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• A Voronoi cell-based method for accurate density estimation in un-
bounded human groups.

• The method is applicable to pedestrian groups irrespective of their size.

• Precise individual-level density measurements, useful for effective crowd
management.

• Provides a stable, parameter-independent, bias-free density estimation.
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Abstract

For pedestrians moving without spatial constraints, extensive research has
been devoted to develop methods of density estimation. In this paper we
present a new approach based on Voronoi cells, offering a means to estimate
density for individuals in small, unbounded pedestrian groups. A thorough
evaluation of existing methods, encompassing both Lagrangian and Eule-
rian approaches employed in similar contexts, reveals notable limitations.
Specifically, these methods turn out to be ill-defined for realistic density es-
timation along a pedestrian’s trajectory, exhibiting systematic biases and
fluctuations that depend on the choice of parameters. There is thus a need
for a parameter-independent method to eliminate this bias. We propose a
modification of the widely used Voronoi-cell based density estimate to ac-
commodate pedestrian groups, irrespective of their size. The advantages of
this modified Voronoi method are that it is an instantaneous method that
requires only knowledge of the pedestrians’ positions at a give time, does not
depend on the choice of parameter values, gives us a realistic estimate of den-
sity in an individual’s neighborhood, and has appropriate physical meaning
for both small and large human crowds in a wide variety of situations. We
conclude with general remarks about the meaning of density measurements
for small groups of pedestrians.
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voronoi construction

1. Introduction

Human crowd motion studies [1, 2, 3, 4, 5, 6, 7, 8] focus on understand-
ing and modeling [9, 10] the behavior of individuals within large groups as
they move through and interact with their environment. These studies are
crucial for designing safer public spaces, optimizing evacuation procedures,
and improving crowd management during events [11, 12, 13, 14, 15]. Hu-
man crowd motion is an example of a complex system because it involves
numerous interacting agents (people) whose collective behavior cannot be
easily predicted from the actions of individuals alone. Factors such as col-
lective decision-making [16, 17, 18], social influences [19, 20, 21, 22], spa-
tial constraints [23, 24], and environmental conditions [2, 25] lead to emer-
gent phenomena, such as congestion [26, 27, 28, 29, 30, 31, 32], lane forma-
tion [33, 34, 35, 36, 37], and phase transitions between different flow states
[38, 39, 40, 41, 42]. This complexity arises from the nonlinear interactions
and adaptive behaviors exhibited by individuals, making crowd motion a rich
field for exploring the principles of complex systems.

For efficient crowd management, a crucial aspect is the con-
struction of a fundamental diagram (FD) [43, 44, 45, 46, 47, 48].
In the context of traffic flow, an FD basically depicts the relation-
ship between traffic velocity and traffic density. This relationship
could help to study the capacity of a space where the traffic moves,
e.g., a road for vehicles, sidewalks for pedestrians. An FD could
serve as a basic element of comprehensive models that describe the
traffic operation on a network, thereby finding significant applica-
tions in the context of human traffic management and crowd safety
[49, 50]. The FD could also be used as a valuable tool for assessing
the capacity of pedestrian flow simulations to accurately predict
real-world scenarios.

In this paper we will focus on the construction of an effective
method for density estimation, based on the fact that density is
most widely used in FDs.

Indeed, in the context of self-organizing behaviour of human
crowd motion, methods of density estimation are an important
topic of research [51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. The existing
literature consists of a number of methods, although the ‘best’
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method is unresolved and may depend on the crowd situation.
Most of the research has focused on situations in which the moving
crowd is constrained within a physical boundary, such as a corridor
or sidewalk [61, 62]. For such cases, density estimation using a
Voronoi tesselation [53, 63, 55, 34, 64] and a grid-based measure
called the XT method [65, 66, 67] have been reported to work well.
However, there is no well defined method of density estimation for
groups in an unbounded space.

A further difficulty arises when the fundamental diagram, rather than
being plotted at a global or meso scale [51], is related to individual quantities
[68]. In one dimension, a proxy for density can be the inverse of the spatial
headway with the predecessor. However, in two dimensions, finding a robust
estimate of the density along the trajectory of a pedestrian is significantly
more complex. Estimating local density in two-dimensional spaces requires
capturing the spatial interactions among pedestrians accurately. The existing
methods of density estimation often fall short in scenarios where pedestrian
groups move in unbounded spaces or when the group size is relatively small.
Our research introduces a density estimation method tailored to these specific
conditions.

In [64] the authors developed a Voronoi cell based density estimation
method for unbounded pedestrian groups in which the Voronoi cells are re-
stricted to the angular sectors on the convex hull of the whole set of pedes-
trians. However, that method was demonstrated only for pedestrian groups
larger than ∼ 40 individuals. In our current paper we point out some typi-
cal cases that could arise when the pedestrian group is much smaller (∼ 5).
Our main contribution is a technique by which we can modify the Voronoi
method to adjust the angular corrections for such small groups, and obtain a
realistic estimate of the density field inside the group.With our added modi-
fication, the computational algorithm becomes more general and applicable
to pedestrian groups of any size, even when the number of pedestrians is as
small as 5.

In practical terms, this means that our method can dynamically adapt
to the spatial distribution and movement patterns of pedestrians, offering a
more realistic and bias-free estimate of local density. This is particularly im-
portant in unbounded environments, where traditional methods may struggle
to account for the lack of spatial constraints. Our approach ensures that the
density felt by an individual pedestrian is accurately captured, providing
useful insights into crowd dynamics and interactions at a microscopic scale.
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Furthermore, our method has the potential to enhance the construction of
fundamental diagrams by providing precise density measurements at the in-
dividual level. This allows for a more detailed analysis of pedestrian behavior
and flow characteristics, facilitating the development of more effective crowd
management strategies and safety measures. By addressing the limitations
of existing density estimation techniques, our proposed method represents
a significant advancement in the study of human crowd motion and con-
tributes to a deeper understanding of the complexities inherent in pedestrian
dynamics.

The rest of the paper is organized as follows: in the next section we briefly
describe the data set that has been used in this research to demonstrate our
proposed computational algorithm. Then we briefly describe the existing
methods of density estimation in the literature, and our proposal for adapting
the Voronoi method for small groups without spatial boundaries. In the
Results and Discussion section, we present an extensive evaluation of the
earlier methods, which highlights their limitations and drawbacks. Then
we show how our proposed method outperforms the previous methods in
providing a bias-free realistic estimate of density in the neighborhood of an
individual in small groups. We conclude with a general discussion on the
meaning of defining a density at such small scales.

2. Materials and Methods

2.1. Experimental details

For this research, we consider the typical situation of crossing flows of
pedestrians without any spatial constraints, where two groups of people walk
across an open area from predefined initial positions such that their paths
cross each other at specified values of the crossing angle. The data were
obtained by experiments [69, 70] using live participants on the campus of
University of Rennes, France. This data is available in a public repository
https://doi.org/10.5281/zenodo.5718430. Two different sets of volun-
teered participants (36 on Day 1, 38 on Day 2) were roughly divided into two
groups (18 or 19 per group) and were instructed to reach the other side of a
sport hall. Initial positions were prescribed so that the groups had to cross
each other with seven different crossing angles (0◦ to 180◦, at 30◦ intervals).
During each trial we recorded the head trajectory of each pedestrian as a
time series at a frequency of 120 Hz using a motion capture system based on
infrared cameras (VICON). The data obtained were then low-pass filtered
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to decrease the oscillations due to the gait movement of the walking pedes-
trians. Precisely, we used a forward-backward 4th-order butterworth filter
to these unwanted oscillations with a cut-off frequency of 0.5 Hz. In Figure
1 we show the traces of all the pedestrians for a typical trial using filtered
trajectories.
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Figure 1: Displacements (1.25 sec) of all pedestrians in a typical trial with an expected
crossing angle of 60◦. The displacements are shown at three different time points, viz.
2.3 sec, 6.5 sec and 10.8 sec, from the beginning of the trial. The dots represent the
pedestrians and the tails behind each dot are the distances travelled by the pedestrian in
previous 1.25 sec.

2.2. Methods of density estimation

A large number of methods have been developed to measure the density
field of pedestrian flows [53, 55]. In order to determine the fundamental di-
agram at an individual scale, one has to associate a density with a specific
pedestrian location. In this subsection we briefly present three such meth-
ods which already exist in the literature in the context of pedestrian flows,
followed by the Voronoi method [64] that we have modified to be applicable
for pedestrian groups irrespective of their size. In the next section we shall
evaluate the effectiveness of these methods.

2.2.1. Grid-based Classical Method

The classical method to estimate the density of pedestrians follows an
Eulerian approach. In this method we divide the entire tracking region into
a grid of square cells. If dg is the length of one side of a square cell, the
classical density ρg is given by

ρg =
n

d2g
(1)
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where n is the number of pedestrians that are located inside the square cell.
The density estimated for each of the square regions is associated with all
the pedestrians that are within the square. Note that sometimes, a single
cell is used to measure density in a region of interest, such as in the crossing
area of crossing flows [71, 72, 73].

In Figure 2 the density ρg fields of the pedestrians for a typical case in
our data set has been shown for two typical values of dg. Clearly the density

(a) dg = 0.8m (b) dg = 2.5m

Figure 2: Density ρg fields as estimated using the grid-based classical method for two
typical values of dg , viz. (a) dg = 0.8m and (b) dg = 2.5s. Density values decrease with
the increase in dg . For this demonstration we use a typical data from our crossing flows
data set. The two groups of people, denoted by black circles and triangles, attempt to
cross each other at 90◦. The group denoted by circles move along the x-axis from negative
to the positive direction, whereas the group denoted by triangles move along the y-axis
from negative to positive direction.

fields show variation with variation in dg. Precisely, as dg increases, density
ρg values decreases for a fixed number n of pedestrians, as could be
seen from Equation (1). In Figure 8(a) we show the time-sequence of
classical density ρg for a typical pedestrian for several values of the cell size.
For smaller cell sizes, the density values keep switching between only a few
levels - which signifies the discrete nature of ρg.

2.2.2. XT Method

The XT method was originally proposed by Edie [65] in the context of
traffic stream measurements, where the total distance travelled and the total
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time spent by the pedestrian in a space-time region is taken into account.
Edie’s definition was extended [67] to be applicable to a three-dimensional
space for multi-directional pedestrian motion. Later, this method was further
modified [55], which we have used in this paper to compute the pedestrian
density.

A square-shaped cell c of length dx is considered at whose center a pedes-
trian p is located at time t, as shown in Figure 3. With the progression of

Figure 3: Schematic diagram showing the XT method to calculate the pedestrian density
ρxt. The density calculated is associated to the pedestrian pt , whose trajectory is shown
in blue. At time t this pedestrian is located at the centre of the square shaped cell c of
length dx. Other pedestrians qt, whose trajectories are shown in red and green also reside
within this cell at time t and therefore are considered for density evaluations.

time, this cell travels with p, yielding the local density along the trajectory
of p. This pedestrian-centered frame of reference contrasts with the classical
method described previously, which has a space-centered frame of reference.
There could be other pedestrians as well within this cell at time t. The den-
sity ρxt(c, t) estimated for this cell at time t is associated with the pedestrian
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p and is given by

ρxt(c, t) =

∑
q(T

q
end − T q

begin)

dx
2 × T

(2)

where the summation is performed over all the pedestrians q placed inside
the cell c at time t. T q

begin denotes either the time when the pedestrian q
enters the cell c or the lower time boundary t− 0.5T , whichever is minimum
and T q

end denotes the minimum of the time when the pedestrian q exits the
cell c and the upper time boundary t + 0.5T . d2x is the area of the cell c.
The timescale T restricts the time window of the pedestrians within which
they are accounted for during the computation. In Figure 4 the density ρXT

fields of the pedestrians for two sets of typical values of dx and T have been
shown, using a typical data from our crossing flows data set.

(a) dx = 1.5m, T = 0.5s (b) dx = 2m, T = 1s

Figure 4: Density ρxt fields as estimated using the XT method for two sets of typical
values of dx and T , viz. (a) dx = 1.5m, T = 0.5s and (b) dx = 2m, T = 1s. Density
values decrease with the increase in dx and T . The data used here is the same one that
has been used in Figure 2.

As mentioned earlier, the square shaped cell at time t (say) is
fixed with a pedestrian p located at its center. Other pedestrians
(denoted by q), throughout their trajectories could enter and exit
this cell. Ideally it is possible that the same pedestrian enters and
exits this cell multiple times, but it is highly unlikely for our case
where there are not many sudden changes in trajectories in the
crossing zone, or no direction reversals of pedestrian motions. In
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the unlikely event that this is true, XT method considers the time
spent within this cell for each time q enters and exits. For example,
if a pedestrian q enters the cell at time T1, exits at T2, again enters
at T3 and exits at T4, and enters for the last instance at time T5

and finally exits at time T6, then the numerator of Eq. (2) would
be a sum of total time spent by this pedestrian into this cell, i.e.,
(T2 − T1) + (T4 − T3) + (T6 − T5).

2.2.3. Kernel Method

To estimate the density of pedestrians in a two-dimensional unbounded
space we also use a non-parametric method based on the kernel density esti-
mator. The term ‘non-parametric’ refers to the fact that the method
does not make any statistical assumptions about the distribution of
underlying data, for example, a normal distribution or any other
particular shape of distribution. This method basically evaluates the
probability density function of the pedestrian positions, from which we cal-
culate the density of pedestrians. Following a Lagrangian approach, this
method gives an estimate of density even at the spatial positions where there
are no data points.

For X1,X2,X3, . . . ,XN to be the collection of two-dimensional coordi-
nates for N pedestrians, the density function ρk estimated by the kernel
density method at the spatial position X is given by

ρhk (X) =
N∑
i=1

Kh(X−Xi), (3)

where h is the bandwidth which dictates the smoothness of the density mea-
surement. Among the several choices of the kernel function K, we use the
bi-variate Gaussian distribution function given by,

Kh(X) =
1

2π
|h|−

1
2 e−

1
2
XTh−1X (4)

In two dimensions h is supposed to be a 2 × 2 matrix that would contain
a vector of bandwidths for the two dimensions to control the amount and
orientation of smoothness. However, following the R adaptation of two di-
mensional kernel density estimator we use a scalar value as the bandwidth
h that was taken to apply to both directions. From the estimated function
ρk(X), we finally estimate the density at each of the pedestrian positions and
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associate the density with the corresponding pedestrian. In Figure 5 the
density ρk fields of the pedestrians for a typical case in our data set has been
shown for two typical values of bandwidth h.

(a) h = 1.5m (b) h = 4m

Figure 5: Density ρk fields as estimated using the kernel method for two typical values
of the bandwidth, viz. (a) h = 1.5m and (b) h = 4m. Density values decrease with the
increase in h. The data used here is the same one that has been used in Figures 2 and 4.

2.2.4. Voronoi Method

The Voronoi cell of a pedestrian P is the area A of the surface within
which all the points are closer to P than to any other pedestrian P ′. The
density estimate of a pedestrian is then

ρv =
1

A
. (5)

If we directly use this definition to construct the Voronoi diagram of the
pedestrians at every instant of the trial, we notice that pedestrians on the
edge of the groups may have a large and possibly infinite Voronoi cell leading
to a density near zero. While this indicates that these pedestrians are not
constrained by neighbors at least on one side, it may be more appropriate to
associate with them the density on the group side.

If the group was confined in a space limited by physical boundaries, the
latter could be used to bound the Voronoi cells. In the absence of such
boundaries, a possibility is to bound Voronoi cells with an arbitrary limit.
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For example a restriction to 2m2 was used in [53], but for a wide variety of
real-life situations there is no justified unique choice of this restriction. Here
we prefer a method that depends on the density on the group side.

To do this, a first correction proposed in [64] is to restrict the Voronoi cells
to the angular sectors in which the Voronoi cell lies inside the convex hull
encompassing the whole set of pedestrians. In Figure 6(a) we have demon-
strated a typical case for a randomly generated pedestrian group where the
angular sectors, denoted by α, for each Voronoi-cell are shown. A correction
in the density accounting for the suppressed angular sectors 2π − α must be
performed as

ρ̃v =
α

2π

1

A
(6)

where α is the angular sector on which the Voronoi cell is defined. This
takes care of the angular adjustments for the agents located ‘on’ the convex
hull and the agents whose Voronoi cell extend beyond the convex hull. The
density values shown in Figure 6(a) are estimated by using Eq. (6).

However, for very small samples as the ones in our data set, there are some
specific cases that have to be taken into account. For example, a Voronoi
cell can extend on multiple sides of the group, requiring to suppress multiple
sectors. One such example for a typical data set from our experiments is
illustrated in Figure . The Voronoi cell corresponding to one of the pedestri-
ans (P2 at 0.8 sec) subtends 2 angular sectors with the convex hull. For such
cases, Equation (6) can not be applied to find the density.

For even smaller group of pedestrians, the number of such multiple sectors
could increase. In Figure 6(b) we show a randomly generated pedestrian
group of 5 where the Voronoi cell of a pedestrian clipped by the convex
hull extends along 3 directions. Another typical case for smaller pedestrian
groups could be a pedestrian lying on the convex hull itself, but its Voronoi
cell extends beyond the convex hull in the other direction, as shown in Figure
6(c). For both the cases shown in Figures 6(b) and 6(c), Eq. (6) becomes
invalid for density estimation.

For these cases in which multiple angular sectors must be suppressed, we
propose the following modification of Equation (6): as

ρ̃v =

∑
i αi

2π

1

A
(7)

where i(> 1) is the number of problematic angular sectors that are clipped,
as described above. The density values shown in Figures. 6(b) and 6(c)
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ά

ά
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( c) A t y pi c al c a s e wit h 5 p e d e stri a n s, w h er e p e d e stri a n s P ′ a n d P ′′ li e o n t h e c o n v e x
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Fi g ur e 7: M o di fi e d V or o n oi c ell s f or a tri al wit h a 9 0 ◦ cr o s si n g a n gl e at t hr e e di ff er e nt
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D ott e d li n e s m ar k t h e V or o n oi c ell b o u n d ari e s. T h e e ntir e vi d e o of t hi s e x p eri m e nt al tri al
wit h m o di fi e d V or o n oi c ell s i s a v ail a bl e a s a s u p pl e m e nt ar y m at eri al ( S 1 Vi d e o). T h e ti m e-
s e q u e n c e of d e n sit y e sti m ati o n s f or p e d e stri a n s d e n ot e d b y P 1 ( bi g g er bl a c k d ot) a n d P 2

( bi g g er bl a c k tri a n gl e) ar e s h o w n i n Fi g ur e 1 0. P e d e stri a n P 2 at ti m e 0. 8 s e c i s a n e x a m pl e
w h o s e V o r o n oi c ell e xt e n d s i n 2 dir e cti o n s t o t h e c o n v e x h ull, r e q uiri n g s u p pr e s si o n of t w o
a n g ul ar s e ct or s. T h e e ntir e vi d e o of t hi s tri al al o n g wit h t h e m o di fi e d V or o n oi c ell s i s
pr o vi d e d a s a s u p pl e m e nt al o nli n e m at eri al ( S 1 Vi d e o).

w er e esti m at e d b y a p pl yi n g E q u ati o n ( 7). N ot a bl y, w h e n t h er e ar e m ulti pl e
a n g ul ar s e ct ors t o c o nsi d er, a p pli c ati o n of E q u ati o n ( 6) w o ul d n ot b e p os-
si bl e at all t o esti m at e d e nsit y, a n d E q u ati o n ( 7) h as t o b e i n cl u d e d i n t h e
c o m p ut ati o n al al g orit h m.

Alt h o u g h t h e d at a s et t h at w e ar e pri m aril y w or ki n g wit h h as 3 6 − 3 8
p e d estri a ns, d uri n g t h e ti m e e v ol uti o n of t h e t w o gr o u ps cr ossi n g e a c h ot h er,
or i n a n y ot h er p e d estri a n sit u ati o n i n g e n er al, s u c h p e c uli ar c as es o c c ur a n d
o ur c o m p ut ati o n al str at e g y p ert ai ns t o t h e m. T h e c o d e us e d f or t h e V or o n oi
m et h o d wit h a n g ul ar m o di fi c ati o ns is als o a v ail a bl e i n t h e p u bli c r e p osit or y
h t t p s : / / d o i . o r g / 1 0 . 5 2 8 1 / z e n o d o . 8 1 3 8 3 2 7 , al o n g wit h t h e cr ossi n g fl o ws
d at a s et h t t p s : / / d o i . o r g / 1 0 . 5 2 8 1 / z e n o d o . 5 7 1 8 4 3 0 .

3. R e s ul t s a n d Di s c u s si o n

I n t h e first t hr e e m et h o ds d es cri b e d i n t h e pr e vi o us s e cti o n, t h e p ar a m e-
t ers d g , d x , or h d et er mi n e t h e t y pi c al s p ati al l e n gt h o n w hi c h t h e pr es e n c e of
a p e d estri a n h as a n e ff e ct o n t h e d e nsit y w h e n m e as uri n g t h e d e nsit y fi el d. It
als o d et er mi n es t h e d e nsit y v al u e at t h e p e d estri a n l o c ati o n w h e n d e nsit y is
m e as ur e d al o n g a tr aj e ct or y. I n Fi g ur e 8 w e s h o w h o w t h e d e nsit y al o n g t h e
tr aj e ct or y of a gi v e n p e d estri a n m e as ur e d b y t h e 3 af or e m e nti o n e d m et h o ds
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varies as the spatial parameters dg, dx, or h decrease. We shall see in this
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Figure 8: Temporal variations of density as a function of time, along the trajectory pedes-
trian P1 in Figure 7. Density is determined by (a) the classical grid-based method, (b)
the XT-method, (c) the Gaussian kernel method. Time sequences are shown for several
values of the spatial scale dg, dx, or h and in (b), of the time window T .

section that, while some methods estimate the pedestrian density without
any difficulty, others completely fail once they are used to determine density
along a trajectory.

We first illustrate how this failure occurs using a classical grid-based
method. As we are interested in situations with small number of pedes-
trians, dg must be small enough to capture the immediate vicinity of a given
pedestrian. In the limit of small cells, at most one pedestrian can be con-
tained in the cell. The corresponding density is ρmax ≡ 1/d2g . If we plot
the whole density field, we get typically a figure as in Figure 9(a) with some
empty cells and some cells with density ρmax. The density field is not smooth,
but using a spatial average, we get a reasonable density estimate - provided
the area on which we average is homogeneous. For stationary flows, it is also
possible to average in time even for a rather small measurement area [63]
and to get average density values with rather low fluctuations.

Now instead, if we decide to measure the density along the trajectory of a
given pedestrian, the density in the cell where this pedestrian is located will
always be ρmax - a value which can be arbitrarily high. Any kind of averaging
will always give ρmax (red line in Figure 9(b)), which is very far from the real
average density value found previously (green line in Figure 9(b)). Actually
density values are completely biased by the fact that we have selected cells
conditionally, along the pedestrian trajectory.

Another variant could be to measure the density along the trajectory
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Figure 9: Sketch representing the variation in density estimated by the grid-based classical
method (a) when the whole density field is plotted, (b) for a time evolution in a fixed cell
(black triangles) or along a pedestrian trajectory (red circles). Solid line in red and green
indicate the average values.

of a pedestrian without counting the pedestrian himself. But then again
we encounter a bias: for small cells, the density along the trajectory would
always be zero, far from the real density value. This grid-based method could
be used to estimate the local density around the pedestrian trajectory only if
the cell size could be chosen large compared to the inter-pedestrian distance,
but small compared to density gradients. This is obviously not possible for
the small pedestrian groups, similar to the ones involved in our experiment.

A similar failure for density measurements along trajectories can be ob-
served for the next two methods as well, viz. XT method and Kernel method.
The systematic bias and the fluctuations around this biased value have been
studied in detail for one-dimensional systems in [58].

So to summarise for the first three methods, the effect of decreasing the
spatial parameters dg, dx, or h is two-fold: fluctuations increase, and the
average value increases towards arbitrarily high values. While the increase of
fluctuations could possibly be reduced by more averaging, the bias introduced
in the average value cannot be avoided and makes these methods ill-defined
for a measurement along a pedestrian trajectory.

On the other hand, there are some methods that do not have the problem
of bias along pedestrian trajectories as we discussed so far. These are the
methods which, by definition, scan the surroundings of a pedestrian on a
scale such that the nearest neighbors’ positions can be taken into account.
Among the various methods having this property, we here focus on Voronoi
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method - a method which is very popular due precisely to its good behavior
in a large range of situations [53, 63, 55, 34, 64], in spite of the fact that
some fluctuations are introduced by the piece-wise constant nature of the
density field. In the previous section we have described how this method can
be adapted to account for small system sizes. In Figure 10 the variations
of ρv (density obtained by original Voronoi method, Equation (5)) and ρ̃v
(considering modified Voronoi cells clipped within the convex hull with sector
suppression, Equation (7)) as a function of time have been plotted for 2
typical pedestrians.
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Figure 10: Time sequences of the density ρv (considering original Voronoi method) and
ρ̃v (considering modified Voronoi cells clipped within the convex hull) for two typical
pedestrians, (a) P1 and (b) P2 , denoted by the bigger black circle and triangle respectively
in Figure 7.

It is worth mentioning here that density ρv, as defined by Equation (5),
is apparently meaningless for agents on the edge of the groups, unless there
are physical boundaries or at least imaginary boundary, such as the convex
hull. The reason for this is quite obvious, which is that an infinitely large
Voronoi cell of these agents would make the density value equal to zero, which
however is not physical. So in the literature of pedestrian density estimation,
whenever the Voronoi cell based method is employed, some bounding line has
been used, even though arbitrary, to limit the infinitely large Voronoi cells
near the boundary [52]. Otherwise, one is restricted to consider only the
agents who are well within the bulk, i.e., whose Voronoi cells have no effect
whether clipped or not.

From Figure 10(a) we can see that for pedestrian P1 in Figure 7, the den-
sity ρv by original Voronoi method remains zero, which which does not ac-
count for the fact that P1 is surrounded by pedestrians on one side. Whereas,
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the density ρ̃v obtained by clipping the Voronoi cells by convex hull and in-
cluding the angular sector corrections, produces a realistic estimate of density
in the pedestrian’s neighborhood.

On the other hand, for pedestrian P2 in Figure 7 we get an interesting
observation. The density estimate, as could be seen in Figure 10(b), remains
the same for ρv and ρ̃v until about 5.25 sec. After this, ρv suddenly drops
to zero, but ρ̃v continues to provide a realistic estimate of density. This can
be understood from Figure 7. We see that for pedestrian P2, the Voronoi
cell remains well within the bulk at time 4.5 sec. As time progresses, this
pedestrian moves upwards and remains located on the convex hull for the
rest of the trial, naturally subtending an infinite Voronoi cell. It is only by
clipping the cell by the convex hull and including the angular corrections
that we obtain a physically possible density value. Hence the improvement
in density estimation is brought about by ρ̃v.

It is to be noted that the surface integral of Voronoi-based den-
sity field ρV (say, generically) gives the number of pedestrians. If
we consider the surface A on which the integral is taken to be the
union of Voronoi cells C, i.e., A ≡ UC, then∫ A

ρV dx =

∫ UC
ρV dx =

∑
C

1

AC
× AC = Ncells = Npeds, (8)

where AC denotes the area of Voronoi cells. If a pedestrian is lo-
cated on the convex hull, only part of their Voronoi cell is consid-
ered. This is a boundary effect, arising from the fact that we define
density only within the group’s interior, meaning pedestrians on
the convex hull contribute only partially. If we were to extend the
definition of density outside the convex hull, infinite cells would
result in zero density, making the integral over an infinite cell un-
defined. Therefore, our method is primarily focused on measuring
the density field within the group.

4. Conclusion and perspectives

In this paper we have presented a new computational algorithm based on
Voronoi cells that makes it possible to estimate the density for individuals
in the case of small groups moving without a spatial boundary. We begin by
presenting an evaluation of the existing methods employed for density esti-
mation in similar contexts, which highlights the limitations and drawbacks
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of these approaches when calculating the density along the trajectory of a
chosen pedestrian. The fact that these methods are parameter dependent
makes them ill-defined for realistic, stable estimation of density in an indi-
vidual’s neighborhood. The density obtained using these methods contains
systematic bias and fluctuations depending on the chosen parameter value.
We then consider a Voronoi cell based method of density estimation [64] and
propose a modification (Figure 6) for case of small pedestrian groups to ob-
tain an unbiased, stable, parameter-independent estimate of the density. The
resulting technique can be applied to small or large crowds, with or without
physical boundaries.

In the literature on pedestrian density estimation, the XT method is
often considered a rigorous method for constructing fundamental diagrams.
However, calculating the pedestrian density using the XT method has several
limitations. To begin with, an instantaneous measurement of density is not
possible in the XT method. We see that the value of density at time t,
actually depends not only on the current state of the system, but also on
its state in the past and in the future. Specifically, the trajectory of the
pedestrian under consideration, and those of its neighbors have to be taken
into account within the time interval T , not just their positions at time t.
This is a problem for highly non-stationary dynamics as in the crossing events
considered here.

By contrast, in the Voronoi cell based density estimation, only the po-
sitions of pedestrians at time t are needed to calculate the instantaneous
density of the neighborhood. The availability of data with longer trajecto-
ries is not essential for the Voronoi method to be useful.

Another drawback of the XT method for density estimation is its depen-
dence on the parameters dx and T . In our paper, we have demonstrated that
density measurements using the XT method fluctuate significantly depend-
ing on the chosen parameters. There are no universally accepted values of
dx and T that should be used for density estimations. On the other hand,
the advantages that we get by using Voronoi cell based density estimation is
that it does not depend on the choice of parameter values, gives us a stable
and realistic estimate of density in an individual’s neighborhood, and has
physical meaning for a wide variety of human crowd situations.

Our proposed method for estimation of pedestrian density could facilitate
the construction of fundamental diagrams (FD) from the point of view of
individual pedestrians along their trajectories. Thanks to our method, one
is not restricted to considering the collective density of the whole group to
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study the fundamental relation between density and velocity of the flow.
This microscopic approach could potentially lead to the creation of more
realistic models of crowd simulation, followed by more efficient methods of
crowd management.

In our next endeavor we intend to study FDs for various conditions of the
present data set. Several other methods can also allow to measure density
along a trajectory, for example, using the harmonic sum of distances from a
pedestrian to neighbors within the pedestrian’s field of view [55], or consid-
ering the region where the convex hulls of the two crossing groups have an
intersection, etc.

More generally, one has to keep in mind that at small scales a density
cannot be defined in a strict way, as, for example, for a fluid. Indeed, a proper
definition of density requires that there is a scale separation between, on the
one hand, the individual scale and the dimension of the area in which density
is computed by a proper averaging and, on the other hand, the scale on which
density gradients occur or on which boundary effects become important. This
is rarely the case for pedestrians and even less so for the small pedestrian
groups that we consider here.

As explained in Section 1, while classical fundamental diagrams
are plotted as a function of density, the notion of density could be
enlarged in this context to an observable that would be relevant
for the navigation of pedestrians. In this paper we focused on lo-
cal density, however other definitions could be considered, closer
to a perceived density, following [53]. Indeed, a pedestrian could
experience the environment as empty even though there is one or
more pedestrians present, simply due to having a large open space
ahead. By contrast, an operator observing video footage might see
that the room is not physically empty. This perspective is essential
when analyzing density fluctuations over time, and can have sig-
nificant implications for flow analysis and density measurements,
particularly in the context of crowd dynamics. The perceived den-
sity certainly depends on neighboring pedestrians, but could de-
pend more specifically on their relative positions (rear or front),
on possible visual occlusions [74], on interpersonal distances [75],
etc. We believe that more knowledge is needed about perceived
density and how it affects pedestrian behavior, for example based
on the visual field [76, 77].

One must thus keep in mind that the choice of the local density
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plotted in the fundamental diagram is actually a hypothesis on
the driving variable determining pedestrian dynamics. We shall
explore various choices for this observable in our future research.
For example, the free surface (or unoccupied area) could be a good
candidate to replace density, by analogy with viscous fluids, for
which free volume turned out to be more relevant than density for
the dynamics.

One may also wonder, for pedestrians who are on the convex
hull of a small group, how they react to the anisotropic density
field around them. The Voronoi construction we detailed in this
paper would give an appropriate tool to tackle this question. It
would be especially interesting to couple it to the orientation of
the pedestrians themselves.

Supplemental online material

S1 Video. Video of the modified Voronoi cells for all the pedestrians in-
volved in the experimental trial of crossing flows shown in Figure 7, where
we have shown snapshots of this video for 3 typical instances.
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