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Abstract
While brain rhythms appear fundamental to brain function, why brain rhythms consistently 
organize into the small set of discrete frequency bands observed remains unknown. Here we 
propose that rhythms separated by factors of the golden ratio (𝜙 = (1 + 5)/2)  optimally support 
segregation and cross-frequency integration of information transmission in the brain. Organized by 
the golden ratio, pairs of transient rhythms support multiplexing by reducing interference between 
separate communication channels, and triplets of transient rhythms support integration of signals 
to establish a hierarchy of cross-frequency interactions. We illustrate this framework in simulation 
and apply this framework to propose four hypotheses.

Keywords
oscillations; cross-frequency coupling; multiplexing; neural communication system

1 | INTRODUCTION
The brain is organized into a hierarchy of functionally specialized regions, which selectively 
coordinate during behavior [1, 2, 3, 4] and rest [5, 6, 7]. Effective function relies on 
dynamic coordination between brain regions, in response to a changing environment, on an 
essentially fixed and limited anatomical substrate [8, 9, 10, 11]. Through these anatomical 
connections multiplexing occurs: multiple signals that combine for transmission through a 
single communication channel must then be differentiated at a downstream target location 
[12, 13]. How information – communicated via coordinated transmission of spiking activity 
[14] – dynamically routes through the brain’s complex, distributed, hierarchical network 
remains unknown [15].

Brain rhythms – approximately periodic fluctuations in neural population activity – 
have been proposed to control the flow of information within the brain network [12, 
16, 17, 18, 19, 20] and proposed as the core of cognition [21, 22, 23, 24]. Through 
periodic modulations in neuronal excitability, rhythms may support flexible and selective 
communication, allowing exchange of information through coordination of phase at rhythms 
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of the same frequency (e.g., coherence [16, 19, 25, 26, 27]) and different frequencies 
(e.g., phase-amplitude coupling [18, 28, 29] or n:m phase locking [30, 31, 32]). Recent 
evidence shows that neural oscillations appear as transient, isolated events [33, 34]; how 
such transient oscillations route information through neural networks remains unclear [35].

Significant evidence supports the organization of brain rhythms into a small set of discrete 
frequency bands (e.g., theta [4–8 Hz], alpha [8–12 Hz], beta [12–30 Hz], gamma [30–80 
Hz]) [36, 37]. Consistent frequency bands appear across mammalian species (mouse, rat, 
cat, macaque, and humans [38]) and in some cases the biological mechanisms that pace 
a rhythm are well-established (e.g., the decay time of inhibitory post-synaptic potentials 
sets the timescale for the gamma rhythm [39]). Why brain rhythms organize into discrete 
bands, and whether these rhythms are fixed by the brain’s biology or organized to optimally 
support brain communication, remains unclear. For example, an alternative organization of 
the brain’s rhythms (e.g., into a larger set of different frequency bands) may better support 
communication but remain inaccessible given the biological mechanisms available to pace 
brain rhythms.

While much evidence supports the existence of brain rhythms and their importance to 
brain function, few theories explain their arrangement. Different factors have been proposed 
for the spacing between the center frequencies of neighboring bands: Euler’s number (e 
≈ 2.718) [40], the integer 2 [41], or the golden ratio (ϕ ≈ 1.618) [42]. Existing theory 
shows that irrational factors (e.g., e and ϕ) minimize interference between frequency bands, 
in support of separate rhythmic communication channels for multiplexing information in 
the brain [43, 44, 45]. However, if separate rhythmic channels communicate different 
information, and the organization of brain rhythms prevents interference, how a target 
location coordinates information across these rhythms is unclear. For example, how in 
theory a neural population integrates top-down and bottom-up input communicated in 
separate rhythmic channels (lower [<40 Hz] and higher [>40 Hz] frequency ranges, 
respectively [25, 26, 46, 47, 48]) remains unclear. We propose a solution to this problem: 
addition of a third rhythm. Motivated by an existing mathematical theory [43, 44, 45], we 
show that effective communication among three rhythms is optimal for rhythms arranged 
according to the golden ratio.

In what follows, we show that golden rhythms – rhythms organized by the golden ratio – 
are the optimal choice to integrate information among separate rhythmic communication 
channels. We propose that brain rhythms organize in the discrete frequency bands observed, 
with the specific spacing observed, to optimize segregation and integration of information 
transmission in the brain.

2 | METHODS
All simulations and analysis methods to reproduce the manuscript results and figures are 
available at https://github.com/Mark-Kramer/Golden-Framework.
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2.1 | Damped harmonic oscillator model
As a simple model of rhythmic neural population activity (e.g., observed in the local field 
potential (LFP) or magneto/electroencephalogram (M/EEG)) we implement a network of 
coupled damped harmonic oscillators [49]. We choose the damped harmonic oscillator 
for three reasons. First, a harmonic oscillator (e.g., a spring) mimics the restorative 
mechanisms governing displacements about a stable equilibrium in neural dynamics (e.g., 
excitation followed by inhibition in the gamma rhythm [39, 50], depolarization followed 
by hyperpolarization – and vice versa – in bursting rhythms [51]). Second, brain rhythms 
are transient [33, 34]. In the model, damping (e.g., friction) produces transient oscillations 
that decay to a stable equilibrium. Third, the damped harmonic oscillator driven by noise 
is equivalent to an autoregressive model of order two (AR(2), see Appendix A). The AR(2) 
model simulates stochastic brain oscillations [52], consistent with the concept of a neural 
population with resonant frequency driven by random inputs.

We simulate an 8-node network of damped, driven harmonic oscillators. We model the 
activity xk at node k as,

𝑥̈𝑘 + 2𝛽𝑥̇𝑘 + 𝜔𝑘
2𝑥𝑘 = 𝑔𝐶 + 𝑔𝑆cos𝜔𝑆𝑡 ∑

𝑗 ≠ 𝑘
𝑥𝑗, (1)

where β is the damping constant, and ωk = 2πfk is the natural frequency of node k. The 
activity xj summed from all other nodes (j ≠ k) drives node k. We modulate this drive by 
a gain function with two terms: a constant gain 𝑔𝐶 and a sinusoidal gain with amplitude 𝑔𝑆

and frequency ωS = 2πfS. To include noise in the dynamics, we represent the second order 
differential equation in Equation (1) as two first order differential equations for the position 
and velocity of the oscillator. We add to the position dynamics a noise term, normally 
distributed with mean zero and standard deviation equal to the average standard deviation 
of the evoked response at all oscillators simulated without noise, excluding the perturbed 
oscillator from the average. In this way, we add meaningful noise of the same magnitude 
to all oscillators. We numerically simulate the model with noise using the Euler-Maruyama 
method. To examine the impact of different noise levels, we multiply the noise term by 
factors {0, 0.5, 1.0, 1.5, 2.0}. For each noise level, we repeat the simulation 100 times with 
random noise instantiations.

3 | RESULTS
In what follows, we propose that brain rhythms organized according to the golden ratio 
produce triplets of rhythms that establish a hierarchy of cross-frequency coupling. We 
conclude with four hypotheses deduced from this framework and testable in experiments.

3.1 | Rhythms organized by the golden ratio support selective cross-frequency coupling
In the case of weakly-connected oscillatory populations, whether the populations interact 
or not depends on their frequency ratios [43, 44, 45]; rational frequency ratios support 
interactions, while irrational frequency ratios do not. Motivated by this theory, we consider 
a network of interacting, rhythmic neural populations (Figure 1). We model each population 
as a damped harmonic oscillator, with each oscillator assigned a natural frequency fk. To 
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couple the populations, we drive each oscillator with the summed activity of all other 
oscillators (i.e., the connectivity is all-to-all). We modulate this drive by a gain function (g) 
with constant (𝑔𝐶) and sinusoidal (amplitude 𝑔𝑆, frequency fS) terms: 𝑔 = 𝑔𝐶 + 𝑔𝑆 cos 2𝜋𝑓𝑆𝑡 ; 
see Methods. Analysis of this coupled oscillator system reveals resonance (i.e., a large 
amplitude response) at a target oscillator in two cases. To describe these cases, we denote the 
frequency of a target oscillator as fT and the frequency of a driver oscillator as fD. A large 
amplitude (resonant) response occurs at the target oscillator in the following cases,

constant gain modulation:

0 = 𝑓𝑇 − 𝑓𝐷 (2)

sinusoidal gain modulation:

𝑓𝑆 = 𝑓𝑇 − 𝑓𝐷 (3a)

𝑓𝑆 = 𝑓𝐷 − 𝑓𝑇 (3b)

𝑓𝑆 = 𝑓𝐷 + 𝑓𝑇 (3c)

The first case (Equation 2) corresponds to the standard result for a damped target oscillator 
driven by sinusoidal input; when the sinusoidal driver frequency fD matches the natural 
frequency of the target fT, the response amplitude at the target is largest (e.g., see Chapter 
5 of [53]). The next three cases (Equation 3) correspond to a damped target oscillator 
driven by sinusoidal input modulated by sinusoidal gain. If the gain frequency fS equals 
the sum or difference of the target and driver frequencies, then the response amplitude 
at the target is largest (see Appendix B). We note that the first case corresponds to within-
frequency coupling (i.e., the driver and target have the same frequency) while the next 
three cases correspond to cross-frequency coupling (i.e., the driver and target have different 
frequencies). We also note that, in this model, we assume an oscillator responds to an 
input by exhibiting a large amplitude response; in this way, we consider the oscillation 
amplitude as encoding information, consistent with notion of information encoded in firing 
rate modulations [54].

The results in Equations (2, 3) hold for any choice of driver, target, and gain frequencies 
without additional restrictions. We now apply an additional restriction, and consider the 
damped harmonic oscillator network with oscillator and gain frequencies fk satisfying,

𝑓𝑘 = 𝑓0 𝑐𝑘, (4)

where f0 > 0 determines the frequency at k = 0. As discussed above, candidate values for 
c deduced from in vivo observations include Euler’s number (e ≈ 2.718) [40], the integer 
2 [41], or the golden ratio (ϕ ≈ 1.618) [42]. Then, given the set of three neighboring 
frequencies {fk, fk+1, fk+2}, what choice of c supports cross-frequency coupling in the 
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network? To answer this, we choose fS = fk+2, fD = fk+1, and fT = fk so that Equation (3c) 
becomes

𝑓𝑘 + 2 = 𝑓𝑘 + 1 + 𝑓𝑘. 

Substituting Equation (4) into this expression and solving for c, we find

𝑐2 − 𝑐 − 1 = 0

with solution

𝑐 = 1 + 5
2 = 𝜙, 

the golden ratio. The same solution holds for all Equations (3) with appropriate selection 
of {fS, fD, fT} from {fk, fk+1, fk+2}. We conclude that, for a system of damped coupled 
oscillators with oscillator and gain frequencies spaced by the multiplicative factor c, cross-
frequency coupling between three neighboring rhythms requires c = ϕ, the golden ratio. 
In other words, we propose that frequencies organized according to the golden ratio are 
particularly suited to support these cross-frequency interactions.

To illustrate this result, we consider a network of 8 damped, coupled oscillators each with 

a different natural frequency determined by the golden ratio (fk = ϕk, where 𝜙 = (1 + 5)
2 ; 

Figure 2); we label these rhythms – scaled by factors of the golden ratio – as golden 
rhythms. Starting all nodes in a resting state, we perturb one oscillator (fD = ϕ6 ≈ 17.9 Hz) 
to produce a transient oscillation at that node. With only a constant gain (𝑔𝐶 = 50, 𝑔𝑆 = 0), 
the impact of the perturbation on the other oscillators is small (Figure 2B); because fT ≠ fD 
for any oscillator pair, the network impact of the perturbation is small, despite the constant 
coupling.

Including the sinusoidal gain modulation (𝑔𝐶 = 50, 𝑔𝑆 = 50) results in selective 
communication between the oscillators. For example, choosing fS = ϕ7 ≈ 29.0 Hz, we 
observe an evoked response at two oscillators (Figure 2C): fT = ϕ8 ≈ 47.0 Hz (consistent 
with Equation (3a)) and fT = ϕ5 ≈ 11.1 Hz (consistent with Equation (3c)). We note that 
the frequency of evoked responses matches the natural frequency of each oscillator. We also 
note that no solution exists for Equation (3b) because fT > 0. Different choices of gain 
frequency fS result in different pairs of cross-frequency coupling between the driver (fD) 
and response oscillators (Figure 2D). Cross-frequency coupling occurs when Equations (3) 
are satisfied with fD ≈ 17.9 Hz. The coupling is selective; for example, choosing a gain 
modulation of fS = 11.1 Hz results in cross-frequency coupling between the driver (fD = 17.9 
Hz) and faster (29 Hz) and slower (6.9 Hz) golden rhythms. In this case, sinusoidal gain 
frequencies fS exist that support cross-frequency coupling and occur at factors of the golden 
ratio: i.e., fS = ϕk (Figure 2D, circles). We note that evoked responses also occur when fS 
≠ ϕk (Figure 2D, X’s); in these cases, frequencies outside the original rhythm sequence fk 
= ϕk must exist to support cross-frequency coupling. We conclude that if brain rhythmic 
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activity – both oscillator and gain frequencies – organizes according to the golden ratio, then 
cross-frequency coupling is possible between a subset of separate rhythmic communication 
channels.

We now consider the impact of noise on this cross-frequency communication. With 
sinusoidal gain modulation (𝑔𝐶 = 50, 𝑔𝑆 = 50, and fS = ϕ7 ≈ 29.0 Hz) and including noise in 
the oscillator dynamics (see Methods), we show the results for two cases: with perturbation 
and without perturbation to one oscillator (fD ≈ 17.9 Hz, as above). Without perturbation 
(gray in Figure 2E), we find no evidence of an evoked response at any node, as expected; the 
amplitude remains small at all nodes, with a small gradual increase as the noise increases. 
With the perturbation (red in Figure 2E), we find an evoked response at the perturbed 
oscillator (fD ≈ 17.9 Hz) and two other oscillators: fT ≈ 47.0 Hz (consistent with Equation 
(3a)) and fT ≈ 11.1 Hz (consistent with Equation (3c)). As the noise increases, so does 
the variability in the evoked response. For the lower frequency fT ≈ 11.1 Hz oscillator, 
the evoked response remains evident as the noise increases; in Figure 2E, the perturbed 
(red) and unperturbed (gray) responses remain separate. For the higher frequency fT ≈ 
47.0 Hz oscillator, the evoked response becomes more difficult to distinguish from the 
unperturbed case as the noise increases; in Figure 2E, the perturbed (red) and unperturbed 
(gray) responses begin to overlap with increasing noise. We note that the amplitude of 
evoked responses decreases with frequency. There-fore, the same amount of noise impacts 
the higher frequency (fT ≈ 47.0 Hz) oscillator more than the lower frequency (fT ≈ 11.1 Hz) 
oscillator, making an evoked response more difficult to distinguish from background noise in 
the higher frequency case. We also note that oscillators not satisfying Equation (3) (i.e., fT 
≈ {6.9, 29.0, 76.0} Hz when fD ≈ 17.9 Hz and fS ≈ 29.0 Hz) exhibit little evidence of an 
evoked response at any noise level.

To illustrate the utility of the golden ratio, we consider an alternative network of oscillators 
with frequencies organized by a factor of 2 (Figure 3A); such integer relationships have 
been proposed as important to neural communication [30, 55, 41]. As expected, with only 
constant gain (𝑔𝐶 = 50) a perturbation to one node (fD = 16 Hz) does not impact the rest 
of the network (Figure 3B). Including sinusoidal gain with frequency fS can produce cross-
frequency coupling. For example, choosing fS = 8 Hz results in cross-frequency coupling 
between the fD = 16 Hz and fT = 8 Hz rhythms (Figure 3C). Similarly, choosing fS = 16 
Hz results in cross-frequency coupling between the fD = 16 Hz and fT = 32 Hz rhythms; 
however, this choice of fS also results in strong cross-frequency coupling between fD = 16 
Hz and lower frequency rhythms (fT = 8, 4, 2, 1 Hz; Figure 3D). Importantly, we note that 
cross-frequency coupling typically occurs at sinusoidal gain frequencies that differ from the 
set of oscillator frequencies at 2k Hz (vertical lines in Figure 3D); a new set of rhythms (and 
rhythm generators) must exist to support cross-frequency coupling in this network.

To summarize, in a network of damped coupled oscillators (Equation 1), sinusoidal 
gain modulation supports cross-frequency coupling (Equation 3). If oscillator and gain 
frequencies organize according to a multiplicative factor (Equation 4), then cross-frequency 
coupling between neighboring frequencies requires a multiplicative factor of ϕ, the golden 
ratio (e.g., Figure 2D). While oscillators organized with a different multiplicative factor 
can still produce cross-frequency coupling, the frequencies of effective gain modulation 
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are not part of the original rhythmic sequence (e.g., Figure 3D), thus requiring the brain 
devote more resources to implementing a larger set of rhythms in support of cross-frequency 
interactions.

3.2 | plingRhythms organized by the golden ratio support ensembles of cross-frequency 
coupling

In the previous section, we considered a network of nodes oscillating at different natural 
frequencies. As an alternative example, we now consider a network with two ensembles of 
nodes oscillating at different frequencies. The two ensembles consist of nodes oscillating at 
frequencies ϕk or ϕk+2, where ϕ is the golden ratio. With only constant gain, a perturbation 
to any node impacts only nodes of the same ensemble (i.e., with the same frequency). 
Including sinusoidal gain modulation with (intermediate) frequency fS = ϕk+1, a perturbation 
to any node impacts nodes in both ensembles. We illustrate this in the 8-node network 
with 4 nodes in each ensemble oscillating at natural frequencies ϕ4 ≈ 6.85 Hz or ϕ6 ≈ 
17.9 Hz (Figure 4A). With only constant gain (𝑔𝐶 = 50, 𝑔𝑆 = 0), a perturbation to one ϕ6 

≈ 17.9 Hz (driver) node impacts the amplitude of all other nodes in the same ensemble 
(Figure 4B). Including sinusoidal gain modulation (𝑔𝐶 = 50, 𝑔𝑆 = 50) with frequency ϕ5 ≈ 
11.1 Hz, the same perturbation now impacts all nodes in both ensembles (Figure 4C). 
From Equation 3 we determine that two sinusoidal gain frequencies support cross-frequency 
coupling between the driver (fD = ϕ6 ≈ 17.9 Hz) and target (fT = ϕ4 ≈ 6.85 Hz) ensembles,

𝑓𝑆 = 𝑓𝑇 − 𝑓𝐷 = 6.85 − 17.9 < 0.00,

𝑓𝑆 = 𝑓𝐷 − 𝑓𝑇 = 17.9 − 6.85 = 11.1Hz,

𝑓𝑆 = 𝑓𝐷 + 𝑓𝑇 = 17.9 + 6.85 = 24.6Hz .

However, of these two frequencies, only the former (fS = 11.1 Hz) is also a golden rhythm 
(Figure 4D, box). In this case, cross-frequency coupling occurs when ensemble and gain 
rhythms organize in a “golden triplet” (fT, fS, fD) = (ϕk, ϕk+1, ϕk+2) ≈ (6.85, 11.1, 17.9) Hz, 
where ϕk + ϕk+1 = ϕk+2.

An alternative choice of irrational frequency ratio between the brain’s rhythms is Euler’s 
number (e) [40]. Repeating the simulation with two ensembles of frequency ek or ek+2 

results in cross-frequency coupling between ensembles only when fS = ek+2 ± ek (see Figure 
5 for an example with k = 2). We therefore find similar results for the “Euler triplet” (fD, 
fT, fS) = (ek+2, ek, ek+2 ± ek) or specifically for k = 2, (fD, fT, fS) = (e4, e2, e4 ± e2). 
However, this Euler triplet is not consistent with the ratio of e observed in vivo, where three 
neighboring frequency bands appear at multiplicative factors of e (e.g., (f, ef, e2f)) and the 
two slower rhythms do not sum to equal the faster rhythm (e.g., f + ef ≠ e2f). Only for three 
neighboring frequency bands related by the golden ratio (f, ϕf, ϕ2f) do the frequencies of the 
slower rhythms sum to the faster rhythm (i.e., f + ϕf = ϕ2f).
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3.3 | Golden rhythms establish a hierarchy of cross-frequency interactions
We now consider results derived for weakly coupled oscillators, which motivated the 
study of (strongly) coupled damped harmonic oscillators presented above. In [43, 44], 
Hoppensteadt and Izhikevich consider the general case of intrinsically oscillating neural 
populations with weak synaptic connections. When uncoupled, each neural population 
exhibits periodic activity (i.e., a stable limit cycle attractor) described by the phase of 
oscillation. We note that, in our study of coupled damped harmonic oscillators, we instead 
consider the amplitude of each oscillator. When Hoppensteadt and Izhikevich include weak 
synaptic connections between the neural populations, the phases of the neural populations 
interact only when a resonance relation exists between frequencies, i.e.,

∑
𝑖

𝑘𝑖𝑓𝑖 = 0,

where ki is an integer and not all 0, and fi is the frequency of neural population i. The 
resonance order is then defined as the summed magnitudes of the integers ki,

resonance order = ∑
𝑖

𝑘𝑖 .

For the case of two neural populations, if

𝑘1𝑓1 + 𝑘2𝑓2 = 0

for integers k1 and k2, then

𝑓2
𝑓1

= − 𝑘1
𝑘2

=  rational .

In other words, if the frequency ratio f2/f1 of the two neural populations is rational (i.e., 
the ratio of two integers), then the neural populations may interact, with the strength of 
interaction decreasing as either k1 or k2 increases (i.e., stronger interactions correspond to 
smaller resonance orders)1. Alternatively, if this frequency ratio is irrational,

𝑓2
𝑓1

=  irrational, 

then the two neural populations behave as if uncoupled.

Consistent with the results presented here, Hoppensteadt and Izhikevich show that golden 
triplets possess the lowest resonance order, and therefore the strongest cross-frequency 
coupling [43, 44, 45]. However, other resonances exist due to the recursive nature of 
rhythms organized by the golden ratio. To illustrate these relationships, we consider a set of 
golden rhythms {fk} – rhythms organized by the golden ratio so that,

1See Proposition 9.14 of [43]
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𝑓𝑘 − 1 + 𝑓𝑘 = 𝑓𝑘 + 1, (6)

where k is an integer. Because

𝑓𝑘 − 1 + 𝑓𝑘 − 𝑓𝑘 + 1 = 0

the resonance order is 3; this golden triplet supports strong cross-rhythm communication. 
Replacing k with k − 1 in Equation 6, we find

𝑓𝑘 − 2 + 𝑓𝑘 − 1 = 𝑓𝑘.  (7)

Then, replacing fk in Equation 6 with the expression in Equation 7, we find

𝑓𝑘 − 1 + 𝑓𝑘 − 2 + 𝑓𝑘 − 1 = 𝑓𝑘 + 1

or

𝑓𝑘 − 2 + 2𝑓𝑘 − 1 − 𝑓𝑘 + 1 = 0, (8)

which has resonance order 4. Continuing this procedure to replace fk −2 in the equation 
above, we find

−𝑓𝑘 − 3 + 3𝑓𝑘 − 1 − 𝑓𝑘 + 1 = 0, (9)

which has resonance order 5. In this way, golden rhythms support specific patterns of 
preferred coupling between rhythmic triplets, with the strongest coupling (lowest resonance 
order) between golden triplets.

As a specific example, we fix fk+1 = 40 Hz and list in Table 1 the sequence of golden 
rhythms beginning with this generating frequency. We expect strong coupling between 
(fk −1, fk, fk+1) = (15.3, 25, 40) Hz, a golden triplet, which has resonance order 3. Using 
Equations 8, 9, and Table 1, we compute additional triplets with higher resonance orders: 
(9.4, 15.3, 40) Hz with resonance order 4, and (5.8, 15.3, 40) Hz with resonance order 5. 
Continuing this procedure organizes golden rhythms into triplets with different resonance 
orders (Figure 6). Triplets with low resonance order appear near the target frequency of fk+1 
= 40 Hz (see gold, silver, and bronze circles in Figure 6), and resonance orders tend to 
increase for frequencies further from fk+1 = 40 Hz, with exceptions (e.g., (fk −1, fk, fk+1) = 
(2.2, 9.4, 40) Hz has resonance order 6). We conclude that - based on theory developed for 
weakly coupled oscillators - golden rhythms support both separate communication channels 
and a hierarchy of cross-frequency interactions between rhythmic triplets with varying 
coupling strengths. While here we consider three interacting rhythms, we note that the 
theory also applies to four (or more) interacting rhythms. The implications of these results 
for networks of (strongly) coupled (damped) oscillators remains unclear.
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3.4 | Four experimental hypotheses
We propose that golden rhythms optimally support separate and integrated communication 
channels between oscillatory neural populations. We now describe four hypotheses deduced 
from this theory. First, if the organization of brain rhythms follows the golden ratio, then 
we expect a discrete sequence of three frequency bands subdivides the existing gamma 
frequency band, broadly defined from 30–100 Hz [37, 50], with peak frequencies separated 
by a factor of ϕ. For example, using the sequence of golden rhythms with generating 
frequency 40 Hz (Table 1), we identify multiple distinct rhythms (at 40 Hz, 65 Hz, 105 
Hz) corresponding to this gamma band. Consistent with this hypothesis, multiple distinct 
rhythms have been identified within the gamma band (e.g., [56, 57, 58, 59, 60, 61, 62, 
63, 64]). While different choices of generating frequency produce quantitatively different 
results, the qualitative result is the same: organized according to the golden ratio, multiple 
distinct rhythms exist within the gamma frequency range, each capable of supporting a 
separate communication channel.

Second, if rhythms organize according to the golden ratio, then evidence for this relationship 
should exist in vivo. To that end, we consider examples of two or more frequency 
bands reported in the literature (predominately in rodent hippocampus; Figure 7). These 
preliminary observations suggest that, in these cases, frequency bands separated by a factor 
of ϕ or ϕ2 commonly occur.

Third, if rhythms organize according to the golden ratio, then we propose that rhythmic 
triplets support cross-frequency communication. Nearly all existing research in cross-
frequency coupling focuses on interactions between two rhythms (e.g., theta-gamma [18, 28, 
29]), and many measures exist to assess and interpret bivariate coupling between rhythms 
[29, 23, 65, 66]. Yet, brain rhythms coordinate beyond pairwise interactions; trivariate 
interactions between three brain rhythms include coordination of beta, low gamma, and 
high gamma activity by theta phase [31, 56, 57, 58, 62, 67]; coordination between ripples 
(140–200 Hz), sleep spindles (12–16 Hz), and slow oscillations (0.5–1.5 Hz) [20]; and 
coordination between (top-down) beta, (bottom-up) gamma, and theta rhythms [26]. To 
assess trivariate coupling, an obvious initial choice is the bicoherence, which assesses the 
phase relationship between three rhythms: f1, f2, and f1+f2 [68, 69, 70]. However, the 
bicoherence may be too restrictive (requiring a constant phase relationship between the three 
rhythms), and estimation of alternative interactions (e.g., between amplitudes and phases) 
will require application and development of alternative methods [71].

Fourth, why brain rhythms occur at the specific frequency bands observed, and not different 
bands, remains unknown. To address this, we combine the golden ratio scaling proposed 
here with a fundamental timescale for life on Earth: the time required for Earth to complete 
one rotation (i.e., the sidereal period) of 23 hr, 56 min. Beginning from this fundamental 
frequency (1/86160 Hz), we compute higher frequency bands by repeated multiplication of 
the golden ratio (Table 2). Doing so, we identify frequencies consistent with the canonical 
frequency bands (i.e., delta, theta, alpha, beta, low gamma, middle gamma, high gamma, 
ripples, fast ripples; see last column of Table 2). We note that broad frequency ranges define 
the canonical frequency bands, for example the gamma band from (30, 100) Hz. Therefore, 
model predictions that identify rhythms within a band is not surprising. We propose instead 
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that the relevant model prediction is the subdivision of the canonical frequency bands (e.g., 
the 10–30 Hz beta band into two sub-bands, the 30–100 Hz gamma band into three sub-
bands), not the specific frequency values identified. We note that the lower frequencies may 
include “body oscillations”, such as heart rate and breathing frequency [72], as proposed 
for a harmonic frequency relationship (factor of 2) in [41, 73]. We hypothesize that if 
intelligent life were to evolve on a planet like Earth, in a star system like our own, with 
neural physiology like our own, then rhythmic bands would exist with center frequencies 
that depend on the planet’s circadian cycle. We acknowledge that this hypothesis, and the 
proposed association between neural rhythms and the sidereal period in Table 2, remain 
speculation, without robust supporting evidence.

4 | DISCUSSION
Why do brain rhythms organize into the small subset of discrete frequencies observed? Why 
does the alpha rhythm peak at 8–12 Hz and the (low) gamma rhythm peak at 35–55 Hz, 
across species [38]? Why does the brain not instead exhibit a continuum of rhythms, or a 
denser set of frequency bands, or different frequency bands? Here we provide a theoretical 
explanation for the organization of brain rhythms. Imposing a ratio of ϕ (the golden ratio) 
between the peaks of neighboring frequency bands, we constrain activity to a small subset of 
discrete brain rhythms, consistent with those observed in vivo. Organized in this way, brain 
rhythms optimally support the separation and integration of information in distinct rhythmic 
communication channels.

The framework proposed here combines insights developed in existing works. Mathematical 
analysis of weakly coupled oscillators established the importance of resonance order for 
effective communication between neural populations oscillating at different frequencies 
[43, 44, 45, 74]. Experimental observations and computational models have established the 
importance of brain rhythms [36, 39, 75], their interactions [18, 26], and their organization 
according to the golden ratio [42, 76, 77]. Here, we combine these previous results with 
simulations and analysis of a network of damped, coupled oscillators in support of the 
proposed theory.

The framework proposed here is consistent with existing theories for the role of brain 
rhythms. Like the communication-through-coherence (CTC) hypothesis [16, 26] and the 
frequency-division multiplexing hypothesis [12, 78], in the framework proposed here 
neural populations communicate dynamically along anatomical connections via coordinated 
rhythms. Organization by the golden ratio complements these existing theories in two 
ways. First, by proposing which rhythms participate – namely, rhythms spaced by factors 
of the golden ratio. Second, by proposing the importance of three rhythms to establish 
cross-frequency interactions and proposing a hierarchical organization to these interactions.

We considered a network of damped, coupled oscillators with sinusoidal gain modulation. 
In that network, cross-frequency coupling occurs when the gain frequency equals the 
sum or difference of the oscillator frequencies (Equation 3). This result holds without 
additional restrictions on the oscillator or gain frequencies. However, golden rhythms are 
unique in that oscillator and gain frequencies chosen from this set support cross-frequency 

Kramer Page 11

Neuron Behav Data Anal Theory. Author manuscript; available in PMC 2023 May 12.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



coupling; no rhythms beyond this set are required. Alternative irrational scaling factors 
(e.g., Euler’s number e) establish different sets of oscillator frequencies (e.g.,… e1, e2, 
e3,…) and separate communication channels, but require gain frequencies beyond this set to 
support cross-frequency coupling. In this alternative scenario, two distinct sets of rhythms 
exist: one reflecting local population activity, and another the cross-frequency coupling 
between populations. Rhythms organized by the golden ratio support a simpler framework: 
one set of frequencies (oscillator and gain) that reflect both local oscillations and their 
cross-frequency coupling. Golden rhythms are the smallest set of rhythms that support both 
separate communication channels and their cross-frequency interactions. Requiring fewer 
rhythms simplifies implementation, reducing the number of mechanisms required to produce 
these rhythms.

These results are consistent with existing proposals that the golden ratio organizes brain 
rhythms and minimizes cross-frequency interference [77, 79, 80]. We extend these proposals 
by showing how triplets of golden rhythms facilitate cross-frequency coupling. An integer 
ratio of 2 between frequency bands (with bandwidth determined by the golden ratio) 
provides an alternative organization to support cross-frequency coupling [41, 73]. In this 
scenario, cross-frequency interactions have been proposed to occur via a shift in frequency. 
For example, two regions - with an irrational frequency ratio - remain decoupled until the 
center frequencies shift to establish 1 : 2 phase coupling [81, 82]. We instead propose 
both regions maintain their original frequencies and couple when an appropriate third 
rhythm appears (e.g., a golden triplet). Our simulation results suggest more widespread 
coupling between populations oscillating at a 1 : 2 frequency ratio compared to a golden 
ratio (Figure 3D). Interpreted another way, integer ratios between frequency bands may 
facilitate a “coupling superhighway”; a target region shifts frequency to enter the coupling 
superhighway and receive strong inputs from all upstream regions oscillating at integer 
multiples (or factors) of the target frequency. Rhythms organized by a golden ratio require 
coordination with a third input to establish cross-frequency coupling. Investigating these 
proposals requires analysis of larger networks with multiple rhythms, and perhaps multiple 
organizing frequency ratios.

While we do not propose the specific mechanisms that support golden rhythms, proposals 
do exist. A biologically motivated sequence exists to create golden rhythms from the 
beta1 (15 Hz), beta2 (25 Hz), and gamma (40 Hz) bands. Through in vitro experiments 
and computational models, a process of period concatenation – in which the mechanisms 
producing the faster beta2 and gamma rhythms concatenate to create the slower beta1 
rhythm – was proposed [77, 42, 76]. Alternatively, golden rhythms may emerge when two 
input rhythms undergo a nonlinear transformation [71, 83]. The framework proposed here 
suggests that the emergent rhythms – appearing at the sum and difference of the two rhythms 
– may support local coordination of the input rhythms.

The simplicity of the proposed framework (compared to the complexity of brain dynamics) 
results in at least four limitations. First, brain rhythms appear as broad spectral bands, not 
sharply defined spectral peaks. Therefore, the meaning of a precise frequency ratio, or the 
practical difference between an irrational frequency ratio (ϕ) and a rational frequency ratio 
(e.g., 1.6) is unclear. Second, rhythm frequencies may vary systematically and continuously 
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with respect to stimulus or behavioral parameters [84, 85]. Whether the brain maintains a 
constant frequency ratio between varying frequency rhythms, and what mechanisms could 
support this coordination, is unclear. Third, no evidence suggests the tuning of brain rhythms 
specifically to support separate communication channels. Instead, brain rhythms may occur 
at the frequencies observed due to the biological mechanisms available for coordination 
of neural activity (e.g., due to the decay time of inhibitory postsynaptic potentials that 
coordinate excitatory cell activity). Fourth, identification of rhythms in noisy brain signals 
remains a practical challenge, with numerous opportunities for confounds [64, 86, 87]. 
Therefore, the best approach to compare this theory with data remains unclear.

However, the simplicity of the golden framework is also an advantage. The framework 
consists of only one parameter (the golden ratio) compared to the many – typically poorly 
constrained – parameters of biologically detailed models of neural rhythms. In this way, the 
golden framework is broadly applicable and requires no specific biological mechanisms or 
rhythm frequencies; instead, only the relationship between frequencies is constrained.

No theoretical framework exists to explain the discrete set of brain rhythms observed 
in nature. Here, we propose a candidate framework, simply stated: brain rhythms are 
spaced according to the golden ratio. This simple statement implies brain rhythms establish 
communication channels optimal for separate and integrated information flow. While the 
specific purpose of brain rhythms remains unknown, perhaps the brain evolved to these 
rhythms in support of efficient multiplexing on a limited anatomical network.

Acknowledgements
The author would like to acknowledge Dr. Catherine Chu for writing assistance and tolerating many conversations 
about the golden ratio.

Funding information

NIH, NIBIB, Grant/Award Number: R01EB026938; NSF, Grant/Award Number: 1451384

A |: RELATIONSHIP BETWEEN A DAMPED HARMONIC OSCILLATOR AND 
AUTOREGRESSIVE MODEL OF ORDER TWO

Consider the damped harmonic oscillator driven by noise,

𝑥̈𝑘 + 2𝛽𝑥̇𝑘 + 𝜔𝑘
2𝑥𝑘 = 𝜉(𝑡),

where x is the position of the oscillator, β is the damping constant, ω0 is the natural 
frequency, and ξ(t) is a noise term evaluated at time t (e.g., see Equation (5.28) of [53]). 
Replacing each derivative with a discrete approximation we find,

𝑥𝑡 − 2𝑥𝑡 − 1 + 𝑥𝑡 − 2

𝛥2 + 2𝛽 𝑥𝑡 − 𝑥𝑡 − 1
𝛥 + 𝜔0

2𝑥𝑡 = 𝜉𝑡,

where xt is the oscillator position at discrete time t, and Δ is the time between t and t + 1. 
Collecting terms at the same discrete time, we find,
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1 + 2𝛽𝛥 + 𝜔0
2𝛥2 𝑥𝑡 − 2(1 + 𝛽𝛥)𝑥𝑡 − 1 + 𝑥𝑡 − 2 = 𝛥2𝜉𝑡,

or

𝑥𝑡 = 𝛼1𝑥𝑡 − 1 + 𝛼2𝑥𝑡 − 2 + 𝜖𝑡, (10)

where

𝛼1 = 2(1 + 𝛽𝛥)
1 + 2𝛽𝛥 + 𝜔0

2𝛥2,

𝛼2 = −1
1 + 2𝛽𝛥 + 𝜔0

2𝛥2

𝜖𝑡 = 𝛥2𝜉𝑡 .

Equation 10 defines an autoregressive model of order 2 (i.e., an AR(2)).

B |: RESONANCE RESPONSE FOR A DAMPED, DRIVEN OSCILLATOR WITH 
SINUSOIDAL GAIN

We begin with Equation 1,

𝑥̈𝑘 + 2𝛽𝑥̇𝑘 + 𝜔𝑘
2𝑥𝑘 = 𝑔𝐶 + 𝑔𝑆cos𝜔𝑆𝑡 ∑

𝑗 ≠ 𝑘
𝑥𝑗, (11)

and simplify by replacing each xj with,

𝑥𝑗 ≈ 𝐴𝑗cos 𝜔𝑗𝑡 ;

i.e., we assume each input oscillator xj oscillates with fixed amplitude (Aj) at its natural 
frequency (ωj). Then Equation 11 becomes,

𝑥̈𝑘 + 2𝛽𝑥̇𝑘 + 𝜔𝑘
2𝑥𝑘 = 𝑔𝐶 ∑

𝑗 ≠ 𝑘
𝐴𝑗cos 𝜔𝑗𝑡 + 𝑔𝑆cos 𝜔𝑆𝑡 ∑

𝑗 ≠ 𝑘
𝐴𝑗cos 𝜔𝑗𝑡 . (12)

Considering the first summation in Equation 12 for the jth oscillator,

𝑥̈𝑘 + 2𝛽𝑥̇𝑘 + 𝜔𝑘
2𝑥𝑘 = 𝑔𝐶𝐴𝑗cos 𝜔𝑗𝑡 .

and applying the standard approach to solving a damped oscillator with sinusoidal driving 
force (e.g., see Chapter 5 of [53]), we determine the amplitude Ak of the driven oscillator,
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𝐴𝑘
2 = 𝑔𝐶

2 𝐴𝑗
2

𝜔𝑘
2 − 𝜔𝑗

2 2 + 4𝛽2𝜔𝑗
2

. (13)

The amplitude of the driven oscillator is largest when ωj = ωk, i.e., when the frequency of 
the driving oscillator ωj equals the natural frequency of the driven oscillator ωk.

We now consider the second summation in Equation 12 for the jth oscillator,

𝑥̈𝑘 + 2𝛽𝑥̇𝑘 + 𝜔𝑘
2𝑥𝑘 = 𝑔𝑆𝐴𝑗cos 𝜔𝑗𝑡 cos 𝜔𝑆𝑡

= 𝑔𝑆𝐴𝑗
2 cos 𝜔𝑗 − 𝜔𝑆 𝑡 + cos 𝜔𝑗 + 𝜔𝑆 𝑡 .

Any solution to this equation must also satisfy,

𝑥̈𝑘 + 2𝛽𝑥̇𝑘 + 𝜔𝑘
2𝑥𝑘 = 𝑔𝑆𝐴𝑗

2 sin 𝜔𝑗 − 𝜔𝑆 𝑡 + sin 𝜔𝑗 + 𝜔𝑆 𝑡 .

We define zk = xk + iyk and combine the two previous equations to find,

𝑧̈𝑘 + 2𝛽𝑧̇𝑘 + 𝜔𝑘
2𝑧𝑘 = 𝑔𝑆𝐴𝑗

2 𝑒𝑖 𝜔𝑗 − 𝜔𝑆 𝑡 + 𝑔𝑆𝐴𝑗
2 𝑒𝑖 𝜔𝑗 + 𝜔𝑆 𝑡 .

We now apply the standard approach to solving a damped oscillator with sinusoidal driving 
force (e.g., see Chapter 5 of [53]) to determine the amplitude Bk of the driven oscillator,

𝐵𝑘
2 = 𝑔𝐶

2 𝐴𝑗
2/4

𝜔𝑘
2 − 𝜔𝑗 ± 𝜔𝑆

2 2 + 4𝛽2 𝜔𝑗 ± 𝜔𝑆
2

.

The amplitude Bk is largest when,

𝜔𝑘
2 = 𝜔𝑗 ± 𝜔𝑆

2,

which is satisfied when,

𝜔𝑗 + 𝜔𝑆 = 𝜔𝑘 𝜔𝑆 = 𝜔𝑘 − 𝜔𝑗,
𝜔𝑗 − 𝜔𝑆 = 𝜔𝑘 𝜔𝑆 = 𝜔𝑗 − 𝜔𝑘 . (14)

Considering the equivalent expression,

𝜔𝑘
2 = ( − 1)2 𝜔𝑗 ± 𝜔𝑆

2 = −𝜔𝑗 ∓ 𝜔𝑆
2,

we find an additional solution,
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−𝜔𝑗 + 𝜔𝑆 = 𝜔𝑘 𝜔𝑆 = 𝜔𝑘 + 𝜔𝑗 . (15)

We conclude that the amplitude of the driven oscillator Bk is largest when the frequency of 
the sinusoidal gain modulation ωS equals the difference (Equation 14) or sum (Equation 15) 
of the natural frequencies of the driven ωk and driving ωj oscillators.
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FIGURE 1. Illustration of the coupled oscillator network.
Oscillators with frequency fk receive input from all other oscillators. Input from one 
oscillator (frequency f1) to all other oscillators (f2, f3,…, f8) is shown (black curves); similar 
connectivities exist from all other oscillators (not shown). Constant (𝑔𝐶) and sinusoidal (𝑔𝑆) 
gain modulates each input (gray lines).
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FIGURE 2. Rhythms organized by the golden ratio support selective cross-frequency coupling.
(A) We perturb one oscillator (natural frequency 17.9 Hz, red), with connectivity to all other 
oscillators; ϕ is the golden ratio. (B) With only constant gain modulation, the perturbation 
(t = 0, red) has little impact on other nodes. (C) With sinusoidal gain modulation at 29 
Hz, two oscillators (natural frequencies 11.1 Hz and 47.0 Hz) selectively respond to the 
perturbation. (D) Average response amplitude (logarithm base 10) from t = 0 to t = 1.5 
s at each oscillator versus gain frequency fS. Different choices of gain frequency support 
selective coupling between the perturbed oscillator (natural frequency 17.9 Hz) and other 
oscillators. Peaks in response amplitude occur at golden rhythms (yellow circles, vertical 
lines) or other frequencies (red X’s). Minimum response set to 0 for each curve, and vertical 
scale bar indicates 1. (E) Average amplitude (black curve) and range (2.5% to 97.5% from 
100 simulations, shaded region) of evoked responses versus noise level. The oscillator with 
frequency 17.9 Hz is directly perturbed, and sinusoidal gain modulation occurs with fS ≈ 
29.0 Hz. Oscillators at golden rhythms exhibit different behavior with perturbation (red) 
versus without perturbation (gray). Code to simulate this network and create this figure is 
available here.
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FIGURE 3. An integer scaling between oscillators limits cross-frequency interactions.
(A) In a network of oscillators with frequencies organized by a factor of 2, we perturb 
one oscillator (natural frequency 16 Hz, red). (B) With constant gain, the impact of the 
perturbation is limited. (C) With sinusoidal modulation at fS = 8 Hz, a response appears 
at another oscillator (natural frequency 8 Hz). (D) The average response amplitude at each 
oscillator versus gain frequency fS. Many oscillators respond when the gain frequency is 
8 Hz, and responses tend not to occur at the oscillator frequencies; see Figure 2D for plot 
details. Code to simulate this network and create this figure is available here.
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FIGURE 4. Golden rhythms support coupling among an ensemble of nodes.
(A) The network consists of two ensembles with frequencies: ϕ4 and ϕ6. (B) With constant 
gain, perturbing a node in one ensemble impacts (red) other nodes in the same ensemble 
(black). (C) With sinusoidal gain at frequency fS = 11.1 Hz, the same perturbation impacts 
both ensembles. (D) Average amplitude response versus gain frequency for all nodes in 
both ensembles. The response at the unperturbed ensemble (blue) increases when the gain 
frequency is a golden rhythm (yellow box); see Figure 2D for additional plot details. Code to 
simulate this network and create this figure is available here.
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FIGURE 5. Rhythms organized by Euler’s number do not support coupling between ensembles 
of nodes.
(A) The network consists of two ensembles with frequencies: e4 and e2. (B) With constant 
gain, perturbing a node in one ensemble impacts (red) other nodes in the same ensemble 
(black). (C) With sinusoidal gain at frequency fS = 47.2 Hz, the same perturbation impacts 
both ensembles. (D) Average amplitude response versus gain frequency for all nodes in both 
ensembles. The response at the unperturbed ensemble (blue) does not increase when the gain 
frequency is a factor of the Euler number (black vertical lines); see Figure 2D for additional 
plot details. Code to simulate this network and create this figure is available here.
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FIGURE 6. Golden rhythms establish triplets with a discrete set of resonance orders.
The resonance order (numerical value, marker size) for triplets generated from 40 Hz. 
Lower resonance orders (3,4,5) indicated in color (gold, silver, bronze, respectively). Code 
to simulate this network and create this figure is available here.
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FIGURE 7. Empirical observations of rhythms organized by the golden ratio in vivo.
(A) Pairs of frequencies reported in the literature; see legend. When only a frequency band is 
reported, we select the mean frequency of the band. (B) Histogram of the frequency ratio for 
each point in (A). Lines (golden) indicate frequency bands organized by ϕ ≈ 1.6 or ϕ2 ≈ 2.6. 
Code to create this figure is available here.
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TABLE 1
Example sequence of golden rhythms.

Beginning with fk+1 = 40 Hz we compute the sequence of golden rhythms by multiplying or dividing by the 
golden ratio.

f 
k-5

f 
k-4

f 
k-3

f 
k-2 f k-1 f k f k+1 f k+2 f k+3 f k+4 f k+5

2.2 3.6 5.8 9.4 15.3 24.7 40 64.7 104.7 169.4 274.2
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TABLE 2
Golden rhythms, beginning with the sidereal period, align with the brain’s rhythms.

The period (T) and frequency (f) of rhythms beginning with the sidereal period (T = 86160 s) and multiplying 
the frequency by the golden ratio (number of multiplications indicated by the value in column Power). 
Traditional frequency band labels (from [37, 38, 42]) indicated in the last column.

Power T [s] f [Hz] Power T [s] f [Hz] Power T [s] f [Hz] Label

0 86160 1.16E-05 12 268 0.004 24 0.83 1.20 Slow 1

1 53250 1.88E-05 13 165 0.006 25 0.51 2 Delta

2 32910 3.04E-05 14 102 0.010 26 0.32 3 Delta

3 20340 4.92E-05 15 63.2 0.016 27 0.20 5 Theta

4 12571 7.96E-05 16 39.0 0.026 28 0.12 8 Alpha

5 7769 1.29E-04 17 24.1 0.041 29 0.07 13 Beta1

6 4802 2.08E-04 18 14.9 0.067 30 0.05 22 Beta2

7 2968 3.37E-04 19 9.2 0.11 31 0.03 35 Low Gamma

8 1834 5.45E-04 20 5.7 0.18 32 0.02 57 Mid Gamma

9 1133 8.82E-04 21 3.5 0.28 33 0.01 91 High Gamma

10 701 0.001 22 2.2 0.46 34 0.01 148 Ripple

11 433 0.002 23 1.3 0.74 35 0.004 239 Fast Ripples
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