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Human seizures couple across spatial scales
through travelling wave dynamics
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Epilepsy—the propensity toward recurrent, unprovoked seizures—is a devastating disease

affecting 65 million people worldwide. Understanding and treating this disease remains a

challenge, as seizures manifest through mechanisms and features that span spatial and

temporal scales. Here we address this challenge through the analysis and modelling of human

brain voltage activity recorded simultaneously across microscopic and macroscopic spatial

scales. We show that during seizure large-scale neural populations spanning centimetres of

cortex coordinate with small neural groups spanning cortical columns, and provide evidence

that rapidly propagating waves of activity underlie this increased inter-scale coupling.

We develop a corresponding computational model to propose specific mechanisms—namely,

the effects of an increased extracellular potassium concentration diffusing in space—that

support the observed spatiotemporal dynamics. Understanding the multi-scale,

spatiotemporal dynamics of human seizures—and connecting these dynamics to specific

biological mechanisms—promises new insights to treat this devastating disease.
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Brain dynamics span orders of magnitude in space and time,
making population neural activity both rich and difficult
to understand. Observing brain activity at each spatial

and temporal scale presents unique experimental, logistical and
analytical challenges1. Moreover, how to optimally assemble and
understand these diverse spatiotemporal datasets across spatial
scales—especially in behaving humans—remains unknown.

We address this challenge in the specific context of under-
standing human epileptic seizure, itself a multi-scale phenom-
enon, spanning microscopic channelopathies to macroscopic
clinical manifestations2,3. Noninvasive and invasive recording
modalities, which are commonly employed clinically4, reveal the
macroscopic features of human brain activity during seizures,
including the characteristic rhythms of seizure5–7 and the
coordination between large-scale neocortical networks8–12.
However, the mechanisms that support this macroscopic
activity remain largely unknown. Research into the microscopic
dynamics of human seizure provides complementary
insights13,14. Both in vivo microelectrode recordings15–17 and
in vitro recordings from resected tissue18,19 provide detailed
dynamic and mechanistic insight into the behaviour of single
neurons and small neural populations during human seizure.
However, how these phenomena relate to the activity of large
scale cortical networks recruited during seizure remains
unknown.

One of the most controversial topics in epilepsy is the role of
synchronization20. Historically, seizures have been considered
to reflect a hypersynchronous state21,22. However, recent
observations at both the macroscopic and microscopic spatial
scales suggest that seizures exhibit intervals of both
synchronization and desynchronization23,24. At the macroscopic
spatial scale, voltage activity recorded from distributed brain
regions desynchronizes during seizure, and then synchronizes
approaching seizure termination8,9,25. At the microscopic spatial
scale, neurons exhibit heterogeneous firing behaviours at seizure
initiation23—ahead of the ictal wavefront26—and then more
coordinated firing later in seizure driven by transient increases in
neuronal network spiking rate27, particularly when spike-and-
wave discharges in the local field potential emerge23,26,28.
A complete, quantitative understanding of the local and
large-scale neural network dynamics is essential to characterize
the multi-scale phenomena of human seizures, with the potential
to improve treatment of epilepsy. Such improvements are
essential as little substantial progress in seizure control for
pharmacoresistant patients has been made over the past 40–50
years29,30.

In this manuscript, we investigate how low-frequency
(o25Hz) interactions evolve during human seizures across two
spatial recordings scales. To do so, we analyse simultaneous
observations of the brain’s microscopic dynamics within a
spatially restricted area (spanning 4millimetres or less),
combined with broader clinical macroscopic observations
(spanning 410cm). We show that during seizure coupling
between these spatial scales increases, and that larger increases in
coupling occur at shorter distances. We provide evidence that
rapidly propagating waves of activity underlie this increased
inter-scale coupling, and that these waves appear consistently for
each patient’s seizures. We conclude with a computational model
that captures the observed seizure dynamics and leads to
suggestions of specific mechanisms—namely, the effects of an
increased extracellular potassium concentration diffusing in
space—that support the observed inter-scale spatiotemporal
dynamics of human seizure. Understanding the multi-scale,
spatiotemporal dynamics of human seizure—and connecting
these dynamics to specific biological mechanisms—promises new
insights to treat this devastating disease.

Results
Simultaneous observations of seizure across spatial scales. The
multi-scale data consist of cortical voltage observations from two
spatial scales. Macroscopic data were recorded from a standard
clinical electrocorticogram, configured in an 8-by-8 grid or in
series of electrode strips, with an electrode spacing of 1 cm (black
circles in the example of Fig. 1a). Microscopic data were recorded
from a 10-by-10 microelectrode array (MEA, red in Fig. 1a) with
electrode spacing of 0.4mm. In all cases, the MEA were
implanted in the presumptive resective target, outside of the
putative seizure onset zone, such that these areas were recruited
to seizure. We therefore examine interactions between spatial
scales from cortical regions recruited into seizure, and not
interactions between the seizure focus and rest of cortex23,28,31.

We begin in this section with an illustration of the
spatiotemporal voltage dynamics at the microscopic and macro-
scopic scales, and their associations. Example voltage traces from
both spatial scales reveal the characteristic temporal features of
seizure (Fig. 1b). Following seizure onset, the voltage activity
at both spatial scales transitions from low amplitude, fast
oscillations to large amplitude spike-and-wave complexes, and
seizure termination occurs abruptly31. We note that, in this
example, seizure onset occurs B60 s before a visually apparent
change in the voltage activity. In this case, seizure onset occurs in
another brain region and subsequently recruits the cortical
regions observed32. Inspection of the multi-scale data during a
single spike-and-wave event suggests an organization of activity
between the microelectrodes, and between the spatial scales
(Fig. 1c); for example, examination of the voltage traces reveals
that the spike-and-wave events are temporally delayed between
electrodes25. To better visualize the spatial organization during
the spike-and-wave event, we plot examples of the voltage activity
on the MEA and clinical recording array (Fig. 1d). At both spatial
scales, spatiotemporal organization appears. At the microscopic
scale, a voltage wave sweeps across the entire MEA25,28,33. At the
macroscopic scale, spatial organization appears present, although
less obvious and localized to a subset of electrodes. Careful
inspection of Fig. 1d suggests a spatially distributed voltage
decrease in the macroscopic data that evolves from the inferior
posterior to the superior anterior parts of the temporal lobe
(see the grey ellipse on the figure), near the location of the MEA
(red circle in Fig. 1a). This example illustrates the phenomenon
that motivates this work: to understand the spatiotemporal
evolution of brain voltage activity simultaneously occurring
across spatial scales during seizure.

To assess the coupling between spatial scales, we use the
coherence; a frequency domain measure of linear association,
commonly applied to human seizure data11,12 and neuronal data
in general34,35. We show an example of the coherence computed
between a microscopic and macroscopic electrode pair in Fig. 1e.
In this example, times before seizure onset (at time 0 s) and early
in the seizure rarely exhibit significant coherence (see Methods).
Approximately midway through the seizure (near time 60 s),
intervals of significant coherence appear (warm colours in
Fig. 1e). These intervals of significant coherence occur at low
frequencies (oB12Hz) and persist until seizure termination.
To summarize these results, we compute the average coherence
between 1 and 13Hz. We choose this frequency interval to focus
on the low-frequency rhythms that dominate the coherence
observed, and avoid non-rhythmic coupling due to slowly
changing trends in the data. The example average coherence
(Fig. 1f) summarizes the broadband change in coherence between
a micro- and macroscopic electrode pair. We note the abrupt
increase in the average coherence that persists from mid-seizure
(near 60 s) until termination. Repeating this analysis, we compute
the average coherence between all microelectrode-to-macroelectrode
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pairs (Fig. 1g). For the example considered here, we find before
seizure onset and early in the seizure only weak or insignificant
coherence between the spatial scales. Later in the seizure, the
inter-scale coherence increases. However, the visualization in
Fig. 1g does not indicate how this increase is spatially organized.
In what follows, we examine this spatial organization and how it
evolves during seizure.

Coupling increases in seizure and decreases with distance.
In general, observations of brain voltage activity reveal that
coupling decreases with increasing distance36,37. We examine this
observation here in the context of seizure and for coupling across
spatial scales. We show an example of the inter-scale coherence

for a single patient and seizure in Fig. 2a. In this figure, each point
indicates the average inter-scale coherence between all
microelectrodes and each macroelectrode over a window of
10 s, and colour indicates four intervals: pre-seizure (grey), and
three seizure intervals (early in pink, middle in red and late in
maroon; see legend). Visual inspection of Fig. 2a suggests that
inter-scale coherence increases as the seizure progresses, and
decreases with increasing distance.

Linear regression of the coherence versus geodesic distance (see
Methods) provides three features that summarize these trends in
each interval: (1) the left-intercept; (2) the right-intercept, that is,
the coherence at maximal distance in the recording; and (3) the
slope. We summarize these features for all patients and seizures in
Fig. 2b. We find that, consistent with the example in Fig. 2a,
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Figure 1 | Analysis of coherence within and between spatial scales reveals evolution of inter-scale coupling during seizure. (a) Example electrode
configuration at the macroscopic and microscopic spatial scales. Each black circle indicates a macroelectrode on the cortical surface. The red circle
indicates the location of a 4mm by 4mm microelectrode array containing 96 electrodes. (b,c) Example voltage traces recorded simultaneously from
macroelectrodes (upper) and microelectrodes (lower) during (b) seizure and during (c) a single spike-and-wave event. The green vertical bars indicate the
same time point in both subfigures. The blue vertical bars and labels in c correspond to the voltage maps in d. Four intervals (pre-seizure, early seizure,
middle seizure and late seizure) are indicated in b. Scale bar in c indicates 100ms (c). (d) Example voltage maps from the macroelectrodes (upper) and
microelectrodes (lower) during the spike-and-wave event in (c). Warm (cool) colours indicate high (low) voltages. Maps labelled 1, 2, 3 and 5 are spaced
by 16ms, while maps labelled 3, 4, 5 and 6 are spaced by 8ms (see vertical blue bars in c). The approximate area of macroscopic propagation is indicated
by a grey ellipse in the top row. Upper scale bar indicates 1 cm, lower scale bar indicates 0.4mm. (e) Example coherogram between a microelectrode and
macroelectrode pair. Warm (cool) colours indicate high (low) coherence. Only significant coherence values are shown (Po0.005, not corrected for
multiple comparisons, see Methods). (f,g) Average coherence from 1 to 13Hz between (f) the microelectrode and macroelectrode pair in (e), and (g) all
microelectrode-to-macroelectrode pairs versus time. In g, warm (cool) colours indicate high (low) coherence.
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the left-intercept and right-intercept increase during seizure
compared to pre-seizure (P¼ 6e" 5 and P¼ 0.01 respectively,
two-sided t-tests, sample size Npre¼ 7 for pre-seizure group and
Nsz¼ 21 for seizure group), and that the slope decreases
(P¼ 0.02, two-sided t-test, Npre¼ 7, Nsz¼ 21) as seizure pro-
gresses. These results indicate that inter-scale coherence increases
between the microelectrode and macroelectrode recordings
extend over macroscopic distances (up to 15 cm) during the
seizure. However, this increase is not spatially uniform. Instead,
the inter-scale coherence increase is larger at shorter distances;
note that the left-intercept (Fig. 2b, light blue) increases more
than the right-intercept (Fig. 2b, dark blue) during seizure and,
as expected, the slope is more negative during seizure.

A similar analysis reveals that the coherence increases between
the microelectrodes during seizure (Fig. 2c,d). Visual inspection
of the coherence versus distance for an example patient and
seizure (Fig. 2c) reveals that the coherence is higher between the
microelectrodes compared to the inter-scale coherence, and that
the coherence tends to increase during seizure. For the population
of patients and seizures, we find that the left- and right-intercepts
increase significantly during seizure (Fig. 2d, P¼ 2e" 4 and
P¼ 0.012 respectively, two-sided t-tests, Npre¼ 7, Nsz¼ 21),
consistent with an overall increase in coherence between
microelectrodes during seizure. However, we do not find a
significant change in the slope during seizure (P¼ 0.98, two-sided
t-test, Npre¼ 7, Nsz¼ 21); between the microelectrodes, the
coherence decreases with distance (that is, the slope is negative),
as expected, but this relationship to distance does not change
significantly during seizure at this spatial scale.

Propagating waves organize activity across spatial scales. We
have shown that, during seizures, the coherence increases and
that this increase is distance dependent (Fig. 2). To further
characterize the spatial organization of this coupling, we use the
coherence results between 1 and 13Hz to estimate the delay
between each microelectrode pair, and each micro- and macro-
electrode pair (see Methods). We show an example of the
estimated delays for all inter-scale electrode pairs in Fig. 3a.
In this example, at times preceding seizure onset and early in
seizure, we find few significant delays; we note that this lack of
significance may result from a lack of significant coherence
between electrodes, or lack of a reliable estimate of the delay. For
the second half of the seizure we find that the delays span a broad
range (in this example, from " 50ms to 50ms) that varies in
space and time.

To model the spatial organization of these delays, we perform
multiple linear regression of the delay over the two-dimensional
(2D) cortical surface. We illustrate this procedure in Fig. 3b,c.
Before performing the regression, we first compute the average
delay between all microelectrodes and each macroelectrode
(circles in Fig. 3b,c). By doing so, each delay estimate reflects
the relative delay between a macroelectrode and the MEA. In this
way, delays at the macroscopic electrodes are aligned to the
microscopic activity; we note that each point in Fig. 3b,c
correspond to a single macroelectrode. We then perform multiple
linear regression, which corresponds to fitting a 2D plane to these
delays. When the estimated delays do not vary linearly in space
(example in Fig. 3b), the linear fit is poor and not significantly
better than a plane passing through the estimated mean delay
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Figure 2 | Coherence increases during seizure between spatial scales are not spatially uniform. (a) Example average inter-scale coherence (1–13Hz)
between the microelectrodes and macroelectrodes versus distance for a single patient and seizure. Each dot represents the coherence and distance of a
macroelectrode during four intervals; grey, pre-seizure; pink, early seizure; red, middle seizure; maroon, late seizure (Fig. 1b). The lines indicate linear
regression estimates for each interval. (b) Summary of the left-intercepts (light blue) and right-intercepts (dark blue) of the linear regression of inter-scale
coherence versus distance for each patient and seizure. Each circle indicates the result for an individual seizure (n¼ 7) in four intervals: pre-seizure,
early seizure, middle seizure and late seizure. Circles with vertical lines denote the population mean; error bars indicate two s.e. of the mean. (c,d) Same as
a,b for the coherence between microelectrodes.
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(the null model, grey surface in Fig. 3b). When the delays do vary
approximately linearly in space (example in Fig. 3c), the linear fit
captures this spatial organization, and significantly improves
upon the null model. We repeat this procedure for data recorded
at the microscopic scale by estimating the delays between all
microelectrodes and the central microelectrode of the MEA,
and then performing the multiple linear regression. We find for
the population of patients and seizures a significant increase in
the number of plane waves detected during seizures at both the
macroscopic (P¼ 3e" 5, two-sided t-test, Npre¼ 7, Nsz¼ 21) and
microscopic spatial scales (P¼ 3e" 10, two-sided t-test, Npre¼ 7,
Nsz¼ 21). This result is consistent with visual inspection of the
data (Supplementary Movies 1–4), and the notion that spatial
organization of brain activity increases during seizure through the
emergence of propagating waves. We note that more plane waves

are detected at the microscopic than macroscopic spatial scale
during seizure (mean 45, s.d. 16 at the microscopic spatial scale;
mean 31, s.d. 15 at the macroscopic spatial scale), consistent with
an increase in local wave propagation—or an increased ability to
detect wave propagation—between the spatially restricted micro-
electrodes compared to the spatially distributed macroelectrodes.

To further characterize these data, we estimate two quantities
from the multiple linear regression: the angle of the wave source
and the wave speed (see Methods). We show an example
evolution of these quantities for a single patient and seizure in
Fig. 3d,e. Before seizure onset and early in the seizure, there are
many times at which no estimate of source direction or velocity is
available. This lack of estimates may result for a variety of reasons
(for example, the inter-scale coherence was not significant, the
estimated delay was not significant, the 2D linear regression was
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Figure 3 | Travelling waves of activity propagate within each spatial scale during seizure. (a) Example of the delays between all pairs of microelectrodes
and macroelectrodes versus normalized time. Positive (negative) delays are indicated with warm (cool) colours. Intervals that lack significant coherence or
fit are white (see Methods). Seizure onset begins at time 0 and ends at time 1. (b,c) Examples of robust multiple linear regression of the delay values
(circles, vertical axis) versus position on the macroelectrode array. The fit plane is indicated in colour, and the null model in grey. Example of a poorly fit
(b) and well fit (c) spatial distribution of delays. (d,e) The estimated (d) source direction and (e) velocity deduced from the multiple linear regression fit
versus time for an example seizure from one patient. Each dot indicates the estimate at a moment in time; a time without a dot indicates that a significant
value (see Methods) was not found. The four shaded bars are centered at the mean direction consistency (d, right vertical axis), or mean velocity
(f) estimated in four time intervals of equal size: before the seizure (at negative normalized time) and during three intervals of seizure. The height of each
bar indicates the 95% confidence interval. (f,g) Population results (n¼ 7) for the (f) direction consistency and (g) velocity. The direction consistency
increases significantly during seizure. The velocity increases significantly during seizure at the macroscale; see Methods.
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not significant; see Methods). In this way, the data analysis
approach is conservative and only includes estimates of phase for
which significant evidence occurs throughout multiple analysis
steps. Visual inspection suggests that the source direction
estimates become less variable approaching seizure termination;
we note in Fig. 3d that approximately midway through the seizure
(normalized time 0.5) the source direction estimates concentrate
just above 0 radians. To characterize this variability, we compute
the consistency of the source direction for one pre-seizure
interval, and three seizure intervals (bars in Fig. 3d, right vertical
axis, see Methods). We find that the direction consistency
increases throughout the seizure. Estimates of the velocity remain
variable throughout the seizure (Fig. 3e). We conclude that, for
the example considered here, the plane waves that appear become
more consistent in direction and less so in speed approaching
seizure termination.

Repeating these analyses for the population of patients and
seizures we find similar results. During seizure, the consistency of
the source direction increases at the microscopic and macroscopic
spatial scales (Fig. 3f, microscale P¼ 2e" 5, macroscale P¼ 8
e" 6, two-sided t-test, Npre¼ 7, Nsz¼ 21). We note that the
direction consistency is higher between the microelectrodes;
between macroelectrodes, many features may reduce the
consistency of wave propagation, for example inhomogeneity in
tissue properties and connectivity, and the folded organization of
the neocortex which does not allow us to sample space densely
and uniformly. At the spatial scale of the microelectrodes, these
variations are less marked, and the approximation of linear wave
propagation is more accurate. Observations at both spatial scales
provide estimates of wave velocity (Fig. 3g). At the microscale, the
velocity varies between a mean value of 660mm s" 1 pre-seizure
to a mean value of 390mm s" 1 at seizure termination, although
this difference is not highly significant (P¼ 0.051, two-sided
t-test, Npre¼ 7, Nsz¼ 21), while at the macroscale the velocity
increases during seizure (mean value of 696mm s" 1 at seizure
onset and 888mm s" 1 at seizure termination, P¼ 0.009, two-
sided t-test, Npre¼ 7, Nsz¼ 21). These results are qualitatively
consistent with other reports of wave speed during human
seizures, which vary from B100mms" 1 to 1,000mms" 1

according to the spatial scale observed, the delay estimation
procedure, and the type of distance measure (for example, geodesic
distance along the brain folds versus Euclidean distance)25,28,33.

We have shown that travelling waves of activity appear within
each spatial scale during seizure, and that, within each scale, the
source directions for these waves become more consistent. We
now examine whether these source directions align across spatial
scales. We begin by plotting, for each patient, the average source
direction during the seizure at each spatial scale (Fig. 4a). As
expected, the source direction at the macroscale (red arrows)
indicates the location of largest delays (warm colour circles in
Fig. 4a). We note that the average source directions at the
macroscale (red arrows) and microscale (green arrows) tend to lie
within the same quadrant, consistent with travelling waves
propagating in the same direction across the two spatial scales.
Although the source directions vary between patients, the
direction remains similar for each seizure of a patient (Fig. 4b).
To characterize the differences in source direction between the
two spatial scales, we compute their circular direction difference
at each moment in time during seizure. The circular direction
differences for each patient concentrate near 0 radians (Fig. 4c).
We conclude that, for the three patients, waves of activity
propagate in a similar direction across spatial scales, and that for
each patient these waves propagate in a similar direction for each
seizure. These results suggest that waves observed at the
microscale reflect the local effects of macroscopic wave propaga-
tion over larger cortical areas.

A model replicates the spatiotemporal dynamics of seizure. To
propose mechanisms that support the multi-scale interactions
observed during seizure we implement a computational model.
We chose here a mean-field model, consistent with the spatial
scale of the field data observed. Many mean-field formulations
exist38, and here we focus on the formulation originally proposed
in refs 39,40, and extended in ref. 41 to simulate the effects of
anaesthesia. We choose this formulation because it has been
successfully extended and interpreted in numerous way, including
to study sleep42–44, cognitive states45, the effects of anesthesia46,47

and seizure31,48,49. We consider a model consisting of two
cortical cell populations (excitatory and inhibitory) interacting
reciprocally through synaptic interactions (Fig. 5a). The inhibitory
cell populations are also coupled with gap junctions, consistent
with experimental observations41,50,51. Both the synaptic and gap
junction coupling occur only between spatial neighbours, and no
longer distance synaptic interactions are included. This model has
been shown to support both travelling waves and temporally fixed
spatial patterns (that is, Turing patterns)41,50.

We update this model to simulate the temporal evolution of
seizure by including a slowly evolving variable representing the
changing concentration of extracellular potassium, which
increases dramatically during seizure and other dysfunctional
brain states52–57. In the model, activity of either cell population
increases the local extracellular potassium concentration, which
gradually decays (for example, due to uptake by glial cells) and
also diffuses in space. We assume that changes in the local
extracellular potassium concentration impact the neuronal
dynamics in two ways. First, we assume that an increase in
the local extracellular potassium concentration increases the
excitability of the local neural populations by increasing the
reversal potential for potassium. We model this impact by
increasing the resting potential of both cell populations with
increasing local extracellular potassium concentration. Second,
we assume that increases in the local extracellular potassium
concentration act to decrease the inhibitory-to-inhibitory gap
junction diffusive-coupling strength. This effect is included to
mimic the closing of gap junctions caused by the slow
acidification of the extracellular environment late in seizure
associated with increased extracellular potassium58,59 and other
sources, such as the accumulation of lactic acid and CO2 (ref. 53).

We simulate seizure initiation on a 30 cm by 30 cm flat cortical
surface by activating a ‘source’ of increased excitability at one
spatial location (see Methods). This source maintains increased
excitability for 100 s, and then the excitability is reduced to
simulate termination of the cortical seizure source. We examine
the resulting spatiotemporal dynamics at both simulated micro-
electrodes and macroelectrodes (see Methods). Examples of the
model’s temporal dynamics reveal a transition from pre-seizure
inactivity to large activity fluctuations characteristic of seizure
(Fig. 5b). Examination of the model’s spatial dynamics reveals a
distinct sequence of patterns. Before activation of the wave
source, the model exists in a ‘healthy’ state in which cortical
activity is small. Upon activation of the wave source, excitability
spreads from the wave source over the surface and an
approximately static spatial pattern emerges, consisting of active
and inactive regions (Fig. 5c, label i)41,50. During this interval, the
initial focus of activity is not clearly distinguished in the 30 cm by
30 cm plane. As time evolves, the extracellular potassium
concentration increases in the active regions, thereby increasing
the excitability and reducing the gap junction strength in these
regions (Supplementary Figure 1). Eventually, these slow changes
induce a transition to an interval of local wave propagation,
as many brain regions initiate waves that emerge and collide
(Fig. 5c, label ii). We note that active regions in the approximately
static spatial patterns act as transient, secondary sources for this
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local wave propagation. As the extracellular potassium continues
to spread, these waves become more spatially organized until the
initial source becomes the clear origination point of all waves, and
all transient secondary sources of local wave propagation vanish
(Fig. 5c, label iii). In this model, the slow evolution of the
extracellular potassium concentration navigates the dynamics
between different spatiotemporal stages.

Applying the analyses used to study the in vivo activity to the
simulated data, we find qualitatively consistent results. The
coherence increases during seizure between microelectrodes
(Po5e" 5 for both the left- and right-intercepts, two-sided
t-tests, Npre¼ 10, Nsz¼ 30) and between spatial scales (Po1e" 4
for both the left and right-intercepts, two-sided t-tests, Npre¼ 10,
Nsz¼ 30, Fig. 5d). The direction consistency increases during
seizure at both spatial scales (Po5e" 3, two-sided t-test,
Npre¼ 10, Nsz¼ 30, Fig. 5e), while the velocities simulated are
consistent with the in vivo values; both range between
50–400mms" 1 (Fig. 5f). We note that, if instead the source of
increased excitability appears at random spatial locations over
time, then the direction consistency during seizure is significantly
smaller (P¼ 0.003, two-sided t-test, N¼ 10 for the model, N¼ 7
for the in vivo data) in this model (mean 0.47, s.d. 0.22, during the
late seizure interval) compared to the in vivo data (mean 0.81, s.d.
0.16 during the late seizure interval; Supplementary Figure 2;
Fig. 6b). Finally, the source directions align during seizure
(Fig. 5g), consistent with travelling waves that propagate in the
same direction across the micro- and macroelectrodes. These

results support the conclusion that an established mean-field
model, updated to mimic changes in extracellular potassium
dynamics, simulates important features consistent with the
human seizure data.

Related scenarios of seizure evolution have been proposed25,26.
The in vivo activity and simulated data described above are
consistent with a small territory of increased activity—an ictal
core—that produces widely and rapidly distributed low-frequency
(2–50Hz) fields extending well beyond the ictal core, over broad,
multilobar regions26. These low-frequency fields travel as waves,
which consist of fast-moving synaptic potentials, and produce
the large amplitude electroencephalogram (EEG) signature of
seizures over broad cortical areas. In another scenario, the seizing
territory expands as a slowly advancing, sharply demarcated,
narrow (o2mm) band of multiunit firing, termed the ictal
wavefront. Travelling waves arise behind the ictal wavefront as it
slowly and radially expands across the cortex. This scenario
benefits from both clinical25 and experimental60 observations.

Our model provides a framework to simulate and compare an
expanding ictal wavefront scenario25 with the scenario of a
spatially restricted, cortical source. To do so, we consider the
simplest formulation of an expanding ictal wavefront: a 2D
boundary of increased excitation that spreads outward at an
approximate speed of 1mm s" 1 (ref. 26). This spatial spread
includes a random component, so that the ictal wavefront appears
as a distorted circle in the 2D plane (Supplementary Methods).
This distortion reflects the fact that the ictal wavefront is unlikely
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Figure 4 | Waves propagate in similar directions across a patient’s seizures and between spatial scales. (a) Average delay at each macroelectrode
(circles) and source direction at the macroscale (red arrow) and microscale (green arrow) for each patient during a single seizure. Delays range from
32ms to "48ms. The location of the MEA is indicated by a black square. (b) The source directions at the microscale versus (normalized) time are similar
for each seizure (colour) of the three patients, but not between patients. (c) The distribution of circular direction differences between the source directions
at the microscale and macroscale during seizure concentrate near 0.
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to spread as a perfect radial wave across different cortical areas,
gyri and sulci. Behind this expanding wavefront, in the seizing
territory, travelling waves emerge consistent with the classic
EEG signature of seizures (Fig. 6a). Computing the direction
consistency approaching seizure termination for the micro-
electrode data simulated in this model, we find significantly
smaller values (mean 0.40, s.d. 0.11) compared to the in vivo data
(mean 0.81, s.d. 0.16; P¼ 2e" 5, two-sided t-test N¼ 10 for the
model, N¼ 7 for the in vivo data) and compared to the model
with a fixed cortical source (mean 0.89, s.d. 0.1; P¼ 5e" 9, two-
sided t-test, N¼ 10 in both groups; Fig. 6b). In this simulation, in
which the entire ictal wavefront remains active, different locations
on the expanding ictal wavefront emit travelling waves, which
then propagate differently across the microelectrode array over

time, thus reducing the direction consistency (Fig. 6c). We do not
find a significant difference (P¼ 0.32, two-sided t-test, N¼ 10 for
the model, N¼ 7 for the in vivo data) between the direction
consistency computed for the in vivo data and the model with a
fixed cortical source. In this scenario, the fixed spatial location of
the cortical source results in waves that travel consistently across
the microelectrode array (Fig. 6d). However, we note that, if only
a small region of the ictal expanding wavefront remained active
before seizure termination, then this region could also act as a
slowly drifting source of cortical waves.

Discussion
In this manuscript, we showed that coherence increases within
and between spatial scales during seizure. We proposed a
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Figure 5 | A mean-field model of cortical activity and diffusion of extracellular potassium reproduces the spatial-temporal dynamics of human seizure.
(a) Cartoon illustration of the model. Excitatory (E) and inhibitory (I) neural populations interact through synaptic interactions and gap junctions between
spatial neighbours. Activity of either cell population increases the local extracellular potassium concentration, which diffuses in space. Vertical scale bar on
the right of the panel indicates 3mm. (b) Example traces of simulated activity at a macroelectrode (upper row) and microelectrode (lower row). The red
bars labelled ‘Seizure onset’ and ‘Seizure termination’ indicate the time when the excitability of the cortical source was increased and decreased,
respectively (see Methods). Scale bar indicates 10 s. (c) Example spatial maps of simulated activity. Each subfigure shows a snapshot of the excitatory
population activity (white 0Hz, black 25Hz) on the 30 cm by 30 cm surface; the time between subfigures is 5 s and time progresses from left to right, top
to bottom. The cortical source (visible near the upper left corner in the fourth subfigure) ignites the activity. A static mosaic pattern (i) then appears,
followed by spatially local propagation (ii) and concluding in travelling waves driven by the seizure source (iii). When the source is inactivated (iv),
propagation ceases. The simulated microelectrodes (green) and macroelectrodes (red) are indicated near the center of each map. Vertical scale bar in top
left panel indicates 10 cm. (d–g) Simulated dynamics at each scale produce results consistent with the in vivo data. (d) A linear fit of the coherence versus
distance reveals an increase in the left and right intercepts during seizure. (e) The direction consistency increases during seizure and (f) the velocity
approaches values between 100 and 300mms" 1 during seizure. (g) The difference in source direction between spatial scales concentrates at 0 radians.
In all figures, mean and s.e. of the mean computed as in Figs 2 and 3, with n¼ 10.
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dynamical reason for this increase: the emergence of propagating
waves of activity that sweep across spatial scales. We showed
that these waves become more consistent over the course of
seizure, and propagate in the same direction across spatial scales
for a patient’s seizures. We implemented a corresponding
computational model of a 2D cortical field to propose that the
slow aggregation and diffusion of extracellular potassium
supports the observed spatiotemporal dynamics.

The seizing human cortex provides an ideal system in which to
study the spatiotemporal dynamics of multi-scale brain activity.
A seizure is a stereotyped multi-scale dysfunction proposed to
initiate at a (microscopic) source and—in these patients—
subsequently recruit all or large portions of the entire observable
cortex. To understand the multi-scale, spatiotemporal dynamics
of seizure requires assessment of the temporal and spatial
organization of simultaneous macroscopic and microscopic
voltage recordings from human cortex. These invasive observa-
tions, which involve implantation of a subdural clinical macro-
electrode array and high-density microelectrode array, are only
performed in human patients with refractory epilepsy. Other
studies have investigated features of macroelectrode and micro-
electrode data recorded simultaneously25,31,61–63, but have not
directly assessed the coherence between these two spatial scales.

Many studies have shown that coupling (or functional
connectivity) within the macroscopic cortical network increases
approaching seizure termination9,20,64,65. This coupling increase

has been interpreted as reflecting the seizure onset zone gradually
recruiting—and becoming more functionally connected
with—the rest of the brain. However, the mechanisms of this
increased coupling are not known. This work supports a
dynamical understanding of increased functional connectivity:
the emergence of propagating waves over the cortical surface25.
These waves may arise, for example, from a cortical source, which
may differ from the seizure focus and may be driven by an
unobserved subcortical source. From this cortical source, repeated
waves of activity emerge that act to couple the voltage activity
recorded from cortical macroelectrode pairs. As the seizure
progresses, wave emissions from the cortical source become more
salient and act to further entrain cortical activity.

This dynamical understanding is consistent with a computa-
tional model in which travelling waves emerge from a cortical
source. To simulate a seizure in the model, we increase the
activity of the cortical source. Initially, this source is difficult to
identify, as a complex pattern of activation and inactivation
appears over the simulated cortical surface. For this cortical
source to emerge spontaneously requires the slow accumulation
and diffusion of extracellular potassium in the model. Dramatic
changes in many extracellular ions occur during seizure53,
including increases in extracellular potassium concentration
([Kþ ]o), which impact neural dynamic and have been
proposed as important to seizure activity52. The field model
proposed here implements these existing concepts, as well as the
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Figure 6 | Simulations of an expanding ictal wavefront produce direction consistency measures inconsistent with the in vivo data. (a) Example spatial
maps of simulated activity for a simple expanding ictal wavefront scenario. The arrangement and colour scale are the same as in Fig. 5a. An ictal wavefront
emerges (i) and slowly recruits cortical territory. As the ictal wavefront expands, travelling waves propagate into the recruited territory from different
directions; compare (ii) and (iii). (b) The direction consistency during the last half of seizure in three simulation scenarios and for the in vivo data.
Compared to the in vivo data, the direction consistency is significantly lower during the second half of seizure for the random source locations and
expanding ictal wavefront simulations; **Po0.005, two-sided t-test. (c,d) Schematic representations for two related scenarios of cortical wave activity
during seizure. In c, the expanding ictal wavefront (orange) evolves in space to produce travelling waves (purple) that propagate to the microelectrode
array (red) from different directions. In d, a cortical source (orange) produces waves (purple) that impact the microelectrode array (red) from the same
direction.
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observation that increases in [Kþ ]o act to close gap junctions,
through an acidification of the extracellular environment. As the
simulated seizure progresses, the increased excitability of the
neural populations and the reduced coordination of inhibitory
cells through a loss of gap junctions, supports the emergence of
travelling waves. Here the hypothesized role of [Kþ ]o could not
be tested directly in the human patients; future research that
incorporates clinically approved methods to detect extracellular
ion concentrations would facilitate such a test. We note that gap
junctions between excitatory cells have been proposed as essential
to support the fast rhythms associated with seizure (that is, high
frequency oscillations or HFO at seizure onset7). We did not
model these fast rhythms here. Instead, we examined slower
seizure rhythms (o25Hz) using a model with gap junction
coupling between inhibitory neurons41,51. Extending this field
model to include faster rhythms would require the inclusion of
additional mechanisms.

Although the analysis and modelling provide insight into the
multi-scale dynamics of seizure, three important limitations
remain. First, by choosing to estimate the spatial organization of
the delays using multiple linear regression, we focused on delays
linearly organized in space. In doing so, we only captured plane
wave activity. The importance of these waves are motivated by
visual inspection of the data (for example, Fig. 1), and previous
analysis of plane wave propagation25,28,33. Understanding the
more complex spatiotemporal patterns (for example, spirals66)
that appear during seizure requires the development and
application of additional approaches67. Second, the
computational model implements numerous simplifications.
The cortex is not a 2D sheet with uniform connectivity,
homogenous parameters and only two cell populations. We
induce a sequence of spatiotemporal patterns in the model
through a slow change in a variable representative of the
concentration of extracellular potassium; slow changes in other
model variables may produce similar sequences. We choose to
focus on the concentration of extracellular potassium because
changes in this ion concentration have been proposed as an
important component of seizure52–57. Updating the model to
address these limitations and incorporate single neuron activity
with changes in extracellular ion dynamics56,57 would provide
additional insight. Third, we analysed here two scales of
field activity. Incorporating single unit activity would
provide an additional spatial scale, although doing so remains
controversial23,68.

Numerous similarities exist between the results presented in
refs 25,26 and those presented here. In both cases, travelling
waves are observed with similar speeds that propagate in
preferred directions consistently across the macroelectrode and
microelectrode domains. These similarities occur despite the
small number of subjects analysed (three in ref. 25 and three here,
which limits general conclusions) and the different data analysis
approaches employed (for example, characterization of ictal
discharges in ref. 25 and the entire field time series here).
In addition, conceptual similarities link the scenario proposed in
refs 25,26 and the one proposed here. Both scenarios suggest that
a small cortical source projects travelling waves over a broad
cortical area, that these travelling waves induce synchronization
in the low-frequency field activity, and that a sufficient dissipation
of the cortical source causes seizure termination. However, the
two scenarios suggest a different source of ictal activity: in ref. 25
a slowly migrating ictal wavefront is proposed as the source, while
here we hypothesize that a fixed cortical location is the source.
Using simulations that capture the basic features of these two
scenarios (Figs 5 and 6), we find that the fixed cortical source
produces propagating waves with a direction consistency similar
to the human data analysed in this study, while a uniformly

active, expanding ictal wavefront produces a significantly smaller
direction consistency.

In the future, two procedures may help further distinguish
these two proposed scenarios. First, in the fixed cortical source
model, we hypothesize that stimulation delivered to a single
cortical location—the cortical source or ictal core—late in seizure
will disrupt travelling wave propagation. Alternatively, we expect
that single-site stimulation would not disrupt travelling waves
that propagate from a uniformly active, expanding ictal
wavefront; in this scenario, stimulation would disrupt only a
part of the ictal wavefront, while the rest of the ictal wavefront
would continue to emit travelling waves into the recruited brain
region. Second, in the cortical source model, travelling waves
propagate outward from the cortical source, and these waves
become more salient approaching seizure termination. Therefore,
we hypothesize that identifying the cortical source of these
travelling waves—even late in seizure—isolates a potential
treatment target, either the cortical area itself or the subcortical
areas that drive it. In the expanding ictal wavefront model, the
travelling waves are less informative for identifying a treatment
target; these travelling waves emerge from the ictal wavefront,
which by the end of seizure has propagated away from its point of
emergence on the cortex. Instead, tracking the slow evolution of
the ictal wavefront may identify a candidate focal treatment
target. We note that these two procedures, which exceed the
immediate scope of the current study, may reveal that both
scenarios occur in a heterogeneous patient cohort69.

We conclude that the two scenarios, both of which are
compatible with many aspects of the observed seizure activity,
possess particular distinguishing features in terms of their
mechanisms, dynamics and response to stimulation69. The two
scenarios also differ in the mechanisms of seizure termination.
To end seizure abruptly across a wide cortical region, some
mechanism must weaken simultaneously the entire spatially
distributed ictal wavefront. For example, the entire boundary of
the expanding ictal wavefront may encroach on a surrounding
area with superior inhibitory restraint. Without this simultaneous
cessation, some regions of the ictal wavefront would continue to
broadcast travelling waves into recruited cortex. We note that a
non-uniform collapse of an expanding ictal wavefront could
increase the consistency of travelling waves before seizure
termination; for example, if only a small region of the ictal
wavefront remained active, then only this region would broadcast
cortical waves, which would propagate from a single direction
over the brain. Alternatively, in the fixed cortical source model,
mechanisms that operate over a limited cortical region could
inactivate the cortical source and terminate seizure.

We may interpret these results presented here to suggest
two categories of seizure therapy. First, we propose targeting
the mechanisms that support seizure. Motivated by the
computational model, potential therapies could target the
accumulation of extracellular potassium, for example by
increasing glial uptake or developing a physical collection
mechanism, or act to preserve inhibitory gap junctions. Both
modifications prevent the emergence of travelling waves in the
model (Supplementary Figure 3). Second, as described above, we
propose targeting the source of travelling waves that emerge
during seizure. Motivated by the in vivo data and computational
model, potential therapies could target the cortical source—rather
than the seizure source, which may be inaccessible; firewall the
cortical source70; or disrupt wave propagation in some way to
prevent waves from reaching eloquent cortex.

A unified view of brain activity spans spatial and temporal
scales, recognizing that the nervous system consists of interacting
molecules, cells and circuits. To achieve this vision requires the
collection and analysis of multi-scale brain data, which presents
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numerous practical and theoretical challenges. An even greater
challenge is to link these multi-scale observations to human
function and dysfunction. In this study, we examined multi-scale
voltage data collected from human patients during seizure.
Analysis of these data identified the dynamics—propagating
waves—that link activity across the microscopic and macroscopic
spatial scales. A corresponding computational model provided a
mechanistic implementation of these human multi-scale voltage
dynamics, with testable hypothesis at the microscale (for example,
the role of diffusion of extracellular potassium). In this way, the
combination of clinical human data with computational models
acts to link human behaviour (in this case, seizures) to molecules.

Methods
Patients and recordings. Three patients (males ages 45, 32 and 21 years) with
medically intractable focal epilepsy underwent clinically indicated intracranial
cortical recordings using grid electrodes for epilepsy monitoring. Clinical electrode
implantation, positioning, duration of recordings and medication schedules were
based purely on clinical need as judged by an independent team of physicians.
Patients were implanted with intracranial subdural grids, strips and/or depth
electrodes (Adtech Medical Instrument Corporation) for 5–14 days in a specialized
hospital setting and continuous intracranial EEG were performed (500Hz
sampling rate). The reference was a strip of electrodes placed outside the dura and
facing the skull at a region remote from the other grid and strip electrodes. One to
four electrodes were selected from this reference strip and connected to the
reference channel.

These patients were also implanted with an additional 10$ 10 (4mm$ 4mm)
NeuroPort microelectrode array (MEA; Blackrock Microsystems, UT) in a
neocortical area expected to be resected with high probability, in either the middle
or superior temporal gyrus. The MEA consist of 96 recording platinum-tipped
silicon probes, with a length of either 1 or 1.5mm, corresponding to neocortical
layer III as confirmed by histology after resection. The reference was an electrode
placed either subdurally or epidurally and remote from the recording site23.
The macroelectrode and MEA data sets were aligned using a pulse-coded signal
delivered simultaneously to both recording systems. Signals from the MEA were
acquired continuously at 30 kHz per channel and then subsequently down-sampled
to 500Hz by low-pass filtering (zero-phase forward and reverse finite impulse
response filter of order 1,000 with cutoff frequency of 250Hz) and interpolating
voltages at the same time-points as the intracranial EEG.

Seizure onset times were determined by an experienced encephalographer
(S.S.C.) through inspection of the macroelectrode recordings, referral to the clinical
report and clinical manifestations recorded on video. The seizure end time was
defined as the latest time at which both the microelectrode and macroelectrode
recordings displayed large amplitude ictal activity. The number of seizures varied
across the participants. Owing to operational issues, not all of these seizures were
recorded or provided data with a high signal-to-noise ratio. We selected 7 seizures
among the three participants. Seizure onsets were detected approximately 2–3 cm
away from the MEA, based on the clinical macroelectrodes. These recordings were
therefore outside the seizure onset zone.

These data have been previously used in other studies23,27,31,33. The three
patients analysed here correspond to patients P1, P2 and P4 in study28. For a
detailed clinical summary of each patient, see Patients P1, P2 and P4 of28.

All patients were enrolled after informed consent was obtained and approval
was granted by local Institutional Review Boards at Massachusetts General
Hospital and Brigham Women’s Hospitals (Partners Human Research
Committee), and at Boston University according to National Institutes of Health
guidelines.

Coherence and delay estimation. We estimated the time-dependent coherence
and its phase between pairs of electrodes using the multi-taper method
implemented in the Chronux Toolbox for MATLAB71. Electrode pairs consisted of
either two microelectrodes, or one microelectrode and one macroelectrode. We
divided the data into 10 s windows with 9 s overlap, beginning 60 s before seizure
onset and ending at seizure termination and computed the coherence within each
window using a time-bandwidth product of 20 (bandwidth of 2Hz) and 39 tapers,
which is chosen to be one less than the Shannon number (or one less than twice the
time-bandwidth product)72. We declared significant the values of the coherence
larger than the theoretical confidence level at 99.5%. Repeating the analyses using a
smaller window of 2 s and a time-bandwidth product of 4 lead to qualitatively
similar results. We note that the interpretation of coherence, or any coupling
measure, from referenced or re-referenced data requires care73. Here we chose not
to re-reference the data. Because we compute the coherence between many
electrode pairs across spatial scales with a different physical reference at each
spatial scale, and then analyse the spatial organization of the delays inferred from
this coherence, we would expect to find no evidence of travelling waves if the
coherence results were dominated by spurious effects74. However, we do find
evidence for travelling waves, which suggests that these results are not dominated

by a reference signal. We also note that the model data, which is reference-free,
produces dynamics consistent with the in vivo data; this consistency supports a
relatively quiet in vivo reference.

We estimated the delay between electrode pairs using the phase of the
coherence following the approach developed in ref.12. We considered the (1–
13Hz) frequency range, and identified an interval of 3Hz or larger with
consecutive significant coherence. From this interval we computed a linear fit of the
phase of the coherence versus frequency. Whenever the interval existed, and the fit
was significantly better than a constant term model (Po0.05 for the F-test on the
regression model), its slope provided an estimate of the group delay between the
electrode pair12. Otherwise, the delay between the electrode pair was considered
undefined.

We investigated the relationship of the distance between an electrode pair and
its coherence using a linear fit. The distance between electrodes within the
microelectrode array was computed using a spacing of 0.4mm between
neighbouring electrodes. To compute the distance between a macroelectrode and
the microelectrode array, we used the co-registered three-dimensional (3D)
positions of the macroelectrode on the brain surface (see ref. 75 and section
Anatomical figures) to estimate the geodesic distance. Repeating the analysis of
coherence versus distance (Fig. 2) using the macroelectrode grid spacing of 1 cm,
we find qualitatively similar results.

To identify waves travelling within the microelectrode array during each
window, we performed a linear regression of the delays D as a function of the 2D
microelectrode positions (X,Y) such that D¼ b0þ b1Xþ b2Y, where b0, b1 and b2
are the parameters to estimate. Here we consider delays at each microelectrode
relative to the microelectrode at the center of the MEA. Two criteria were required
for the 2D fit to be considered valid: (i) At least 50% of the electrodes for that time
window must have a defined delay; (ii) The fit must be significantly better than a
constant term model (Po0.05, F-test that the two slope estimates are both 0).
When a wave is identified (that is, a valid fit), two statistics were computed from
the fit: the wave speed estimated as 1ffiffiffiffiffiffiffiffiffiffi

b21 þ b22
p ; and the direction of the wave source,

estimated as the four-quadrant inverse tangent, with horizontal coordinate b1 and
vertical coordinate b2. To quantify the consistency of the wave source directions yj
in a given interval containing N direction estimates, we compute the phase locking
value f defined as f ¼ 1

N j
PN

j¼1 e
" iyj j; see ref. 76. We refer to the result here as the

‘direction consistency’ to avoid confusion with the phase estimated from the
coherence. We perform a similar procedure for the macroelectrode data. The delay
between the MEA and a single macroelectrode was computed as the mean delay
between all microelectrodes and the macroelectrode. We considered the 30
macroelectrodes closest to the MEA, and electrode positions on the brain surface
were estimated through coregistration (see section Anatomical Figures).

For most measures, we computed the mean and its 95% confidence interval
averaged over four windows representative of relevant time intervals during
seizure. We define these windows as follows, using normalized seizure duration,
so that the seizure begins at time 0 and ends at time 1: the pre-seizure window
(label ‘Pre’ in figures) from " 0.5 to 0, the early seizure window (label ‘Early’) from
0 to 0.5, the middle seizure window (label ‘Middle’) from 0.25 to 0.75, and the late
seizure window (label ‘Late’) from 0.5 to 1.0. Results in the text and in the figures
represent the estimated grand mean±95% confidence interval of the described
statistics, computed across seizures. The confidence intervals were estimated with a
bootstrap resampling procedure using 1,000 samples with replacement. To test for
differences between the pre-seizure period and seizure, we used the t-test and
report the P values without correction in the manuscript.

Anatomical figures. To create anatomical representations of electrode placement
and seizure spread (Figs 1 and 4), we used Freesurfer77 to reconstruct a 3D model
of the cortical surface of each patient using preoperative high-resolution magnetic
resonance imaging data. We then co-registered these magnetic resonance imaging
data with a postoperative computed tomography scan showing the location of the
intracranial electrodes to obtain the coordinates of electrodes in the space of
the reconstructed 3D model of the cortex. These procedures are described in
detail in ref. 75.

Computational model. We implemented an extension of the mean-field model
originally proposed in ref. 41. The original implementation of this model, including
definitions of all variables and parameters, and MATLAB code can be found in the
Supplemental Material of ref. 41. We simulated this model here with the following
three modifications: (i) We used no flux boundary conditions. (ii) We included a
model of depolarization block, so that the firing rate of each population approaches
zero as the voltage exceeds " 20mV; that is, we apply a Gaussian activation
function, rather than the standard sigmoid function78. Some recent observations
from human seizing cortex suggest an important role for depolarization block78,79,
while others suggest this role may depend on the type of seizure23,80. We do not
find a critical role for depolarization block in the large amplitude, low-frequency
dynamics simulated here. However, to simulate the low amplitude, high-frequency
rhythms commonly observed at seizure onset would require inclusion of additional
mechanisms, for example an additional cell population, in which depolarization
block may serve an important role. (iii) We simulated extracellular potassium
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dynamics at each location that obey the following differential equation:

dK
dt

¼ " dK þ C1ðQe þQiÞ
1þ e" Qe þQið Þ" 15 þC2r2K ð1Þ

where K represents a (unitless) proportion of extracellular potassium. The first
term in (1) represents a decay (rate d¼ 0.1 s" 1) of K. The second term acts to
increase K when either population (with excitatory firing rate Qe and inhibitory
firing rate Qi) at the location is active with scale factor C1¼ 0.15. The third term
represents diffusion of K (diffusion coefficient C2¼ 1 cm2 s" 1) between
neighbouring spatial locations; here r2 is the 2D Laplacian operator.

The proportion of extracellular potassium K acts to decrease the gap junctions
between inhibitory populations (Dii), and increase the resting voltages of the
excitatory ðDV rest

e Þ and inhibitory ðDVrest
i Þ populations through the following

differential equations:

dDii

dt
¼ " Dii

tD
dDVrest

b

dt
¼ DVrest

b

tV

ð2Þ

where b¼ {e,i}, and we set the time constants so that these variables change slowly:
tD¼ 4 s and tV¼ 25 s.

All of the model parameters are identical to the original model in Table I of
ref. 41 except for: the neuron time constants (here te,i¼ 0.02 s versus 0.04 s), the
initial offset to the resting potential (here DV rest

e;i ¼ 2:5; 0:1mV versus 1.5, 0mV),
the tonic excitatory flux entering from subcortex (here hfsc

ebi ¼ 150 s" 1 versus
300 s" 1), the subcortical noise scale factor (here 2 versus 4), and the axonal
conduction speed (here 280 cm s" 1 versus 140 cm s" 1).

We simulated the model on a 100-by-100 square grid, corresponding to a
300mm by 300mm cortical surface. Each position on the grid represents a coarse
grained approximation to cortex over an approximately 9mm2 area41. On this
surface, we included a ‘cortical source’ of increased excitability at position
(x,y)¼ (75mm, 75mm); we modelled this excitability as a threefold increase in the
resting membrane voltage of the excistatory populations at this location. We
examined the simulated spatiotemporal dynamics at two spatial scales. We
considered a 3-by-3 ‘microelectrode array’ centered in the cortical region (Fig. 5c).
Each microelectrode recording corresponded to the excitatory population activity
at the selected location (representative of a 9mm2 area of cortex). Surrounding this
microelectrode array, we placed nine ‘macroelectrodes’. Each macroelectrode
recording corresponded to the average excitatory population activity from a
108mm2 area of cortex (Fig. 5c). This simple approximation represents the notion
that a macroelectrode records the summed activity from multiple cortical columns.
At each grid position we simulated the 16 original model variables from ref. 41 and
the four additional (slow) variables we introduced in (1) and (2).

We simulated the model dynamics for 180 s, and changed only one parameter
during this time: the source activation. For the first 40 s the source was inactive
(DV rest

e ¼ 1mV at the source), while in the middle 100 s the source was
active (DV rest

e ¼ 3mV at the source), and in the last 40 s the source was inactive
(DV rest

e ¼ 1:5mV at the source). The last value of DV rest
e was chosen to be

consistent with the increased resting values of the cortical sheet due to the
increased concentration of extracellular potassium (variable K). The model
dynamics evolve with no further intervention; that is, no other fixed parameters are
adjusted during the simulation. We repeat the entire simulation 10 times, each with
a different noise instantiation, to create the results in Fig. 5.

Code and data availability. All analyses and modelling were performed
using custom designed algorithms written in MATLAB (MathWorks, Inc). An
algorithm to estimate wave properties (direction and speed) from an interval of
spatiotemporal data, a 10 s example of microelectrode array data and the model
implementation and simulations to reproduce an instance of the results in Fig. 5c
are available for re-use or further development at the repository: https://github.-
com/Mark-Kramer/Seizure-Waves.

Data availability. The seizure data that support the findings of this study are
available on request from the corresponding author S.S.C. The data are not publicly
available due to them containing information that could compromise research
participant privacy/consent.
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