bf; + -+ + B{n)0(w™?) + 0(0™), (5)



where 0(w*) indicates the limiting behavior of the spectrum as a function of the k" power

of w as w - x; see Appendix.

The result in (5) shows that, at high frequencies, the aperiodic exponent f depends on
the relative noise to the observable variable. Without stochastic drive to the observable

variable X, (i.e., with By, = 0 forall k in {1,2,...m}),

Siplw] = 0(w™),

so that the aperiodic exponent f = —4 at high frequencies (i.e., as w = ). Alternatively,
with stochastic drive to the observable variable X; (i.e., with By, # 0 for any k in

{1,2,..m}),

511[(1)] = 0((‘)_2) ’

so that the aperiodic exponent f = —2 at high frequencies (i.e., as w — o). We note that,
in this case, random walk dynamics dominates the spectrum at high frequencies, with

well-known power-law behavior (e.g., see (Milotti, 2002)).

To summarize, we consider a general, n-dimensional nonlinear dynamical system with
stochastic drive (1). We assume an equilibrium exists in this system with dynamics well-
approximated by the linearized system (2). Near this equilibrium, the dynamics produce

aperiodic exponents between —4 and —2 at high frequencies (i.e., frequencies beyond
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the natural frequencies or spectral peaks of the system) consistent with the range of
values observed in vivo. The value of the aperiodic exponent depends on the noise in the
observed and latent variables; when noise in the observable variable X; dominates, the
aperiodic exponent ~ —2, while when the noise in the latent variables dominates, the

aperiodic exponent = —4.

The main result (5) and implications for the aperiodic exponent (—4 < < —2) are for the
general model (1). These general results do not require a specific biophysical model of
neural activity. In what follows, we illustrate the generality of these results in four example
models, in which we choose the nonlinear functions f; in model (1) and assume a square
diagonal noise matrix B to simplify the presentation of numerical simulation results. In
doing so, we show that each model produces aperiodic exponents consistent with in vivo

data (—4 < B < —2) but with different physical interpretations.

2.1 A reduced model of single neuron activity

We first consider a reduced Hodgkin-Huxley type model (Hodgkin & Huxley, 1952;
Izhikevich, E, 2007) to simulate the subthreshold dynamics of a single neuron. The model
equations describe the dynamics of an observable voltage (V) and a latent membrane

current (M),

av
Frin I+ gyM(Ey — V) + €y (6)
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aM
- ay[VIA—M) — BulVIM + €y .

In the first equation, three terms drive the voltage dynamics: a constant input current (1),
a dynamic membrane current (g, M (E,; — V)), and voltage noise (€, Gaussian distributed
with mean 0 and variance o). In the second equation, the dynamics of the latent

membrane current depend on forward (a,[V]) and backward (B8, [V]) rate functions,

v 0.02
(ZM = 7
1+ exp( v E 20)
-V —43
,BM[V] =0.01 exp(T) .

We choose these functions to simulate a muscarinic receptor suppressed potassium
current (M-current, see Table A2 of (Traub et al., 2003)) (Kopell et al., 2011; Kramer,
Roopun, et al., 2008). We omit other membrane currents (e.g., fast sodium and potassium
currents) to focus on the subthreshold membrane dynamics without action potential
generation. A stochastic drive also impacts the membrane current dynamics (e,

Gaussian distributed with mean 0 and variance o).

Choosing the model parameters I, = 1, g, = 4, and E,; = —95, we find an equilibrium of

the noise-free model (6) at

12



(Vo, My) ~ (—48.15,0.00534) .

The noise-driven linearized system near this equilibrium is approximately,

dv ~ —
- —0.0213V —187.38 M + €y,

am _ _
a 0.0000181V —0.0134 M + €,

and the equilibrium is hyperbolic with eigenvalues —0.0174 + 0.0581 i.

Consistent with the general theory, we expect this nonlinear Hodgkin-Huxley type model
(6) to produce spectra with aperiodic exponents —4 < f < —2, depending on the values
of the stochastic drives (e, €),). To show this, we simulate the Hodgkin-Huxley type model
(6) and estimate the spectrum of the voltage variable V with fixed current noise (g, =
0.01) and variable voltage noise (0 < g, < 30). In agreement with the general theory
(Figure 1), as the voltage noise increases, the aperiodic exponent increases from near

B = —4when g, =0to f = —2when g, = 30.
We conclude that this nonlinear model of single neuron subthreshold dynamics (6)
produces aperiodic exponents consistent with the range of values observed in vivo. In

agreement with the general theory, the value of the aperiodic exponent depends on the

13



relative noise in the observable voltage variable and latent current variable. In this case,
when noise in the membrane current dominates, the aperiodic exponent approaches —4;

when noise in the voltage dominates, the aperiodic exponent approaches —2.
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Figure 1: In a reduced model of single neuron activity, the aperiodic exponent
increases from approximately —4 to —2 with the voltage noise. (A,B) Example
voltage time series when (A) the voltage noise is 0 (i.e., €, = 0), or (B) the voltage noise

is non-zero (i.e., o, = 20). (C,D) The corresponding spectra (black) and linear fits (red,
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50 Hz to 250 Hz) for the time series in (A,B). (E) Estimates of the aperiodic exponent for
increasing values of voltage noise. Black (red) indicates mean (standard deviation) of
estimates across 100 simulations. In all simulations, the current noise (o), = 0.01) is fixed
and numerical integration is performed using the Euler—Maruyama method with timestep
0.01 ms. Code to simulate the model and create this figure is available at

https://qithub.com/Mark-Kramer/Aperiodic-Exponent-Model

2.2 A 2-dimensional model of neural population activity

We now consider the Wilson-Cowan equations as a model of neural population activity
(H. R. Wilson & Cowan, 1972). The equations describe the interacting dynamics of an

excitatory (E) and inhibitory (I) neural population,

dE

dl
Tiaz —I+(kl — T I) Si[CgE_C4I+Q] +EI,

where § is the sigmoid function,

1 1

S e e G -60) T+ ew(a 0
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and e; and ¢, are noise terms (Gaussian distributed with mean 0 and variances o7 and
a?, respectively). We choose the parameters to produce damped oscillatory behavior
(see Figure 10 of (H. R. Wilson & Cowan, 1972) and the caption of Figure 2 for the
parameter values used here). With these parameters, we find an equilibrium of the noise-

free model (7),
(Eo, 1) =~ (0.1511,0.1585) .

The noise-driven linearized system near this equilibrium is approximately,

dE = 7
e 1482V —2.6601 + €

dl = -
Frie 3963V —19811+ ¢,

and the equilibrium is hyperbolic, with eigenvalues —0.250 + 2.75i.

According to the general theory, we expect the nonlinear system (7) near the equilibrium
(E,, I,) to produce spectra with aperiodic exponents —4 < 8 < —2, depending on the
values of the stochastic drives (¢g, €;). To show this, we simulate the nonlinear system (7)
and estimate the spectrum of the excitatory variable E with fixed inhibitory noise (g, = 0.1)

and variable excitatory noise (0 < g; < 0.3). In agreement with the general theory (Figure

16



2), as the excitatory noise increases, the aperiodic exponent increases from near g ~ —4

when oy = 0to f = —2 when oz = 0.3.

We conclude that this nonlinear model of neural population activity (7) produces aperiodic
exponents consistent with the range of values observed in vivo. In this model, the value
of the aperiodic exponent depends on the relative noise in the observable variable E and
latent variable I. When noise in the inhibitory population dominates, the aperiodic
exponent approaches —4; when noise in the excitatory population dominates, the

aperiodic exponent approaches —2.
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Figure 2: In a 2-dimensional model of neural population activity, the aperiodic
exponent increases from approximately —4 to —2 with the excitatory noise. (A,B)
Example excitatory population time series when (A) the excitatory noise is 0O (i.e., e = 0),
or (B) the excitatory noise is non-zero (i.e., oy = 0.2). (C,D) The corresponding spectra
(black) and linear fits (red, 20 Hz to 250 Hz) for the time series in (A,B). (E) Estimates of
the aperiodic exponent for increasing values of excitatory noise. Black (red) indicates
mean (standard deviation) of estimates across 100 simulations. In all simulations, the

inhibitory noise (o, = 0.1) is fixed. We use the model parameters: c; = 15,c, = 15,c5 =
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15,C4_ = 7,ae = 1'66 = 2,al' = Z,Hi = 2.5,Te = SO,Ti = SO,Te = 1,T'i = 1,ke = 1,kl' =
1,P = 1.25,Q = 0, and perform numerical integration using the Euler—Maruyama method
with timestep 0.1 ms. Code to simulate the model and create this figure is available at

https://qgithub.com/Mark-Kramer/Aperiodic-Exponent-Model.

2.3 A 10-dimensional model of neural population activity

To illustrate an application of the main result (5) to a higher-dimensional neural model,
we consider a mean-field model of neural population activity consisting of the coupled

differential equations:

dhy

Tk gr = (hi®" = hy) + Yo [he] Lo + Wi [hi] L

2

d
(E‘l'yk) Iy = (N;fl Slhi] +Pkl)Gk Vi e

where k = {e,i} and [ = {e, i} denote excitatory (e) and inhibitory (i) neural populations,
Y are normalized weighting functions, and S, [h, ] are sigmoidal transfer functions (M. L.
Steyn-Ross et al., 2003). The model variables simulate the macrocolumn-averaged
transmembrane soma voltage of an excitatory (h,) and inhibitory (h;) neural population,
and synaptic input (I;) from population k to population [. Expressing the second-order
differential equations for the synaptic inputs I;; as first-order differential equations results

in a system of 10 coupled first-order differential equations. The variable h, is observable
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(M. L. Steyn-Ross et al., 1999) and the other variables are latent. We include independent

stochastic drive to the dynamics of the observable variable (mean 0 and variance o-,%e)

and each latent variable (mean 0 and variance ¢/ to all latent variables). Applications of
the model include simulating electroencephalogram (EEG) dynamics during sleep (D.
Steyn-Ross et al., 2005; M. L. Steyn-Ross et al., 2005; M. T. Wilson, Steyn-Ross, et al.,
2006), seizures (Kramer et al., 2005, 2007; M. L. Steyn-Ross et al., 2012; M. T. Wilson,

Sleigh, et al., 2006), and anesthesia (M. L. Steyn-Ross et al., 1999, 2003).

Fixing all model parameters to the default values in (M. L. Steyn-Ross et al., 2003), a
stable equilibrium exists (M. L. Steyn-Ross et al., 2003). We therefore expect, consistent
with the general theory, the model (8) to produce spectra with aperiodic exponents —4 <
B < —2, depending on the values of the stochastic drives. To show this, we simulate the
model (8) and estimate the spectrum of the voltage variable h, with fixed noise (o, = 50)
to all latent variables and variable noise to the observable variable (h,,0 < g, < 1). In
agreement with the general theory (Figure 3), as the noise to the excitatory neural

population increases, the aperiodic exponent increases from near g ~ —4 when g,, = 0

tof =~ —2whenagy,, = 1.

We conclude that this high-dimensional (10" order) nonlinear model of macroscopic
neural population activity (8) produces aperiodic exponents consistent with the range of
values observed in vivo. In agreement with the general theory, the value of the aperiodic
exponent depends on the relative noise in the observable variable (h,) and latent

variables. In this case, when noise outside of the excitatory population dominates, the
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aperiodic exponent approaches —4; when noise in the

dominates, the aperiodic exponent approaches —2.
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Figure 3: In a 10-dimensional model of neural population activity, the aperiodic

exponent increases from approximately —4 to —2 with increasing noise to the

excitatory neural population. (A,B) Example excitatory neural population activity when

(A) noise to the excitatory neural population is O (i.e., €,, = 0), or (B) non-zero (i.e., o5, =

1). (C,D) The corresponding spectra (black) and linear fits (red, 50 Hz to 1000 Hz) for the
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time series in (A,B). (E) Estimates of the aperiodic exponent for increasing values of
excitatory neural population noise. Black (red) indicates mean (standard deviation) of
estimates across 100 simulations. In all simulations, the latent noise terms (o, = 50) are
fixed and numerical integration performed using the Euler—Maruyama method with
timestep 0.1 ms. Code to simulate the model and create this figure is available at

https://qithub.com/Mark-Kramer/Aperiodic-Exponent-Model

2.4 A model of predator-prey interactions

To illustrate the generality of the main result (5) beyond models of neural activity we

consider a nonlinear model of predator-prey interactions,

dx x(y —x)
P A
(9)
@y _ + xy+
s eyt xytey,

where x and y represent prey and predator populations, respectively, and the prey
population includes self-regulation; (a, y) are positive constants; and ¢, and ¢, are noise

terms (Gaussian distributed with mean 0 and variances ¢ and of, respectively)

(Edelstein-Keshet, 2005). The non-trivial equilibrium of the deterministic system is,

(X0, ¥0) = (“ 11— %) )
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and we require y > a so that the equilibrium predator population is positive. The linearized

system near this equilibrium is,

—a

a
4 . Because the trace of 4 = —% is negative, and the determinant

where A =

a
14

of A = ay, is positive, the equilibrium is stable and hyperbolic (Edelstein-Keshet, 2005).

Consistent with the general theory, we expect this predator-prey model (9) to produce
spectra with aperiodic exponents —4 < < —2, depending on the values of the stochastic
drives (e, €,). To show this, we simulate the predator-prey model (9) over a range of
parameters («,y) and estimate the spectrum of the prey variable x with fixed predator
noise (o, = 1) and variable prey noise (0 < g, < 0.005). In agreement with the general
theory, the values of the aperiodic exponent in this non-neural model lie within the range
—4 < B < -2, depending on the relative noise in the prey variable (Figure 4). As the prey
noise increases, the aperiodic exponent increases from near f§ ~ —4 wheno, =0to 8 =

—2 when g, = 0.005 across a range of model parameters (a,y).

We note that, mathematically, three of the four models are essentially the same; the

Hodgkin-Huxley type model (6), the 2-dimensional neural population model (7), and the
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predator-prey model (9) are all planar models with independent additive noise in the two
variables. We choose to illustrate the theory with these example simulations to
demonstrate the difficulty of interpreting the biological mechanism producing the aperiodic
exponent. While the four models (6-9) simulate different neural and non-neural dynamics,
each model produces 1/f-like scaling with aperiodic exponents consistent with in vivo
observations of neural activity. The interpretation of the mechanism affecting the
aperiodic exponent depends on the model choice; the aperiodic exponent  approaches
—2 with increasing voltage noise in (6), noise to an excitatory neural population in (7) and
(8), or prey noise in (9). Because each model satisfies the general conditions (i.e., a
hyperbolic equilibrium exists), the spectral results derived for the general model in (5)

capture the 1/f-like spectrum for each specific, biophysical model considered here.
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Figure 4: In a predator-prey population model, the aperiodic exponent increases
from approximately —4 to —2 with the prey noise. (A,B) Example prey population
dynamics when (A) the prey noise is 0 (i.e., €, = 0), or (B) the prey noise is non-zero (i.e.,
o, = 0.01). (C,D) The corresponding spectra (black) and linear fits (red, 50 Hz to 250 Hz)
for the time series in (A,B). (E) Estimates of the aperiodic exponent for increasing values
of prey noise. Black (color) indicates mean (standard deviation) of estimates across 100

simulations. In all simulations, the predator noise (o, =1) is fixed and the model

25



simulated for 250,000 steps with numerical integration performed using the Euler—
Maruyama method with timestep 0.0002 a.u; to avoid an initial large amplitude transient,
we omit the first 50,000 steps of simulated data from analysis. In (A-D), the parameters
are a = 0.25, y = 0.6. In (E), colors indicate simulations at « = {0.0,0.1, ...,0.5}. For each
fixed a, we simulate 10 instances of the model at 10 different values of y =
{0.1,0.2,0.3, ...,1.0} for a total of 100 simulations. Code to simulate the model and create

this figure is available at https./qgithub.com/Mark-Kramer/Aperiodic-Exponent-Model

3 Discussion

A universal feature of neural field potential spectra is 1/f-like scaling at high frequencies.
To produce this power-law, many generative mechanisms have been proposed with
diverse biological implementations and interpretations. Here, we do not propose a specific
biological mechanism produces 1/f-like scaling. Instead, to understand how different
neural mechanisms can produce similar 1/f-like scaling, we consider a general nonlinear
dynamical system with stochastic drive. We show that dynamics near a (hyperbolic)
equilibrium in this general model of neural activity produce aperiodic exponents between
—4 and —2, consistent with the range of values reported in vivo for higher frequencies
(e.g., >20 Hz). We illustrate these results in neural and non-neural models. We propose
that the range of aperiodic exponents observed across recording modalities, experiments,

and neural systems is a natural consequence of a noise driven dynamical system.

26


https://github.com/Mark-Kramer/Aperiodic-Exponent-Model

We considered here a single statistic — the aperiodic exponent — reflecting the 1/f-like
feature of the neural field spectrum. We note that many different models can explain the
same observed statistic. For example, observations from neural systems can produce
spectra with broadband peaks in the gamma band (approximately 30-80 Hz) (Fries et al.,
2007). Many approaches exist to explain these observed spectral peaks, including
statistical approaches (e.g., an autoregressive model of order two (Spyropoulos et al.,
2020)), mechanical approaches (e.g., a damped driven oscillator (Spyropoulos et al.,
2020)), or biophysical approaches (e.g., the interneuron network model, or the pyramidal-
interneuron network model (Whittington et al., 2000)). Our understanding of the gamma
rhythm in a particular experiment depends on the model choice. In the same way,
observations from neural systems produce spectra with 1/f-like scaling at high
frequencies, and many models exists to explain this scaling. Our results show
mathematically why many models can produce the range of aperiodic exponents
observed in vivo (—4 < B < —2). Due to the general nature of this mathematical result, it
is not surprising that many different proposals exist to explain the 1/f-like spectrum. In
practice, we expect biological mechanisms must exist to create the scaling observed in
vivo. ldentifying these biological mechanisms, and their expression in the diverse

observations of 1/f-like scaling reported, remains an important challenge.

Our results are consistent with previous work showing that power-law scaling occurs in

simple stochastic or physical systems. For example, in (Gao et al., 2017) the authors

relate estimates of the aperiodic exponent to changes in the balance between excitation
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and inhibition. To do so, the authors simulate the local field potential as the summed
synaptic current generated by independent stochastic spiking excitatory and inhibitory
cells. In (Bédard et al., 2006) the authors propose that 1/f-like scaling in the spectrum
does not rely on critical states, but instead depends on the filtering properties of the
extracellular medium (although this mechanism remains debated (Logothetis et al.,
2007)). In (Touboul & Destexhe, 2010) the authors show that simple models of stochastic
processes (high-frequency shot-noise processes or Ornstein-Uhlenbeck processes)
produce peak-amplitude distributions consistent with power-law distributions. In
(Priesemann & Shriki, 2018) the authors show that inhomogeneous Poisson processes
can produce approximate power law distributions in the size and duration distributions of
avalanches (i.e., activity cascades). Consistent with our results, these examples generate
power-law scaling without requiring a sophisticated biological or mathematical
mechanism. Distinct from these previous works, we consider an (unspecified) n-
dimensional dynamical system and show that, near a (hyperbolic) equilibrium, stochastic

drive produces aperiodic exponents consistent with values observed in vivo.

Under the general framework considered here, the range of aperiodic exponents reflects
different types of noise. The observable dynamics (e.g., variable X; in (1)) depend directly
on the stochastic drives to the observable variable, and indirectly on the stochastic drives
to the latent variable(s). The latent dynamics introduce correlations in the uncorrelated
latent noise process before this noise reaches the observable dynamics. Therefore, the
observable dynamics depend on both uncorrelated and correlated noise inputs, and we

may interpret the aperiodic exponent in terms of these different types of noise; an
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aperiodic exponent near §f = —4 indicates correlated noise inputs dominate the high
frequency observable dynamics, while § = —2 indicates uncorrelated noise dominates
the high frequency observable dynamics. These general results are independent of a
specific biophysical mechanism, and a biophysical interpretation of the relationship
between different types of noise and the aperiodic exponent depends on the specific

model choice.

Some observations report aperiodic exponents greater than -2 (i.e., § > —2), beyond
the range of aperiodic exponents derived here. Experimental factors, such as
measurement noise, which flattens the spectrum and shifts {3 towards 0, might contribute
to these observations. In addition, analysis factors may impact reported results. For
example, the frequency range considered varies widely across studies (see discussion of
fitting ranges in (Gerster et al., 2022)). In general, larger aperiodic exponents (more
negative 3) occur at higher frequencies (Bédard et al., 2006; Colombo et al., 2019; Ibarra
Chaoul & Siegel, 2021; Racz et al., 2021), although not always (Chaudhuri et al., 2018).
In the framework considered here, the result —4 < < —2 holds in the high frequency
limit (when the measured frequency exceeds any natural frequency of the neural
population) and near an equilibrium of the dynamical system. In lower frequency bands
(e.g., below the natural frequency), our simplifying asymptotic arguments no longer apply,
and the relationship between power and frequency will depend on the model parameters.
In addition, we note that the aperiodic exponent reported in lower frequency bands is
more difficult to interpret. To assess low frequency rhythms requires long durations of

data, which increases the chance of nonstationarity. Artifacts (e.g., slow drifts) and
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analysis choices (e.g., whether to subtract the signal mean) also impact the low frequency
power. Finally, while power-law features at low frequencies may reflect the same power-
law features at high frequencies, these different phenomena unlikely reflect the same
neural mechanisms. We also expect analyzing dynamics away from an equilibrium of the
dynamical system will increase the aperiodic exponent. Away from an equilibrium,
nonlinear terms in the model have a greater impact on the dynamics and resulting
spectrum. These nonlinearities may increase power at high frequencies (e.g., (Kramer,
Tort, et al., 2008)) and therefore increase the aperiodic exponent beyond the range

derived for the linear dynamics near the equilibrium.

Here we considered additive Gaussian noise as the stochastic inputs to the dynamical
models. However, alternative noise sources would provide more accurate approximations
of biological systems. For example, for conductance based neural models, more
biophysically plausible noise sources would include noise in the membrane current
dynamics with variance proportional to the opening and closing rates of ion channels (Pu
& Thomas, 2020, 2021). For models of neural population activity, stochastic perturbations
may be scaled by the square root of the population size (Benayoun et al., 2010; Candia
et al.,, 2021). For models of ecological population dynamics, noise may be scaled
proportional to the birth and death rates (Barendregt & Thomas, 2023; Huynh et al., 2023;
Strang et al., 2019). Understanding the impact of more biologically realistic noise (e.g.,
state-dependent noise) on the power-law behavior remains an important topic for future

investigation.
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Many well-supported observations of power-laws appear in neuroscience (e.g.,
avalanches of population voltage discharges (Beggs & Plenz, 2003), amplitudes of
narrowband oscillations (Linkenkaer-Hansen et al., 2001)). Here, we consider one type
of power-law: the 1/f-like neural field spectrum and a general, noise-driven dynamical
system. Under this general model, the aperiodic exponent represents the impact of noise
in the observable and latent dynamics, without requiring a sophisticated biological or
dynamical mechanism. We propose that the range of aperiodic exponents —4 < 8 < —2
observed in vivo represents the expected dynamics near an equilibrium in a nonlinear
dynamical system driven by noise. The generality of the model is consistent with the
universality of 1/f-like field spectra, reflecting a basic dynamical feature present in many
different neural systems. However, this simplicity may also limit the computational utility
of this mechanism and the role of the aperiodic exponent in measuring neural

computations.
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To estimate the aperiodic exponent g, we first compute the spectrum in the standard way.
To a simulated voltage time series (V,) with sampling interval Aand duration T, we
subtract the mean, apply a Hanning taper, compute the Fourier transform (V;), and

multiply by the complex conjugate (V):

2 A2 i

P = T Vf Vf .
We note that the square of the Fourier coefficients is essential for consistent interpretation
of the aperiodic exponent across studies; omitting the square is a common mistake
identified in previous work (see discussion in (Milotti, 2002)). For frequencies f, we fit a

linear model to the logarithm base 10 of the spectrum (log,, P) with predictor logarithm

base 10 of the frequency (log;, f),

logio P =c+ pBlogyo f,

where f is the estimate of the aperiodic exponent. Code to compute the spectrum and

estimate the aperiodic exponent is available at htips://github.com/Mark-

Kramer/Aperiodic-Exponent-Model.
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Appendix

Derivation of the asymptotic behavior of the cross-spectral matrix
Consider the two terms of (4) that involve the Jacobian,
(A+iwl)™ and (AT —iwD)™1.
In general, these n-by-n matrices are complicated expressions of the constants in 4 and

powers of w. To characterize the limiting behavior of these matrices for large values of w,

we express each of these two terms using asymptotic notation,

[O(w_l) O(w™32) O0(w™?) - O(w_z)]

O(w™? O™ 0w™? - 0O0w?
IO(w‘Z) O(w™2) O(w™) - O(w‘z)I
lo(w2) 0?2 0@?) -~ 0w

where terms on the diagonal grow proportional to w~! and terms off the diagonal grow

-2

proportional to w™* as w — o. The noise matrix B enters the calculation only as a

symmetric matrix D,
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D11 D1z Dis Dyp

Di; Dy; Dy D,y
D=BB" =|D;3 D,;3 Ds; Dj, 1,

Dln D2n D3n Dnn

and we note D;; = B?, + B%, + ---+ B?,,, the sum of each squared element in the first row

of B.

The first row of

(A+iwD) ™' D
then becomes,

[D110(a)_1) + (D12 + D13 + b + Dln)O(w_z),
D1,0(w™) + (Dyy + Doz + -+ + Dyp)0(w7?),
D130(w_1) + (D23 + D33 + cee + D3n)0(w_2),

Dlno((‘)_l) + (DZn + D3n + -+ Dnn)o(w_z)] .

To determine the spectrum of the observable variable (S;;[w]), we compute the first entry

of the cross-spectral matrix S[w] in (4)
A+ioD)™D AT —iwD™?,

which corresponds to multiplying the two vectors,
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[D1,0(w™) + (D13 + Dy3 + -+ + D1,)0(w™?), [0(w™),

D1;0(w™) 4+ (Dyy + Dyz + -+ + Dy )O(w™2), O0(w™2),
Dlgo(w_l) + (D23 + D33 + cee + D3n)0(a)_2), and 0((1)_2),
Dlno(w_l) + (DZn + D3n + -t Dnn)o(w_z)] O(w_z)]

element by element. Doing so, we find,
Si1lw]l = D110(w™2) + 0(w™),
or
Silwl = (B + B + -+ BE)0(0™2) + 0(0™), (A1)
where we note that the 0(w~3) terms vanish due to the symmetry of D.

To illustrate these general results, we consider a 2-dimensional dynamical system with

_(a b _ (B11 B12)
A= (C d) and B_<Bz1 By,)"

Evaluating the cross-spectral matrix (4) for the observable variable (Syx[w]) we find,

Sxx[w]

L b* (B3, + B5;) —2 b d (By1By; + By3B,,) + (Bfy + Bf,)(d* + w?) (A2)

2 (bc—ad)>?+(a?+2bc+d?)w? + w?*
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Isolating the w? term in the numerator, this expression becomes,

_0(1) + (B, + Bf)0(w?)

Sxx[w] = 0" = (Bf; + B#)0(w™®) + 0(w™),

as w — oo, equivalent to the general expression (A1).

To illustrate the cross-spectral matrix Syy[w] for a specific 2-dimensional dynamical

system, we consider the predator-prey model (9). In this case, B,; = g,, By, = B,; =0,

and B,, = g, = 1, so that (A2) becomes,

S []_1 b? + o2 (d? + w?)
xx & " 2nm(bc—ad)?+ (@ +2bc+d?)w?+ wt’

Fixing @ = 0.25 and y = 0.6 as in Figure 5A-D, we find

0.25 0.25
0.6’ 0.6’

so that the cross-spectrum for the observable (prey) variable becomes,

36



02 w?

0.0212674 — 0.118056 w? + w*

Sxx[w] = % (
(A3)

4 0.0625 >
0.0212674 — 0.118056 w? + w*
We show in Figure 5A this cross-spectrum for different values of prey noise (o,). When
o, = 0, the first term in (A3) is zero and the w~* term dominates the spectrum (red curve
in Figure 5A). When g, increases to 0.001, the first term in (A3) becomes non-zero, and
the w™2 term impacts the spectrum. However, because o, is small, the effect of the w2
term only appears at large w, where the second term of Syx[w] in (A3) is small (green
curve in Figure 5A). As g, increases, the impact of the first (w~2) term increases and
emerges above the second (w~*) term at lower frequencies (orange and blue curves in
Figure 5A). A knee in the curve occurs at the transition from w~* behavior (at lower
frequencies) to w™? behavior (at higher frequencies). We note that estimating a single
aperiodic exponent over the high frequency range produces a single estimate for the
slope of Syx[w]; @ more representative approach would instead identify the knee in the
curve and estimate the two separate slopes. However, in practice, noisy spectral
estimates from time series data obfuscate this change in aperiodic exponent (example in

Figure 5B).
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Figure 5: Analytic and estimated spectra for the predator-prey model. (A) The
analytic spectrum (A3) for the prey variable at different values of prey noise (o,, see
legend). When prey noise is 0, the aperiodic exponent is —4 at high frequencies (red
curve). As the prey noise increases, a knee appears in the curve and the aperiodic
exponent becomes —2 at high frequencies. (B) Spectra estimated from numerical
simulations of the predator-prey model at the same values of prey noise (o,, see legend).
The shift to an aperiodic exponent of —2 at high frequencies becomes difficult to detect.
For all curves, we fix a = 0.25, y = 0.6, and o,, = 1, and perform numerical integration
using the Euler—Maruyama method with timestep 0.0002 a.u. Code to create this figure

is available at https://qithub.com/Mark-Kramer/Aperiodic-Exponent-Model
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