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Abstract— In a typical Federated Learning paradigm, a
random subset of clients is selected at every round for training.
This randomly chosen subset often does not perform well when
evaluated in terms of fairness as the final model’s performance
often varies greatly between clients. This lack of a balanced and
fair performance can be detrimental in sensitive applications,
such as disease diagnosis in healthcare settings. Such issues may
be exacerbated by emerging performance-centric client sam-
pling procedures. This paper proposes a new equitable client
selection method, SUBTRUNC, that addresses the shortcomings
of random selection via a modification of the well-known facility
location problem through submodular function maximization.
This new approach entailing submodular functions incorporates
using the information of loss values of each client to ensure
a more balanced and thus more fair performance of the
final model. Additionally, strong theoretical guarantees on the
convergence of the resulting FL algorithm are established under
mild assumptions. The algorithm’s performance is evaluated on
heterogeneous scenarios with a clear improvement in fairness
when being observed under the scope of a client dissimilarity
metric.

I. INTRODUCTION

The Federated Learning (FL) paradigm involves the col-
laborative training of a centralized machine learning model
using edge devices, commonly referred to as clients. This
setting allows for models to be trained using localized data
from these devices without the need to transmit the data to a
centralized location. Updates to the model are accumulated
from these clients via periodic communication rounds and
aggregated at the central location resulting in an improved
machine learning model.

Federated Learning is of particular use within the health-
care sector as privacy regulations typically prevent infor-
mation from being shared. By treating healthcare sites as
clients, and sharing only model updates with a centralized
location, machine learning models that enhance patient care
can be trained and deployed. Traditionally, randomly se-
lecting a subset of clients has been the de facto approach
for this paradigm [1]. However, previous work has found
that oftentimes, this random selection approach does not
perform well in terms of convergence properties and fairness,
especially in heterogeneous settings where the data being
held by each client may not necessarily come from the
same distribution . This is especially evident in applications
characterized by a high degree of data heterogeneity, where
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the need for a balanced and fair machine learning model is
highly prioritized, such as disease diagnostics based on X-
ray images, where images can come from X-ray machines
manufactured by different suppliers. Because of this, client
selection remains an open challenge within the field [2],
[3]. Another motivating scenario relevant to control systems
is the case of networked sensing [4], [5]. In networks
comprising units, there is a common goal to devise an
inference method that reduces the total estimation error.
Nevertheless, in numerous scenarios, each unit must produce
a dependable estimate to avoid impeding decision-making
among other units in the network [6]. For instance, in au-
tonomous vehicle settings, a unit with substantial estimation
error might necessitate slowing down, thus influencing the
behavior of other units [7]. Hence, there is an urgent need to
minimize the collective mean-square estimation error across
the entire network while ensuring consistent performance
among individual units. Such considerations have further
received attention in shared communication systems [8].

To address this, differing from previous client selection
strategies, the idea of incorporating submodular set functions
as a viable strategy for solving the client selection problem
has been proposed [9]–[12]. A typical problem studied in
submodular optimization literature is the maximization of a
submodular function under a cardinality constraint [13]–[15].
In this problem, the task is to maximize the utility of the
selection made from a ground set N , while making sure that
the number of elements in the selection stays under a given
integer cardinality constraint value κ. This can be formalized
by the following problem [15]:

max
S⊆N

f(S) s.t. |S| ≤ κ. (1)

Where f is a submodular function, N is the ground set, and
κ is a positive integer.

A. Contributions

This paper focuses on exploring a more balanced and
thus fair selection criteria of clients by exploiting a mod-
ified facility location submodular function approach. To this
end, we present SUBTRUNC, a submodular maximization-
based client selection algorithm. By modifying the gradient
similarity approach employed in DIVFL [9] to incorporate
a truncated submodular function term, we obtain a modified
objective where this addition acts as a balance-promoting
regularization term, utilizing the loss value of each client in
addition to gradient similarity metrics. This allows for an
aggregated model that is more balanced in its performance
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across all clients. This proposed method not only ensures
that the most representative clients are chosen, but that they
can participate in a fair manner, which results in a model that
performs similarly, in terms of training and test performance,
across all clients.

Additionally, this new method enjoys strong theoretical
guarantees on its convergence properties under mild assump-
tions such as non-convexity. In particular, under smoothness,
and without assuming the well-known Bounded Client Dis-
similarity (BCD) assumption where one assumes that for
some G2 ∈ R,

∥∇fi(w)−∇f(w)∥2 ≤ G2 ∀w ∈ Rd, i ∈ N. (2)

Our work shows that by relaxing: (2), which in practice
is a hard-to-verify assumption [16]; the assumptions of a
uniformly bounded gradient; strong convexity required by
prior works; our proposed algorithm then enjoys strong
theoretical guarantees that hold on the expected performance
in nonconvex optimization problems. That is, our method
needs K = O(1/ϵ2) rounds of communication in order to
achieve E

[
∥∇f (wk∗) ∥2

]
≤ ϵ while doing away with the

Bounded Client Dissimilarity Assumption under a smooth
nonconvex scenario.

B. Related Works

Recently, by being able to model client selection through
a submodular maximization problem, [9] was able to obtain
better performance when compared with traditional client se-
lection strategies like random sampling. This work does so by
attempting to select a subset of clients whose gradient most
closely resembles that of the full client set, by modeling the
problem as a submodular maximization problem, which can
be solved with greedy methods. Although our work, similar
to [9], utilizes the concept of submodular maximization for
client selection, it differs from it in that we employ a facility
location submodular function modified by a truncated sub-
modular function, making use of the loss value of each client
for the truncation. This modification acts as a fairness-aware
term that promotes a balanced model performance across
all clients regardless of the distribution of the data these
clients may hold, resulting in models whose performance
does not drastically differ from client to client throughout
the training process. Additionally, our theoretical analysis of
the convergence of our method is significantly different from
[9] and utilizes significantly milder assumptions.

Both [10], [11] have also explored the use of submodular
maximization and their greedy solution as a means to solve
the client selection problem. In particular, these works seek
to create an optimal client schedule under computational
and time constraints. This approach differs from ours in that
instead of approximating the full client gradient by a subset
and greedily selecting them, the problem is modeled as a
Submodular-Cost Submodular-Knapsack problem where the
selection is constrained by computational and timing metrics,
whereas we look at our constraint through a truncated
approach, which can be likened to the notion of the presence

of a budget. Additionally, neither [10], [11] establish any
convergence rate for the resultant FL method.

In tackling data heterogeneity and client selection schemes
within Federated Learning, [12] also approaches the client
selection problem as a submodular maximization problem
that can be greedily solved under a knapsack constraint. This
work seeks to maximize statistical performance under system
performance constraints, like upload and communication
time. This differs from our work in that we leverage the
heterogeneity of the data in each client to create more
diverse solutions by exploiting the loss at each client’s dataset
while approximating the solution set via the client’s gradient.
Additionally, we do not further constrain the problem under
system heterogeneity metrics as [12].

II. PRELIMINARIES AND BACKGROUND

This paper considers the standard FL setting comprised
of a central server that acts as a model aggregator, n clients
that can participate in training, and a model parameterized by
w ∈ Rd. Each client i in this setting has data coming from a
distribution Di and an objective function fi(w) which is the
expected loss of the client concerning some loss function
l over drawn data from Di. The main objective is for the
central server to optimize the average loss f(w) over the
|N | clients:

f(w) :=
1

|N |
∑
i∈N

fi(w), (3)

fi(w) := Ex∼Di [l(x,w)]. (4)

When the data distributions across all clients are equal, the
setting is considered independent and identically distributed
(iid). If they differ across clients, then it is considered
heterogeneous (non-iid).

At any given round of a typical FL setting, a random
subset of clients is chosen to perform training. By carrying
out a series of local gradient descent updates in the client’s
data and communicating these to the central server, the final
model is constructed. This method of averaging out the
client’s updates is known as the FEDAVG algorithm [1].

However, client selection still remains an open challenge
within FL [2], [3]. Recently, utilizing submodular functions
for client selection by modeling the problem as a facility
location problem was introduced [9]. This strategy aims
to find a representative subset of clients whose aggregated
update models what the overall aggregated update would
look like if all clients participated in the training.

Our proposed method builds on the idea of leveraging
submodular functions to create more representative client
sets. It does so by finding a representative subset of clients
while ensuring fair client usage by allowing those clients
who may not be the most representative in a given round,
to have more opportunity to participate in training. This fair
client usage is introduced through a new regularization term
that leverages the client’s most recent loss value to design a
judicious truncated function and adds that to the original
modeling of the client selection problem via submodular
functions.
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Let us now introduce the concepts of marginal gain and
submodularity [14].

Definition 1 (Marginal gain). Given a set function f : 2N →
R and A,B ⊆ N , we denote f(B∪A)−f(B), the marginal
gain in f due to adding A to B, by ∆(A|B). When the set
A is a singleton, i.e., A = {a}, we drop the curly brackets
to adopt the short-hand notation ∆(a|B).

We usually think of f as assigning a utility score to each
subset A ⊆ N .

With Definition 1, we can now introduce the concept of
submodularity in set functions:

Definition 2 (Submodularity). A set function f : 2N → R
is submodular if for every A ⊆ B ⊆ N and e ∈ N \ B, it
holds that

∆(e|A) ≥ ∆(e|B). (5)

This definition of submodularity gives a clear intuition
about the nature of submodular functions, showcasing the
diminishing marginal gains property, which can be exploited
in the context of client selection [14].

Additionally, let us introduce monotone submodular func-
tions.

Definition 3 (Monotonicity). Let f(S) be a submodular
set function. If f(S) satisfies the following: ∀A ⊆ B ⊆
N, f(A) ≤ f(B). It is said that f is a monotone submodular
set function.

It is well known that if f(S) is a submodular function,
g(f(S)) is also submodular for any concave function g
[14]. This result leads to the following proposition which
establishes the monotonicity and submodularity of truncated
functions [17].

Proposition 1 (Truncation). Let g(S) be a monotone sub-
modular set function composed of a non-decreasing concave
function and let b ∈ R+. Then, g remains monotone sub-
modular under truncation, i.e.,

f(S) := min{g(S), b}, (6)

is a monotone submodular function.

We further have the following proposition [14].

Proposition 2 (Linear combination). Nonnegative linear
combinations of submodular functions preserve submodular-
ity. More formally, let g1, g2, ..., gn : 2N → R be submodular
set functions. Let α1, α2, ..., αn ≥ 0. Then, the positive linear
combination

f(S) :=
n∑

i=1

αigi(S), (7)

is also a submodular function.

Submodular functions and their maximization are very
useful in practice, with a wide range of applications [18]–
[20]. Due to their versatility and natural occurrence in
practical and well-known settings their optimization has

garnered interest in fields like optimization, control systems,
and machine learning [21]–[23].

Modeling client selection as a modified facility location
problem with a truncated submodular function regularization
serves as the basis for our proposed method for a more
balanced client selection.

III. SUBTRUNC: A FAIRNESS-AWARE CLIENT
SELECTION APPROACH

To motivate our formulation of a modified facility location
objective via a truncated submodular function, we first follow
the outline of DivFL [9], which follows the logic found in
[24]. Suppose there is a mapping σ : N → S, in which N
is the groundset of elements and S is the constructed set
and where the gradient information ∇fi(w) from client i is
approximated by the gradient information from a selected
client σ(j) ∈ S. For j ∈ S, Cj := {i ∈ N |σ(i) = j} is the
set approximated by client j and γj := |Cj | results in the
following formulation:

min
S⊆N
∥
∑
i∈N

∇fi(w)−
∑
j∈S

γj∇fj(w)∥ ≤∑
i∈N

min
j∈S
∥∇fi(w)−∇fj(w)∥ := Ḡ(S).

(8)

That is,
∑

j∈S γj∇fj(w) can be viewed as the approxima-
tion of the global gradient

∑
i∈N ∇fi(w). Therefore, the left-

hand side of (8) can be interpreted as the approximation error,
and the right-hand side of (8) provides an upper bound on the
approximation error. Thus, to minimize the approximation
error, DIVFL aims to select a set of clients S that minimizes
Ḡ(S) subject to a cardinality constraint on S. Upon defining
G(S) := Ḡ(∅)− Ḡ(S) this task can be written as

max
S

G(S) s.t. |S| ≤ κ, (9)

where κ is a target bound on the number of participating
clients in each communication round. Minimizing Ḡ(S) or
equivalently maximizing G(S) is the equivalent of maximiz-
ing the well-known facility location monotone submodular
function [14]. However, this problem under a cardinality
constraint, is NP-hard in general which requires efficient
approximation algorithms to provide a near-optimal solution.
The greedy algorithm and its randomized variants are among
the canonical methods for such optimization problems [25]–
[27].

Finding the most representative set at any given round may
not always provide a model that performs in a balanced and
similar fashion across all clients thereby leading to potential
unfair behaviours in FL-based model training. As a result of
this observation, we propose a fairness regularization term
utilizing the truncation of a judicious submodular function:

H(S) := λmin(b, F (S)), (10)

with
F (S) :=

∑
i∈S

ϕ(fi(w)), (11)
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where fi(w) is the expected loss of client i with respect
to some loss function l as defined in (4), λ ≥ 0 and
b ∈ R+ are input parameters aiming to explore the inherent
trade-off between performance and fairness; ϕ (·) can be any
monotone nondecreasing function with a bounded Lipschitz
constant L. Tying client loss to this regularization term
enhances a diversified client selection process. Changes in
b allow for further client participation, especially for those
clients with minimal participation, thus ensuring a more
fair total client participation, where each client can have an
opportunity to contribute to the final model. When a function
with L < 1 is used, F (S) effectively becomes an attenuation
term, suppressing the difference between the client losses.
Whereas, when L > 1, F (S) enhances this difference. For
the purpose of this work, we use ϕ(x) = ln(1 + x), which
has a Lipschitz constant L < 1. However, the choice of ϕ
could be a potential avenue of further research as finding
a ϕ that judiciously tunes this attenuation or enhancement
effect could be of interest. Here, we assume without loss
of generality that the clients’ loss functions are nonnegative.
The combination of this fairness-aware term with the original
objective results in the following optimization for client
selection:

max
S⊆N

W (S) := G(S) +H(S) s.t. |S| ≤ κ. (12)

A desirable property of the proposed formulation is the
preservation of monotonicity and submodularity, which is
indeed the case, as demonstrated next.

Proposition 3. The set function W (S) in (12) is monotone
and submodular.

Proof. Note that F (S) is a modular function and hence
monotone and submodular [14]. By Proposition 1, H(S)
is therefore a monotone submodular function. Finally, from
Proposition 2, it can be seen that any linear combination of
submodular functions with the same ground set remains sub-
modular. Since both G(S) and H(S) in (10) are monotone
submodular, their nonnegative linear combination in (12) is
also monotone submodular. ■

The fairness-aware term as defined in (10) is the combi-
nation of tuneable parameters in the form of both λ and b,
where λ represents a weighting on the fairness term and b
acts as a truncation parameter. From this formulation, we
can see that if we set λ = 0, then we obtain the original
DIVFL formulation [9]. On the other hand, increasing λ puts
more weight on the proposed regularization term, thereby
prioritizing fairness over performance. Additionally, varying
b, as stated previously, will allow training participation to
those clients who have not participated in previous rounds,
or whose participation has been minimal when compared to
other clients. In particular, consider a scenario where b is very
large. Then, the minimum in the definition of H(S) will typi-
cally equate to F (S) :=

∑
i∈S ϕ(fi(w)) which is maximized

by selecting the worst-performing clients, according to their
local loss functions, who are suffering the most as a result
of learning a collaborative model. On the other hand, if b is

Algorithm 1 SUBTRUNC

Input: Truncation and regularization parameters b, λ ∈ R,
communication rounds K, local steps E, participating
clients κ, initial weight vector w0, learning rate η

Output: wk, weights for trained model
1: Server initializes w0

2: for k = 1, . . . ,K do
3: Subset Si of size κ is selected by the server via the
4: stochastic variant of the naïve greedy algorithm,
5: following the formulation of (12).
6: for client i ∈ Si do
7: w

(i)
k,0 ← wk

8: for τ = 1, . . . , E do
9: Select random batch from client i:

10: B(i)k,τ compute stochastic gradient f̃i at w(i)
k,τ

11: over B(i)k,τ

12: w
(i)
k,τ+1 ← w

(i)
k,τ − η∇f̃i(w(i)

k,τ ;B
(i)
k,τ )

13: end for
14: w

(i)
k ← wk − w

(i)
k,E

15: end for
16: wk+1 ← wk − 1

κ

∑
i∈Si

w
(i)
k

17: end for
18: return wK ▷ Final model weights

very small, then the minimum in the definition of H(S) will
typically equate to b which is independent of S, and this
effectively makes the client selection independent of local
performance and can be thought of as a global performance-
centric formulation.

Finding a solution for the best client that can maximize
the utility score of (12) can be done with the naïve greedy
algorithm, due to the submodular nature of (12) as given by
Proposition 3 [25].

A naïve greedy approach starts at round i with an empty
set, Si ← ∅, and adds the element e ∈ N \Si which provides
the highest marginal gain, ∆(e|Si).

Si+1 ← Si ∪ {argmax
e∈N\Si

(∆(e|Si))}. (13)

Nonetheless, if the cardinality of the ground set |N | is too
large, searching through this space for the desired elements
may prove to be too expensive. Because of this, stochastic
variants of the naïve greedy algorithm can be employed
[26]–[29] to effectively reduce this search cost while still
maintaining high-confidence in the solution provided. This
is done by randomly sampling a smaller subset R of size r
and searching through this reduced space. That is:

Si+1 ← Si ∪ {argmax
e∈R\Si

(∆(e|Si))}. (14)

Applying the selection strategy utilizing (12), and using the
FEDAVG algorithm as the core method for aggregating client
model updates results in our proposed algorithm SUBTRUNC
which is summarized as Algorithm 1.
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TABLE I: Comparison of Client Selection Methods on non-iid MNIST and CIFAR10.

MNIST CIFAR10

Method Training Loss Testing Accuracy [%] Client Dissimilarity [%] Training Loss Testing Accuracy [%] Client Dissimilarity [%]

DIVFL 0.16± 0.02 82.16± 0.91 8.89± 0.59 0.88± 0.03 35.40± 1.28 12.62± 0.95
SUBTRUNC 0.21± 0.01 83.72± 0.81 7.96± 0.62 0.89± 0.03 35.53± 1.33 12.46± 0.94
RANDOM 0.18± 0.02 82.99± 0.99 9.16± 0.18 0.92± 0.01 32.55± 0.94 14.42± 0.18

IV. THEORETICAL CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties
of the proposed algorithm under standard assumptions in
nonconvex FL. Our analysis utilizes more relaxed assump-
tions compared to [9], complementing our proposed fairness-
promoting formulation.

A. Assumptions and Related Concepts

The definitions and assumptions used to analyze the
performance of the algorithm are listed below. These are
standard and ubiquitous in the analysis of training algorithms
for nonconvex machine learning and FL problems [16], [30]–
[33].

Definition 4 (L-smoothness). A function f : Ω→ R is con-
sidered to be L-smooth if ∀w,w′ ∈ Ω, ∥∇f(w)−∇f(w′)| ≤
L∥w−w′∥. Additionally, if f can be differentiated twice, then
∀w,w′ ∈ Ω, f(w′) ≤ f(w)+⟨∇f(w), w′−w⟩+L

2 ∥w
′−w∥2.

Assumption 1 (L-smoothness). For all x, we assume l(x,w)
to be L-smooth with respect to w. Then, each fi(w) defined
in (4) where i ∈ [n] is L-smooth, and so is f(w) defined in
(3).

Assumption 2 (Nonnegativity). Each fi(w) is non-negative,
therefore, f∗

i := minw fi(w) ≥ 0.

The nonnegativity assumption holds without loss of gen-
erality as any function bounded from below can be shifted
to satisfy this assumption. Furthermore, almost all loss
functions of interest in FL are nonnegative.

Assumption 3 (Bounded bias). Let τ be the local update
steps, with τ ∈ {0, . . . , E − 1}, K be the communication
rounds with k ∈ {0, ...,K − 1}, û

(i)
k,τ be the stochastic

gradient of client i at communication round k and local
update step τ and let bk,τ be the approximation error for
the true gradient at communication round k and local update
step τ . We assume that the gradient of the subset constructed
by our objective function (12) is the gradient of the global
loss function plus an approximation error, bk,τ which we
refer to as bias. That is:

1

κ

∑
i∈Sk

û
(i)
k,τ = ûk,τ + bk,τ . (15)

We assume that this bias, bk,τ is bounded by: bk,τ ≤ γ.

Given that we are selecting a subset of total clients, this
assumption states that through this selection, we are able to
approximate the true gradient up to a certain approximation
error bk,τ . This assumption is also used in prior work [9],
[24]. Similar to [9], we assume that the gradient of the

subset constructed by our objective function approximates
the full gradient of the overall set, with the addition of an
approximation error which we model as bias.

B. Main Theoretical Results

Theorem 1 states the convergence properties of the pro-
posed SUBTRUNC method summarized as Algorithm 1. The
proof details are available in the extended manuscript [34].

Theorem 1. Let Assumptions 1, 2, and 3 hold. Set ηk =
1

LE

√
1
K ∀ k ∈ {0, ...,K − 1}. Let P be a distribu-

tion such that P (k) = (1+ζ)(K−1−k)∑K−1

k′=0
(1+ζ)(K−1−k′) , where ζ :=

η2L2E2
(

9ηLE
4

)
. Let k∗ ∼ P. Then, for K ≥ 9:

E
[
∥∇f (wk∗) ∥2

]
≤ 12Lf (w0)√

K
+(

2

EnK
+

3

K
+

4

En
√
K

)
σ2 +

(
4 +

4√
K

)
γ.

(16)

That is, there exists a learning rate and a nonuniform
distribution on the iterates such that if the output is generated
according to that distribution, the expected performance
satisfies:

E
[
∥∇f (wk∗) ∥2

]
= O

(
1√
K

+
σ2

En
√
K

+ γ

)
. (17)

Theorem 1 establishes a bound on the so-called ap-
proximate first-order stationary point of the global model
parameters, i.e., the condition that E

[
∥f (wk∗) ∥2

]
≤ ϵ. In

particular, we can see that the convergence error consists
of three terms: the first term quantifies the impact of the
initialization. The second term captures the impact of the
statistical noise in the local stochastic gradients utilized by
the clients. Finally, the last term captures the impact of bias
that arises from using the proposed client selection strategy
(12), where the bias is defined in Assumption 3. Theorem 1,
hence, indicates that as long as K = Ω(1/ϵ2), it holds that
E
[
∥∇f (wk∗) ∥2

]
≤ O(ϵ + γ). Thus, if the bias parameter

satisfies γ = O(ϵ), Algorithm 1 (SUBTRUNC) can identify
an ϵ-accurate first-order stationary solution.

Unlike prior work, we analyze the proposed method with-
out making the Bounded Client Dissimilarity assumption,
by leveraging the smoothness of the clients’ loss functions
and a nonuniform sampling technique to output a solution.
Additionally, compared to [9] which assumes the restrictive
assumption of strong convexity, our analysis applies to
general nonconvex problems that arise frequently in practical
and large-scale application of FL in the big data setting.
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TABLE II: Effects of a varying λ under a non-iid setting within MNIST and CIFAR10.

MNIST CIFAR10

λ-Value Testing Accuracy [%] Client Dissimilarity [%] Testing Accuracy [%] Client Dissimilarity [%]

0.01 82.18± 0.99 8.90± 0.63 35.40± 1.28 12.62± 0.95
0.10 83.13± 1.04 8.38± 0.56 35.47± 1.33 12.58± 0.92
0.25 83.60± 0.78 8.18± 0.55 35.47± 1.29 12.47± 0.96
0.50 83.76± 0.42 8.14± 0.34 35.53± 1.33 12.46± 0.94
0.75 83.94± 0.33 8.07± 0.41 35.55± 1.32 12.46± 1.08
0.95 83.72± 0.81 7.96± 0.62 35.50± 1.33 12.45± 1.05

Finally, note that adopting a distribution over the iterates
to output a global model is a standard approach to state
the theoretical convergence results for FL and optimization
algorithms [16], [31], [35]. In practice, however, the latest
global model is used for inference.

V. EXPERIMENTAL RESULTS

The performance of SUBTRUNC is evaluated on the
MNIST dataset of handwritten digits as well as on the
CIFAR10 dataset, both under a non-iid data distribution. We
benchmark the performance of SUBTRUNC to DIVFL as well
as the random sampling of clients without replacement which
is a simple but standard benchmark for client sampling. The
experiments are simulated on a pool of |N | = 100 clients, but
in order to avoid scanning through the whole set, we employ
a stochastic greedy search with a subset R of r = 10 clients
with κ = 10, on the LeNet architecture.

Both datasets are partitioned in such a way that each client
had 3 equally partitioned distinct classes. Unless otherwise
stated, the truncation factor is set at a value of b = 1.10,
which seemed to be the best value of b that resulted in
the lowest Client Dissimilarity scores for these particular
datasets.

Our evaluation utilizes three metrics: training loss, test ac-
curacy, and client dissimilarity. The first aims to characterize
the convergence property of the proposed method while the
second aims to characterize its generalization power. The
last metric aims to characterize how balanced or fair the
global model is. Client dissimilarity is calculated by taking
the difference of the final model’s performance on the client’s
test dataset, across all clients. Measuring model dissimilarity
this way allows us to better express the divergence in model
performance across different clients.

A. Results on Non-IID MNIST & CIFAR10

Under both non-iid scenarios, SUBTRUNC outperforms the
baselines by achieving a lower overall client dissimilarity
score, indicating that the final model’s performance is more
consistent across clients. Additionally SUBTRUNC converges
at a similar rate to the baseline methods as evidenced by the
training loss while maintaining a comparable performance
under testing accuracy. These results can be seen in Table I,
where the bolded entries represent the best performance.

The dissimilarity evolution of our method demonstrates
that our algorithm SUBTRUNC is effective in ensuring a more
balanced and thus fair performance across all clients even

under the presence of high data heterogeneity throughout
the course of training.

B. Tuning Lambda

Seeking to better understand the effect of λ on our
fairness-aware term, we simulate results under the same non-
iid conditions and setting as described at the beginning of
Section V, while varying λ.

It can be seen from Table II that as the values for λ get
closer to zero, i.e. as the method approaches DIVFL, the
client dissimilarity score degrades, whereas as λ increases,
the client dissimilarity improves, while still maintaining a
comparable testing accuracy across the gamut of λ values.
This highlights the important trade-off between performance-
centric models versus balanced models.

VI. CONCLUSION

In this paper, we proposed the inclusion of a fairness-aware
term to the submodular maximization approach of solving
the client selection problem within the FL setting resulting
in our algorithm, SUBTRUNC. Our proposed algorithm is
able to obtain models that perform in a more balanced
fashion across clients and highlights the trade-off between
accuracy and model uniformity by judiciously tuning both b,
the truncation parameter, and λ, the weighting of the fairness-
aware term. Our method’s main benefit of reduced client
dissimilarity lends itself to practical applications in sectors
such as healthcare and control systems where a balanced
and accurate performance across highly non-iid clients is
required to perform in a consistent manner regardless of
client data. Additionally, we showed theoretically that our
method needs K = O(1/ϵ2) rounds of communication to
achieve E

[
∥f (wk∗) ∥2

]
≤ ϵ and it does so under signif-

icantly milder assumptions than prior work. Through our
experimental results, we showed that our algorithm results in
more balanced models when compared to both the random
selection strategy and DIVFL under the scope of a client
dissimilarity metric. The addition of this fairness-aware term
makes our algorithm an easy-to-implement solution that
can enjoy a more balanced and thus fair model without
compromising on performance in federated settings.

As part of future work, it would be valuable to consider
extensions such as incorporating robustness considerations
[36], [37], providing high probability guarantees [38], and
dealing with the possibility of imperfect gradient availability
[39], [40].
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