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Abstract

While brain rhythms appear fundamental to brain function, why brain rhythms consistently

organize into the small set of discrete frequency bands observed remains unknown. Here we
propose that thythms separated by factors of the golden ratio (¢ = (1 + ﬁ)/Z)) optimally support

segregation and cross-frequency integration of information transmission in the brain. Organized by

the golden ratio, pairs of transient rhythms support multiplexing by reducing interference between

separate communication channels, and triplets of transient rhythms support integration of signals

to establish a hierarchy of cross-frequency interactions. We illustrate this framework in simulation

and apply this framework to propose four hypotheses.
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11 INTRODUCTION

The brain is organized into a hierarchy of functionally specialized regions, which selectively
coordinate during behavior [1, 2, 3, 4] and rest [5, 6, 7]. Effective function relies on
dynamic coordination between brain regions, in response to a changing environment, on an
essentially fixed and limited anatomical substrate [8,9, 10, 11]. Through these anatomical
connections multiplexing occurs: multiple signals that combine for transmission through a
single communication channel must then be differentiated at a downstream target location
[12, 13]. How information — communicated via coordinated transmission of spiking activity
[14] — dynamically routes through the brain’s complex, distributed, hierarchical network
remains unknown [15].

Brain rhythms — approximately periodic fluctuations in neural population activity —

have been proposed to control the flow of information within the brain network [12,

16,17, 18, 19, 20] and proposed as the core of cognition [21, 22, 23, 24]. Through

periodic modulations in neuronal excitability, rhythms may support flexible and selective
communication, allowing exchange of information through coordination of phase at rhythms
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of the same frequency (e.g., coherence [16, 19, 25, 26, 27]) and different frequencies

(e.g., phase-amplitude coupling [18, 28, 29] or n:m phase locking [30, 31, 32]). Recent
evidence shows that neural oscillations appear as transient, isolated events [33, 34]; how
such transient oscillations route information through neural networks remains unclear [35].

Significant evidence supports the organization of brain rhythms into a small set of discrete
frequency bands (e.g., theta [4-8 Hz], alpha [8—12 Hz], beta [12-30 Hz], gamma [30-80
Hz]) [36, 37]. Consistent frequency bands appear across mammalian species (mouse, rat,
cat, macaque, and humans [38]) and in some cases the biological mechanisms that pace

a rhythm are well-established (e.g., the decay time of inhibitory post-synaptic potentials
sets the timescale for the gamma rhythm [39]). Why brain rthythms organize into discrete
bands, and whether these rhythms are fixed by the brain’s biology or organized to optimally
support brain communication, remains unclear. For example, an alternative organization of
the brain’s rhythms (e.g., into a larger set of different frequency bands) may better support
communication but remain inaccessible given the biological mechanisms available to pace
brain rhythms.

While much evidence supports the existence of brain rhythms and their importance to

brain function, few theories explain their arrangement. Different factors have been proposed
for the spacing between the center frequencies of neighboring bands: Euler’s number (e

~ 2.718) [40], the integer 2 [41], or the golden ratio (¢ ~ 1.618) [42]. Existing theory
shows that irrational factors (e.g., e and ¢) minimize interference between frequency bands,
in support of separate rthythmic communication channels for multiplexing information in
the brain [43, 44, 45]. However, if separate rhythmic channels communicate different
information, and the organization of brain rhythms prevents interference, how a target
location coordinates information across these rhythms is unclear. For example, how in
theory a neural population integrates top-down and bottom-up input communicated in
separate rhythmic channels (lower [<40 Hz] and higher [>40 Hz] frequency ranges,
respectively [25, 26, 46, 47, 48]) remains unclear. We propose a solution to this problem:
addition of a third rhythm. Motivated by an existing mathematical theory [43, 44, 45], we
show that effective communication among three rhythms is optimal for rhythms arranged
according to the golden ratio.

In what follows, we show that golden rhythms — rhythms organized by the golden ratio —
are the optimal choice to integrate information among separate rhythmic communication
channels. We propose that brain rhythms organize in the discrete frequency bands observed,
with the specific spacing observed, to optimize segregation and integration of information
transmission in the brain.

METHODS

All simulations and analysis methods to reproduce the manuscript results and figures are
available at https://github.com/Mark-Kramer/Golden-Framework.
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2.11 Damped harmonic oscillator model

As a simple model of rhythmic neural population activity (e.g., observed in the local field
potential (LFP) or magneto/electroencephalogram (M/EEG)) we implement a network of
coupled damped harmonic oscillators [49]. We choose the damped harmonic oscillator
for three reasons. First, a harmonic oscillator (e.g., a spring) mimics the restorative
mechanisms governing displacements about a stable equilibrium in neural dynamics (e.g.,
excitation followed by inhibition in the gamma rhythm [39, 50], depolarization followed
by hyperpolarization — and vice versa — in bursting rhythms [51]). Second, brain rhythms
are transient [33, 34]. In the model, damping (e.g., friction) produces transient oscillations
that decay to a stable equilibrium. Third, the damped harmonic oscillator driven by noise
is equivalent to an autoregressive model of order two (AR(2), see Appendix A). The AR(2)
model simulates stochastic brain oscillations [52], consistent with the concept of a neural
population with resonant frequency driven by random inputs.

We simulate an 8-node network of damped, driven harmonic oscillators. We model the
activity xg at node k& as,

X+ 26%, + 0x, = (8 + &scOswst) Z X 0
i#Fk

where B is the damping constant, and wy = 2f} is the natural frequency of node k. The
activity x;summed from all other nodes (;# &) drives node k. We modulate this drive by
a gain function with two terms: a constant gain g. and a sinusoidal gain with amplitude g;
and frequency wg = 2rtfs. To include noise in the dynamics, we represent the second order
differential equation in Equation (1) as two first order differential equations for the position
and velocity of the oscillator. We add to the position dynamics a noise term, normally
distributed with mean zero and standard deviation equal to the average standard deviation
of the evoked response at all oscillators simulated without noise, excluding the perturbed
oscillator from the average. In this way, we add meaningful noise of the same magnitude
to all oscillators. We numerically simulate the model with noise using the Euler-Maruyama
method. To examine the impact of different noise levels, we multiply the noise term by
factors {0,0.5, 1.0, 1.5,2.0}. For each noise level, we repeat the simulation 100 times with
random noise instantiations.

31 RESULTS

In what follows, we propose that brain rhythms organized according to the golden ratio
produce triplets of rhythms that establish a hierarchy of cross-frequency coupling. We
conclude with four hypotheses deduced from this framework and testable in experiments.

3.11 Rhythms organized by the golden ratio support selective cross-frequency coupling

In the case of weakly-connected oscillatory populations, whether the populations interact

or not depends on their frequency ratios [43, 44, 45]; rational frequency ratios support
interactions, while irrational frequency ratios do not. Motivated by this theory, we consider
a network of interacting, rhythmic neural populations (Figure 1). We model each population
as a damped harmonic oscillator, with each oscillator assigned a natural frequency £ To
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couple the populations, we drive each oscillator with the summed activity of all other
oscillators (i.e., the connectivity is all-to-all). We modulate this drive by a gain function (g)
with constant (g.) and sinusoidal (amplitude g, frequency £s) terms: g = g. + §scos 2z fst);
see Methods. Analysis of this coupled oscillator system reveals resonance (i.e., a large
amplitude response) at a target oscillator in two cases. To describe these cases, we denote the
frequency of a target oscillator as f7and the frequency of a driver oscillator as /p. A large
amplitude (resonant) response occurs at the target oscillator in the following cases,

constant gain modulation:

0=fi—1» )
sinusoidal gain modulation:
Ss=Jfr—F» (3a)
fs=Ffo—1r (3b)
fs=Ffot fr (3c)

The first case (Equation 2) corresponds to the standard result for a damped target oscillator
driven by sinusoidal input; when the sinusoidal driver frequency 7p matches the natural
frequency of the target 7, the response amplitude at the target is largest (e.g., see Chapter
5 of [53]). The next three cases (Equation 3) correspond to a damped target oscillator
driven by sinusoidal input modulated by sinusoidal gain. If the gain frequency fgequals
the sum or difference of the target and driver frequencies, then the response amplitude

at the target is largest (see Appendix B). We note that the first case corresponds to within-
frequency coupling (i.e., the driver and target have the same frequency) while the next
three cases correspond to cross-frequency coupling (i.e., the driver and target have different
frequencies). We also note that, in this model, we assume an oscillator responds to an
input by exhibiting a large amplitude response; in this way, we consider the oscillation
amplitude as encoding information, consistent with notion of information encoded in firing
rate modulations [54].

The results in Equations (2, 3) hold for any choice of driver, target, and gain frequencies
without additional restrictions. We now apply an additional restriction, and consider the
damped harmonic oscillator network with oscillator and gain frequencies f; satisfying,

fo=fock, )

where £ > 0 determines the frequency at k= 0. As discussed above, candidate values for
cdeduced from in vivo observations include Euler’s number (e ~ 2.718) [40], the integer
2 [41], or the golden ratio (¢ ~ 1.618) [42]. Then, given the set of three neighboring
frequencies {fy, fi+1, f+2}, what choice of ¢ supports cross-frequency coupling in the
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network? To answer this, we choose fg= fyo, fp= 1341, and 7= £ so that Equation (3c)
becomes

Sev2=fesr + fie

Substituting Equation (4) into this expression and solving for ¢, we find

2-—c-1=0
with solution
= LES

the golden ratio. The same solution holds for all Equations (3) with appropriate selection
of {fs, fp, 7} from {fy, 11, i }. We conclude that, for a system of damped coupled
oscillators with oscillator and gain frequencies spaced by the multiplicative factor ¢, cross-
frequency coupling between three neighboring rhythms requires ¢ = ¢, the golden ratio.

In other words, we propose that frequencies organized according to the golden ratio are
particularly suited to support these cross-frequency interactions.

To illustrate this result, we consider a network of 8 damped, coupled oscillators each with

a different natural frequency determined by the golden ratio (; = ¢X, where ¢ = %;

Figure 2); we label these rhythms — scaled by factors of the golden ratio — as go/den
rhythms. Starting all nodes in a resting state, we perturb one oscillator (fp= ¢° ~ 17.9 Hz)
to produce a transient oscillation at that node. With only a constant gain (g. = 50, g5 = 0),
the impact of the perturbation on the other oscillators is small (Figure 2B); because f7# fp
for any oscillator pair, the network impact of the perturbation is small, despite the constant
coupling.

Including the sinusoidal gain modulation (g. = 50, g = 50) results in selective
communication between the oscillators. For example, choosing fg= ¢’ ~ 29.0 Hz, we
observe an evoked response at two oscillators (Figure 2C): f7= ¢8 ~ 47.0 Hz (consistent
with Equation (3a)) and f7= ¢5 ~ 11.1 Hz (consistent with Equation (3c)). We note that

the frequency of evoked responses matches the natural frequency of each oscillator. We also
note that no solution exists for Equation (3b) because 7> 0. Different choices of gain
frequency fgresult in different pairs of cross-frequency coupling between the driver (p)
and response oscillators (Figure 2D). Cross-frequency coupling occurs when Equations (3)
are satisfied with fp~ 17.9 Hz. The coupling is selective; for example, choosing a gain
modulation of fg= 11.1 Hz results in cross-frequency coupling between the driver (fp=17.9
Hz) and faster (29 Hz) and slower (6.9 Hz) golden rhythms. In this case, sinusoidal gain
frequencies fgexist that support cross-frequency coupling and occur at factors of the golden
ratio: i.e., fg= ¢X (Figure 2D, circles). We note that evoked responses also occur when £

# ¢¥ (Figure 2D, X’s); in these cases, frequencies outside the original rhythm sequence £

= ¢X must exist to support cross-frequency coupling. We conclude that if brain rhythmic
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activity — both oscillator and gain frequencies — organizes according to the golden ratio, then
cross-frequency coupling is possible between a subset of separate rhythmic communication
channels.

We now consider the impact of noise on this cross-frequency communication. With
sinusoidal gain modulation (g. = 50, g5 = 50, and fg= ¢7 % 29.0 Hz) and including noise in
the oscillator dynamics (see Methods), we show the results for two cases: with perturbation
and without perturbation to one oscillator (fp ~ 17.9 Hz, as above). Without perturbation
(gray in Figure 2E), we find no evidence of an evoked response at any node, as expected; the
amplitude remains small at all nodes, with a small gradual increase as the noise increases.
With the perturbation (red in Figure 2E), we find an evoked response at the perturbed
oscillator (fp~ 17.9 Hz) and two other oscillators: 7~ 47.0 Hz (consistent with Equation
(3a)) and f7~ 11.1 Hz (consistent with Equation (3c)). As the noise increases, so does

the variability in the evoked response. For the lower frequency 7% 11.1 Hz oscillator,

the evoked response remains evident as the noise increases; in Figure 2E, the perturbed
(red) and unperturbed (gray) responses remain separate. For the higher frequency 7%

47.0 Hz oscillator, the evoked response becomes more difficult to distinguish from the
unperturbed case as the noise increases; in Figure 2E, the perturbed (red) and unperturbed
(gray) responses begin to overlap with increasing noise. We note that the amplitude of
evoked responses decreases with frequency. There-fore, the same amount of noise impacts
the higher frequency (£~ 47.0 Hz) oscillator more than the lower frequency (f7~ 11.1 Hz)
oscillator, making an evoked response more difficult to distinguish from background noise in
the higher frequency case. We also note that oscillators not satisfying Equation (3) (i.e., f7
~ {6.9,29.0,76.0} Hz when fp~ 17.9 Hz and fg~ 29.0 Hz) exhibit little evidence of an
evoked response at any noise level.

To illustrate the utility of the golden ratio, we consider an alternative network of oscillators
with frequencies organized by a factor of 2 (Figure 3A); such integer relationships have
been proposed as important to neural communication [30, 55, 41]. As expected, with only
constant gain (g, = 50) a perturbation to one node (= 16 Hz) does not impact the rest

of the network (Figure 3B). Including sinusoidal gain with frequency fgcan produce cross-
frequency coupling. For example, choosing f5 = 8 Hz results in cross-frequency coupling
between the fp= 16 Hz and f7= 8 Hz rhythms (Figure 3C). Similarly, choosing fg= 16

Hz results in cross-frequency coupling between the = 16 Hz and f7= 32 Hz rhythms;
however, this choice of fgalso results in strong cross-frequency coupling between /=16
Hz and lower frequency rhythms (7= 8, 4,2, 1 Hz; Figure 3D). Importantly, we note that
cross-frequency coupling typically occurs at sinusoidal gain frequencies that differ from the
set of oscillator frequencies at 2€ Hz (vertical lines in Figure 3D); a new set of rhythms (and
rhythm generators) must exist to support cross-frequency coupling in this network.

To summarize, in a network of damped coupled oscillators (Equation 1), sinusoidal

gain modulation supports cross-frequency coupling (Equation 3). If oscillator and gain
frequencies organize according to a multiplicative factor (Equation 4), then cross-frequency
coupling between neighboring frequencies requires a multiplicative factor of ¢, the golden
ratio (e.g., Figure 2D). While oscillators organized with a different multiplicative factor
can still produce cross-frequency coupling, the frequencies of effective gain modulation
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are not part of the original rhythmic sequence (e.g., Figure 3D), thus requiring the brain
devote more resources to implementing a larger set of rhythms in support of cross-frequency
interactions.

3.21 plingRhythms organized by the golden ratio support ensembles of cross-frequency
coupling
In the previous section, we considered a network of nodes oscillating at different natural
frequencies. As an alternative example, we now consider a network with two ensembles of
nodes oscillating at different frequencies. The two ensembles consist of nodes oscillating at
frequencies ¢X or g¥*2, where ¢ is the golden ratio. With only constant gain, a perturbation
to any node impacts only nodes of the same ensemble (i.e., with the same frequency).
Including sinusoidal gain modulation with (intermediate) frequency fg= ¢**!, a perturbation
to any node impacts nodes in both ensembles. We illustrate this in the 8-node network
with 4 nodes in each ensemble oscillating at natural frequencies ¢* ~ 6.85 Hz or ¢° ~
17.9 Hz (Figure 4A). With only constant gain (g. = 50, z; = 0), a perturbation to one ¢°
~ 17.9 Hz (driver) node impacts the amplitude of all other nodes in the same ensemble
(Figure 4B). Including sinusoidal gain modulation (g. = 50, g5 = 50) with frequency f X
11.1 Hz, the same perturbation now impacts all nodes in both ensembles (Figure 4C).
From Equation 3 we determine that two sinusoidal gain frequencies support cross-frequency
coupling between the driver (fp= ¢6 ~ 17.9 Hz) and target (7= ¢4 ~ 6.85 Hz) ensembles,

fs=fr—fp=06.85-17.9<0.00,

fs=fp— fr=179-685=11.1Hz,

fs=fp+ fr=179+6.85=24.6Hz.

However, of these two frequencies, only the former (£g= 11.1 Hz) is also a golden rhythm
(Figure 4D, box). In this case, cross-frequency coupling occurs when ensemble and gain
rhythms organize in a “golden triplet” (f7, f5, fp) = (¢X, gk+1, gk+2) ~ (6.85,11.1, 17.9) Hz,

where gk + gh+1 = gh+2,

An alternative choice of irrational frequency ratio between the brain’s rhythms is Euler’s
number (e) [40]. Repeating the simulation with two ensembles of frequency ek or ek+2
results in cross-frequency coupling between ensembles only when fg= ek*2 + ¢k (see Figure
5 for an example with k= 2). We therefore find similar results for the “Euler triplet” (#p,

fr, 5) = (ek*2, &k, k2 + k) or specifically for k=2, (fp, f, f5) = (¢*, &, ¢* = ).
However, this Euler triplet is not consistent with the ratio of e observed in vivo, where three
neighboring frequency bands appear at multiplicative factors of e (e.g., (£, ef, ¢f) and the
two slower rhythms do not sum to equal the faster rhythm (e.g., £+ ef# ¢2f). Only for three
neighboring frequency bands related by the golden ratio (£, ¢, ¢*£) do the frequencies of the
slower rhythms sum to the faster thythm (i.e., £+ ¢f= #*h.

Neuron Behav Data Anal Theory. Author manuscript; available in PMC 2023 May 12.
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3.31 Golden rhythms establish a hierarchy of cross-frequency interactions

We now consider results derived for weakly coupled oscillators, which motivated the

study of (strongly) coupled damped harmonic oscillators presented above. In [43, 44],
Hoppensteadt and Izhikevich consider the general case of intrinsically oscillating neural
populations with weak synaptic connections. When uncoupled, each neural population
exhibits periodic activity (i.e., a stable limit cycle attractor) described by the phase of
oscillation. We note that, in our study of coupled damped harmonic oscillators, we instead
consider the amplitude of each oscillator. When Hoppensteadt and Izhikevich include weak
synaptic connections between the neural populations, the phases of the neural populations
interact only when a resonance relation exists between frequencies, i.e.,

Zkif,=0,
i

where &;is an integer and not all 0, and £;is the frequency of neural population 7. The
resonance order is then defined as the summed magnitudes of the integers &,

resonance order = Z 1% -
i

For the case of two neural populations, if

kifi+kf,=0
for integers & and k», then
ﬁ = - Ll = rational .
fl kZ

In other words, if the frequency ratio £/f; of the two neural populations is rational (i.e.,
the ratio of two integers), then the neural populations may interact, with the strength of
interaction decreasing as either & or 4; increases (i.e., stronger interactions correspond to
smaller resonance orders)!. Alternatively, if this frequency ratio is irrational,

S

= = irrational,

Ji

then the two neural populations behave as if uncoupled.

Consistent with the results presented here, Hoppensteadt and Izhikevich show that golden
triplets possess the lowest resonance order, and therefore the strongest cross-frequency
coupling [43, 44, 45]. However, other resonances exist due to the recursive nature of
rhythms organized by the golden ratio. To illustrate these relationships, we consider a set of
golden rhythms {#} — rhythms organized by the golden ratio so that,

ISee Proposition 9.14 of [43]
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fioit o= Fos (6)
where £ is an integer. Because

Jeor+ o= fir1 =0

the resonance order is 3; this golden triplet supports strong cross-rhythm communication.
Replacing & with k- 1 in Equation 6, we find

fk—2+fk—]=fk' @)

Then, replacing £ in Equation 6 with the expression in Equation 7, we find

Seo1+ (fea+ fic) = feen

or
fk—2+2fk—l_fk+l:09 (3)

which has resonance order 4. Continuing this procedure to replace f;_, in the equation
above, we find

_fk—3+3fk—l_fk+l=0’ )

which has resonance order 5. In this way, golden rhythms support specific patterns of
preferred coupling between rhythmic triplets, with the strongest coupling (lowest resonance
order) between golden triplets.

As a specific example, we fix £z =40 Hz and list in Table 1 the sequence of golden
rhythms beginning with this generating frequency. We expect strong coupling between
(fx—15 Ty, frw1) = (15.3, 25, 40) Hz, a golden triplet, which has resonance order 3. Using
Equations 8, 9, and Table 1, we compute additional triplets with higher resonance orders:
(9.4, 15.3,40) Hz with resonance order 4, and (5.8, 15.3, 40) Hz with resonance order 5.
Continuing this procedure organizes golden rhythms into triplets with different resonance
orders (Figure 6). Triplets with low resonance order appear near the target frequency of 7y
=40 Hz (see gold, silver, and bronze circles in Figure 6), and resonance orders tend to
increase for frequencies further from £, = 40 Hz, with exceptions (e.g., (fx_1, fx> fr41) =
(2.2,9.4,40) Hz has resonance order 6). We conclude that - based on theory developed for
weakly coupled oscillators - golden rhythms support both separate communication channels
and a hierarchy of cross-frequency interactions between rhythmic triplets with varying
coupling strengths. While here we consider three interacting rthythms, we note that the
theory also applies to four (or more) interacting rhythms. The implications of these results
for networks of (strongly) coupled (damped) oscillators remains unclear.
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3.41 Four experimental hypotheses

We propose that golden rhythms optimally support separate and integrated communication
channels between oscillatory neural populations. We now describe four hypotheses deduced
from this theory. First, if the organization of brain rhythms follows the golden ratio, then
we expect a discrete sequence of three frequency bands subdivides the existing gamma
frequency band, broadly defined from 30-100 Hz [37, 50], with peak frequencies separated
by a factor of ¢. For example, using the sequence of golden rhythms with generating
frequency 40 Hz (Table 1), we identify multiple distinct rhythms (at 40 Hz, 65 Hz, 105

Hz) corresponding to this gamma band. Consistent with this hypothesis, multiple distinct
rhythms have been identified within the gamma band (e.g., [56, 57, 58, 59, 60, 61, 62,

63, 64]). While different choices of generating frequency produce quantitatively different
results, the qualitative result is the same: organized according to the golden ratio, multiple
distinct thythms exist within the gamma frequency range, each capable of supporting a
separate communication channel.

Second, if rhythms organize according to the golden ratio, then evidence for this relationship
should exist in vivo. To that end, we consider examples of two or more frequency

bands reported in the literature (predominately in rodent hippocampus; Figure 7). These
preliminary observations suggest that, in these cases, frequency bands separated by a factor
of ¢ or ¢ commonly occur.

Third, if rhythms organize according to the golden ratio, then we propose that rhythmic
triplets support cross-frequency communication. Nearly all existing research in cross-
frequency coupling focuses on interactions between two rhythms (e.g., theta-gamma [18, 28,
29]), and many measures exist to assess and interpret bivariate coupling between rhythms
[29, 23, 65, 66]. Yet, brain rthythms coordinate beyond pairwise interactions; trivariate
interactions between three brain rhythms include coordination of beta, low gamma, and

high gamma activity by theta phase [31, 56, 57, 58, 62, 67]; coordination between ripples
(140-200 Hz), sleep spindles (12—-16 Hz), and slow oscillations (0.5-1.5 Hz) [20]; and
coordination between (top-down) beta, (bottom-up) gamma, and theta rhythms [26]. To
assess trivariate coupling, an obvious initial choice is the bicoherence, which assesses the
phase relationship between three rhythms: £, 6, and £fi+5 [68, 69, 70]. However, the
bicoherence may be too restrictive (requiring a constant phase relationship between the three
rhythms), and estimation of alternative interactions (e.g., between amplitudes and phases)
will require application and development of alternative methods [71].

Fourth, why brain rhythms occur at the specific frequency bands observed, and not different
bands, remains unknown. To address this, we combine the golden ratio scaling proposed
here with a fundamental timescale for life on Earth: the time required for Earth to complete
one rotation (i.e., the sidereal period) of 23 hr, 56 min. Beginning from this fundamental
frequency (1/86160 Hz), we compute higher frequency bands by repeated multiplication of
the golden ratio (Table 2). Doing so, we identify frequencies consistent with the canonical
frequency bands (i.e., delta, theta, alpha, beta, low gamma, middle gamma, high gamma,
ripples, fast ripples; see last column of Table 2). We note that broad frequency ranges define
the canonical frequency bands, for example the gamma band from (30, 100) Hz. Therefore,
model predictions that identify rhythms within a band is not surprising. We propose instead
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that the relevant model prediction is the subdivision of the canonical frequency bands (e.g.,
the 10-30 Hz beta band into two sub-bands, the 30—100 Hz gamma band into three sub-
bands), not the specific frequency values identified. We note that the lower frequencies may
include “body oscillations”, such as heart rate and breathing frequency [72], as proposed
for a harmonic frequency relationship (factor of 2) in [41, 73]. We hypothesize that if
intelligent life were to evolve on a planet like Earth, in a star system like our own, with
neural physiology like our own, then rhythmic bands would exist with center frequencies
that depend on the planet’s circadian cycle. We acknowledge that this hypothesis, and the
proposed association between neural rthythms and the sidereal period in Table 2, remain
speculation, without robust supporting evidence.

DISCUSSION

Why do brain rhythms organize into the small subset of discrete frequencies observed? Why
does the alpha rhythm peak at 8—12 Hz and the (low) gamma rhythm peak at 35-55 Hz,
across species [38]? Why does the brain not instead exhibit a continuum of rhythms, or a
denser set of frequency bands, or different frequency bands? Here we provide a theoretical
explanation for the organization of brain rhythms. Imposing a ratio of ¢ (the golden ratio)
between the peaks of neighboring frequency bands, we constrain activity to a small subset of
discrete brain rhythms, consistent with those observed in vivo. Organized in this way, brain
rhythms optimally support the separation and integration of information in distinct rhythmic
communication channels.

The framework proposed here combines insights developed in existing works. Mathematical
analysis of weakly coupled oscillators established the importance of resonance order for
effective communication between neural populations oscillating at different frequencies
[43,44,45,74]. Experimental observations and computational models have established the
importance of brain rhythms [36, 39, 75], their interactions [18, 26], and their organization
according to the golden ratio [42, 76, 77]. Here, we combine these previous results with
simulations and analysis of a network of damped, coupled oscillators in support of the
proposed theory.

The framework proposed here is consistent with existing theories for the role of brain
rhythms. Like the communication-through-coherence (CTC) hypothesis [16, 26] and the
frequency-division multiplexing hypothesis [12, 78], in the framework proposed here

neural populations communicate dynamically along anatomical connections via coordinated
rhythms. Organization by the golden ratio complements these existing theories in two

ways. First, by proposing which rhythms participate — namely, rhythms spaced by factors

of the golden ratio. Second, by proposing the importance of three rhythms to establish
cross-frequency interactions and proposing a hierarchical organization to these interactions.

We considered a network of damped, coupled oscillators with sinusoidal gain modulation.
In that network, cross-frequency coupling occurs when the gain frequency equals the

sum or difference of the oscillator frequencies (Equation 3). This result holds without
additional restrictions on the oscillator or gain frequencies. However, golden rhythms are
unique in that oscillator and gain frequencies chosen from this set support cross-frequency
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coupling; no thythms beyond this set are required. Alternative irrational scaling factors
(e.g., Euler’s number e) establish different sets of oscillator frequencies (e.g.,... e, e,
€,...) and separate communication channels, but require gain frequencies beyond this set to
support cross-frequency coupling. In this alternative scenario, two distinct sets of rhythms
exist: one reflecting local population activity, and another the cross-frequency coupling
between populations. Rhythms organized by the golden ratio support a simpler framework:
one set of frequencies (oscillator and gain) that reflect both local oscillations and their
cross-frequency coupling. Golden rhythms are the smallest set of rhythms that support both
separate communication channels and their cross-frequency interactions. Requiring fewer
rhythms simplifies implementation, reducing the number of mechanisms required to produce
these rhythms.

These results are consistent with existing proposals that the golden ratio organizes brain
rhythms and minimizes cross-frequency interference [77, 79, 80]. We extend these proposals
by showing how triplets of golden rhythms facilitate cross-frequency coupling. An integer
ratio of 2 between frequency bands (with bandwidth determined by the golden ratio)
provides an alternative organization to support cross-frequency coupling [41, 73]. In this
scenario, cross-frequency interactions have been proposed to occur via a shift in frequency.
For example, two regions - with an irrational frequency ratio - remain decoupled until the
center frequencies shift to establish 1 : 2 phase coupling [81, 82]. We instead propose

both regions maintain their original frequencies and couple when an appropriate third
rhythm appears (e.g., a golden triplet). Our simulation results suggest more widespread
coupling between populations oscillating at a 1 : 2 frequency ratio compared to a golden
ratio (Figure 3D). Interpreted another way, integer ratios between frequency bands may
facilitate a “coupling superhighway”’; a target region shifts frequency to enter the coupling
superhighway and receive strong inputs from all upstream regions oscillating at integer
multiples (or factors) of the target frequency. Rhythms organized by a golden ratio require
coordination with a third input to establish cross-frequency coupling. Investigating these
proposals requires analysis of larger networks with multiple rhythms, and perhaps multiple
organizing frequency ratios.

While we do not propose the specific mechanisms that support golden rhythms, proposals

do exist. A biologically motivated sequence exists to create golden rhythms from the

betal (15 Hz), beta2 (25 Hz), and gamma (40 Hz) bands. Through in vitro experiments

and computational models, a process of period concatenation — in which the mechanisms
producing the faster beta2 and gamma rhythms concatenate to create the slower betal
rhythm — was proposed [77, 42, 76]. Alternatively, golden rhythms may emerge when two
input rhythms undergo a nonlinear transformation [71, 83]. The framework proposed here
suggests that the emergent rhythms — appearing at the sum and difference of the two rhythms
— may support local coordination of the input rhythms.

The simplicity of the proposed framework (compared to the complexity of brain dynamics)
results in at least four limitations. First, brain rhythms appear as broad spectral bands, not
sharply defined spectral peaks. Therefore, the meaning of a precise frequency ratio, or the
practical difference between an irrational frequency ratio (¢#) and a rational frequency ratio
(e.g., 1.6) is unclear. Second, rhythm frequencies may vary systematically and continuously
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with respect to stimulus or behavioral parameters [84, 85]. Whether the brain maintains a
constant frequency ratio between varying frequency rhythms, and what mechanisms could
support this coordination, is unclear. Third, no evidence suggests the tuning of brain rhythms
specifically to support separate communication channels. Instead, brain thythms may occur
at the frequencies observed due to the biological mechanisms available for coordination

of neural activity (e.g., due to the decay time of inhibitory postsynaptic potentials that
coordinate excitatory cell activity). Fourth, identification of rhythms in noisy brain signals
remains a practical challenge, with numerous opportunities for confounds [64, 86, 87].
Therefore, the best approach to compare this theory with data remains unclear.

However, the simplicity of the golden framework is also an advantage. The framework
consists of only one parameter (the golden ratio) compared to the many — typically poorly
constrained — parameters of biologically detailed models of neural rhythms. In this way, the
golden framework is broadly applicable and requires no specific biological mechanisms or
rhythm frequencies; instead, only the relationship between frequencies is constrained.

No theoretical framework exists to explain the discrete set of brain rhythms observed

in nature. Here, we propose a candidate framework, simply stated: brain rhythms are
spaced according to the golden ratio. This simple statement implies brain rhythms establish
communication channels optimal for separate and integrated information flow. While the
specific purpose of brain rhythms remains unknown, perhaps the brain evolved to these
rhythms in support of efficient multiplexing on a limited anatomical network.
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A |: RELATIONSHIP BETWEEN A DAMPED HARMONIC OSCILLATOR AND
AUTOREGRESSIVE MODEL OF ORDER TWO

Consider the damped harmonic oscillator driven by noise,

Xi + 2% + wixy = E(D),

where x is the position of the oscillator, Bis the damping constant, ay) is the natural
frequency, and &(2) is a noise term evaluated at time £ (e.g., see Equation (5.28) of [53]).
Replacing each derivative with a discrete approximation we find,

X, —2X 1+ X;_o
AZ

X — Xt -
+2p - AI I+w(§xl=§h

where x;is the oscillator position at discrete time ¢, and A is the time between fand £+ 1.
Collecting terms at the same discrete time, we find,
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(1 +2pA+ ngZ)x, (1 4+ phyxi_ + x_n = A%,

or
X=X+ ax_,te€, (10)
where
_ 20+
1+ 254 + 0}A?
-1
n=——"->
14 2pA+ A
6 =A%

Equation 10 defines an autoregressive model of order 2 (i.e., an AR(2)).

B I: RESONANCE RESPONSE FOR A DAMPED, DRIVEN OSCILLATOR WITH

SINUSOIDAL GAIN
We begin with Equation 1,

Ko+ 2p% + wix, = (Fe + Escosost) Y. X, (11
ey

and simplify by replacing each x;with,
x; = Ajcos (wpt);

i.e., we assume each input oscillator x; oscillates with fixed amplitude (A)) at its natural
frequency (w)). Then Equation 11 becomes,

X, 4 2P%, + wox, = e Z Ajcos(wjt) + gscos(mst) Z Acos(wjt) . (12)
ey ey’

Considering the first summation in Equation 12 for the j oscillator,

Xi + 2%y + wiixy, = geAcos (wt) .

and applying the standard approach to solving a damped oscillator with sinusoidal driving
force (e.g., see Chapter 5 of [53]), we determine the amplitude Ay of the driven oscillator,
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g

J

(@} — }) + 4F%0}

A = (13)

The amplitude of the driven oscillator is largest when w;= wy i.e., when the frequency of
the driving oscillator w;equals the natural frequency of the driven oscillator wy,

We now consider the second summation in Equation 12 for the / oscillator,

¥y + 20X + @i, = goAc08 (wjt) cos (wst)

= 85 cos (@, - ) + cos (@, + o))

Any solution to this equation must also satisfy,

&s4,

X+ 2% + wixy = 5

sin ((w; — ws)t) + sin ((w; + ws)t) .

We define z; = x; + iy and combine the two previous equations to find,
Zi+ 2PZ + iz = %Al el(®; = os)t 4g52A7/ ol(@; + ws)t

We now apply the standard approach to solving a damped oscillator with sinusoidal driving
force (e.g., see Chapter 5 of [53]) to determine the amplitude By of the driven oscillator,

ZeATl4

5= 22,2 2
(wf—(wj-_l-ws) ) +4p%(w; + ws)

The amplitude By is largest when,

2
w; = (0; = ws)°,

which is satisfied when,

W+ 0s=w, — Ws=w— O,
(14)
W, —Ws =W, —> W5=W;— W.

Considering the equivalent expression,

>

wp=(— l)z(wj + 0)3)2 =(-o,F w_g)2

we find an additional solution,
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—w,+ws=w, — Ws=w+tw;. (15)

We conclude that the amplitude of the driven oscillator By is largest when the frequency of
the sinusoidal gain modulation wgequals the difference (Equation 14) or sum (Equation 15)
of the natural frequencies of the driven wy and driving w oscillators.
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FIGURE 1. Illustration of the coupled oscillator network.
Oscillators with frequency fi receive input from all other oscillators. Input from one

oscillator (frequency £) to all other oscillators (5, £,..., 3) is shown (black curves); similar
connectivities exist from all other oscillators (not shown). Constant (g.) and sinusoidal (gs)

gain modulates each input (gray lines).
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FIGURE 2. Rhythms organized by the golden ratio support selective cross-frequency coupling.
(A) We perturb one oscillator (natural frequency 17.9 Hz, red), with connectivity to all other

oscillators; ¢ is the golden ratio. (B) With only constant gain modulation, the perturbation
(t =0, red) has little impact on other nodes. (C) With sinusoidal gain modulation at 29

Hz, two oscillators (natural frequencies 11.1 Hz and 47.0 Hz) selectively respond to the
perturbation. (D) Average response amplitude (logarithm base 10) fromt=0tot=1.5

s at each oscillator versus gain frequency fg. Different choices of gain frequency support
selective coupling between the perturbed oscillator (natural frequency 17.9 Hz) and other
oscillators. Peaks in response amplitude occur at golden rhythms (yellow circles, vertical
lines) or other frequencies (red X’s). Minimum response set to O for each curve, and vertical
scale bar indicates 1. (E) Average amplitude (black curve) and range (2.5% to 97.5% from
100 simulations, shaded region) of evoked responses versus noise level. The oscillator with
frequency 17.9 Hz is directly perturbed, and sinusoidal gain modulation occurs with fg ~
29.0 Hz. Oscillators at golden rhythms exhibit different behavior with perturbation (red)
versus without perturbation (gray). Code to simulate this network and create this figure is
available here.
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FIGURE 3. An integer scaling between oscillators limits cross-frequency interactions.
(A) In a network of oscillators with frequencies organized by a factor of 2, we perturb

one oscillator (natural frequency 16 Hz, red). (B) With constant gain, the impact of the
perturbation is limited. (C) With sinusoidal modulation at fg = 8 Hz, a response appears
at another oscillator (natural frequency 8 Hz). (D) The average response amplitude at each

oscillator versus gain frequency fg. Many oscillators respond when the gain frequency is

8 Hz, and responses tend not to occur at the oscillator frequencies; see Figure 2D for plot
details. Code to simulate this network and create this figure is available here.
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FIGURE 4. Golden rhythms support coupling among an ensemble of nodes.

(A) The network consists of two ensembles with frequencies: ¢* and ¢°. (B) With constant
gain, perturbing a node in one ensemble impacts (red) other nodes in the same ensemble
(black). (C) With sinusoidal gain at frequency fg = 11.1 Hz, the same perturbation impacts
both ensembles. (D) Average amplitude response versus gain frequency for all nodes in

both ensembles. The response at the unperturbed ensemble (blue) increases when the gain
frequency is a golden rhythm (yellow box); see Figure 2D for additional plot details. Code to
simulate this network and create this figure is available here.
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FIGURE 5. Rhythms organized by Euler’s number do not support coupling between ensembles

of nodes.

(A) The network consists of two ensembles with frequencies: e* and e2. (B) With constant

gain, perturbing a node in one ensemble impacts (red) other nodes in the same ensemble
(black). (C) With sinusoidal gain at frequency fg = 47.2 Hz, the same perturbation impacts
both ensembles. (D) Average amplitude response versus gain frequency for all nodes in both

ensembles. The response at the unperturbed ensemble (blue) does not increase when the gain

frequency is a factor of the Euler number (black vertical lines); see Figure 2D for additional

plot details. Code to simulate this network and create this figure is available here.
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FIGURE 6. Golden rhythms establish triplets with a discrete set of resonance orders.
The resonance order (numerical value, marker size) for triplets generated from 40 Hz.

Lower resonance orders (3.4,5) indicated in color (gold, silver, bronze, respectively). Code
to simulate this network and create this figure is available here.
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FIGURE 7. Empirical observations of rhythms organized by the golden ratio in vivo.
(A) Pairs of frequencies reported in the literature; see legend. When only a frequency band is

reported, we select the mean frequency of the band. (B) Histogram of the frequency ratio for
each point in (A). Lines (golden) indicate frequency bands organized by ¢ ~ 1.6 or ¢ ~ 2.6.
Code to create this figure is available here.
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TABLE 1
Example sequence of golden rhythms.

Beginning with fy, | = 40 Hz we compute the sequence of golden rhythms by multiplying or dividing by the

golden ratio.

f f f

k-5 k-4 k-3 fk-2 fk-l fk fk+1 fk+2 fk+3 fk+4 fk+5

22 36 58 94 153 24.7| 40 |64.7 1047 1694 2742
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TABLE 2
Golden rhythms, beginning with the sidereal period, align with the brain’s rhythms.

Page 30

The period (T) and frequency (f) of rhythms beginning with the sidereal period (T = 86160 s) and multiplying

the frequency by the golden ratio (number of multiplications indicated by the value in column Power).
Traditional frequency band labels (from [37, 38, 42]) indicated in the last column.

Power

0

O 0 N N R W N =

—_ =
- O

T [s]
86160
53250
32910
20340
12571
7769
4802
2968
1834
1133
701

433

f1HZ]
1.16E-05
1.88E-05
3.04E-05
4.92E-05
7.96E-05
1.29E-04
2.08E-04
3.37E-04
545E-04
8.82E-04

0.001

0.002

Power
12
13
14
15
16
17
18
19
20
21
22
23

T [s]
268
165
102
63.2
39.0
24.1
149
92
5.7
35
22
13

f1HZ]
0.004
0.006
0.010
0016
0.026
0.041
0.067
0.11
0.18
0.28
0.46
0.74

Power
24
25
26
27
28
29
30
31
32
33
34
35

T [s]
0.83
0.51
0.32
0.20
0.12
0.07
0.05
0.03
0.02
0.01
0.01
0.004

f1Hz]

1.20
2
3
5
8
13
22
35
57
91
148

239

Label
Slow 1
Delta
Delta
Theta
Alpha
Betal
Beta2
Low Gamma
Mid Gamma
High Gamma
Ripple
Fast Ripples
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