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Abstract
Background: How the human brain coordinates network activity to support cognition and 
behavior remains poorly understood. New high-resolution recording modalities facilitate a more 
detailed understanding of the human brain network. Several approaches have been proposed to 
infer functional networks, indicating the transient coordination of activity between brain regions, 
from neural time series. One category of approach is based on statistical modeling of time series 
recorded from multiple sensors (e.g., multivariate Granger causality). However, fitting such 
models remains computationally challenging as the history structure may be long in neural 
activity, requiring many model parameters to fully capture the dynamics.

New Method: We develop a method based on Granger causality that makes the assumption that 
the history dependence varies smoothly. We fit multivariate autoregressive models such that the 
coefficients of the lagged history terms are smooth functions. We do so by modelling the history 
terms with a lower dimensional spline basis, which requires many fewer parameters than the 
standard approach and increases the statistical power of the model.

Results: We show that this procedure allows accurate estimation of brain dynamics and 
functional networks in simulations and examples of brain voltage activity recorded from a patient 
with pharmacoresistant epilepsy.

Comparison with Existing Method: ]The proposed method has more statistical power than 
the Granger method for networks of signals that exhibit extended and smooth history 
dependencies.
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Conclusions: The proposed tool permits conditional inference of functional networks from 
many brain regions with extended history dependence, furthering the applicability of Granger 
causality to brain network science.

Keywords
Functional connectivity; Granger causality; Autoregressive modeling; Time series analysis

1. Introduction
The human brain consists of a vast network of interacting elements. Understanding how 
these elements interact to support cognition, behavior and perception remains a fundamental 
challenge in neuroscience. One approach to address this challenge is through the analysis of 
the brain’s anatomical networks and functional connectivity - how separate brain regions 
interact via transient coordination of activity (de Pasquale et al., 2010; Park and Friston, 
2013). Anatomical and functional networks, summarized via tools from network analysis 
(Bassett and Sporns, 2017; Bullmore and Sporns, 2009) provide insight into cognition 
(Braun et al., 2015; de Pasquale et al., 2010; Kabbara et al., 2017; Petersen and Sporns, 
2015; Telesford et al., 2016), learning (Bassett et al., 2015, 2010; Singer, 1993) and 
neurological disorders such as autism, stroke, schizophrenia, and epilepsy (De Vico Fallani 
et al., 2014; Kramer and Cash, 2012; Lynall et al., 2010; Matlis et al., 2015).

There exist many ways to estimate functional connectivity, inspired – in part – by theories of 
how brain regions communicate. One of the most established theories posits that oscillatory 
neuronal activity supports communication between brain regions (Bastos and Schoffelen, 
2016; Bonnefond et al., 2017; Fries, 2015; Uhlhaas et al., 2010). This theory motivates the 
application of many functional connectivity measures that characterize coupling between the 
phase and/or amplitude of rhythmic brain signals (Bastos and Schoffelen, 2016; Greenblatt 
et al., 2012; Lachaux et al., 1999). Other popular approaches for measuring functional 
connectivity - although less physically motivated - have been adopted from other scientific 
fields. One of the most popular methods is conditional Granger causality, which provides a 
direct quantification of how much the history of one brain area can predict the activity of 
another (Granger, 1969; Seth, 2010). There are many advantages to the Granger causality 
approach. First, it can be used to infer the direction of information flow, also known as 
directed functional connectivity (Barrett et al., 2012; Ding et al., 2006). Second, it is a 
model-based approach that is rooted in stochastic process theory (Bastos and Schoffelen, 
2016; Cohen, 2014). Third, when the models are conditioned on the whole network and thus 
use all of the observed data, Granger causality limits the impact of indirect coupling - an 
important confound in functional network inference (Seth, 2010).

While Granger causality has been successfully applied to analyze multivariate neural activity 
(Seth et al., 2015), implementation can be computationally difficult on large brain networks 
(Seth, 2010; Valdés-Sosa et al., 2005). Two features contribute to this computational 
difficulty: the number of observed brain regions, i.e. nodes, and the duration for brain signal 
transmission. Modern recordings now support observations from hundreds, or even 
thousands, of sensors (Jäckel et al., 2017; Viventi et al., 2011). Interhemispheric 
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communication can range between 5–300 ms depending on the myelination of the fiber 
commissures (Ringo et al., 1994), whereas intrahemispheric communication ranges between 
5–10 ms (de Pasquale et al., 2010; Smith et al., 2011). Fitting Granger causality models to 
data with many nodes and long history dependence generates computational challenges due 
to the large number of parameters to estimate. Because brain signals are highly 
nonstationary, the amount of data available to fit large brain networks is typically limited 
(Barnett and Seth, 2014; Cohen, 2014), making networks inferred via conditional Granger 
causality subject to overfitting (Seth, 2010) and highly underpowered (Kelley and Maxwell, 
2003). Furthermore, the more parameters included in the model, the longer the computation 
time required to estimate the model and deduce the functional network.

Common approaches to address this computational challenge rely on reducing the model 
size, for example, by only performing analysis on a subset of nodes, by downsampling the 
time series which removes the high frequency content from the signal, or by using smaller 
model orders chosen via parsimonious model selection techniques (Barnett and Seth, 2014; 
Barrett et al., 2012; Seth, 2010). However, these approaches are not always desirable. For 
instance, a common approach to infer larger networks is to only implement Granger 
causality pairwise on nodes (Seth, 2010), which may result in networks confounded by 
indirect influences (Bastos and Schoffelen, 2016; Ding et al., 2006); conditioning the models 
on the entire observed network reduces the effects of this confound (Ding et al., 2006). 
Another approach is to limit the size of the history dependence included in the model. 
Determining the optimal model order for brain signals is a difficult, but important, problem 
since over- and underspecified models are not informative (Cohen, 2014; Seth, 2010). It has 
been proposed that the history dependence of brain signals is on the order of tens to 
hundreds of milliseconds (Barrett et al., 2012; Kabbara et al., 2017; Ringo et al., 1994); 
using a smaller model order than the true history dependence may result in a poor 
representation of the brain functional network (Bressler and Seth, 2011). It has additionally 
been shown that low model orders do not necessarily capture all complexities in the signal 
spectrum (Bressler and Seth, 2011; Cohen, 2014). To infer accurate and informative 
functional networks, it is important to incorporate all nodes that are relevant to the particular 
phenomenon in question, and to include the appropriate history dependence.

In this paper, we propose a method to reduce the number of parameters needed for model 
estimation in the Granger causality framework, thus permitting inference of larger brain 
networks with longer history dependence. Existing approaches involve priors assuming that 
network connections are sparse (Seth, 2010; Valdés-Sosa et al., 2005). Here, instead of 
imposing assumptions on the structure of the network, we impose assumptions on the shape 
of the history dependence between nodes, i.e. the coefficients of the lagged time indices of 
the history dependent autoregressive (AR) model. The assumption is suitable for brain 
signals, but is less general than the classic AR model. We express the model coefficients in a 
spline basis, which imposes a smooth structure on the coefficients of the history dependence. 
In doing so, we assume the coefficients change smoothly and gradually from one time point 
to the next. We refer to this model as the spline AR model, and when applied to determine 
functional connectivity, the spline-Granger method. These serve as extensions, respectively, 
of what we will refer to as the traditional standard AR model and the standard-Granger 
method.
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If the spline AR model is in fact an appropriate representation of the signal, there are many 
benefits to using this method. First, expressing the data in a spline basis reduces the 
dimensionality of the model, without removing data (i.e. downsampling) and without 
ignoring potentially critical nodes in the system (i.e. fitting only pairwise on nodes). Also, 
by using fewer parameters to estimate the same number of observations, we have more data 
to fit each parameter and thus can expect more statistical power, in the case that the true 
history dependence of the signal is well represented by a smooth function. That is, we are 
more precise in our coefficient estimates and are better able to detect small, nonzero effects 
between nodes. Thus, the spline-Granger method has more statistical power to detect true 
connections between nodes. Fewer parameters make computing large functional networks 
feasible; an appropriate ratio of parameters to observations - given stationarity constraints - 
can be achieved, resulting in more certainty in our model inference (Kelley and Maxwell, 
2003). Therefore, the spline-Granger procedure permits inference of more precise and 
representative networks that cover a larger spatial and temporal scale.

In what follows we compare the performance and accuracy of the spline AR model to the 
standard AR model on simulations and real data. Through single-node simulations and in 
vivo recordings, we show that the spline AR model can reconstruct signals with accuracy 
comparable to the standard AR model, while the spline AR model requires fewer parameters 
to do so. Then, through simulation of nine-node networks, we show how appropriate choice 
of model order, or amount of history dependence included, improves the accuracy of the 
networks inferred. Finally, we implement both measures on a 26-node network of cortical 
data recorded preceding a seizure. We show that, for the 26-node networks, the spline-
Granger method successfully infers functional networks for a smaller time window due to 
estimating fewer parameters and providing greater confidence in the inferences. We show 
that, because we have more statistical power and precision in estimating the model 
coefficients when fitting the spline AR models, the spline-Granger method is more sensitive 
to detecting true edges, or true positives, between nodes while preserving the same false 
positives.

2. Methods
2.1. Implementation of the standard AR model and standard-Granger method

We employ the traditional conditional Granger causality measure for directed functional 
connectivity, which we refer to as the standard-Granger method (Barnett and Seth, 2014). 
This method is a model-based approach to determine if the activity in one brain region - or 
node - drives activity in another brain region. If the history of activity at node A significantly 
reduces the amount of unexplained variance in the model of activity at another node B, then 
we conclude that node A has predictive power over - or drives - node B (Granger, 1969). For 
example, consider inference of the directed functional connectivity of a three-node network 
comprised of signals xt, yt, zt, where t indicates a discrete time index. To test the hypothesis 
that yt drives xt, we build two autoregressive (AR) models of the activity of xt: a full model 
including the history of all nodes in the network, and a nested (or restricted) model that 
includes the history of all nodes except that of yt. We will refer to these models as the 
standard AR model, and the equations are, respectively:
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xt = x(t − 1: t − p)
T βxx + y(t − 1: − p)

T βxy + z(t − 1: t − p)
T βxz + ϵx, t (1a)

xt = x(t − 1: t − p)
T βxx + z(t − 1: t − p)

T βxz + ϵx, t (1b)

In these equations, xt, yt and zt are column vectors containing the history dependence of 
their respective signals, i.e. for a model of order p, x(t − 1: t − p)

T = xt − 1…xt − p , where T 

indicates transpose, and βxx, βxy, βxz are column vectors containing the corresponding 
coefficients of the history dependence, i.e. βxx = [βxx,1 … βxx,p]T.

Choosing the best model order p is a challenging task as there are several statistically guided 
techniques, such as the Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC), which may yield different recommendations. Furthermore, different time 
windows of data and different pairs of electrodes may also yield different recommendations. 
Because model order can significantly affect results, we follow the recommendation to fix p 
across all electrode pairs and time windows (Cohen, 2014). We also choose the same p for 
both full and nested models as is conventionally done when estimating causality in 
neuroscience research (Barnett and Seth, 2014; Bressler and Seth, 2011; Ding et al., 2006; 
Granger, 1969; Karalis et al., 2016; Luo et al., 2012; Mitra et al., 2018; Place et al., 2016; 
Schmitt et al., 2017; Seth, 2010; Smith et al., 2015; Uddin et al., 2011; Zagha et al., 
2015).We use the fitglm function in MATLAB to determine the model coefficients and 
compute AIC.

The standard-Granger method refers to the procedure for determining a functional 
connectivity network from multiple signals by fitting the full and nested standard AR models 
in (1) for every signal pair. To determine if the proportion of variance explained by 
introducing the variables associated with yt in (1a) is significant, we construct an F-test, 
comparing the residuals of the full and nested models (Barnett and Seth, 2014). The null 
hypothesis is that the regions are not functionally connected, or that, for our trivariate 
example, yt does not significantly improve model residuals. The F-statistic is defined as 
follows:

F =
(RSSrestricted − RSS f ull)/ p

RSS f ull/(N − k * p) ,

where RSSrestricted and RSSfull are the residual sum of squared errors for the restricted (1b) 
and full models (1a), respectively. The F-statistic accounts for the number of free parameters 
in each model; is the model order, k is the number of nodes in the network, and N is the 
number of observations used to fit the models. The F-statistic is compared to an F-
distribution with parameters d1 = p and d2 = N – k * p
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Both equations in (1) are conditioned on the history of zt to remove the possibility of a 
spurious result in the case that zt acts to confound the relationship between xt and yt, often 
referred to as the common input problem (Bastos and Schoffelen, 2016). That is, suppose zt 
has predictive power for both xt and yt, and that xt and yt are conditionally independent. In 
this scenario, if we did not include the history of zt in either of the models, we would likely 
conclude that yt drives xt, or xt drives yt, due to the indirect effect of both signals being 
correlated with zt However, by conditioning each model on the rest of the network, here by 
including the history of, we would correctly identify no direct interaction between xt and yt, 
This example illustrates the importance of conditioning autoregressive models on the 
network as a whole rather than computing only pairwise comparisons.

In what follows, we compute the F-statistic and its associated p-value for every pair of nodes 
in the network. When doing so, we use the False-Discovery-Rate (FDR) to control for 
multiple testing, with q = 0.05 (i.e., an upper bound of 5% on the expected proportion of 
false positives among all declared edges in the inferred network) (Benjamini and Hochberg, 
1995).

To estimate confidence bounds for the model coefficients (e.g., βxx in (1)) we employ a 
bootstrapping procedure. To do so, we use the observed coefficient estimates and their 
estimated covariance to generate 10,000 normally distributed samples of the coefficients. 
From the resulting distribution, we determine the 0.025 and 0.975 quantiles of estimated 
model coefficients. In this way, we use the surrogate distribution to define the 95% 
confidence interval for the history dependence estimates.

2.2. Implementation of the spline AR model and the spline-Granger method
The method we develop in this paper is a modified version of the standard-Granger method, 
which we refer to as the spline-Granger method. The difference between the two methods is 
that, in the spline-Granger method, we rewrite the standard AR model (1), such that the 
coefficients of the lagged variables are written in a Cardinal spline basis (Hearn and Baker, 
1996). This spline basis fits a smooth curve to the data via local interpolation. It does so by 
estimating third-degree polynomials between specified points, called knots, in the data such 
that connections at the knots are smooth. To estimate a third-degree polynomial between two 
knots, we require that the tangent line at each knot is determined by the slope of the 
surrounding points whose shape is controlled by a tension parameter, τ, which we set to 0.5. 
That is, if we are estimating a polynomial, f(x), between the two discretely indexed knots at 
x = u2 and x = u3 from the set of knots u1, u2, …, uℓ, then we impose: f′(u2) = τ(f(u3) − 
f(u1)) and f′(u3) = τ(f(u4) − f(u2)). The resulting estimated curves are continuous and have 
continuous first derivatives. By using a spline basis to estimate the history dependence in the 
Granger model, we reduce the number of model parameters to estimate from p (the number 
of history terms in the standard-AR model (1)) to the number of knots. This method allows 
us to estimate directed functional connectivity with the same duration of history dependence 
as the standard-Granger model while reducing the number of parameters in the system.

We express the model coefficients in (1) in a spline basis via the transformation βij = Mαij, 
where M is a matrix of size p by l, the number of knots, and whose columns consist of the 
spline basis vectors. We will refer to this model as the spline AR model with equations:
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xt = x(t − 1: t − p)
T Mαxx + y(t − 1: t − p)

T Mαxy + Z(t − 1: t − p)
T Mαxz + ϵx, t (2a)

xt = x(t − 1: t − p)
T Mαxx + Z(t − 1: t − p)

T Mαxz + ϵx, t (2b)

We choose the number of knots in the system, l, to be less than p in the standard-Granger 
model. We note that for l = p, the number of knots equals the order, and the history 
dependent model in the spline basis and standard basis are equivalent.

Many alternative approaches exist to reduce the number of parameters required in a 
multivariate autoregressive model of neural activity. Common approaches include 
downsampling the time series data (Cohen, 2014; Seth et al., 2015, 2013) or using 
regularization techniques (Smith et al., 2011; Valdés-Sosa et al., 2005) which makes the 
assumption that network connectivity is sparse. Both downsampling and an assumption of 
sparse network connectivity are inappropriate for some types of neural data, for example 
seizure activity, during which high frequency rhythms (Frauscher et al., 2017) and dense 
functional network connectivity are common (Burns et al., 2014; Jiruska et al., 2013; 
Kramer and Cash, 2012; Schindler et al., 2007). In addition, interhemispheric interactions 
may occur with prolonged delays (de Pasquale et al., 2010; Ringo et al., 1994), and 
developing a model that omits these delayed interactions may result in inaccurate functional 
networks (Bressler and Seth, 2011).

In what follows, we develop an approach to estimate multivariate autoregressive models of 
neural activity with prolonged history dependence and many nodes, yet maintain a relatively 
small number of parameters. Many continuous systems can be well approximated with low-
order AR models because the system exerts itself instantaneously. However, in neural 
systems, there exist delays between the field signals that are influenced by the neural 
mechanisms themselves, such as the neural tissue and myelination of the fibers. We suspect 
that higher-order AR models are needed to fully capture these delays. Therefore, we choose 
to use a spline basis to aid in capturing the effects at longer lags, as previously used in the 
point process framework, where splines have been shown to efficiently capture the effects of 
a spike on a point process through some delay (Deng et al., 2013, Eden et al., 2012). The 
spline basis helps us achieve the goal of maintaining the spatial scale, i.e. the size of the 
network, while extending our temporal scale, i.e. including longer lags.”

To fit the spline AR model equations, we must first choose the location of the knots. 
Although procedures exists to select knot locations, an optimal knot placement is difficult to 
determine (Dimatteo et al., 2001). We choose here to place knots uniformly spaced every 
five indices starting at zero. When the sampling rate of the data is 500 Hz, this corresponds 
to a knot every 10 ms. Because there is missing information at the first and last boundary 
knots, we include one (invisible) knot at −200 ms before the first time index, and we require 
that the first derivative of the spline function be zero at the last knot. That is, at the last knot, 
x = ul, we fix f′(ul) = 0. In doing so, we assume that the history dependence does not change 
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dramatically at long delays. In Figure 1, we plot an example set of basis functions for an 
example history dependence spanning 60 ms (sampling rate 500 Hz). We show the eight 
fitted basis functions (for knots at −200 ms, 0 ms, 10 ms, 20 ms, 30 ms, 40 ms, 50 ms, and 
60 ms).

In what follows, we refer to the spline-Granger method as the procedure for determining a 
functional connectivity network from multiple signals by fitting the full and nested spline 
AR models (2) for every signal pair, and applying the same F-test as described for the 
standard-Granger method. We estimate the confidence bounds on the coefficients via the 
same bootstrapping procedure as described for the standard-Granger method.

2.3. Goodness-of-fit: Grenander and Rosenblatt test
As one measure of the model goodness-of-fit, we compare the spectra of the estimated 
model signals to the observed signal. To do so, we implement a modification of the 
Grenander and Rosenblatt test of the integrated spectrum, as described in (Priestley, 1981). 
This test compares the true cumulative spectrum of the signal, (𝜔), with the cumulative 
spectrum of a new realization of the estimated model 𝐻̂(𝜔). Because we are most interested 
in observations that consist of a single, noisy realization of a process, we replace the true 
cumulative smoothed spectrum with the spectrum estimated from the observed data. In this 
way, the test compares the observed spectrum with the spectrum simulated from the model. 
We estimate the spectrum using the multitaper method with a frequency resolution of 2 Hz. 
Doing so reduces the variability of the spectral estimates, compared to other approaches 
(Bokil et al., 2010). The 95% confidence intervals for the cumulative spectra are computed 
using the following two equations:

H(ω) − a 8πG(π)
N ≤ H(ω) ≤ H(ω) + a 8πG(π)

N

G(π) = 1
4π ∑S = − (N − 1)

N − 1 R2(S),

where 𝑁 is the number of samples in the signal from which the spectrum is estimated, R(s)is 
the sample autocovariance function, and 𝑎 = 2.2414 specifies the 95% confidence interval. 

Grenander and Rosenblatt define the statistic: kGR = max
ω

N H(ω) − H(ω) , which here is the 

weighted absolute difference between the observed cumulative spectrum and the estimated 
model spectrum. The model is considered a good fit with 95% confidence if the value of the 
statistic 𝑘𝐺𝑅 is less than 2.2414 (Priestley, 1981). We determine the p-value associated with 
this statistic using the table in (Grenander and Rosenblatt, 1984), and correct for multiple 
comparisons using the False Discovery Rate with a significance level of 0.05 (Benjamini and 
Hochberg, 1995).
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2.4. Goodness-of-fit: Durbin-Watson test
As a second measure of the model goodness-of-fit, we analyze the model residuals by 
computing the Durbin-Watson statistic. The Durbin-Watson test checks for serial correlation 
of the model residuals, as described in (Durbin and Watson, 1950). The Durbin-Watson 
statistic is defined as:

kdw =
∑t = 2

N et − et − 1
2

∑t = 1
N et

2 ,

where et is the residual value at time t, and N is the number of observations. To compute a p-
value for this statistic, we use the approximation method described in (Durbin and Watson, 
1950) and commonly implemented, such as in the Multivariate Granger Causality Toolbox 
(Barnett and Seth, 2014), and correct for multiple comparisons using the False Discovery 
Rate with a significance level of 0.05 (Benjamini and Hochberg, 1995).

2.5. Generation of synthetic signals: single-node simulations
We generate a signal with a long history dependent structure to examine the performance of 
the standard AR and spline AR models. To generate the signal, we use an autoregressive 
model of order 20, AR(20):

xt = x(t − 1: t − 20)
T βxx + ϵx, t, (4)

where we choose the coefficients βxx to create a signal dominated by high frequency 
activity, βxx = [−0.023, 0.100, 0.050, −0.160, −0.170, −0.160, −0.123, −0.086, −0.008, 
0.056, 0.083, 0.079, 0.056, 0.027, 0.005, 0.002, 0.003, 0.013, 0.021, 0.019]T We note that 
these coefficients establish a relatively smooth history dependence (for example, see Figure 
3c). The last term in the model, ϵx,t, is a normal random variable (mean = 0, variance = 
0.0625) and t corresponds to a sample every 1 f  of a second, where f is the sampling 
frequency. In all simulations, we set the sampling frequency to 500 Hz. To fit the models, we 
simulate 8 s of data, and analyze the last 2 s (1000 samples) of data to avoid the effects of 
initial transients. In autoregressive modeling, it is required that the signals are weakly 
stationary, meaning that the mean and variance do not change over time (Cohen, 2014). To 
assess the stationarity of our simulated data, we apply to each simulation the KPSS test 
implemented in the Multivariate Granger Causality toolbox (Barnett and Seth, 2014; Seth et 
al., 2015). All simulations passed these tests at significance level α= 0.05.”

To examine the impact of downsampling the signal as an alternative means of reducing the 
number of parameters, we first simulate a signal at 500 Hz as described above, and then 
downsample this signal using the MATLAB function decimate, which first low-pass filters 
the data to prevent aliasing, and then downsamples the signal. We downsample by a factor of 
5 such that the new sampling rate is 100 Hz.
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2.6. Generation of synthetic signals: nine-node simulations
To simulate activity in the nine-node networks, we implement a multivariate autoregressive 
(MVAR) model of order 30. The model for the nine signals is:

ut = ∑i = 1
30 Biut − i + ϵu, t (5)

where ut is a 9 × 1 vector representing the value for each signal at time t, B is a 
multidimensional array with dimensions 9 × 9 × p, and Bu,t is a 9 × 1 vector of normal 
random variables (mean = 0, variance = 0.0625). Bi contains the model coefficients at time t 
− i, where the nth, mth entry, (n, m), is the coefficient of influence of signal m at time t − i on 
signal n at time t. To generate B1:30(n, m) we first define two smooth functions (black lines 
in Figure 2) as references for the history dependence of nodes connecting to themselves, n = 
m (self history; Figure 2a) and for nodes connected to other nodes, n ≠ m (cross history; 
Figure 2b). Then, for each B coefficient in the network (i.e., for all n, m, and i), we add 
random noise (mean = 0, variance =0.01) to each value to create different (noisy) functions 
for the history dependencies. The resulting values of Bi(n, m) approximate the smooth 
functions, but are jagged (i.e., not smooth). Example history dependencies for the self-
history B1:P(n, n) and cross-history B1:p(n, m), with n ≠ m are plotted in Figure 2. In this 
way, we disadvantage the spline-Granger method because the true history dependence 
violates the spline AR model assumption that the history dependence is smooth.

We implement two simulations with this MVAR model. In the first, we fix the estimated 
model order p = 30, simulate 8 s of data, and analyze the last 2 s of data to avoid the effects 
of initial transients. In the second simulation, we fit two models with different model orders, 
p = 5 and p = 30, and analyze 2 s, 4 s and 8 s of data after simulating an initial 6 s of data to 
avoid initial transients. In all simulations, we set the sampling frequency to 500 Hz. All 
simulations passed the KPSS test for stationarity (Barnett and Seth, 2014).

The single-node and nine-node simulations (include values of Bi) are provided for reuse and 
further development at the repository: https://github.com/erss/spline-granger-causality.

2.7. Calculation of network accuracy
We represent the functional networks inferred from the signals as binary matrices in which 1 
defines a Granger-caused connection (or edge) between two nodes and 0 defines a non-edge, 
i.e., where there is no evidence for functional connectivity between two nodes. We define the 
accuracy as the proportion of correctly identified edges, i.e. true positives (TP), and non-
edges, i.e. true negatives (TN):

TP + TN
N2

where N2 is the total number of edges in the network. We note that here we allow 
selfconnections (i.e., an edge from a node to itself) which represent significant self-history 
dependence.
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We note that computing the accuracy requires knowledge of where edges exist, and therefore 
only applies to simulated data.

2.8. Calculation of computation time
All simulations were run on a standard personal computer (64-bit Mac OX 10.10.5, two 
QuadCore Intel Xeon 2.27 GHz CPUs, 32 GB memory). Computation time was calculated 
using the tic and toc functions and averaged over multiple simulation trials (as described 
below) in MATLAB version 8.6.0.

2.9. In vivo recordings from a human subject
One patient (male age 45 years) with medically intractable focal epilepsy underwent 
clinically indicated intracranial electroencephalogram (ECoG) recordings for epilepsy 
monitoring. The recordings were performed using a standard clinical recording system 
(XLTEK, subsidiary of Natus Medical) with a 500 Hz sampling rate. A two-dimensional 
subdural electrode array grid (Adtech Medical) was placed on the pia to confirm the 
hypothesized seizure focus, and locate epileptogenic tissue in relation to essential cortex, 
thus directing surgical treatment. The reference electrode was a strip of electrodes placed 
outside the dura and facing the skull at a region remote from the electrode array grid. 
Clinical electrode implantation, positioning, duration of recordings and medication 
schedules were based purely on clinical need as judged by an independent team of 
physicians without reference to this research. Analysis of these data was performed 
retrospectively under protocols monitored by the local Institutional Review Boards 
according to NIH guidelines.

In what follows, we analyze a 10 s interval of these data selected to occur before seizure 
onset. Before applying the Granger methods, we filter these data to remove 60 Hz line noise 
(Butterworth filter, order 2, with passband [59,61] Hz). All signals analyzed passed the 
KPSS test for stationarity (Barnett and Seth, 2014).

2.10. Simulation and model fitting code
The single-node and nine-node simulations (including values of βxx in Equation 4 and Bi in 
Equation 5) and code for implementing both the spline-Granger and standard-Granger 
network inference procedures are provided for reuse and further development at the 
repository: https://github.com/erss/spline-granger-causality.

3. Results
We begin with simulations to examine the performance of two approaches to history 
dependent modelling, one in which the model history is estimated in a standard basis, and 
another in which the history is estimated in a Cardinal spline basis. We show that, in both 
cases, the spline AR model accurately estimates the history dependence of the simulated 
signal, with more certainty than the standard AR model, and fits the data well. Next, through 
simulation of a nine-node network, we show that the spline-Granger network inference 
procedure accurately infers the functional connectivity, and has more statistical power to 
detect true edges. Finally, we apply the model fitting and network inference procedures to an 
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example multi-electrode voltage recording from human cortex. We show that both the 
spline-Granger and standard-Granger procedures infer similar functional connectivity 
networks, while the spline-Granger method can be implemented on shorter duration datasets 
and has more power to detect edges. These results illustrate the accuracy and efficiency of 
the proposed spline-Granger procedure.

3.1. Simulation: Single Node
We begin by examining the performance of the spline AR model on two seconds of activity 
simulated from a single node. To construct the simulated signal, we implement an 
autoregressive (AR) model of order 20, corresponding to 40 ms, (see Methods; Equation 4) 
with activity dominated by frequencies in the 15–20 Hz range (Figures 3a,b). From this 
simulated signal, we then estimate history dependent autoregressive models, with history 
dependence expressed in the spline and standard bases, and include up to 60 ms of history. 
We choose the estimated history dependence to exceed the true dependence because, in 
practice, estimating model order from noisy neural data is not straightforward, and a 
common approach is to choose a model order between 5 and 100 ms (Barrett et al., 2012; de 
Pasquale et al., 2010; Smith et al., 2011). We estimate the parameters of the history 
dependent AR model in two ways. First, we estimate the coefficients βxx of the standard AR 
model at each integer lag, in the univariate case where βxy and βxz are zero vectors 
(Equation 1a) (Barnett and Seth, 2014). For 60 ms of history, this corresponds to 30 
parameters to estimate where one coefficient is estimated for every lag. Second, we 
transform the history of the data into a spline basis and estimate the coefficients αxx of the 
spline AR model, in the univariate case where αxy and αxz are zero vectors (Equation 2a). 
For 60 ms of history, this corresponds to 8 parameters in the spline basis where coefficients 
are estimated for each of the 8 basis functions (see example of basis functions in Figure 1). 
Both the standard and the spline AR models estimate 60 ms of history dependence, but the 
spline AR model does so with fewer parameters.

We find that both models accurately estimate the true coefficients used to generate the 
simulated data (Figure 3c). For both methods, the coefficient estimates approximate the true 
model coefficients. However, those estimated in the standard AR model lack the smooth 
dependence that exists in the true model coefficients used to generate the signal, and have 
large confidence bounds that frequently include 0, meaning there is no evidence of influence 
at that lag. Visual inspection of Figure 3c reveals that the bounds of the estimate from the 
spline AR model are much tighter, and frequently exclude 0; by using fewer parameters and 
fitting on the same amount of data, we increase the amount of data used to estimate each 
parameter. Thus, we increase our effective degrees of freedom, gain statistical power to 
detect nonzero influences, and gain more certainty in the parameter estimates. We note that 
the spline AR model accurately captures the non-zero influence of history for broad intervals 
of time near 0.01 s and 0.03 s, while the standard AR model fails to do so (Figure 3c). At 
larger delays beyond the true model order, the estimated coefficients of both models 
fluctuate around zero.

To investigate further the performance of both models, we calculate two complementary 
goodness-of-fit measures that evaluate different aspects of the model’s agreement with the 
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data. First, we compare estimates of the integrated spectrum calculated from the simulated 
signal, and estimated from the two history dependent models (Figure 3d, see Methods). 
Visual inspection of Figure 3d suggests that both the standard AR model and the spline AR 
model produce signals with similar spectra to the observed data spectrum. Consistent with 
this observation, we calculate the Grenander and Rosenblatt test statistic (𝑘𝐺𝑅) and find that 
both models pass the Grenander and Rosenblatt test in this realization of the process. This 
test provides no evidence of a significant difference between the spline AR model and the 
observed signal (𝑘𝐺𝑅 = 1.21, p = 0.45), and no evidence of a significant difference between 
the standard AR model and the observed signal (𝑘𝐺𝑅 = 1.89, p = 0.12). Second, we analyze 
the model residuals and compute the Durbin-Watson test statistic (𝑘𝐷𝑊) for autocorrelation 
of the residuals (Figure 3e) (Barnett and Seth, 2014). With the exception of the residual at 0 
lag, we observe no evidence of significant autocorrelation in the residuals of the standard 
AR model (𝑘𝐷𝑊 = 2.00, p = 0.99) or the spline AR model (𝑘𝐷𝑊 = 2.00, p = 0.99). In this 
case, we find that both the spline AR model and standard AR model pass both goodness-of-
fit tests.

Repeating this analysis for 1000 realizations of the simulated data and model estimates, we 
find consistent results. The mean and standard deviation of 𝑘𝐺𝑅 for the standard AR model 
is 2.28 and 0.79, respectively, and for the spline AR model is 2.21 and 0.81, respectively. A 
good model fit with 95% confidence is indicated when is below 2.2414 as computed in 
(Grenander and Rosenblatt, 1984). The standard AR model passed the GR test in 55% of the 
realizations, and the spline model passed the GR test in 59% of the realizations (Figure 3f). 
The mean 𝑘𝐷𝑊 for the standard AR model is 1.998 (95% confidence interval [1.9978, 
1.9983]) and for the spline AR model is 1.993 (95% confidence interval [1.992, 1.994]). 
Both the standard and spline AR models passed the DW test in 100% of the realizations (see 
Methods; Figure 3g) (Barnett and Seth, 2014; Seth, 2010). In addition, we find that the 
computation time required to estimate the standard AR model (mean 94.0 ms, 95% 
confidence interval [93.8, 94.2] ms) is significantly greater (p<10−15, t-test) than that 
required for the spline AR model (mean 61.0 ms, 95% confidence interval [60.6, 61.3] ms, 
Figure 3h). However, we note that the reduction in computation time (approximately 33 ms) 
is of little practical importance for the univariate data analyzed here. We conclude that both 
models are rapidly estimated for these univariate data, and tend to pass the two goodness-of-
fit tests in the same way.

However, we find that the standard AR and spline AR model results differ in two ways. 
First, for the 1000 realizations of the simulated data, we compute the AIC values for model 
orders up to 30 for both the spline AR model and the standard AR model (Figure 3i). For the 
standard AR model, we conclude that 16 parameters minimize the AIC, corresponding to a 
history dependence of 32 ms, while for the spline AR model, we conclude that 4 parameters 
minimize the AIC, corresponding to a history dependence of 20 ms (knots placed at −200 
ms, 0 ms, 10 ms, 20 ms). We conclude that, for these simulated data, the model order that 
minimizes the AIC is smaller in the spline AR model than the standard AR model; the spline 
AR model requires fewer parameters to optimize model quality. Second, for the 1000 
realizations of the simulated data, we determine the width of the 95% confidence interval at 
10 ms, and how often this interval correctly excludes the null value, for both models. We 
find that the widths of the confidence bands at 10 ms are tighter for the spline AR model 
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(mean width 0.081, 95% confidence interval [0.075, 0.088]) than for the standard AR model 
(mean width 0.128, 95% confidence interval [0.123, 0.133]). The tighter confidence 
intervals of the spline AR model result in more accurate detection of the non-zero effect at 
this lag. In the spline AR model, the confidence intervals correctly exclude zero for 99.9% 
of the realizations, while for the standard model only 84.5% of the realizations exclude zero 
(Figure 3j). We conclude that the spline AR model has more power to detect small nonzero 
influences in the history dependence not detected by the standard AR model.

An alternative approach to reduce the number of parameters when estimating an AR model 
is to downsample the data (Seth et al., 2015). In some cases, downsampling may be 
advantageous by allowing longer history dependence with fewer model parameters. 
However, downsampling below the timescale of interactions between nodes hinders 
detection of causality, and downsampling typically involves filtering, which is generally ill-
advised, as it has been to shown to obfuscate underlying causal structure (Barnett and Seth, 
2014; Seth et al., 2013). The spline-Granger method with uniformly spaced knots could be 
considered a type of downsampling. To verify that this is not the case, we examine the 
standard AR model fit to a downsampled and filtered signal (see Methods). We downsample 
the data so that the sampling frequency is reduced from 500 Hz to 100 Hz; in the resulting 
signal, each sample is separated by 10 ms, which matches the interval between knots in the 
spline AR model (Figure 4a). We then fit the standard AR model to the downsampled data 
using the same history dependence of 60 ms, as in Figure 3. We find that the estimated 
coefficients for the downsampled signal provide a poor estimate of the true history of the 
signal (Figure 4b). We note that, for this example, the standard AR model fails the GR test 
(𝑘𝐺𝑅 statistic is 7.84, p < 10−15) and passes the DW test (𝑘𝐷𝑊 statistic is 1.83 p = 0.22).

Repeating this analysis of downsampled data for 1000 realizations, we find consistent 
results. The mean kGR for the standard AR model is 8.25 (95% confidence interval, [8.20, 
8.30]), passing the GR test for none of the realizations. The mean 𝑘𝐷w for the standard AR 
model is 1.86 (95% confidence interval [1.86, 1.87]), passing the DW test in 97% of the 
realizations (Barnett and Seth, 2014; Seth, 2010). Thus, we conclude that the standard AR 
model is a poor fit to the downsampled and filtered signal, and not equivalent to the spline 
AR model, which passes both model fitting tests, and more accurately captures the true 
history dependence of the data. We note that the spline AR model acts to downsample the 
history dependence, not directly the signal itself.

3.2. Simulation: Nine-Node Network
In the previous section, we showed that, in a single node simulation, estimation of an AR 
model in two ways (at each integer lag, and with a spline interpolation of history) performed 
similarly; both models adequately reconstructed the data (i.e., tended to pass two goodness-
of-fit tests), and accurately captured the history dependence. In this section, we examine the 
performance of the spline-Granger and standard-Granger methods with a more complicated 
network of signals. To do so, we simulate a nine-node network using a multivariate 
autoregressive (MVAR) model with history dependent effects extending to 60 ms (see 
Methods). In these simulated data, the activity (Figures 5a,b) at each node depends on its 
own history (up to 60 ms), and may depend on the history of activity at other nodes (again, 
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up to 60 ms). We show a representation of the true network connectivity, defined as nonzero 
influence in the MVAR, in Figure 5c. In this figure, we indicate the maximal influence 
(across all lags) between nodes; darker colors indicate stronger connectivity between nodes. 
We expect an accurate network inference to mimic this connectivity pattern.

We begin by estimating the functional connectivity given two seconds of data simulated 
from the nine-node network. We determine the functional connectivity in the traditional way 
by implementing Granger causality to assess the predictive power of each node on all nodes 
(including self-influences) (Barnett and Seth, 2014); see Methods. We do this in two ways: 
the standard-Granger causality method, and the modified spline-Granger causality method. 
In the standard-Granger approach, we fit AR models and estimate the history dependence at 
every time delay for each node, which requires estimation of a large number of parameters; 
each node in the nine-node network of order 30 (i.e., 60 ms history dependence) requires 
estimation of 270 parameters (9 nodes * 30 parameters) for the full model fit (see Methods, 
Equation 1). In the spline-Granger approach, we fit AR models whose coefficients are 
written in a lower dimensional spline basis. For this example, we use eight spline basis 
functions that span the specified 60 ms (see Methods, Equation 2). Doing so reduces the 
number of parameters to estimate for each node to 72 (9 nodes * 8 knots).

We fit both the standard AR model (Equation 1) and the spline AR model (Equation 2) to 
the simulated data. For the example data in Figure 5a, we find that the inferred spline-
Granger networks accurately capture the true network connectivity (Figure 5d). In this 
example for one realization of the network, the accuracy, or the proportion of correctly 
identified edges and nonedges (see Methods), is 100% for the spline-Granger network 
(Figure 5d) and is 96.3% for the standard-Granger method (i.e., the inferred functional 
networks using the standard-Granger method correctly identify 78 of the 81 edges and non-
edges in the true network). Repeating this MVAR simulation 1000 times with different noise 
instantiations, we find that nodes more strongly connected in the true network (Figure 5c) 
appear more frequently in the inferred networks with less variability (mean and standard 
deviation of networks inferred across the 1000 realizations using the spline-Granger method 
in Figures 5e and 5f, respectively). Computing the accuracy between the standard- and 
spline-Granger networks, we find 96.33 +/− 2.00 %. This indicates that functional networks 
inferred using standard-Granger and spline-Granger are similar.

To examine the impact of model order on network inference, we repeat the MVAR 
simulation and estimation of the spline and standard AR models with history dependence up 
to: (1) 10 ms, corresponding to 5 parameters in the standard AR model and 3 parameters in 
the spline AR model, and (2) 60 ms, corresponding to 30 parameters in the standard AR 
model and 8 parameters in the spline AR model. We chose these two history dependencies to 
test the hypothesis that, if the true history dependence of a system is long, then models 
estimated using a longer history dependence infer more accurate networks. We compare 
models fit using 5 integer lags in the standard AR, a typical model order chosen for standard 
AR models in the literature (Barnett and Seth, 2014; Barrett et al., 2012) with models fit 
using 30 integer lags in the standard AR model. The latter corresponds to the true model 
order, but is traditionally not computationally feasible for larger-scale biological networks. 
The goal of these simulations is to compare how network inference is affected by the amount 
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of history dependence included in the model. In both cases, we infer functional networks 
from simulated data of duration 2 s, 4 s, and 8 s. For each combination of model order and 
data duration, we simulate 1000 instances of the MVAR process, and compare the accuracy 
of the inferred networks and computation time of both the spline-Granger and standard-
Granger methods.

We find that both the spline-Granger and standard-Granger methods infer more accurate 
functional networks when the model order is higher and closer to the true model order for all 
durations of data analyzed, as expected. For both models, the accuracy is higher when 
estimating 60 ms of history compared to 10 ms of history (compare pink and gray bars, 
Figure 5g,h). We also observe that, for the longer history dependence of 60 ms, the accuracy 
increases as the duration of data analyzed increases (compare gray bars in Figure 5g,h); 
additional data provides more evidence to estimate the additional parameters in the model 
with 60 ms of history. We conclude that the most accurate estimation of the functional 
network occurs when the model order is large and consistent with the simulated system, and 
the duration of data analyzed is large.

For the network fitting scenarios with less observed data and more parameters to estimate 
(i.e. 2 s of data, and a model history dependence of 60 ms), the spline-Granger method is 
significantly more accurate (p<10−15, t-test; Figures 5g,h), capturing 98.69% (mean for 1000 
simulations, 95% confidence interval [0.9861, 0.9878]) of the true network, while the 
standard-Granger captures 96.96% (mean for 1000 simulations, 95% confidence interval 
intervals [0.9686, 0.9706]). We note that the spline-Granger method produces more accurate 
functional networks, despite the fact that the true simulated history dependence was not 
smooth. This is because the spline AR model has more statistical power to correctly infer 
edges, i.e. correctly reject the null hypothesis that there is no correlation between two nodes. 
The difference is more pronounced when there is less available data to estimate the model 
parameters.

To illustrate further the increased statistical power of the spline AR model to detect edges, 
we compare the estimated coefficients from the standard AR and the spline AR models for 
an example node pair at which the two methods produced different results; the standard-
Granger method failed to detect an edge, while the spline-Granger method correctly detected 
the edge (Figure 5i). In this case, consistent with the single node simulation (Figure 3c), the 
confidence bounds on the coefficients of the standard AR model fluctuate around zero and 
are much larger than those of the spline AR model. Thus, there is not enough evidence to 
reject the null hypothesis in the standard-Granger method, while in the spline-Granger 
method the decreased uncertainty in the model coefficients correctly identifies the nonzero 
effects, resulting in an edge between the two nodes.

For both methods, the computation time increases as the model order and duration of data 
analyzed increase (Figures 5j,k). However, the computation time for the spline-Granger 
method is less than that required for the standard-Granger method for all combinations of 
model order and data duration considered (p<10−15 in all cases). We note that this difference 
is most pronounced when the model order and data duration are large; i.e., in the scenario of 
the most accurate network inference. Specifically, for fitting models with 60 ms of history 
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using 8 s of data, the standard-Granger method takes 72% longer to compute on average 
compared to the spline-Granger method.

This example highlights the utility of the spline-Granger approach; the method permits more 
accurate network inference because (1) we can fit models with longer history dependencies 
– which are more reflective of neural systems – with fewer parameters, and (2) we gain more 
statistical power to correctly identify edges.

3.3. In vivo Data: Single Node
To examine the performance of the spline AR model on physiological data, we first consider 
in vivo brain voltage activity recorded from a single electrode. We show in Figure 6a an 
example voltage trace from human cortex at a time preceding seizure onset. The power 
spectrum of these data exhibits a 1/f structure, common in recordings of brain voltage 
activity (Figure 6b) (He et al., 2010). Although the true history dependence is unknown for 
these in vivo data, we may still compare the performance of the spline AR model with the 
standard AR model. First, we compute the AIC values for both models (Figure 6c). We find 
for model orders up to 30, no absolute minimum occurs, as expected for 1/f signals which 
theoretically require infinite model order (Tang et al., 2017). Because AIC is not an 
informative way to select model order for brain signals of this type, and other model 
selection procedures tend to produce variable results (Cohen, 2014), we choose to fit the 
univariate spline AR and standard AR models with history dependence up to 40 ms, which is 
within the range of history dependencies reported in brain signals (Barrett et al., 2012; de 
Pasquale et al., 2010; Smith et al., 2011). In the standard AR model this corresponds to 
estimating 20 parameters at each integer lag, and in the spline AR model this corresponds to 
estimating 6 parameters for the coefficients of 6 spline basis functions (with knots at −200 
ms, 0 ms, 10 ms, 20 ms, 30 ms, and 40 ms). The coefficients inferred for both models are 
similar (Figure 6d), but the coefficients for the spline AR model are smoother, as expected. 
Consistent with the single node simulations, we find tighter confidence bounds around the 
estimated coefficients for the spline AR model, and significant effects in the history 
dependence. The estimated coefficients of the standard AR model fluctuate around zero 
starting at and after 7 ms, whereas in the spline AR model, we find weak but significant 
nonzero effects up to 20 ms. The ability to detect these weak effects results from the gain in 
statistical power in the spline-Granger model, which uses the same amount of data to 
estimate fewer parameters. The 𝑘𝐷𝑊 statistics for the standard AR and the spline AR models 
are 2.00 (p= 0.97) and 2.00 (p =0.96), respectively, indicating no evidence for 
autocorrelation of the model residuals. We find that both the standard AR and the spline AR 
models fail the GR test (p<10™15) in both cases the models fail to capture all of the 
observed signal power at low frequencies. Comparing the structure of the model coefficients 
and the model residuals, we conclude that both methods similarly reconstruct the data, 
although the spline-Granger method provides more statistical power to detect weak – but 
significant – effects.

3.4. In vivo Data: Multiple Nodes
Finally, we apply both network inference methods to in vivo brain data recorded from a 26-
electrode array. We chose to use only 26 signals of an 8 × 8 electrocorticography grid 
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because while still a sizable number of signals, it is small enough to fit, and thus compare, 
both methods. Typically, computing networks of this scale using the standard-Granger 
approach is infeasible due to the limited amount of stationary data available relative to the 
number of parameters required for model inference. To demonstrate the utility of the spline-
Granger approach, we fit models using 2 s and 10 s of data, and a model history dependence 
up to 40 ms. For 2 s of data, estimation of the standard AR model is not appropriate; the 
number of parameters to estimate for each node (26 nodes * 20 lags = 520) is nearly half the 
number of observations per node (2 s * 500 Hz - 20 lags= 980 observations). In general, a 
good model fit requires a ratio of the number of observations to the number of parameters 
much greater than 1 (Harrell, 2001). For the standard AR model, this ratio is 1.9, and too 
small to support confident results. However, because the spline AR model requires 
estimation of only 156 parameters for each node (26 nodes * 6 knots), this ratio is 6.3, and 
large enough to perform the model fit. We note that estimating the functional network using 
the spline-Granger method requires 2.90 minutes of computation time (Figure 7a).

While, ideally, we would not fit AR models on 10 s of data due to the nonstationary nature 
of brain signals, we do so here as a means of comparison for both network inference 
procedures; despite expecting the underlying brain system generating the observed activity 
to lack stationarity over a 10 s interval, we note that all signals analyzed passed the KPSS 
test for stationarity. For 10 s of data, the number of observations is sufficient to infer 
network structure with both methods. We find that, while the standard-Granger method 
requires 25.4 minutes to compute (Figure 7b), the spline-Granger method requires 5.93 
minutes (Figure 7c). Excluding the self-influence terms, both methods infer similar 
functional networks; the overlap in edges and non-edges is 93.1%. Additionally, we note that 
the spline-Granger method infers more edges than the standard-Granger method (compare 
Figure 7b and 7c). As we illustrated previously, we compare the estimated coefficients for an 
instance in which the standard-Granger method fails to detect an edge and the spline-
Granger method detects an edge (Figure 7d). Although both methods detect a similar mean 
effect, the 95% confidence bounds on the estimated coefficients for the spline AR model are 
tighter than those for the standard AR model, consistent with the simulation results from the 
nine-node network (Figure 5i). Thus, the influence between the two signals is nonzero, and 
we infer that the two nodes are functionally connected. We conclude that the reduction in 
parameters when using spline-Granger method permits larger functional networks to be fit 
using shorter durations of data, often required when analyzing non-stationary data, and that 
it has more statistical power to detect edges.

4. Discussion
Granger causality is a powerful approach to infer functional networks from multi-sensor 
recordings of brain activity. However, the standard-Granger approach requires estimation of 
many model parameters, limiting its applicability to small or otherwise restricted networks. 
To address this limitation, we developed a modification of the standard-Granger approach by 
assuming the model coefficients of the time lagged history dependent terms are smooth 
functions. This assumption reduces the number of model parameters to estimate and makes 
inference of functional networks from stationary intervals of multi-sensor recordings 
computationally tractable.
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In univariate and multivariate simulations, we showed that the spline AR model accurately 
reconstructs the signals and closely estimates the true model parameters, and that the spline-
Granger method accurately infers functional network structure. We also showed that when 
the true history dependence of a system is long (e.g., 60 ms, consistent with brain signals), 
accuracy of functional network inference improves when models approximate the true 
history dependence of the system. We applied the proposed method to in vivo brain data and 
found that a univariate brain signal can be modeled by history dependencies that extend to 
40 ms, and that multivariate functional networks can be inferred using the spline-Granger 
method on shorter intervals of data. Additionally, in the simulations and in vivo brain data, 
we found that using the same amount of data to estimate fewer parameters in the spline-
Granger approach produced more precise parameter estimates, i.e. smaller confidence 
bounds around the parameter estimates, and ultimately detection of weak – but present – 
connections in the functional networks.

Two challenges limit the applicability of the standard-Granger approach to large brain 
networks. First, the computation time required for the standard-Granger model rapidly 
increases with network size. Second, brain signals are highly nonstationary which limits the 
amount of data and leads to statistically underpowered models. The problem of computation 
time may be addressed through brute force approaches given powerful computers and 
efficient algorithms. The problem of statistically underpowered models may be addressed 
through appropriate choice of model. Combining too many model parameters with too few 
observations leads to Type II errors, meaning many true functional connections between 
nodes will be missed (Kelley and Maxwell, 2003). By assuming that the history dependence 
of the model is smooth, we express the MVAR models in a lower dimensional basis, thus 
reducing the number of parameters to estimate. Compared to the standard AR model, the 
spline AR model proposed here reduces the number of parameters by a factor of 
approximately 5, allowing reliable models estimates from shorter data intervals, in the 
scenario that our model assumptions are appropriate, and reducing computation time.

Because Granger methods are model-based, there are many ways to assess goodness-of-fit 
and confidence in the model results. Since different goodness-of-fit tests assess different 
aspects of model performance, we chose to implement two tests here. The Durbin-Watson 
statistic analyzes the model fit in the time domain by checking for serial correlations in the 
model residuals of the reconstructed signal. The Grenander-Rosenblatt statistic analyzes the 
model fit in the frequency domain. This test is derived from stochastic process theory and 
compares a known spectrum to a model estimated spectrum. Ultimately, this test assesses the 
model’s ability to generate signals with appropriate spectral properties. We chose these two 
methods because the Durbin-Watson test is commonly used in MVAR modeling (Barnett 
and Seth, 2014) and because the Grenander-Rosenblatt test assess the spectrum - an 
important characteristic of brain data (Buzsáki et al., 2004).

In the case of real data, there is no ground truth to assess which model performs more 
accurately. Therefore, we test our models on simulated datasets that are multivariate and 
include an extended timescale of interactions between nodes, consistent with in vivo brain 
activity. Motivated by these simulated results, and our analysis of the ECoG data, we 
speculate that the spline-Granger method supports more accurate and representative 
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functional networks. By allowing estimation simultaneously from more brain regions, the 
method permits inference of larger functional networks, i.e. networks with more brain 
regions or nodes, and therefore accounts for more indirect interactions. And, by permitting 
estimation with longer history dependence, the method captures longer scale brain 
dynamics. The fundamental modification in this model compared to the standard-Granger 
approach is the smooth history dependent structure. The benefit of the spline AR model is 
that spline functions are sufficiently flexible to reflect variations in the history dependence 
while using fewer parameters than the standard AR model. We emphasize that neither 
method is more correct, but that the spline-Granger method can operate on more brain 
regions with smaller intervals of data than the standard-Granger method. In the case that the 
model assumptions are met, the effective degrees of freedom in the spline AR model are 
greater, giving the model more statistical power to detect weak interactions. However, we 
note that this assumption is poor when the history dependence changes quickly, such that the 
history dependence is not smooth, and that this assumption is not particularly useful when 
the true history dependence is short.

While we cannot know the true history dependence that drives observed neural signals, nor 
necessarily interpret the Granger coefficients as a representation of the underlying 
mechanisms (Barrett and Barnett, 2013), there exist two observations that motivate an 
assumption of smoothness for the model coefficients. First, comparing the standard AR to 
the spline AR model coefficients fit to in vivo data (Figures 6 and 7), the standard AR 
coefficients fluctuate around the spline AR coefficients. While these fluctuations may 
contain meaningful information, we hypothesize that – instead – the rapid fluctuations of the 
standard AR coefficients represent non-informative noise. By smoothing these rapid 
fluctuations, the spline AR model both reduces the impact of this noise and requires less 
parameters to estimate. Second, in the nine node simulations, we designed a system such 
that critical information appeared at longer lags, and the history dependencies between 
signals were not smooth. Yet, despite an incorrect assumption of smoothness, the spline-
Granger model accurately captured the network structure. In this case, the omission of rapid 
fluctuations in the history dependence did not impact network inference. Importantly, 
because the spline-Granger model required fewer parameters, this approach also permits 
more accurate network inference on a smaller duration of data compared to the standard-
Granger model. Ultimately, our analysis suggests that the spline basis acts as a reasonable 
approximation for the system.

In our model selection procedure, there remain three challenges: determining the model 
order, the choice of knot placement, and the number of knots. Common approaches to 
determining model order, such as the Akaike information criterion (AIC), Bayesian 
information criterion (BIC), and partial autocorrelation functions, aim to select the most 
parsimonious model. However, parsimony may not be desirable; in brain signals, lags up to 
100 ms can drive the network (Barrett et al., 2012; Smith et al., 2011; Tang et al., 2017) and 
models that omit these influences may miss important features. We also note that AIC in 
particular may be a poor choice for brain data because neural signals are dominated by pink 
noise, which requires an infinite model order (Tang et al., 2017). Determining the optimal 
model order for a multivariate system, rather than a univariate signal, is an even more 
challenging task. For example, the optimal model order may differ for each signal (Cohen, 
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2014). Because of the smoothness induced by the spline basis, small fluctuations in the 
history dependence near zero are damped to zero, consistent with a weak neural influence. 
We speculate that the spline bases could be used a posteriori to determine model order as the 
last non-zero term in the history dependence.

The transformation into a spline basis also depends heavily on the choice of knot placement 
and the number of basis functions. We chose to place the knots uniformly every 10 ms to 
standardize our models across our analysis and to limit how much prior information we 
impose on the models. Other work has explored principled approaches, including Bayesian 
techniques, to determine the optimal number and location of splines (Dimatteo et al., 2001), 
which may potentially yield more accurate models.

Continuing research to reduce the number of parameters, and choose appropriate models that 
reflect the system, in these approaches remains an important goal to accurately infer 
functional networks. Ideally, studies are designed to detect features with enough power to 
obtain confidence intervals - of any size - that correctly exclude the null value. However, 
when the feature values are nonzero, but small, model estimates need to be more precise, i.e. 
the confidence intervals need to be small, to correctly exclude the null value. Thus, not only 
is it important to design studies that have enough power to determine the significance of 
parameters, but also to apply methods that support more precise parameter estimates. By 
obtaining tighter confidence bounds, we achieve more accurate parameter estimates and thus 
obtain more power to correctly identify weak, but present, functional connections between 
nodes (Kelley and Maxwell, 2003). Approaches exist to design studies that achieve both a 
desired statistical power level and a desired confidence band width, such as Accuracy in 
Parameter Estimation analysis (Kelley and Maxwell, 2003). Knowing the optimal number of 
parameters to achieve desired power and precision might provide insight when choosing the 
number of nodes and knots to include in spline-Granger network models. For instance, if the 
optimal number of parameters can be predetermined, these parameters could then be 
distributed uniformly across all node pairs in the network.

In conclusion, the spline-Granger method provides a flexible and useful tool for network 
inference of large models. Because accurate network inference is limited by the stationarity 
of the data available, we develop an approach that reduces the number of parameters to 
estimate. The number of parameters in the model is a function of the number of brain 
regions included and the amount of history dependence estimated between these brain 
regions. To account for the possible confounding influences of indirect interactions between 
brain regions, we develop an approach that does not reduce the number of brain areas, but 
instead simplifies the estimated history dependence. We showed that we gain statistical 
power and precision in our parameters estimates at the cost of making assumptions on how 
the influence of past values changes over time. By fitting more statistically powerful models 
with more nodes and longer history dependence, the method can produce more precise and 
more informative functional networks.
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Highlights

• Modification of multivariate Granger causality for conditional inference on 
large network data

• Model with interpretable parameters for signals with extended, smooth 
history dependencies

• Statistically powerful network inference tool more sensitive to detecting 
network connections
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Figure 1: Example approximation of history dependence with Cardinal spline basis functions.
Example history dependence (black, solid) spanning 60 ms, and its approximation (gray, 
solid) using eight Cardinal spline basis functions (colored, dashed) with knots at −200 ms, 0 
ms, 10 ms, 20 ms, 30 ms, 40 ms, 50 ms, and 60 ms. A multiplicative factor scales each 
spline basis function, so that sum of all eight basis functions approximates the history 
dependence.
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Figure 2: Illustration of model coefficients for network simulations.
Plots of example functions used for history dependence in the nine-node simulations. The 
network model coefficients (gray curves, three examples shown) were created by adding 
noise to the smooth functions (thick black curves) for the self-influence terms (a), and cross-
influence terms (b).
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Figure 3: Both modeling approaches perform well for a single node with a dominant high 
frequency spectral peak and long, smooth history dependence.
(a,b) Example trace (a) and spectrum (b) of the simulated signal. Rhythms near 15 Hz 
dominate the activity. Scale bar in (a) indicates 200 ms.
(c)The true autoregressive coefficients (black curve), estimated using the spline AR model 
(solid red curve, 95% confidence interval in dashed red), and using the standard AR model 
(green curve, 95% confidence interval in dashed green).
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(d) Illustration of the Grenander and Rosenblatt goodness-of-fit test of the integrated 
spectrum for the data in (a). The cumulative distribution of the observed signal power 
(black) and both estimated averaged signals’ power (standard AR in green, spline AR in red) 
overlap. Dashed lines indicate 95% confidence intervals.
(e) Illustration of the Durbin-Watson goodness-of-fit test for the spline AR model for the 
data in (a). The autocorrelation of residuals remains small for all nonzero lags.
(f-h) Population results (1000 instances) of the simulation for the (f) Grenander and 
Rosenblatt statistic, (g) Durbin-Watson statistic, and (h) computation time. The computation 
time (h) is significantly smaller for the spline AR model; error bars indicate two standard 
errors of the mean. For both models, approximately 60% of the simulations pass the 
Grenander and Rosenblatt test (f), and nearly 100% of the simulations pass the Durbin-
Watson test (g).
(i) Averaged AIC values for 1000 instances of the simulation for a range of parameters for 
both the spline AR (red) and standard AR (green) models; solid curves indicate the mean, 
and dashed curves represent two standard errors of the mean.
(j) Population results (1000 instances) of the simulation for the exclusion of the null value at 
10 ms delay. The confidence bounds at 10 ms correctly exclude the null value in 
approximately 80% of the simulations for the standard AR model, and nearly all simulations 
for the spline AR model.
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Figure 4: The spline-Granger method is not equivalent to filtering and downsampling the signal.
(a) Example trace of a simulated signal (black), filtered and downsampled signal and signal 
estimated from the downsampled signal using the standard AR model (green). Scale bar 
indicates 10 ms.
(b) The true autoregressive coefficients (black curve), and estimated coefficients using the 
standard AR model (green curve, 95% confidence interval in dashed green).
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Figure 5: Increases in estimated model order produce accurate functional networks in minimal 
computation time using the spline-Granger method.
(a,b,c) Example simulated signals (a) and spectra (b) of the nine-node network with the 
connectivity strength between nodes shown in (c). Scale bar in (a) indicates 200 ms
(d,e,f) Corresponding networks inferred using the spline-Granger method (d), the average 
network estimated from the spline-Granger method with history dependence 60 ms (e), and 
the variability of those estimates (f) for 1000 realizations of the simulated network data. In 
each figure, darker shades indicate larger values.
(g,h) Accuracy for 1000 realizations of the nine-node network for the standard-Granger (g) 
and spline-Granger (h) models with history dependence extending to 10 ms (red) and 60 ms 
(gray), and data of duration 2 s, 4 s, and 8 s.
(i) An example of the estimated history dependence for which the standard-Granger method 
fails to detect an edge, while the spline-Granger method detects an edge. Inferred 
coefficients for standard AR model (green) and spline AR model (red) and true model 
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coefficients (black); solid curves indicate the mean, and dashed curves indicate the 95% 
confidence intervals.
(j,k) Computation time for 1000 realizations of the nine-node network for the standard-
Granger (j) and spline-Granger (k) models with history dependence extending to 10 ms (red) 
and 60 ms (gray), and data of duration 2 s, 4 s, and 8 s.
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Figure 6: The spline AR and standard AR models produce similar results for in vivo data 
recorded from a single node.
(a,b) Example signal (a) and spectrum (b) recorded from human cortex preceding a seizure. 
Black bar in (a) indicates 200 ms.
(c) AIC computed for both the spline AR and standard AR models up to order 30.
(d) Fits to the history dependence using the spline AR model (red) and standard AR model 
(green); solid curves indicate the mean, and dashed curves indicate the 95% confidence 
intervals.
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Figure 7: The spline-Granger method makes inference of a 26-node network computationally 
tractable and more sensitive.
(a) Network inferred applying the spline-Granger method to 26 voltage recordings of 
duration two seconds. The standard-Granger method requires estimation of too many 
parameters given the amount of data observed.
(b,c) Networks inferred using standard-Granger (b) and spline-Granger (c) methods applied 
to voltage recordings from 26 electrodes of duration ten seconds.
(d) Estimated history dependence for a signal pair for which a connection was detected 
using the spline-Granger method (solid red curve, 95% confidence interval in dashed red), 
but not using the standard-Granger method (solid green curve, 95% confidence interval in 
dashed green).
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