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Abstract

Interactions between fluid flow and elastic structures are important in many
naturally occurring and engineered systems. This review collects and orga-
nizes recent theoretical and experimental developments in understanding
fluid-structure interactions at low Reynolds numbers. Particular attention
is given to the motion of objects moving in close proximity to deformable
soft materials and the ensuing interplay between fluid flow and elastic defor-
mation. We discuss how this interplay can be understood in terms of forces
and torques, and harnessed in applications such as microrheometry, tribol-
ogy, and soft robotics. We then discuss the interaction of soft and wet objects
close to contact, where intermolecular forces and surface roughness effects
become important and are sources of complexity and opportunity.
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1. INTRODUCTION

The interaction of fluid flow and deformable objects is a common feature of many physical sys-
tems. Flags flutter in the wind, fish swim, flagella beat to propel microorganisms, and blood cells
bend and stretch as they squeeze through narrow capillaries. Flexible elements introduced into
engineering fluidic channels can act as pumps and rectifiers. In this review, we summarize recent
developments on the interactions of fluid flows and elastic structures, focusing on flows dominated
by viscous forces. We discuss general principles by which suspended soft objects interact with each
other and with nearby compliant structures. Such interactions arise in physiological contexts and
in microscopic experiments with soft materials and have applications in microfluidics, soft robotics,
rheometry, and tribology.

The interplay between fluid flow and deformable objects has a well-developed literature that
spans a wide range of applications. Early work studied the role of deformations in industrial bear-
ings under the large pressures of the lubricating fluid (Dowson & Higginson 1959, Archard et al.
1961, Crook 1961, Greenwood 2020). The role of deformability in the flow of red blood cells in
capillaries was recognized in the mid-twentieth century (Lighthill 1968, Fitz-Gerald 1969). Sub-
sequent work focused on the motion of deformable droplets in confined flows (Chan & Leal 1979,
Yang & Leal 1990). In a now classic paper, Smart & Leighton (1991) showed that a droplet of ra-
dius R and surface tension o in a wall-bounded shear flow with shear rate y migrates away from
the wall due to interfacial deformation. When the droplet is at a distance d > R from the wall,
the migration speed is

R 2
V. o Ry (3> c, 1.

where C = uRy /o is the capillary number and controls the deformation of the drop from its
spherical rest shape. This example of fluid-structure interaction exhibits many of the key features
that we discuss in this article—stresses of the flow deform the object, and the deformed object
then interacts hydrodynamically with a nearby boundary, which in turn modifies the motion of
the particle.

There has been growing recent interest in the motion of suspended objects in close proxim-
ity to soft materials (often elastomers or gels) with elastic, viscoelastic, or poroelastic properties.
The large hydrodynamic stresses typical of near-contact configurations can thus produce a strong
coupling between fluid flow and elastic deformation. Moreover, the close proximity between com-
pliant surfaces, particularly at nanometric surface separation distances, can cause intermolecular
forces and surface roughness effects to become important. It is in this context that the present
review discusses fluid-elastic interactions. We focus primarily on situations where the interacting
soft objects are in close proximity to each other and fluid-elastic interactions are relatively strong.
In this regime, the ideas of lubrication theory are effective and afford significant simplifications
of both the fluid dynamics and the solid mechanics.

We first discuss the motion of particles near soft boundaries, detailing the generation of
forces due to nonlinear effects of soft materials (Section 2) as well as a linearized description
of time-dependent motion that is useful for microrheometry (Section 3). We then discuss situa-
tions in which soft objects undergo relative sliding while simultaneously being pressed together
(Section 4). We are then naturally led to a discussion of the hydrodynamics of approach and con-
tact of soft objects, including the role of intermolecular forces, which we discuss in Section 5.
Connections to other soft hydrodynamic systems are made in Section 6 before we conclude in
Section 7.
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Figure 1

Mechanism of normal force generation due to sliding of a symmetric object along a soft solid. (#) Fluid-elastic interactions between
objects in close proximity are often well described under the framework of lubrication theory. (5) The flow generated by the object
deforms the soft material in such a way that, in a reference frame attached to the object, fluid flows from wider regions of the film into
narrower regions. This generates a net positive pressure in the fluid film, producing an normal force on the object.

2. FORCES ON PARTICLES TRANSLATING NEAR
COMPLIANT SURFACES

We begin by discussing the motion of suspended particles moving near compliant surfaces. When
a particle translates close to a rigid boundary, it experiences hydrodynamic forces and torques that
depend on its distance to the boundary (Kim & Karrila 2013). If this boundary is instead compliant,
the motion of the particle drives a fluid flow whose stresses deform the boundary, which in turn
produces a secondary flow. The effects of this secondary (deformation-induced) flow can be felt
by the particle in multiple ways. When the particle motion is prescribed, the particle experiences
additional elastohydrodynamic (EH) components of force or torque that depend on the stiffness
of the materials (Coyle 1988, Sekimoto & Leibler 1993, Skotheim & Mahadevan 2004, Yin &
Kumar 2005). Alternatively, if the particle is freely suspended, then these interactions manifest as
elasticity-dependent modifications of the particle’s kinematics (Figure 14). Notable among these
effects is the lowering of the effective friction between sliding soft objects (Saintyves et al. 2016),
the drift of translating particles away from soft boundaries (Davies et al. 2018, Rallabandi et al.
2018), or coupling between translation and rotation (Salez & Mahadevan 2015, Rallabandi et al.
2017, Saintyves et al. 2020). We point the reader to the recent review by Bureau et al. (2023), which
discusses several mechanisms by which particles may cross streamlines in viscous flows, including
those resulting from elastic deformations.

At low Reynolds numbers, stresses generated by the motion of the particle fall off with the
inverse square of the distance from the particle (or faster). It is therefore typical to consider sit-
uations in which the separation distance 4 is not too large relative to the radius of the particle R
in order for the effects of boundary deformations to be felt appreciably. For very small separation
distances d < R, lubrication theory provides a simplified, yet often accurate, description of the
fluid flow. The fluid flow is driven by pressure gradients Vp along the film, and by the relative
motion between the surfaces (Figure 14). For a Newtonian fluid of viscosity u, and for objects
sliding with relative velocity V, the flow is governed by

oh 1

_ = — . 3
5 = 12V (VP 6V), 2.
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where b(x,7) is the width of the fluid gap (which we also refer to as the fluid film thickness) and de-
pends on the location in the plane x and can evolve in time ¢. The film thickness can be decomposed
into a contribution 4" (x, ¢) from the surfaces in their undeformed state and a contribution #(x, ¢)
due to elastic deformation. Around the point of minimum separation and in the undeformed con-
figuration, it is typical to describe spherical and cylindrical objects by a parabolic approximation
bigd ~ 4(r) + x| /(2R), where d(£) is the minimum separation distance between the undeformed
surfaces of the particle and the wall. Thus, the film thickness typically has the shape

L
2R
The surface deformation field u(x, ) (defined such that positive # widens the gap) is coupled to

b(x,t) ~d(t) + + u(x,t) 3.

stresses of the fluid flow via the equilibrium of elastic stresses in the soft material. Shear stresses
are smaller than normal stresses in lubricated flows and are typically neglected, whereas normal
stresses are dominated by pressure. For linearly elastic materials, the pressure of the flow and the
surface deformation are typically related by

u(x,t) = /P(Y,t)g(x —y) dy. 4.

Here, G(x — y) is a point response function that relates the deformation at x to a normal point force
applied aty (also in the plane of the undeformed surface) and depends on the properties of the soft
solid. Together, Equations 2—4 constitute a nonlinear description of EH interactions for closely
separated surfaces and, as we show, provide quantitative insight into various EH phenomena in
practically relevant scenarios. A more general EH framework replaces Equation 2 by the Stokes
equations and Equation 4 by an elastic description involving both tangential and normal stresses
and displacements (e.g., Hu et al. 2023).

2.1. Steady Sliding: The Generation of Normal Forces

A widely studied configuration involves a rigid symmetric particle (e.g., a cylinder or a sphere)
translating parallel to a soft substrate that is planar in its undeformed equilibrium state. An im-
portant feature of this configuration is the generation of EH force components that are normal
to the direction of motion (these normal forces are often referred to as lift forces; we use the two
terms interchangeably here). By contrast, no normal force is experienced by the particle if the
surface is rigid, as is expected from the time-reversal symmetry of Stokes flows (Figure 15).

2.1.1. Scaling and symmetry breaking. The locally parabolic geometry defines a horizontal
length scale £ = +/2Rd (Figure 1a). In a reference frame attached to the particle, the wall ap-
pears to translate with velocity —V, and the flow appears steady. The lubrication pressure scale
is p ~ uVt/d* and produces elastic deformations. We imagine that strains in the material are
distributed over a region of a characteristic horizontal length scale ¢,, which may depend on the
geometric scale ¢, as well as the properties of the soft material. This leads to a characteristic elastic
stress Ku/{,, where K is an effective elastic modulus with units of force per area [these details are
contained within the response function G(r) in Equation 4]. Balancing the elastic stress with the
pressure of the fluid leads to a deformation scale # ~ p¢;/K. The ratio of the deformation scale
and the separation distance 4 defines a dimensionless parameter
wvee,  uVQR)Y e,
" K& T Ka”
This quantity can be interpreted either as a dimensionless velocity or as a dimensionless elastic
compliance. In the latter interpretation, 7 is analogous to the capillary number in that it provides

5.

a measure of the effect of hydrodynamic forces on deformation; n = 0 is the rigid limit.
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In the rigid (and symmetric) configuration, the time-reversal symmetry of Stokes flows pre-
cludes the generation of any normal forces from translation parallel to a wall. However, in the
deformed configuration, fluid flows on average from a wider section of the gap (ahead of the par-
ticle; the inlet) into a narrower section (behind the particle; the outlet) (see Figure 15). Elastic
deformation due to flow thus breaks symmetry and generates a nonzero mean secondary pres-
sure in the gap that then leads to a normal force. Adopting arguments relevant to slider bearings
(Reynolds 1886), we expect this normal force to push the surfaces apart. For small sliding speeds,
the secondary pressure has a scale nul¢/d?, which depends on both the elastic and fluid properties.
The resulting EH lift force (on a sphere) thus scales as

ule

‘ 2Ry,
FfH:/pdA~ o dd~ .

Kd?
For a cylinder, the force per length scales with the result of Equation 6 divided by €. The same

6.

symmetry arguments are relevant to the motion of drops near walls and particles near free surfaces
(Berdan & Leal 1982, Yang & Leal 1990).

Translation of a particle parallel to a compliant wall therefore generates a force component nor-
mal to the wall. This force is quadratic in the sliding speed for small speeds. Detailed calculations
show that the force is repulsive, as argued above. The motion of soft spherical particles is similar
in principle but with some caveats that we discuss separately in Section 2.4. Below, we highlight
theoretical quantifications of the nonlinear EH lift force and its manifestations in experiments.

2.1.2. Thin, compressible, elastic layers and the Winkler approximation. The simplest elas-
tic model is that of a Winkler mattress (or foundation), which treats the soft material as a bed of
isolated springs. Such a response is physically realized by a thin, compressible, soft layer (of thick-
ness / < ¢, shear modulus G, and Poisson’s ratio v) bonded to a rigid substrate. In this case, the
surface deformation is related to pressure by
(1 —2v)

“=3a-nael
Here, the layer thickness # can be identified with the length scale ¢; over which elastic stresses
are distributed, and K = 2G(1 — v)/(1 — 2v) is the effective stiffness introduced in Section 2.1.1.
Owing to its simplicity, the Winkler model is widely applied and often provides useful qualitative

7.

insights into soft systems, including those with quite complex elastic responses (Dillard et al. 2018).
For a cylinder sliding along a Winkler mattress at steady state, Equation 2 becomes

2 3 2
di((d—i—;RJrIb{p) jﬁ+6uV<d+;e+Iip>>:O, 8.
which is a second-order nonlinear differential equation for the pressure p(x). Rescaling identifies
the compliance n = uVbe/(Kd*), which is the sole parameter of the problem.

For small 5, the pressure is largely antisymmetric and corresponds to motion between nearly
rigid surfaces. As 7 increases (softer materials or faster speeds), the pressure and the deformation
become asymmetric about the origin. For small deformations, Equation 8 yields readily to a per-
turbation expansion of the form p(x) ~ po(x) + npi(x) + ..., which can be solved order by order.
The normal force (per length) on the cylinder is FF = [ p(x)dx, to which the leading term
po (low between undeformed surfaces) makes no contribution due to symmetry. The next term,

np1, breaks this symmetry and gives rise to a normal force (per length) (Sekimoto & Leibler 1993,
Skotheim & Mahadevan 2004)

FEH:/wpde—”n“wz: (1—20) 3V2m @2 V2bR'? 9.
. o0 8 " 4 1—v 8 Gd'”2
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A numerical solution of Equation 8 finds that the approximation 9 is accurate to within about 10%
when 7 < 0.2 (Skotheim & Mahadevan 2004). A similar approach also yields the normal force on a
spherical particle sliding near a Winkler foundation (Urzay et al. 2007), though the algebra is con-
siderably more involved. In two-dimensional configurations, the normal force typically achieves
a maximum value for intermediate values of n (Beaucourt et al. 2004, Skotheim & Mahadevan
2005), but this feature seems to disappear for spherical geometries (Urzay et al. 2007) and simply
saturates for n > 1.

2.1.3. Elastic layers: beyond the Winkler approximation. Most soft materials found in the
laboratory and in nature (e.g., elastomers and gels) are nearly incompressible. For a strictly in-
compressible material (Poisson’s ratio v = 1/2), the Winkler model predicts an infinite resistance
to deformation and must be replaced by more sophisticated descriptions. For thin incompressible
layers, surface displacements are accommodated as shear strains, leading to # o« —4* V2p/G (this
can be recast in terms of Equation 4 through a Green’s function formulation). The symmetry
arguments continue to hold, whereas the scaling behaviors with respect to geometric parame-
ters are modified. Accounting for both compression and shear of thin layers, Chandler & Vella
(2020) found a transition between compressible and incompressible scaling behaviors for the EH
lift force when b/¢ ~ /T — 2v. For thicker elastic substrates, it is necessary to use the full integral
relation given by Equation 4. Recently, Hu et al. (2023) showed that for a very thin incompressible
elastic layer of thickness comparable to that of the fluid film (b < d), the shear stress of the flow
(despite being smaller than the pressure) produces sizable elastic deformations. Accounting for
this effect further modifies the scaling of the lift force in this limit. Another useful limit is that
of a substrate that is much thicker than the geometry of contact (b > ), where elastic stresses
are distributed over a region of size £, ~ ¢, and the response kernel is G(r) o G™'|r|™! (in three
dimensions) and G(r) o« G~!log r| in (two dimensions) (Johnson 1987). Coupling the Reynolds
Equation 2 to the pressure-displacement relation (Equation 4) results in a nonlinear integrod-
ifferential equation that must be solved numerically in general. Skotheim & Mahadevan (2005)
develop and document an extensive library of both analytic and numerical results for lift forces in
a wide range of two-dimensional configurations.

There is a smaller literature on spherical geometries, but we note the work of Urzay et al.
(2007) in the Winkler limit and the recent work by Zhang et al. (2020) that analyzed the lift on
a sphere translating near a thick, soft substrate using a semianalytical perturbation approach. An
alternative strategy, valid for small displacements, is to use the Lorentz reciprocal theorem to
obtain the lift force while circumventing the details of the secondary pressure field (for an overview
of the theorem and its applications, see Masoud & Stone 2019). The idea was first introduced by
Stone et al. (2004) in the context of the Winkler model and has since been generalized to more
complex elastic responses. The method utilizes well-known solutions of the Stokes equations in
rigid geometries along with approximations of the deformation to compute the lift force. Working
in Fourier space (and building on the theory of Rallabandi et al. 2018), Kargar-Estahbanati &
Rallabandi (2021) showed that the EH normal force on a sphere, accurate to leading order in
deformation, has the general form

FH _ 9M2V2R5/2
* 25245

where Kj is a modified Bessel function. The quantity G(q) = [ G@x)e9tdr is the Fourier
transform of the Green’s function (the asterisk in Equation 10 represents a complex conjugate)
and is known analytically in many systems (Li & Chou 1997, O’Sullivan & King 1988, Wang &
Zhu 2019).

[ ¢ k@) & @ 10,
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To close this section, we note that if the object rotates, it is appropriate to replace V by a
combination of translation and rotation velocities (the entrainment velocity) in the Reynolds lu-
brication equation. However, we note that forces and torques depend separately on rotational and
translational velocities (see Urzay et al. 2007, Rallabandi et al. 2017, Bertin et al. 2022).

2.2. Experimental Quantification of Nonlinear Elastohydrodynamic
Normal Forces

A small but growing body of experimental literature has confirmed the generation of normal forces
on suspended particles near soft materials. Saintyves et al. (2016) made perhaps the first quanti-
tative experimental measurements of EH lift effects by studying the sliding of rigid submerged
cylinders over inclines coated with elastomers (Figure 24). The EH lift force slightly separates the
cylinder from the soft surface, which lowers the drag on the cylinder (recall that the drag force per
length on a cylinder scales as u 12 /d). At steady state, the separation distance and the sliding speed
are simultaneously determined by a balance of the weight of the cylinder, hydrodynamic drag, and
EH lift. The sliding speed was found to be greater for softer coatings according to V' o« G/, in
agreement with small-deformation theory under the Winkler approximation (Figure 25).

In another macroscopic experiment, Rallabandi et al. (2018) showed that particles settling near
taut, vertically suspended elastic sheets drift away from the sheet (Figure 2¢). Neglecting geomet-
ric nonlinearities associated with sheet bending, they modeled the deformations of the sheet via

BV =TV =p, 11.

where B = GF(1 + v)/(6(1 — v?)) is the bending rigidity and 7 is the applied tension. The
motion of the particle along the sheet produces an EH lift that is balanced by a drag normal to
the surface, establishing a normal drift velocity (Figure 2d)

3uR?V? 2TRd *® 2¢*K2(g)
vV, = 358 ]:(T>, where ]:(T)—A qug. 12.

The function F depends on the dimensionless ratio 7 = 27T Rd/B, which quantifies the relative
importance of tension to bending rigidity in resisting deformation. Motivated by particle motion
near biological membranes, Daddi-Moussa-Ider et al. (2018) analyzed nonlinear elastohydro-
dynamic lubrication (EHL) forces experienced by a particle translating far away from a planar
membrane (4 > R) with resistance to bending and in-plane shear (Helfrich 1973, Skalak et al.
1973, Tozeren & Skalak 1978). While bending resulted in a repulsive interaction, resistance to

in-plane straining was predicted to produce an attractive interaction.

Other recent experiments have either directly or indirectly measured EH lift effects at the mi-
croscale. Davies et al. (2018) flowed heavy spherical particles in a microchannel whose bottom
wall was functionalized with polymer brushes. The particles were observed to flow at different
heights above the brush layer depending on the shear rate of the flow (which controlled both
translation and rotation of the particles) and the stiffness of the brushes (Figure 3#). These ob-
servations were shown to be in quantitative agreement with a balance between the weight of the
particles and EHL forces, with a smaller contribution from inertial effects. Vialar et al. (2019)
measured normal forces between sliding mica-bead-coated surfaces using a surface force appara-
tus (SFA), finding qualitative agreements with the EH lift theory (Figure 35). The following year,
Zhang et al. (2020) performed direct measurements of the EH lift force using an atomic force
microscope with a spherical probe near a transversely oscillating stage coated with polydimethyl-
siloxane (PDMS). Due to the quadratic nonlinearity, transverse oscillations generate a normal EH
force component with nonzero mean that scales as 4 °/?, in agreement with (quasi-static) theory
for small deformations (Figure 3¢). Evaluation of Equation 10 (Kargar-Estahbanati & Rallabandi
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2021) quantifies deviations from this scaling behavior depending on the thickness of the soft layer

(Figure 3d).

2.3. Effect of Substrate Viscoelasticity

Many soft materials exhibit viscoelastic properties, which can affect EH forces. The ratio of the

material relaxation timescale 7 to the advection timescale £/} gives rise to a new dimensionless
parameter. When t 2 £/V, the material cannot respond instantaneously to the moving object.
This produces deformations that are both smaller and more symmetric (Figure 3e), which leads

to a smaller normal force than the purely elastic case (Pandey et al. 2016, Hu et al. 2023). When
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the translation is oscillatory (as in Zhang et al. 2020) with frequency w, the nonlinear normal force
FEH(t) is a superposition of steady and overtone (2w) components for small . For a viscoelastic
substrate, the amplitude and phase information of this force signal are predicted to be tied to the
storage and loss moduli of the material (Kargar-Estahbanati & Rallabandi 2021).

2.4. Deformable Particles and the Role of Particle Shape

The ideas discussed above also apply in principle to soft objects translating near rigid walls. Indeed,
for symmetric vesicles, Beaucourt et al. (2004) found a repulsive force consistent with EH theory.
However, for nonspherical particles, elastic deformations may play only a subdominant role in
geometric symmetry breaking. One example is that of a nonspherical vesicle exposed to shear
flow near a wall, which under certain conditions assumes an ellipsoidal shape at a constant angle
with respect to the wall (the shear flow tries to reorient the vesicle along the directions of principal
strain) and drifts away from it (Abkarian et al. 2002). Approximating the vesicle by a point stresslet
(valid when 4 > R) with a wall-normal component ¥, leads to the prediction
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+ deformability effects, 13.

€L

which agrees with experiments and simulations over a wide range of conditions (Abkarian et al.
2002, Zhao et al. 2011). To first approximation, X, is linear in the shear rate and depends on
the asphericity of the vesicle, while elastic deformations make a sub-dominant contribution (e.g.,
Bureau et al. 2023). Note that the stresslet argument also applies to a droplet near a wall (see
Equation 1), except that in this case the dominant contribution to the stresslet occurs precisely
due to deformation of the droplet by the flow against surface tension (Smart & Leighton 1991).

3. LINEARIZED PARTICLE DYNAMICS NEAR SOFT MATERIALS

In the preceding section we discussed the generation of normal forces due to quasi-static wall-
parallel translation. Such forces are (for small velocities) quadratic in the velocity and linear in the
elastic compliance 1/G and are associated with the breaking of geometric symmetry. However,
when the motion is time dependent, the kinematics of boundary deformation generate additional
force components that are linear in velocity. This leads to mobility relations of the kind familiar
in viscous hydrodynamics (Hinch 1972) but now involving the properties of the soft material.
The elastic contribution to the force response depends on the timescales over which the system is
probed relative to a relaxation time 1/G (modulo geometric factors). We discuss some examples
of such systems below.

3.1. Oscillations Normal to a Soft Material: Contactless Rheometry

Accurately measuring the mechanical properties of a soft material can be challenging at small
scales. Traditional mechanical tests (e.g., indentation) are prone to contamination by adhesive,
capillary, and intermolecular forces, particularly for soft materials. To overcome these challenges,
Leroy & Charlaix (2011) and Leroy et al. (2012) devised theory and experiments to use fluid-
elastic interactions to probe the mechanical response of a soft material without direct solid-to-solid
contact. Their setup consists of an SFA involving a spherical probe that is suspended at a known
height dj above a layer of soft material, separated by viscous fluid. Vertical oscillations of amplitude
A < dy and frequency w are then applied to the probe, so that the separation distance between
the (undeformed) surfaces is d() = dy + Ae** (Figure 4a). The ensuing flow deforms the soft
material, and thus, the force exerted by the fluid on the particle (which can be measured) carries
an imprint of the mechanical properties of the soft solid.
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(@) Small vertical oscillations of a sphere about a mean separation distance dy deform a nearby elastic material. () The normal force on
the sphere has components in phase (blue) and out of phase (red) with the displacement, corresponding to elastic (storage) and viscous
(loss) contributions, respectively. Theory is shown as solid black curves; dashed curves correspond to the limit of a thick elastic
substrate. The inset shows the same data on linear axes. Panel # adapted with permission from Leroy et al. (2012).

The theory of Leroy & Charlaix (2011) linearizes the lubrication equation in the oscillation am-
plitude, allowing for changes of film thickness due to elastic deformation. The linearized Reynolds
equation around a sphere, assuming axisymmetric flow, is

9 . 1139 2\ ap
E(do-f—/le +u)_12;L7’f)7’<(d0+2}2) Pk 14.

subject to the integral relation Equation 4 that links # to p. A Fourier transform in time and Hankel
transform in space produces a Fredholm integral equation of the second kind for the (transformed)
pressure that, when solved numerically, yields the normal force. The pressure scale due to a nor-
mal velocity Aw is pAwe? /d}, which leads to a deformation scale (for a thick elastic substrate) of
prAwe? /(Gd3). The deformation becomes comparable to the oscillation amplitude A (while re-
maining much smaller than dp) for a characteristic separation distance (utilizing ¢ = v/2dyR) of
d, ~ R(uw/G)*. The ratio do/d, = (uw/G) ™23 (dy/R) is the sole dimensionless parameter of the
system and characterizes the amplitude of deformation to that of the sphere oscillations (note that
the deformations are assumed small relative to the gap dy throughout). The quantity (dy/d,)~*/* =
(nw/G)(dy/R)*"* is the ratio of a relaxation timescale to the driving timescale and can be loosely
interpreted as the Deborah number of the coupled fluid-elastic system (Ewoldt & Saengow 2022).

In this linear theory, the normal force on the particle also oscillates at frequency @ and has the
general form (Leroy & Charlaix 2011)

F () = Fye, where F =

671,uR2AwR(@> 5.

d, d,

The dimensionless resistance R (dy/d,) is a complex function whose real and imaginary parts
represent elastic (storage) and viscous (loss) components. For example, when dy/d, > 1 (large
separations or small frequencies) with a substrate much thicker than +/Rdy, the resistance takes
the form R(dy/d,) ~ id,/dy + 0.173 (df/do)s 2 which corresponds to the viscous resistance on a
sphere moving normal to a wall (Brenner 1961), plus an elastic correction scaling with d; >/
(Figure 4b). For small dy, the force is controlled entirely by d, and becomes independent of the
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gap width dy. The crossover between storage and loss components of the resistance occurs when
do/d. = O(1).

Experimental measurements of the force (Leroy etal. 2012) with an SFA find remarkable agree-
ment with the theory across the entire range of experimentally accessed dy/d. (Figure 4b), for both
compressible and incompressible elastic responses. Bertin et al. (2022) analyzed the arbitrary time-
dependent motion (translation and rotation) of a sphere near an elastic substrate, focusing on the
quasi-steady limit (large dy/d, in the discussion above). Notably, they showed that the EHL forces
and torques also depend on the acceleration of the particle, which, although reminiscent of inertial
effects, arises due to the coupling between viscous flow and elastic deformation.

Similar ideas have since been used to probe the viscoelastic properties of polymer films (Guan
et al. 2017a), cells (Guan et al. 2017b), fluid interfaces (Maali et al. 2017, Bertin et al. 2021), and
gels (Zhang et al. 2022), in these instances using atomic force microscopy (AFM). Recent theoret-
ical work (Kopecz-Muller et al. 2023) has analyzed the effects of poroelasticity in oscillating probe
systems. For both viscoelastic and poroelastic materials, it is now necessary to sweep across an ad-
ditional parameter wt that depends on the material relaxation time 7. Experiments are somewhat
complicated by the involvement of the driving frequency in both dimensionless parameters of the
system (dp/d, and wt) but remain tractable.

SFA and AFM systems driving normal oscillations are promising as noncontact microrheolog-
ical probes of soft materials, as they do not rely on weak nonlinearities or a breaking of symmetry
(contrast this with Section 2.1). However, the force signal is at the same frequency as the driv-
ing and must be picked apart from purely hydrodynamic contributions to isolate elastic effects.
By contrast, exploiting nonlinear interactions (e.g., Zhang et al. 2020) yields time-averaged and
second harmonic signals that isolate EH effects but may be weaker and therefore more prone to
contamination by noise. It is conceivable that a combined analysis of linear and nonlinear effects
may provide an effective strategy for the microrheometry of complex soft solids.

3.2. Point-Like Particles near Interfaces and Membranes

There is an extensive body of work secking to understand the properties of fluid interfaces and
biological membranes by observing the motion of nearby suspended particles, or by direct obser-
vations of the fluctuations of interfaces themselves. It is well known that thermal fluctuations of
lipid bilayer membranes are intimately coupled with the surrounding fluid (Brochard & Lennon
1975, Ramaswamy et al. 1994, Zilman & Granek 1996). Later work identified that nearby sus-
pended particles are affected by these membrane fluctuations, leading to anomalous diffusion of
the particles (Fradin et al. 2003, Kimura et al. 2005).

Recent years have seen theoretical efforts quantifying the mobility of particles near membranes
(Bickel 2007, Daddi-Moussa-Ider et al. 2017) including hydrodynamic interactions between par-
ticles (Daddi-Moussa-Ider & Gekle 2016). The typical formulation treats the particle as small
relative to its distance from the membrane (R < d), approximating it as a point-like object. The
fluid flow [velocity v(x)] is governed by the Stokes equations driven by a point force F at the
location x, of the particle,

;LVzv—Vp—f—FS(x—xp):O, with V.v=0. 16.
Kinematic and stress conditions couple the fluid flow to the elasticity of the membrane, which may
resist both in-plane (shearing) and out-of-plane (bending) deformations. This time, the coupling
of boundary deformations to fluid flow introduces a timescale ud?/B. For small deformations,

the particle velocity is related to applied forces F oc e (it proves convenient to work in Fourier
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space) through the linear relation
d ud’w
V_M(ﬁ’T"')'F' 17.
The mobility tensor M is a complex quantity whose real (imaginary) parts describe viscous (elas-
tic) contributions. The mobility depends on the dimensionless distance to the membrane d/R and a
dimensionless frequency 1d’w/B, among other quantities involving the membrane tension or the
in-plane shear modulus. Such descriptions have been used to study the diffusion of particles near
membranes (Bickel 2006, Daddi-Moussa-Ider et al. 2016) and have predicted anomalous diffusion
behavior, including long-lived subdiffusive transients.

Similar ideas have been developed for noncontact interfacial rheometry of complex fluid in-
terfaces and monolayers (for a review of interfacial rheology, see Manikantan & Squires 2020).
The idea is to suspend a submerged micron-sized bead in an optical trap close to an interface and
use observations of its thermal fluctuations to infer properties of the interface. Shlomovitz et al.
(2013) and Boatwright et al. (2014) developed theory and experiments, respectively, for how such
particle fluctuations are coupled with the interface, focusing on the effects of interfacial viscosity
in the plane of the interface but neglecting out-of-plane deflections.

4. LUBRICATED SLIDING BETWEEN CONFORMING SOFT OBJECTS

We now return to sliding motions discussed in Section 2 and focus on macroscopic objects. This
time, we consider situations where the surfaces are pressed into each other under an externally
applied normal force N. Now, elastic deformation occurs even in the absence of motion. The
solids deform as they make conformal (or Hertzian) solid-solid contact, a classical problem in solid
mechanics (Landau & Lifshitz 1986, Johnson 1987). Relative sliding between the surfaces breaks
this contact by entraining the surrounding fluid, which establishes a thin intervening fluid film
that lubricates the surfaces. This regime of conformal lubricated sliding is a well-studied tribolog-
ical problem (Dowson & Higginson 1959, Bisset 1989). Although the conformal regime may be
analyzed for a prescribed fixed vertical indentation (see, e.g., Weekley et al. 2006, Wu et al. 2023),
it is much more common to prescribe the normal load as we do here. The hydrodynamic normal
force is then no longer of interest, as it simply balances the applied normal load at steady state.
Instead, the typical quantities of interest are now the tangential force (drag) and the film thickness.

4.1. Flow Structure: Thin Films and Boundary Layers

As a canonical example, we consider a rigid spherical indenter that is pushed into a soft mate-
rial under a prescribed normal force N. In the absence of fluid the sphere indents a depth d,, 4,
into the soft solid, establishing solid-solid contact over a circular area that, according to the the-
ory of Hertz, has a radius # = \/d,, 4,R ~ (NR/G)"/. If the sphere is now slid relative to the soft
material, a thin fluid film is entrained and slightly separates the surfaces, so that the effective
indentation depth decreases to a value d, < d,, 4,. We thus see that the clearance between the un-
deformed surfaces (in the sense defined in Section 2) is simply the negative of the indentation depth
d = —d,. The regime of sliding speeds with negative clearance 4 (positive indentation d,) is that of
conformal EHL.

When the film thickness becomes comparable to the dry indentation depth, the normal force
due to the lubrication flow in the thin film has the scale MVﬂ3/d;‘ dry? which must balance the
applied normal force N at steady state. The ratio of these characteristic force scales identifies a
dimensionless quantity

;LVRSB G\/3

=" 18.
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The parameter 2 is a dimensionless velocity, and in this way it is analogous to the quantity 7
introduced in Section 2. Unlike 7, however, A is not a compliance but rather a stiffness. This is
because the normal force, rather than the vertical penetration depth, is being held constant. For
any particular speed A, the penetration depth is determined self-consistently from the solution of
the Reynolds equation by requiring that the applied load is balanced by the hydrodynamic normal
force N = [pdA. As X increases (greater relative speed), the entrained fluid film becomes thicker
and the penetration depth 4, varies smoothly from its positive Hertzian value (dry indentation;
d < 0) to a negative one (nonconformal sliding, positive clearance d > 0). The fixed-load analysis
thus spans both conformal and nonconformal regimes, with A < 1 (small speeds or large loads)
approaching the dry Hertzian limit, and A > 1 (large speeds or small loads) approaching the
nonconformal small-deformation limit n < 1 of Section 2 (Figure 54).

For a cylinder pressed into a thick substrate and slid along it (the quantity analogous to A in
Equation 18 is A;p = uVRG/N?, where N is now the applied force per length), a matched asymp-
totic analysis for small speeds finds that the thin film is of approximately uniform thickness over
the contact area and scales as (uVR)*/* /(N> G'/%) (Snoeijer et al. 2013). The inlet and outlet to the
thin film are characterized by boundary layers (see Figure 5b,c) of width /d,R A3 The thickness
of the lubricating film is set by the structure of the boundary layer at the entrance (inlet) to the
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(@) Conformal versus nonconformal elastohydrodynamic lubrication. For a fixed normal load, greater sliding speeds support thicker
films and allow the object to maintain a greater separation distance from the soft material. When the lubricated film is thinner than the
surface displacement, the objects are in near-conformal sliding, whereas when the film is thicker than the deformation, the objects are
in nonconformal sliding. () Optical interferometry measurements of film thickness show rapid variations near the inlet and outlet
regions, and a mostly uniform film thickness near the middle of contact. (¢) A film thickness profile along the direction of motion,
obtained using interferometry, resolves features as small as about 100 nm. (d) Contours of film thickness, obtained from numerical
solutions; arrows indicate the inlet. Panels adapted with permission from (b,c) Marx et al. (2016) and (d) Wu et al. (2020).
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NUMERICAL METHODS FOR ELASTOHYDRODYNAMIC LUBRICATION

The solution to elastohydrodynamic lubrication problems between soft materials in conformal contact is numeri-
cally challenging for several reasons. The film becomes asymptotically thin, boundary layers develop at the entrance
and exit to the thin film, and the dry limit (A = 0) has a discontinuous structure. An added complication is the sin-
gular kernel of the Green’s function relating displacement to pressure. Iterative methods are simple to implement
but tend to be very sensitive to initial guesses (for a detailed discussion, see Hui et al. 2021). Recently developed
numerical methods use implicit (noniterative) time-dependent formulations to overcome some of these challenges
(Liu et al. 2022, Wu et al. 2023), although one must guard against slow transients associated with fluid drainage
from thin films. Computational advantage may also be realized by an adaptive collocation of grid points around
boundary layers (Singh et al. 2021).

film, a feature that is shared with the motion of long bubbles through tubes (Bretherton 1961).
Hui et al. (2021) analyzed the sliding of a cylinder on both elastic and viscoelastic substrates, and
developed simple and accurate approximations for the film thickness, pressure distribution, and
friction coefficient. For thin compressible layers (thickness # < 2 < R), the Winkler approxi-
mation is not universally applicable for all speeds in the fixed-load analysis, particularly for small
speeds when the width of the entrance region becomes comparable to the thickness of the soft
layer (Essink et al. 2021). This leads to two different scaling behaviors for the film thickness at
small speeds, which in turn controls the drag experienced by the object.

The qualitative features remain unchanged for spherical objects (although a quantitative anal-
ysis is much more difficult), and fluid invades the entire region of contact as soon as sliding is
initiated (Figure 5b4). Detailed experimental measurements of film thickness profiles as small as
100 nm are made possible by interferometry techniques (Figure 5c¢) (Spikes 1999, Liu et al. 2015,
Marx et al. 2016). Numerical solution strategies for spherical geometries are significantly more
involved but are tractable (Figure 5d) (see, e.g., Wu et al. 2020; the sidebar titled Numerical
Methods for Elastohydrodynamic Lubrication).

4.2. Elastohydrodynamic Torque: Coupling of Rotation and Translation

A less investigated feature of EH sliding is the generation of torques. For nonconformal config-
urations and small deformations, the torque due to fluid-elastic interactions occurs at quadratic
order in deformation and scales as (for a sphere)

373 R3 02
TFH ~ / nz%dA ~ % (nonconformal contact; sphere). 19.
During sliding, objects that are free to rotate (zero externally applied torque) will experience an
EH contribution to rotation at a rate Q o n?V/R (recall that 5 scales with speed). A detailed anal-
ysis confirms this scaling quantitatively for cylinders (Skotheim & Mahadevan 2005, Rallabandi
et al. 2017) and spheres (Bertin et al. 2022). For short cylinders of length L. sliding on an
incline, contributions due to end effects produce an additional rotation with angular velocity
(VR? /L)nlog n, which recovers experimental measurements at small speeds (Saintyves et al. 2020).
However, rotation rates in experiments can reach RQ2/V =~ 1, much greater than predictions of
theory for nonconformal contacts, even at large 5. Allowing for conformal deformations at fixed
normal load resolves this discrepancy and predicts RQ2/V — 1 in the small A (large load) limit
(Kargar-Estahbanati & Rallabandi 2022). Thus, conformal contact between sliding objects en-
courages a strong coupling between rotational and sliding motions, leading to pure rolling in
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the Hertzian limit. Equally, rotation makes a sizeable contribution to the drag on the object
in the conformal regime and is an important consideration in the tribometry of soft materials
(de Vicente et al. 2005).

4.3. Lubricated Friction and the Transition to Solid Friction

The role of a lubricating fluid on the frictional properties between a pair of sliding surfaces (a
tribopair) is an important aspect of EH lubrication in the conformal regime. The ratio of the
hydrodynamic drag force F| opposing motion to the applied normal load N defines the coefficient
of friction f=F /N. The drag on a lubricated object depends on hydrodynamic stresses and scales
as Fy ~ ua?V/b*, where b* is a characteristic film thickness. Because »* scales sublinearly with
velocity in the conformal regime, the EHL contribution to the friction increases with sliding speed
and vanishes as /7 — 0 (perhaps counterintuitively, the coefficient of friction between lubricated
soft materials is lower for thinner films when the normal load is held fixed). However, in the
absence of lubricant, friction is mediated by solid-solid contacts and the coefficient of friction
takes on a nonzero static value f;.

How, then, does one transition from a nonzero coefficient of static friction to the vanishingly
small coefficient of lubricated friction at small speeds? This transition between the dry and lubri-
cated regimes of soft sliding contact is referred to as mixed lubrication (see Figure 65). The mixed
regime is presumed to comprise interspersed regions of solid-solid contact and lubricated contact,
and is connected to surface roughness features (asperities) that are usually ignored in lubrication
theory. Experimental data for hard materials suggest that the mixed regime is relevant when the
film thickness is a few times the characteristic asperity size, though recent experiments show that
this transition may occur for much thicker films and is associated with the formation of surface
wrinkles (Dong et al. 2023).

Descriptions of the mixed lubrication regime typically split the normal load between solid-
solid and thin-film contact in a relative proportion that depends on the film thickness (see, e.g.,
Persson & Scaraggi 2009). While such models qualitatively capture the variation of friction versus
sliding speed (the Stribeck curve), the detailed dynamics by which the lubricating fluid film breaks
to produce solid contact has been the subject of debate for both rigid and soft geometries (see,
e.g., Jamali & Brady 2019, Jamali et al. 2020, Dong et al. 2023). Transients bring soft surfaces
temporarily closer to each other than at steady state, but without any finite-time solid contact
(Weekley etal. 2006). By contrast, porosity of the objects does allow contact at finite sliding speeds;
the critical speed for contact was found to scale with permeability with an exponent of about 0.65
(Zakhari & Bonnecaze 2021). A detailed quantification of the relation between surface roughness,
mechanisms of dry friction, and the transition to EH lubricated friction remains a challenging
interdisciplinary problem.

4.4. Patterned Surfaces

The interaction of fluid flow and elastic deformation becomes more complex when one or both
objects are decorated with surface patterns. Examples occur in sensing and haptics, where the tex-
ture is either a part of the soft object (e.g., fingertip asperities) or a surface whose texture is to be
sensed. It is well established experimentally that surface patterns strongly influence the proper-
ties of the lubricated film (Kaneta & Cameron 1980, Choo et al. 2008) (see Figure 64). Recent
experiments with fingertips sliding on glass substrates have shown that the deformation of fin-
gertip asperities and trapped pockets of air are both involved in sliding friction and that small
vibrations can modify these frictional properties (Wiertlewski et al. 2016). In experiments of elas-
tomeric fingers sliding across a soft surface with a ridge pattern, Peng et al. (2021a,b) showed that
the coefficient of friction depends nonmonotonically on the sliding speed for textured surfaces
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(@) Sliding of a soft sphere over various surface patterns. Surface patterns greatly influence the lubricating film, here visualized using
interferometry (cf. Figure 55). (b) Sliding a soft finger over a ridge pattern produces a nonmonotonic dependence of the effective
coefficient of friction on the sliding speed in the elastohydrodynamic (EH) lubricated regime. This feature is absent for flat

(nonpatterned) surfaces. Panels adapted with permission from (#) Choo et al. (2008) and () Peng et al. (2021b).

(Figure 6b). The authors argue that this feature may be due to a crossover of EHL effects from
pattern-scale to global scales, possibly compounded by the lateral bending of the ridges.

Theory and simulations of these more complex compliant systems pose several challenges (Zhu
& Wang 2011). While the bending response of isolated flexible elements in shear and pressure-
driven flow is well understood (Wexler et al. 2013), the response of arrays of such elements is
much more complex. Recent theoretical and experimental work has shed some light on such sys-
tems (Hosoi 2019). For example, models that treat beds of slender hair-like protrusions on solid
substrates as an effective Brinkmann medium (Nasto et al. 2018) or as an impermeable layer with
finite bending resistance (Alvarado et al. 2017) have compared favorably with experiments.

5. APPROACH TO CONTACT

The normal approach of soft objects toward contact is important in several contexts including the
study of collisions and the dynamics of indentation and adhesion of soft materials. Elastic defor-
mations allow the approaching objects to make contact over a larger area, which in turn leads to
greater viscous dissipation. As the intervening fluid film thins to nanometric scales over time, inter-
molecular forces due to van der Waals or electrostatic interactions can exert significant influence
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on the dynamics. We discuss this interplay between hydrodynamic, elastic, and intermolecular
forces in near-contact configurations here.

5.1. Normal Approach of Solid Objects: Formation and Drainage of Dimples

As soft objects approach each other through viscous fluid, the pressure of the flow is greatest at the
point of minimum separation and deforms the objects to create a central dimple (Figure 74,b).
The dimple is under high elastic stress and relaxes by squeezing fluid out into the surrounding
region. Depending on the compliance of the system, the dimple may relax relatively quickly or
may further deepen as the objects approach. In this latter case, the dimple is separated from the
outer fluid by a narrow circular rim through which fluid must drain (Figure 754). The narrowness
of the rim combined with the wide contact area under the dimple slows down drainage of the
fluid as the surfaces approach contact, producing a much greater viscous resistance than would
be expected for rigid objects. Soft objects thus make contact over greater contact areas, and over
much longer timescales, than their rigid counterparts.

Davis et al. (1986) modeled the collision and rebound between two soft spheres, accounting
for their inertia but neglecting the inertia of the fluid. As the spheres approach each other, there
is a substantial flattening of the contact surfaces, leading to either sticking or rebounding. This
model was verified experimentally by Barnocky & Davis (1988). More recent work has modeled
roughness effects (Scaraggi & Persson 2012), the effect of a thin elastic coating on the rebound
problem (Tan et al. 2019), and the effects of fluid compressibility (Balmforth et al. 2010). When
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the initial separation d and initial normal velocity V, are prescribed (as in the collision problem),
a balance of viscous and elastic stresses once again identifies a dimensionless compliance (for a
spherical object) uV, R*? /(Gd*/?), though other quantities are usually also relevant depending on
the forces acting on the system.

Using an SFA, Wang et al. (2015) made direct measurements of the deformation profiles during
the normal approach of a sphere on soft PDMS layers mounted on rigid substrates (Figure 7a,c).
While dimples were observed for thick layers, the contact region was flat for a thin PDMS layer,
which is geometrically stiffer and therefore deforms less and relaxes more quickly (Figure 7d). A
more detailed numerical study confirms this argument (Wang et al. 2017). Many of the qualitative
features described above are also observed in the impact and settling of droplets on solid surfaces
(Snoeijer 2016). Poulain & Carlson (2022) recently studied a version of the problem involving a
droplet settling on a soft surface, where the drainage dynamics are slowed even further due to the
combined elastic and capillary deformations.

5.2. Drainage of Fluid-Filled Blisters

The drainage of fluid due to elastic stresses is not restricted to the contact dynamics of compact
objects. A related system that shares some of the features of contacting elastic solids is the closing
of fluid-filled blisters between elastic membranes and rigid surfaces (Figure 7¢). Once again, the
problem may be studied using the thin-film equation, where now the pressure is related to
the bending deformation of the sheet according to p = BV*h (neglecting stretching effects and
the weight of the sheet). The height of the thin film evolves according to (Michaut 2011, Lister
etal. 2013)

b B

o 12p
The bending rigidity of the sheet drives it to make contact with the rigid substrate by squeezing

V- (B’V (V*h)). 20.

fluid out of the blister. This causes the blister to spread out over time as the elastic membrane
flattens. It is typical to assume a prewetted film of a molecularly small thickness o to tame moving
contact line singularities of the thin film equation. As the sheet approaches its fully relaxed state
b ~ o, the dynamics become linear and self-similar. Scaling estimates and detailed analysis of
Equation 20 in this limit (Pedersen et al. 2021) find that the radius of the blister grows as /%, and

its height decreases as +~!/3

to conserve volume. Thermal fluctuations of the fluid speed up the
dynamics significantly (both the prefactor and the power law exponent) when they dominate over

bending (Carlson 2018, Pedersen et al. 2019) (see Figure 7f).

5.3. The Role of Intermolecular Forces

When the separation distance between approaching objects is on the order of a few nanometers,
intermolecular forces may play an important role, either aiding or preventing contact. The role
of intermolecular forces is further enhanced in soft systems, where compliance of the boundaries
allows for close conformal contact over a relatively large surface area. While static adhesive contact
of soft materials is well understood through classical theories of adhesion (Johnson 1987) and
more recent work (Style et al. 2017), the fluid dynamics leading up to adhesion have received less
attention.

Van der Waals and electrostatic interactions are common sources of intermolecular forces and,
when attractive, can cause nearby surfaces to approach and eventually adhere (making confor-
mal contact). This process may be made nontrivial when the bodies must move through fluid
to make contact. Sun et al. (2021) experimentally examined the role of adhesion forces between
submerged soft PDMS layers and functionalized glass surfaces. Using frustrated total internal
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(@) Height maps show the formation of contact between a submerged polydimethylsiloxane (PDMS) lens and a surface-treated glass
substrate with lower (t0p) and higher (bottom) adhesive energies. (b)) Entrapped liquid drains much more slowly when the adhesive energy
is higher. Red and blue plots correspond to red and blue axes, respectively. () A charged fiber wraps around an oppositely charged
particle. (d) Softer fibers wrap more quickly. Panels adapted with permission from (#,b) Sun et al. (2021) and (c,d) Nunes et al. (2021).

reflection microscopy, they made the counterintuitive observation that a modest increase in adhe-
sion energy (assessed by contact angle measurements) greatly prolongs the time to make complete
contact (Figure 84,b). The authors explain these observations by noting that adhesive forces drive
the rim to close first, which effectively traps liquid in the dimple. In another experimental study,
Nunes et al. (2021) observed the wrapping of charged fibers around oppositely charged soft par-
ticles (Figure 8¢). They found that the rate of wrapping is faster for softer particles (Figure 8d)
and is independent of the free length of the fiber, and hypothesized that the wrapping dynamics
is controlled locally by elastohydrodynamics of adhesive contact.

The effect of intermolecular forces is typically modeled as a disjoining (or adhesive) pressure
[y (h) = —d®/dh, where ®(h) is an interaction potential with units of energy per area. A typi-
cal interaction potential that includes a long-range van der Waals attraction and a short-range
repulsion is (Israelachvili 2011)

&6
7)

A 1 o A
<I>(b)=—§ (m—glﬂ):ﬂd(b)_W(l— 21.
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Here, A4 is a Hamaker constant (positive for attractive interactions, typically about 1071 J), and &
is the equilibrium separation distance of the potential (usually taken to be about 1 A). Electrostatic
potentials are conceptually similar but are typically screened by ions in the fluid over nanometric
scales and are sometimes combined with van der Waals potentials in DLVO (Derjaguin-Landau—
Verwey—-Overbeek) theory (Israelachvili 2011). The pressure of the flow is then counteracted by
a superposition of an elastic normal stress and the disjoining pressure.

The adhesive contact of thin elastic membranes has received some theoretical attention. Now,
the pressure of the fluid is counteracted by a combination of a bending stress and an intermolecular
stress, so p = BV*h + T1,. Carlson & Mahadevan (2016) analyzed the contact dynamics of a thin
elastic sheet onto a surface due to an attractive van der Waals potential and showed that the gap
closes as b oc (t, — £)1/? (¢, is the time at which the gap fully closes) and the sheet has a self-similar
shape over a length scale o (¢, — #)!/? in the approach to contact (cf. Figure 7e). Other work has
analyzed the propagation of adhesive and peeling fronts in dynamic, directional adhesion of elastic
sheets due to van der Waals forces (Poulain et al. 2022).

We return once more to the nonconformal motion of particles near soft substrates, and this
time briefly discuss the role of intermolecular forces. Assuming small deformations, Urzay (2010)
analyzed the role of DLVO interactions on the motion of a sphere near a soft wall, predicting
both reversible and irreversible adhesion behaviors. More recently, Karan et al. (2020, 2021) stud-
ied the effect of these interactions on time-dependent normal motion in a similar configuration.
In addition to deformation due to flow, van der Waals pressure produces elastic deformations of
magnitude AR'/? /(Gd*/?) [note that d is clearance between the surfaces (see Section 2)], which de-
fines another dimensionless compliance AR'/? /(Gd"/*). The inclusion of electrostatic interactions
adds yet another compliance parameter, which depends sensitively on the separation relative to the
Debye screening length. Particle motion is now governed by a three-way interplay between elas-
tic, hydrodynamic, and intermolecular stresses, each of which influences (and is influenced by) the
geometry of the fluid film. This interplay can lead to far greater forces than would be expected
from a superposition of the individual contributions.

6. CONNECTIONS WITH OTHER DEFORMABLE SYSTEMS IN FLOW

The bulk of this review has focused on soft compact objects close to contact and the various
phenomena and interactions that may arise due to an interplay between fluid flow and elastic
deformation. Fluid-elastic interactions are important in many other types of systems that this
review does not have the room to discuss in detail. Here we point out some connections of the
present discussion with these systems.

6.1. Deformable Particles

Red blood cells flowing in narrow capillaries tend to preferentially flow near the centerline, estab-
lishing a depleted cell-free region near the walls of the capillary. Early work by Secomb et al.
(1986) modeled the pressure-driven motion of a vesicle in a tube and found, assuming con-
stant membrane tension, the thickness of the gap scales as (uV’/T)*?, analogous to the result of
Bretherton (1961) for bubbles in tubes. Savin et al. (2016) performed experiments with single red
blood cells flowing in narrow tubes to confirm this scaling law at small velocities but found a tran-
sition to a (uV/T)'3 power law at larger speeds. Asymptotic and boundary element analysis of
vesicles flowing in tubes, accounting for both bending and nonhomogeneous membrane tension
(Barakat & Shaqfeh 2018a,b), has found good agreement with experiments. In the last decade,
detailed simulations of blood flow have quantified the relationships between cell properties and
flow in capillaries (Kumar & Graham 2012, Freund 2014, Bicher et al. 2017). Several aspects of
the flow of vesicles, deformable cells, and capsules are discussed in the review by Barthes-Biesel
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(2016). Deformation of particles has also been implicated in the shear-thickening rheology of
dense suspensions. Many models have directly used the static contact theory of Hertz to esti-
mate deformation and have yielded excellent agreement with rheological measurements (see, e.g.,
Bonnecaze & Cloitre 2010, Seth et al. 2011, Bonnecaze et al. 2020).

6.2. Particles in Compliant Channels

There has also been growing interest in flows through compliant channels and conduits. The
recent review by Christov (2022) discusses flow through compliant channels, including nonlinear
pressure-flux relations, analytical approximations, and applications. Some of this work has focused
on particulate flows and has considered the motion of both undersized (T'6zeren & Skalak 1978,
Takagi & Balmforth 2011) and oversized objects (Lighthill 1968, Tani et al. 2017, Vurgaft et al.
2019, Rallabandi et al. 2021) in compliant tubes. The qualitative features are remarkably similar
to those observed for the sliding of objects near soft substrates discussed in Sections 2 and 4. The
pressure of the flow produces a local circumferential stretching of a compliant tube, which in turn
leads to radial hoop stress. Rather conveniently, this results in Winkler-like pressure-deformation
relations for thin-walled tubes and small deformations, plus additional contributions involving
bending and stretching of the tube walls.

6.3. Microswimming near Fluid and Elastic Interfaces

In Section 2 we discussed the motion of passive particles near compliant surfaces, driven either
by the application of a force or by a carrying flow. A smaller literature has focused the effect of
compliant boundaries on nearby active particles and microswimmers. Deformation of a nearby air-
water interface (resisted by interfacial tension) has been shown theoretically to produce a variety
of effects including a rectification of periodic motion (Trouilloud et al. 2008, Crowdy et al. 2011,
Dias & Powers 2013, Grosjean et al. 2018) and complex trajectories including attraction to the
interface for slender swimmers (Nambiar & Wettlaufer 2022). In the context of elastic boundaries,
Ledesma-Aguilar & Yeomans (2013) showed that the flexibility of confining boundaries enhances
the motility of pusher- and puller-type swimmers. The same qualitative conclusion was drawn
by Dalal et al. (2020), who performed boundary element simulations of ameboid swimming in a
compliant channel. Self-propelled objects differ from the passive particles discussed thus far in
that they typically experience no hydrodynamic force, so their leading hydrodynamic singularity
is a force dipole. These singularities have a different spatial structure than for externally forced
particle motion, and the flows they generate decay more rapidly with distance from the swimmer.
For this reason, the role of interfacial deformations is likely to be most relevant when the distance
to the surface is comparable to (or smaller than) the size of the swimmer.

6.4. Slender Flexible Filaments

There is a well-developed literature on the deformation of slender flexible filaments interacting
with fluid flow that we have largely left untouched (see the reviews by du Roure et al. 2019 and
Duprat 2022). It is common to analyze the deformation of these objects using elastica theory
and the fluid flow they generate using slender body hydrodynamics, which is a significant de-
parture from the theoretical ideas discussed here. A growing body of work has also applied the
hydrodynamics of flexible filaments to analyze motility and feeding mechanisms of microorgan-
isms, including a coupling to the binding kinetics of molecular motors, as well as mechanisms of
synchronization between multiple cilia/flagella through hydrodynamic, elastic, and molecular sig-
naling mechanisms. These topics present several experimental and theoretical challenges in fluid
and solid biomechanics at submicron scales but are beyond the focus of this review.
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7. CONCLUSIONS

Interactions between moving objects, deformable surfaces, and fluid flow are important in a
wide range of systems and are a rich source of problems, as we have hopefully conveyed. Such
interactions are often strongest when objects are in proximity with one another, producing flow
phenomena that are tightly coupled to elastic deformation. These effects may be exploited to
manipulate particle trajectories in channels, to probe the mechanical properties of soft materials
without direct solid-solid contact, or for grasping and sensing applications in robotics. Theoretical
and modeling approaches are relatively well-developed and have relied on EHL theory. When
the objects are in very close contact, features such as surface roughness and intermolecular forces
may have a significant effect on the kinematics and dynamics of the fluid-elastic interactions.

Recent experiments have demonstrated that EH lubrication effects are not restricted to macro-
scopic settings but are also important in microscale flows. There is a need to further develop
careful experiments and theory to probe and quantify these microscale EH interactions, both
in engineered flows and in biophysical systems. Simultaneous measurements of forces combined
with visualization of deformations would advance the field and are likely to spur new ideas. Under-
standing the effects of complex geometries on EH interactions, such as naturally occurring surface
asperities or engineered surface textures, is another promising direction for exploration. Equally,
quantifying the role of intermolecular forces, and the effects of using materials with nonlinear or
nonhomogeneous material properties, is bound to present new challenges and opportunities for
experiment, computation, and theory.

SUMMARY POINTS
1. Interactions between viscous fluid flow and soft structures arise in a wide range of
contexts including rheology, tribology, and biology.

2. Suspended objects moving near soft boundaries may experience additional forces or
torques and modified kinematics that depend on elastic properties.

3. An interplay of elastic, viscous, and intermolecular forces along with complex geomet-
rical features can significantly influence the dynamics of soft objects near contact.
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