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Abstract—Next-Generation Radio Access Network (Next-G
RAN) will leverage a novel architecture that accelerates the tran-
sition from inflexible networks to agile and adaptable networks.
In this paper, we introduce a novel Deep Reinforcement Learning-
based Resource Allocation (ReLLAx) framework to deal with the
joint optimization of UE association and power allocation in
Next-G RAN systems. The ReLAx problem has been formulated
to maximize the network Energy Efficiency (EE) under the
constraints of Quality of Service (QoS), fronthaul link, functional
split configuration, and transmit power budget. The optimization
problem is cast as non-convex and NP-complete. A multi-task
Deep Deterministic Policy Gradient (DDPG) method is proposed
to solve the complexity, in which two actors are trained to gen-
erate UE association and power allocation, respectively. To speed
up the training process and reduce computational resources, we
introduce soft multi-task learning as a constraint during training
so that one model would not drift too far away from the other one.
Our real-time experiments on a fully containerized Next-G RAN
testbed show the effect of functional splits on CPU utilization
and system latency. In addition, simulation results show that
the proposed resource allocation solution outperforms competing
traditional algorithms, such as standard DDPG and Weighted
Minimum Mean Square Error (WMMSE).

Index Terms—Next-G RAN, resource allocation, deep rein-
forcement learning, OpenAirInterface, virtualization.

I. INTRODUCTION

Motivation. In the near future, mobile data traffic is ex-
pected to continue to increase due to the increasing popu-
larity of smart portable devices and the growing demand for
emerging technologies, such as the Internet of Things (IoT),
video streaming, and Augmented/Virtual Reality (AR/VR).
According to a recent report from Cisco, by 2023, the total
number of Internet users is expected to reach 5.3 billion, with
an average 5G connection speed of 575 Mbps [1]. The increase
in traffic patterns for Beyond 5G (B5G) services imposes
significant challenges in meeting specific requirements such
as Quality of Service (QoS), channel conditions, and service
latency with existing mobile network architectures. Radio and
computational resources can be seen as a real bottleneck
in fulfilling the growing demands of B5G. On the other
hand, adding more radio and computing resources at network
sites could significantly increase the energy consumption of
future mobile communication systems, particularly affecting
the Operating Cost (OPEX) of network operators. Considering
the limited communication radio resources and prohibitive
signaling energy costs, it is essential to study novel practical

RAN systems in which resource allocation algorithms can be
applied effectively and efficiently.

Recently, Next Generation Radio Access Networks (Next-
G RAN) has been presented as an emerging framework to
enable the virtualization and softwarization technologies [2],
[3]. The key feature of the Next-G RAN design is the
flexible centralization of the core signal processing functions,
performed by the digital baseband (PHY/MAC) processing
in the Central Unit (CU) while retaining radio access and
minimal communication functionalities at cell sites in the
Distributed Units (DUs). Cooperation between the two main
units, CU and DU, in an efficient way will open a path to
enhance the overall network’s significant metrics, including
architecture planning, network operation, resource utilization,
and back/mid/front-haul management. Consequently, various
B5G wireless services, such as massive Machine-Type Com-
munication (mMTC), enhanced Mobile Broadband (eMBB),
and ultra-Reliable Low-Latency Communication (uRLLC),
can be dynamically deployed and managed to satisfy the
emerging demands of B5G applications.

Our Approach. In Reinforcement Learning (RL), the policy
is trained while collecting data, making it a suitable choice
to solve real-time decision-making problems, especially in
dynamic resource allocation [4], [S]. As a result, the system
model and prior data requirements in RL are less stringent.
Furthermore, neural networks in DRL can enable the model
to learn complex objective functions and handle large state
and action spaces, such as multi-user systems [6] and robot
controllers [7], [8]. A widely recognized approach in DRL is
the Deep Deterministic Policy Gradient (DDPG) [9]. Using
DDPG as a controller for optimizing variables is a promising
direction, as DDPG is effective in generating continuous
actions based on the state of the system. However, in this
problem, two variables need to be optimized: the UE asso-
ciation, which is discrete, and the power allocation, which is
continuous. Joint optimization of these two variables can result
in a significant increase in the number of parameters required
and a degradation of performance due to the presence of
discrete and continuous action spaces. Therefore, we propose
a twin-actor approach in which two actors are employed, each
dedicated to one variable, and a centralized critic is utilized
to jointly evaluate the performance of the actors.

In addition, we argue that the association and UE power
allocation are closely related, implying some level of overlap
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in the parameter spaces of the actors. Hence, in our pro-
posed algorithm, we introduce a multi-task learning technique,
DDPG, to significantly reduce the number of parameters and
enhance the training efficiency. Compared to standard con-
vex optimization methods, the DRL-based resource allocation
algorithm can make real-time decisions based on the current
state of the network. This type of intelligent decision-making is
crucial for many B5G services, particularly those that require
real-time, low-latency capabilities. In this paper, we present the
system model for the Next-G system and formulate our ReLAx
resource allocation algorithm, with the goal of maximizing
overall Energy Efficiency (EE) in the Next-G RAN while
satisfying constraints such as QoS requirements, transmission
power budget, and limited fronthaul capacity.

Related Work. With the main target of integrating the full
radio stack platforms and opening the way for virtual-cloud-
based RAN ecosystems, the architecture of Next-G RAN
will become intelligent and agile. However, how to properly
manage various radio-computation resources in Next-G RANs
has become a key challenge and research focus in the wireless
communication field. For example, energy allocation has been
studied in several works such as [10]. Fang et al. [11] have
considered user fairness in a Multi-Carrier Non-Orthogonal
Multiple Access (MC-NOMA) system. The joint problem
of user assignment and power allocation has been included
in [12], [13]. In addition, the authors in [14] have proposed a
resource allocation solution that treats the problem as a bin-
packing problem, with the aim of minimizing the number of
active Virtual Machines (VMs) in the cloud center.

Meanwhile, DRL has emerged as a new research trend in
B5G applications and has been demonstrated as a feasible
tool to address dynamic resource allocation problems in cloud-
based RAN systems [15]-[17]. In [15], the authors have pro-
posed a Deep Q Network (DQN) method for power allocation
in wireless networks. The model was initially trained in a
simulator using the deep Q learning rule and then deployed
in the real environment for fine-tuning. However, while the
DQN performed well in discrete action spaces, its adoption
in continuous power models may result in undesirable per-
formance. In [16], the authors study a resource allocation
method by designing a new DNN-based optimization approach
solution consisting of a series of alternating direction methods
of multiplier iterative schemes that assign the Channel State
Information (CSI) values as the learned weights. Furthermore,
the authors in [17] present a three-step deep reinforcement
learning-based scheme that solves the joint sub-channel as-
signment and power allocation problem in an uplink multi-user
NOMA system to maximize the network EE.

Although DNN-based methods have led to significant im-
provements in solving resource management in cloud-based
wireless systems, these studies often overlook the challenges
of the system and depend heavily on simplified assumptions
in modeling the radio-computation resources of CUs and DUs.
Although these studies address resource allocation problems
from various individual perspectives, they do not take into
account the dynamic nature of these problems in the Next-G
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RAN scenario, where functional splits are supported. In this
paper, we present a DRL-based resource allocation solution
for Next-G systems in realistic conditions, taking into con-
sideration the required QoS and the limitations of fronthaul
capacity and transmitted power. In addition, we validate our
model through real-time experiments conducted on a fully
containerized Next-G testbed.
The main contributions of this work are listed below.

o We investigate resource allocation for Next-G RAN and
formulate it as a Mixed-Integer Non-Linear Program-
ming (MINLP) problem, considering constraints such as
QoS, fronthaul capacity, functional splitting, and DU’s
power budget. The problem optimizes the UE association
and the transmit power of the DU to maximize network
EE, defined as the ratio of data rate to power consumption
in different functional splitting scenarios.

o To address the complexity of the optimization problem
formulated, we develop a deep learning-based framework
named ReLLAx, which improves upon the DDPG method.
ReLAx can dynamically optimize the UE association and
transmitted power in downlink Next-G systems.

« We set up a real-time Next-G testbed using the OpenAir-
Interface (OAI) platform [18] and container virtualization,
allowing wireless connections between the CU, DU and
COTS UE. Experiments show that CU-DU CPU utiliza-
tion depends on network parameters such as PRB and
functional split options.

o Numerical simulations reveal that the proposed ReLAx
framework can optimize network EE and outperform
competing algorithms such as DDPG and Weighted Min-
imum Mean Square Error (WMMSE).

Paper Organization. In Sect. II, we present the system
model. In Sect. III, the EE maximization problem is formu-
lated, followed by the presentation of our proposed machine
learning solution. The experimental results and numerical
simulations are discussed in Sect. IV. Finally, the paper is
concluded in Sect. V.

II. SYSTEM MODEL

This section presents the network description, functional
split model, wireless link model, and network power model.
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Fig. 2. Split options as specified by 3GPP [19].

A. Network Description

We consider a Next Generation Node B (gNB) to consist
of multiple CUs connected to multiple DUs via a high-speed
optical fiber fronthaul interface. The logical diagram of the
Next-G downlink transmission, which comprises L DUs and U
UEs, is shown in Fig. 1. The sets of DUs and UEs are denoted
as £L = {1,2,...,L} and U = {1,2,...,U}, respectively.
Orthogonal Frequency Division Multiple Access (OFDMA)
techniques have been adopted to provide communication ser-
vices in the downlink scenario. As part of the Next-G RAN,
3GPP has proposed eight different functional split options
between the DU and the CU, as shown in Fig. 2, which are
defined in 3GPP TR 38.801. Therefore, we assume that the
functional split technique has been integrated into the gNB
while formulating the essential modes of the Next-G system.
In general, there are significant benefits to enabling flexible,
functional split orchestration in the Next-G RAN. Some of
the benefits include cost reduction, traffic load balancing, and
minimizing latency and fronthaul costs. It is worth noting
that in a real-world Next-G testbed implementation, the CU
and DU can be deployed using virtualization techniques. For
example, on the OAI platform, each CU can be realized by a
container image and paired with one DU container image. To
connect our model with a real experimental Next-G testbed,
we adopt the DU-to-CU model.

B. Functional Split Model.

Placing all RAN functions in the CU pool can lead to max-
imizing energy savings; however, fully adopting a centralized
RAN architecture is not always feasible. For example, physical
layer processes such as FFT, parallel/serial, and cyclic prefixes
(as shown in Fig. 2) have strict latency requirements and
generate high traffic on the limited back/mid-haul interface
located at the CU. As a result, these processes are usually
implemented in the DU (e.g., the 7.2 functional split option
in O-RAN [20]). High PHY layer and MAC/RLC processes
that require high performance also have strict constraints,
such as in LTE where the round-trip latency tolerance of the
MAC layer using synchronous HARQ technique is limited to
3ms [21]. However, in the 5G MAC layer using the fully
asynchronous HARQ technique, strict latency requirements are
no longer an issue, and the round-trip time mainly depends on
the type of service being provided. In light of the above, it can
be concluded that various RAN processes can be supported by
different 5G services, such as uRLLC, eMBB, and mMTC.
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TABLE 1
EXPERIMENTAL SPLIT OPTIONS AND CPU LOAD FOR NEXT-G RAN.

Splits | Split type DU ¢ CU ?fé‘ctﬁon S;g
Zj1 No split, all at CU < f1,f2, f3 f1 63%
Zi2 FT split fT< f2,73 T2 21%
Zi3 TF 4.5 split fi.l2 < 3 I3 15%
Zja No split, all at DU | f1, fa, f3 <>

Therefore, we examine four practical CU/DU configurations
based on the functional split selections outlined in Tab. I. In
our model, we denote the set of Next-G RAN functions and
the set of functional split options as F and Z, respectively.
A functional split z;,,Vj € L£,s € {1,2,3,4}, is performed
at gNB j if all RAN functions above and including f, are
executed in the CU, while all RAN functions below f are
executed at the DU. Hence, in the functional split z;, € Z,
the CPU utilization at the CU (w;) is equal to the sum of
the processing load of all RAN functions above and including
fs. That is, ws = 3.~ 0;, where g; represents the CPU re-
quirement at the functional split s. Based on the experimental
results in Sect. IV-A, we have generated Tab. I to depict the
CPU processing load for downlink traffic. Furthermore, the
CU to DU functional split indicator, z;s, is defined such that
zjs = 1 indicates that gNB j operates in functional split s,
while z;; = 0 implies otherwise.

C. Wireless Link Model

We assume that each UE can establish a wireless connection
with the DU through uplink and downlink cellular links. In
addition, UE is considered to be static, and cell channels
are assumed to be constant during each decision-making and
resource allocation algorithm procedure. In this paper, we
adopt the downlink OFDMA system as the scheme for the
proposed Next-G RAN model. Consequently, the operational
frequency band B is divided into N equal sub-bands, each
with a size of W = B/N [Hz|. To maintain the orthogonality
property in our model, we assume that each UE is assigned
to one sub-band for downlink transmission. Thus, each DU
can serve a maximum of N UEs simultaneously. Furthermore,
we take into account both large-scale and small-scale fading.
We assume that large-scale fading is consistent across all sub-
bands, while small-scale fading is frequency-sensitive and flat.
Let g7, represent the channel gain from DU j to UE u on
sub-band n. It is calculated as follows,
|2,VjeLneNucl,

“» (1
where w; ,, denotes the large-scale fading, including path loss
and shadowing, and A7, represents the small-scale Rayleigh
fading. To model small-scale fading, we utilize Jake’s model
[22] and model it as a first-order complex Gaussian-Markov

process. The update rule is as follows,

b}, = phf, +1—=p%}, VjieLne Nuel, (2)

where p Jo(2m f4T) represents the correlation between
consecutive fading blocks, with Jy being the zero-th order
Bessel function of the first kind and f; being the maximum
Doppler frequency. T is the time interval between successive
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channel gain estimations. €7, represents the channel innov:
tion process and is modeled as a circularly symmetric comple
Gaussian distribution. A high value of p indicates a substanti
change in the channel since the last estimation, which can t
due to either a long time interval between estimations or a hig
maximum Doppler frequency. Let N' = {1,..., N} be the s
of available sub-bands at each DU. We denote the sub-chann
association between UE u and sub-channel n of DU j as,

¥ (1

Let p}, denote the transmission power from DU j ¢
sub-band n to UE w. The Signal-to-Interference-plus-Noit
Ratio (SINR) from DU j on sub-band n to UE w is define.
by,

L,
0,

n UE w associated with DU j on sub-channel 7.

€T.
Ju otherwise,

“)

= Pl

o ZkEKﬁ\{j} Z’T‘GU 'Z.ergrhgr + 02 ’
where o2 is the variance of Additive White Gaussian Noise
(AWGN). Then, the maximum achievable data rate of UE u
using the sub-channel n in DU j can be calculated as,

R}, (X,P) =Wlog, (L +ju),Yj € Lin € N u €U, (5)
where vju, = Y, cn Vi, is the total SINR, X = {27 [|j €
Ln € N,uelU}adP = {p?u|jeﬁnef\/'uel/l}
are to represent the UE assignment and power allocation,
respectively. Hence, the sum-rate of the network R can be

written as,
ZJEL ZnE/\/’ ZuEM Ju )

In Next-G RAN, the processing of baseband signal between
the CU and DU is transmitted through a fronthaul interface,
standardized as FI interface in 3GPP [2]. This kind of
fronthaul transmission requires a high-speed data rate—10x
higher than the original baseband signal data rate [23]. For
this reason, the fronthaul link is considered the bottleneck
of cloud-based RANs. To that end, 3GPP proposed a novel
functional splitting technique to flexibly manage and control
data rate transmission between the CUs and the DUs in Next-G
RAN. Specifically, the functional split can significantly reduce
the transmission cost by shifting part of the baseband signal
processing operations from the CU to DUs [24]. In this paper,
we define the fronthaul capacity constraint by,

x? 2
ZuEZ/l ZnE/\/ ZbEZ ju JS

where C; represents the fronthaul capacity of DU j. Let C;-’“”'
be considered as the fronthaul capacity of DU j. Hence, C;
can be expressed as C; = C’]’-”‘”” /€, where € is the ratio of the
bandwidth that is demanded from the baseband transmission
between CUs and DUs. Hence, the value of C; is mainly
based on fronthaul transmission technologies (e.g., optical
fiber technology).

(©)

(X P)<Cy, (D)
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Fig. 3. The framework and workflow of ReLAx. Solid lines indicate data flow;
red dashed lines and blue dash-dotted lines represent forward and backward
gradient propagation.

D. Computational Power Model

The power consumption for the Next-G RAN downlink is
modeled to be two main parts, the power consumption of the
CU and the power consumption of the DU.

CU-power consumption. In general, CUs can usually be
implemented virtually by virtual machines or containers. In
this way, the capacities of the CU containers can be dynami-
cally modified to deal with variable traffic loads and channel
states. Thus, the power consumption of the CUs depends on
computing the workload size while processing the baseband
signals from DUs [25]. Hence, we can model the CU power
computation to handle the baseband traffic from DU j as,

PV = PE 4 qy Zueu ZneN ngz 2 zjsws, Vi € L, (8)

where ch is the static power of CU j corresponding container
of DU j. «; is the container power consumption factor
determined by the architecture, traffic size, functional splitting
mode, and hardware equipment of the CU pool.

DU-power consumption. Similarly, we can assume that
DU power consumption consists of two main parts: static
and dynamic power consumption. Static power consumption
is needed to run the DU container, while dynamic power
consumption is usually proportional to DU transmitted power,
traffic workload, and network configurations. Hence, the power
consumption of DU j can be modeled as,

PD+57Z EuanNZSEZ JuZ7S w1 — ws)p]z;)v
where PJD models the static power consumption of DU j,
and §; is the power factor of DU j characterizing the link
between the dynamic power consumption and the traffic load.
The value of f3; is determined based on the architecture of
the DU, traffic load, and the type of functional split mode.
Hence, the power factor parameters 3; and «; are detailed
in Sect. IV-A. Based on the above considerations, the total
network power consumption model of the Next-G RAN can

be expressed as P(X, Z,P) = P]-CU + PPUY.
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III. ENERGY EFFICIENCY MAXIMISATION

In this section, we formulate the EE maximization problem,
followed by the proposed solution.

A. Problem Formulation and Relaxation

To effectively utilize radio resources such as the radio
spectrum and transmit power, and optimize the computation
capacity, including fronthaul capacity and CU-DU computa-
tion capacity while ensuring the QoS requirements of UEs,
we define the network EE of the total system as a more
comprehensive objective for downlink Next-G systems. Thus,

the network EE of Next-G RAN is defined as,
(ep(X, Z,P) = R"(X,P)/P(X,Z,P)  (10)

The adaptive EE function in (10) quantitatively describes the
impact of the network’s achievable data rate and total power
consumption on system performance. The main resource allo-
cation problem can be formulated as,

M X, Z
X,Za,)SP CEE( ) 77D)

S.t. ZUEU Z’I’IEN ZSGZ IjuzjbR]u S ijv.] € ‘Cv

(11a)

(11b)
Zueu Zn,ej\/p?u S PPV EeL, (11¢)
Zjec ZneN R}, > Ry™Vj € L, (11d)
Zueux?ungl,vjEﬁ,nEN, (11e)
Dz =LVIEL, (11D
at, ={0,1},Vj € LiucU,neN, (11g)

The constraints in (11) can be described as follows; the
fronthaul capacity is modeled as the maximum tolerated data
rate that can be transmitted on the fronthaul link, as previ-
ously reported in literature such as in [26], [27]. Therefore,
constraint (11b) limits the fronthaul capacity of DU j to
the maximum fronthaul capacity of the system, C,; con-
straint (11c) sets the transmission power budget for each DU;
constraint (11d) ensures that each UE’s data rate requirement
exceeds its minimum data rate, Rg‘i“; constraint (11e) restricts
each UE to a single sub-band per allocation; constraint (11f)
requires each gNB j to use a single functional split option
per iteration; and constraint (11g) enforces binary resource
allocation in Next-G RAN.

The objective function in problem (11) is expressed in
fractional form and is non-convex. Furthermore, the presence
of binary variables X and Z makes the optimization problem
in (11) a MINLP problem, which is known to be NP-hard and
challenging to solve [28]. Similar to [29], the primary problem

in (11) is reformulated as,
T —
/_\I{\/Izgl);) R (X,P)—yP(X,Z,P) (12a)

s.t. (11b) — (11f), (12b)

where the symbol 1) represents the weight assigned to network
power consumption.
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B. RL Problem Formulation

The major challenge in solving the resource allocation
problem in (11) is that the integer variable x7, makes the
optimization problem a MIP problem that is, in general, non-
convex and NP complete [30]. In addition, in real wireless
network environments, the QoS, fronthaul link, and transmit
power requirements update dynamically. Therefore, it is gener-
ally infeasible to adopt traditional optimization solutions (e.g.,
standard convex solutions) to handle resource management
complexities. Hence, a deep reinforcement method is proposed
to deal with these challenges. Specifically, we will first provide
a general background of traditional ML approaches to solve
optimization problems, and then present our proposed solution
to solve the problem in (11).

Problems that can be modeled as a Markov Decision Pro-
cess (MDP) can be solved using RL algorithms. An MDP
consists of a set of states S, which characterizes the properties
of the system, and a set of actions .A. In addition, the RL
agent is deployed with a policy 7 : S — A parameterized by
0, which provides decisions given the state. After executing
an action, the environment will change according to a state
transition function 7 : S x A — S. The agent will receive a
reward from the environment as a function of state and action
r: S x A — R. The goal of RL a}gorithms is to maximize
the total expected return R = Y ,_,~'r;, where T is the
maximum steps, and -y is a discount factor.

The state, action, and reward in our proposed solution are
described as follows.

State. We encode all relevant information about the system
to assist actors in making decisions and define the state as
a tuple that includes the current allocation of sub-bands,
power, and channel gain. s; = {X;—1,Z:-1,Pi—1, Hi—1},
where X;_1, Z;_1, Pi_1, and H;_; are the values of X,
Z, P, and the channel gain from previous iterations. The
actors are supposed to make informed decisions based on this
information.

Action. The action is a set of variables to optimize, with
the binary action aP € {0,1} representing the selection of
subbands for variable X. The continuous action af € R
represents the variable P. To comply with the maximum power
constraint outlined in (11c), we normalize the power levels at
each DU to ensure they do not exceed P/"**.

Reward. The reward is the metric by which the action is
evaluated based on the state, with higher rewards indicating
better performance by the agent. Therefore, we define the re-
ward as the EE that we aim to maximize r, = (gr(X, Z,P) =
RT(X;, Pt)/ P(Xs, ZiPy).

C. ReLAx Design in Next-G RAN System

In the optimization problem (11), we face two types of
challenges: (i) we are optimizing a discrete and a continuous
variable simultaneously, and the classic RL algorithm could
lead to a slow convergence rate and bad performance; (ii) as
the number of DUs and UEs increases (that is, the dimension
of X and P increases), the required amount of parameters
increases significantly (a.k.a. the curse of dimensionality [31]).
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To solve the challenges, we propose a dual DDPG frame-
work, RelLAx. The proposed algorithm consists of a pair of
actors and a centralized critic where one actor handles the
sub-band allocation problem, and the other deals with the
power allocation problem. However, the two variables are
not completely independent of each other, and there could
be some level of overlap in the models’ parameter spaces.
Thus, in ReLAx, we adopt the multi-task training concept so
that the actors can share parameters to reduce the number
of parameters needed to be trained. To illustrate, in classic
multi-task learning [32], tasks share a common model but with
different output layers. In this way, the model can learn the
correlation between variables and improve its performance.
Fig. 3 shows the computational diagram of the proposed
framework where the red dashed lines indicate the direction
of backpropagation and the blue dashed line represents the
feedforward process in the agent update. We can see that the
state for the two actors is the same, and they are supposed to
make decisions on different aspects given the state.

The update rules for the actors follow the DDPG update
rule. However, the variable X is discrete, and DDPG can
handle only continuous output. To overcome this challenge, we
apply the Gumble Softmax trick [33]. This trick can transform
the continuous output from DDPG to discrete outputs in a
differentiable way. Let ¢ and 6 denote continuous and
discrete actors, respectively. The gradient for the actors can
be written as,

VoI (0°) = Bon [Votoe (51)Va@” (5005 ) a2y (o)

13)

V9J(07) = Eanp [Von (50)VaQ" (5, 9(aDlar=isyo (o0 ]
(14)

where a$’ and a? stand for the continuous and discrete actions,
i.e., UE association and power allocation, and g(-) represents
the Gumbel Softmax. To optimize the critic, we need informa-
tion from both actors at the same time. The intuition behind
this is that, if we regard these two actors as separate agents,
this problem becomes a Multi-Agent Reinforcement Learning
(MARL). If the critic can only observe one agent at a time,
the whole environment will become dynamic and difficult to
optimize, and a centralized critic can solve this problem [34].
The loss function for the critic can be written as,

c D 2
L(69) = Es, .af 0P riosiin [(Q*(St,at Lap’09) —y) }
Yy= T(StvatcvatD) + cma)g Q*(St+17a?+1vatDJr1)'

RANE L]
15)

IV. PERFORMANCE EVALUATION

We first discuss the experimental settings and results of
the Next-G testbed, then evaluate ReLAx’s performance in
resource allocation through numerical simulations.
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Fig. 4. Logical illustration of the fully containerized-based Next-G testbed.

A. Testbed Experiment

We present our testbed in this paper to support our resource
allocation model in Sect. II, particularly by modeling the
computational power consumption in the CU and DU.

Next-G RAN Testbed Architecture. We have utilized an
open-source project, OAI [18] to construct our experimental
prototype. OAI has been extensively tested and validated
to be fully compatible with the 5G protocol stack for the
gNB and UE, enabling the end-to-end deployment of a 5G
network [18]. As illustrated in Fig. 4, we have implemented
a RAN consisting of two containers, CU and DU, deployed
using Docker, an open-source platform that automates the
deployment, scaling and management of applications and ser-
vices in containers. Furthermore, we have used oai-epc-fed, an
implementation of the 3GPP specifications for Evolved Packet
Core (EPC) networks, to implement the core network. The oai-
epc-fed comprises the following network elements: Mobility
Management Entity (MME), Home Subscription Server (HSS),
and Packet Gateway and Service Gateway (SPGW-C-U). All
components of oai-epc-fed have been deployed in containers.
Besides, we have utilized Software Defined Radio (SDR)
boards, specifically the Ettus USRP B210, which covers a
frequency range of 70 MHz to 6 GHz and supports 2 x 2
MIMO with a maximum sample rate of 62 MS/s. All contain-
ers are executed using Docker Compose [35], which is a tool
for defining and running multi-container Docker applications,
and a YAML file has been created to specify the configuration
of these containers. All containers are hosted in a workstation
tower with an Intel Xeon E5-1650 processor, which features
12 cores running at a clock speed of 3.5 GHz, and 32 GB
of RAM. As for the UE, we utilized a Samsung Galaxy
S9 smartphone running on the Android 10 operating system.
For network configuration, our Next-G RAN prototype is run
with three functional split options: Option F1 (PDCP/RLC, as
specified in Option 2 of the 3GPP TR 38.801 standard), Option
IF4.5 (Lower PHY/Higher PHY, also known as Option 7.z in
the 3GPP TR 38.801 standard) and Option LTE eNB.

Latency and Throughput Cost. To measure latency on the
Next-G testbed, we record the Round-Trip Time (RTT) values
while sending downlink traffic between the EPC container and
the UE. Fig. 5(a) describes the relationship between RTT and
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TABLE II
MEASURED THROUGHPUT FOR DOWNLINK.

F1 Split | TF4.5 Split | eNB
No. PRB | wpyivs | Mbitss Mbit/s
75 7.7 7.6 173
30 357 355 351
100 738 736 722

packet size when CU/DU is running on functional split Option
F1. In each iteration, we send 500 Internet Control Message
Protocol (ICMP) echo request packets from the SPGW-U
to the UE. It can be seen that the RTT linearly increases
as the packet size increases. To determine the maximum
downlink throughput on the Next-G testbed, we use the User
Datagram Protocol (UDP) as the transport protocol between
the SPGW-U container and the UE. Specifically, we use
iPerf3 tool to generate the downlink UDP traffic between
the UE and the testbed for a fixed duration of 120 seconds.
In Tab. II, we report the maximum throughput of the three
network configurations for different PRB values. We observe
that the throughput value increases linearly with the number
of PRBs for the three functional split options. However,
Option F1 slightly outperforms compared to Option eNB and
Option IF4.5. That is because Option F1 has less latency
and bandwidth cost compared to the others. In general, the
F1 functional split typically includes only the layer of the
Packet Data Convergence Protocol (PDCP) and Radio Link
Control (RLC) layers, which are both located closer to the
user data compared to the other functional split options. This
proximity to the user data can result in lower latency by
reducing the number of protocol processing steps required
before the data is transmitted to the end user.

Impact Functional Splits on CPU Utilization. To un-
derstand the CU-DU CPU power consumption in relation to
UEs’ traffic requests in the Next-G system, as discussed in
Sect. II-D, we aim to study the correlation between functional
split options and CPU usage at the CU and DU. In this
experiment, we measure the percentage of CPU utilization
using the docker stats command in Ubuntu, which provides
real-time data on the performance of the containers running.
We conducted the experiment by repeatedly sending downlink
UDP traffic from the SPGW-U to the UE with varying PRB
values in two functional split configurations, Option F1 and
Option IF4.5, and recorded the CPU utilization percentage
during the process. The percentage of CPU utilization has
been measured for the split options F1 and IF4.5 as shown in
Fig. 5(b) and Fig. 5(c), respectively. One of the key elements of
Fig. 5(b) is that the CPU utilization of DU is reduced by 25.5%
when we move from PRB 100 to PRB 50. However, lower
CPU reduction, which is 2.7%, when moving from PRB 100
to PRB 50 in CU. The reason CPU is consumed higher in DU
than in CU, in Option F1, is that the higher PHY operations
such as RLC/MAC, Ll/high, tx precode, rx combine, and
L1/low operations reside in DU for split Option F1, while CU
has only PDCP and RCC operations. However, in Fig. 5(c),
the trend of CPU consumption is different from Option F1. It
can be observed that the highest CPU consumption occurred in
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TABLE III
VALUE OF p FOR DIFFERENT INTERVAL TIME T'.
T (ms) | 1 10 100 | 1000 | 10000
p 1.00 | 0.90 | 0.22 | 0.07 | 0.02

CU, while CU CPU consumption is reduced by 14.9% when
we move from PRB 100 to PRB 50. In general, power usage in
the Next-G system can be significantly minimized if we adapt
the computational CU/DU resources, such as CPU cycles per
second [14].

Remark: Based on experimental results in Figs. 5(b),
and 5(c), we can conclude that the power factor parameters
aj and B, in (8) and (9) respectively, primarily depend on the
Next-G RAN configurations, such as the number of PRBs and
functional split options. The value of o increases as we move
from Option 1 to Option 8. However, the value of B; decreases
as we move from Option 1 to Option 8. Specifically, the
scenario where o; > [3; occurs when the CPU consumption
in the CU is higher than in the DU, as shown in Fig. 5(c). On
the other hand, the scenario where a; < [3; is estimated.

B. Numerical Simulations

The simulation results are mentioned here to evaluate the
performance of our proposed algorithm. The simulations are
conducted using Python and the Pytorch toolkit. ReLLAx
has an actor with three in-between Fully-Connected (FC)
layers of size 64, 128, and 128, as well as two separate
FC output layers to handle both discrete and continuous
actions. Additionally, ReLAx includes two critics that have
a similar architecture, processing the state through an FC
layer of size 64 before concatenating it with the action. The
concatenated will be processed by an FC layer of size 128. The
nonlinear function used in the network is the Rectified Linear
Unit (ReLU), and the learning rates used for the actor and
critic are 0.01 and 0.05, respectively. Our proposed solution
for the joint UE association and transmit power allocation
problem is compared against two popular approaches; DDPG
and WMMSE. The DDPG method is a classic reinforcement
learning approach with an actor-critic structure. In contrast,
the WMMSE method, which has been adapted to optimize
the power control problem, is an optimization technique [10].

Convergence of the ReLAx Algorithm. To show that the
proposed framework is capable of achieving good performance
in the resource allocation scenario, in Fig. 6 (a), the reward
(that is, the EE defined in (10)) is displayed against training
rounds. We observe three comparisons; (i) for the first two
curves, we observe that, with the same number of sub-bands
and DUs, the one with 5 UEs performs better than the one with
10 UEs. The result indicates that, under the same conditions,
the more UEs there are, the worse the performance of the
model; (ii) for the second and third scenarios, we can see
that, with the same number of DUs and UEs, the model with 4
subbands outperforms that with 2 subbands. The result shows
that more sub-bands can improve the model’s performance;
(ii1) for the last two scenarios, we can observe that, with the
same amount of UEs and sub-bands, the two models achieve
similar performance, which is because the number of DUs
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is sufficient in both scenarios and, therefore, the two models
converge to a similar level.

Impact of the Number of UEs. Fig. 6(b) shows the
ReLAx approach compared to other different methods versus
the number of UEs. We can observe that when the amount of
UEs increases, the performance of all three models degrades
because the dimension of action spaces has increased. Further-
more, WMMSE and DDPG have similar bad performances.
For WMMSE, the reason for this poor performance is that
it only optimizes the set of the power variable P and, thus,
when the number of UEs increases, it cannot assign links
to good sub-bands. As for DDPG, the action space becomes
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too large for it to learn a good representation, and therefore,
its performance is much worse than ReLAx. 5 DUs and 5
subbands are used with 7" = 0.01 s.

Impact of the Number of DUs Fig. 6(c) shows ReLAX’s
performance when varying the number of DUs compared
to the other two methods. We can observe that the energy
efficiency is not significantly impacted by the number of DUs
except for a small drop when the number of DUs. The drop
could be caused by the static power consumption of the DU
and CU because the improvement in the data rate cannot
compensate for the increase in power consumption. 3 subbands
and 20 UEs are used with 7" = 0.01 s.

Time processing of the ReLLAx algorithm. 7' is the time
interval between two channel estimations, and the greater it
is, the more the channels change. From Fig. 7(a), we observe
that while increasing 7', the performance of all three models
deteriorates, which is expected because, from an RL point
of view, the environment changes more significantly between
two steps with a higher 7', so the RL/WMMSE agent cannot
depend on the knowledge it learned in the previous steps. The
value of the channel change factor p is shown in Tab. III. We
can see that when 7' changes from 0.001s to 0.01s, the channel
is relatively steady, and when 7' reaches 0.1s, the value of p
becomes 0.22, which indicates that the channel becomes very
difficult to estimate. Due to this phenomenon, ReLAx drops
rapidly after T = 1 x 1072 s because the decision it makes
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