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Abstract. Artificial intelligence’s role in distilling insights from data
has emerged as a pivotal solution to contemporary challenges within our
data-centric society. Census data, while offering rich demographic and
socioeconomic insights, is limited by its complex dimensionality pos-
ing obstacles to developing universally applicable models. This study
introduces an approach to leverage census data through the creation
of location embeddings across various domains. Utilizing the Optuna
framework, this research tuned autoencoders to optimize the bottle-
neck layer size, producing compact, low-dimensional embeddings that
encapsulate critical relationships. These embeddings are further enriched
with Federal Information Processing Standard (FIPS) codes, maintaining
geographic identifiers. The methodology’s effectiveness is demonstrated
through regression models trained on the American Community Survey,
accurately predicting key indicators like median gross rent and per capita
income with an 8-10% higher average accuracy compared to traditional
PCA-based methods. These findings suggest a novel paradigm for over-
coming the limitations of geographically specific huge dimensional data
for synthesizing insights. In practical terms, such as in public policy, this
approach could enable more precise targeting of socio-economic interven-
tions based on nuanced community profiles. This innovative technique in
representation learning shows considerable promise for enhancing ma-
chine learning applications across diverse sectors, including marketing,
and real estate.
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1 Introduction

Amidst the burgeoning landscape of data-driven decision-making, the advent of
machine learning in analyzing socioeconomic trends has notably advanced the
predictive capabilities of researchers and policymakers. However, a significant
gap persists in effectively leveraging geo-embedded data within census informa-
tion to capture the nuanced dynamics of socioeconomic phenomena. But, the
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complex, high-dimensional nature of this data, particularly its geographic speci-
ficity, poses significant challenges in developing models that are broadly appli-
cable across various domains. This manuscript introduces Census2Vec, a novel
methodology designed to bridge this gap by enhancing socioeconomic predic-
tive models with rich, geographically contextualized embeddings. Our approach
seeks to address the limitations of current methodologies that often overlook the
spatial intricacies inherent in census data, leading to oversimplified predictions
that may not accurately reflect complex regional disparities. By integrating geo-
spatial embeddings, Census2Vec aims to provide a more nuanced and accurate
representation of socioeconomic indicators, paving the way for more informed
decision-making processes.

Specifically, it addresses the challenge of dimensionality and geographic con-
straints by employing tuned autoencoders to generate low-dimensional embed-
dings enriched with geographic identifiers, enhancing the predictive capabilities
of socioeconomic models. The exponential increase in data generated by emerg-
ing technologies such as mobile devices, cloud computing, and the Internet of
Things (IoT) necessitates robust analytical methods [1]. Deep learning, a subset
of machine learning modeled after neural network architectures, has catalyzed
numerous technological breakthroughs, expanding commercial possibilities and
driving the impending technological revolution [2]. The growing dimensionality,
which causes data sparsity and the “curse of dimensionality”, makes it more diffi-
cult to extract meaningful insights from the enormous amounts of data collected
every day. This challenge can be mitigated using various dimensionality reduc-
tion techniques. Traditional methods like Singular Value Decomposition (SVD)
and principal component analysis have been effective in reducing data dimen-
sions in applications beyond prototype definition, but they require substantial
computational resources when dealing with large datasets, including images,
text, and videos [3],[4],[5]. In 2006, Hinton and Salakhutdinov introduced a deep
learning approach for dimensionality reduction using neural networks capable of
predicting their input, known as autoencoders. Once trained, autoencoders pro-
vide a non-linear dimensionality reduction superior to SVD-based techniques,
proving crucial in model and representational theory [6].

This paper begins by outlining the current landscape of socioeconomic predictive
modeling, highlighting the challenges faced by traditional methods, and positing
Census2Vec as a pivotal solution. It further delineates the research problem and
the objectives of leveraging geo-embedded data for enhanced predictive accuracy.

2 Background

Embeddings play a critical role in the field of machine learning, particularly in
reducing the dimensionality of data in high-dimensional spaces while preserv-
ing its semantic significance [7]. They facilitate the grouping of similar inputs
in a lower-dimensional space, thus enhancing the adaptability of machine learn-
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ing models. Mathematically, embeddings can be seen as entities that capture
the underlying structures in diverse data instances, aligning with the princi-
ples of representation theory. The unique applications of location data, due to
its granular nature, span across various sectors from government organizations
to businesses, aiding in establishing demographic patterns and making critical
location-based decisions. Prior methodologies in the realm of embeddings have
largely focused on image data, often confined to specific domains [3],[4],[5]. How-
ever, the comprehensive nature of census data, encompassing a wide range of
features such as demographics, business, academic, and political data, necessi-
tates a more versatile approach to embedding. This research introduces a novel
technique for condensing the multifaceted characteristics of a location into a
compact, low-dimensional space by creating location embeddings utilizing Fed-
eral Information Processing Systems (FIPS) codes. The use of autoencoders in
this process addresses the challenges of redundancy and noise in the data, which
are critical in making efficient and accurate business predictions while managing
processing times and memory consumption [8],[9].

3 Related Work

Recent progress in socioeconomic predictive modeling has emphasized the signif-
icance of integrating spatial context into analytical frameworks. Although there
have been breakthroughs, existing methods frequently fail to fully capture the
intricate spatial dynamics that define socioeconomic events. Conventional tech-
niques like principle component analysis (PCA) and linear regression models are
fundamental but do not provide the detailed information required to include
spatial variations. This section thoroughly analyzes the problems by referencing
a variety of recent research to highlight the shortcomings of current approaches.
By doing this, it prepares for the release of Census2Vec, emphasizing the need
for creative methods that can fully utilize geo-embedded data.

In this section, the paper by Mikolov et.al [10] serves as a foundation for location
embedding research. It introduced the concept of embeddings, which represent
high-dimensional data in a lower-dimensional transformed space. Subsequently,
numerous works in this field have contributed to our understanding of location
embeddings. Wang et al. [11] proposed the ELSE model, which enriches location
embeddings by incorporating both spatial and semantic information. They ap-
plied a multi-label model with Convolutional Neural Networks (CNNs) to train
on map-tile images, extracting location embeddings to address practical business
problems, such as recommending new service ports. Yin et al. [12] utilized the
UTM coordinate system to create 2000-dimensional GPS semantic embeddings.
These embeddings were obtained using a Multilayer Perceptron neural network
model and included data from platforms like Twitter, Foursquare, and Flickr.
Abonce et al. [13] developed a Siamese-like embedding model by training it on
map-tile images and Google Street View images to capture location information
effectively. Law and Neira [14] employed convolutional autoencoders and Prin-
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cipal Component Analysis (PCA) to generate location embeddings from street
view images, even in the absence of explicit semantic information.

Recent studies have focused on integrating various features into a single model.
For example, Yin et al. [12] designed a probability-generating model that jointly
considered temporal cyclic effects, geographical influences, and semantic infor-
mation. Xu et al. [15] integrated these features into a neural network framework
for location recommendations. While [16] demonstrated the value of creating
vector representations from unstructured text data for business analytics tasks,
this research explores generating meaningful embeddings from structured census
data to improve machine learning predictions. Typically, these solutions fused
contextual factors using straightforward strategies like modeling them as weight-
ing coefficients. In contrast to existing approaches, our work adopts a novel ap-
proach. We leverage nonlinear transformations to seamlessly integrate different
features in an integrated manner. This approach not only smoothly combines
various factors in a shared latent space but also qualifies as a generic method
applicable across diverse scenarios. Additionally, in Spruyt’s study [17], location
embeddings were obtained using convolutional neural networks based on geo-
graphical location coordinates. These embeddings were effectively applied for
venue mapping and transport classification, enhancing generalization capabili-
ties by associating daytime and nighttime activities with specific areas such as
industry zones, city centers, parks, and train stations. Furthermore, the paper
by Jenkins et al. [18] stands out for its cross-modal embeddings, which incor-
porate data from various sources, including satellite images, human mobility
patterns, point of interest locations, and spatial graphs. [19] By utilizing a Re-
gionEncoder, this work significantly improved performance in downstream tasks
related to urban environments and prediction tasks.

4 Methodology

The methodology underpinning this study begins with an intensive data prepara-
tion phase, concentrating on the U.S. census dataset to extract a low-dimensional
representation for census block groups. The architecture of the Autoencoder
model employed in our approach is illustrated in Figure 1. The initial step
involves selecting columns with numerical data to ensure the integrity of the
dataset, which is vital for the effective handling of missing values and guaran-
teeing a comprehensive dataset for meaningful analysis.

4.1 Expolaroty Data Analysis (EDA)

Dataset Description Our dataset includes all U.S. census block groups related
to Federal Superfund sites, categorized under the Comprehensive Environmental
Response, Compensation, and Liability Act (CERCLA) of 1980. It comprises
220,338 census block groups with 345 features representing a variety of location-
specific characteristics, such as geographical, demographic, and socioeconomic
data.
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Fig. 1. Architecture of the Autoencoder model utilized for dimensionality reduction in
census data analysis, showing the flow from input to compressed representation at the
bottleneck layer, and reconstruction at the output.
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Data Cleansing and Feature Selection The feature selection process was
critical to optimize the census dataset by excluding non-essential features, such
as county and state names, to focus on quantitative metrics. Features like “aver-
age household income” and “median rent”, initially in U.S. Dollar string formats,
were cleansed of special characters and transformed into numerical values.

Handling Zero Values Features with more than 10% zero values were excluded
to prevent skewed distributions and potential biases in the embeddings. This
refinement resulted in a dataset with 220,322 entries and 110 distinct numeric
features.

Data Imputation and Normalization We addressed missing values indicated
by “NaN” using the K-Nearest Neighbors Imputer (KNNImputer) method. This
approach estimates missing values by utilizing the values of the nearest neighbors
within the multidimensional feature space. The data was then normalized to a
common scale, as is crucial for the subsequent machine learning processes.

4.2 Dimensionality Reduction using PCA with K-Fold Cross
Validation

Principal Component Analysis (PCA) was employed as a prelude to Autoencoder-
based dimensionality reduction to establish a baseline for comparison. PCA
serves to transform the original high-dimensional feature space into a lower-
dimensional space where the axes correspond to the directions of maximum vari-
ance. We methodically reduced the feature dimensions from 10 to 100, aiming to
retain as much variance as possible while simplifying the dataset’s complexity.
To evaluate the adequacy of the reduced dimensions and prevent overfitting,
we applied K-Fold Cross-Validation with eight splits. This rigorous statistical
technique partitions the data into eight subsets, where each subset is used once
as a validation set while the others form the training set. This cross-validation
approach is depicted in Figure 2, where the performance of various regression
models on PCA-reduced data is assessed. By averaging the performance across
all folds, we obtain a more reliable estimate of the model’s predictive power on
unseen data.

4.3 Dimensionality Reduction using Autoencoders with Optuna

Building upon the insights gained from PCA, Autoencoders were trained to
explore a more nuanced and sophisticated approach to dimensionality reduction.
An Autoencoder is a type of unsupervised neural network that learns to compress
(encode) the input data into a compact representation and then reconstruct
(decode) it as closely as possible to the original input. This dual process forces the
Autoencoder to capture and prioritize the most salient features in the bottleneck
layer, which is the heart of the network characterized by its reduced number of
neurons.
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Table 1. Hyperparameter Ranges for Tuning with Optuna

Hyperparameter Range

Number of Layers (n-layers) 1-10
Number of Neurons (n_neurons) 32 -128
Activation Function (activation) relu, tanh, linear

Learning Rate (learning-rate) le-5 — le-2
Batch Size (batch_size) 32, 64, 128
Bottleneck Dimension (bottleneck_dim) 2-32

Table 2. Tuned Results (Best Hyperparameters)

Hyperparameter Value

Number of Layers (n_layers) 8
Number of Neurons (n_neurons) 128
Activation Function (activation) tanh
Learning Rate (learning_rate) 0.00036
Batch Size (batch_size) 64
Bottleneck Dimension (bottleneck_dim) 21
Input Size (110, 0)

Loss Function MSE

Optimizer Adam

Epochs 100

Optuna, an open-source hyperparameter optimization framework, was em-
ployed to systematically search for the optimal hyperparameters that would
result in the most efficient encoding and decoding process. The framework’s effi-
ciency stems from its ability to perform trials of various hyperparameter combi-
nations and evaluate them based on the reconstruction loss. The hyperparameter
space explored by Optuna included the number of layers, number of neurons per
layer, activation functions, learning rate, batch size, and bottleneck dimension,
as detailed in Table 1. The final architecture of the Autoencoder, which pro-
vided the best balance between dimensionality reduction and data reconstruc-
tion fidelity, is summarized in Table 2. This Autoencoder was then trained and
validated using the same K-Fold Cross-Validation method described earlier to
ensure the robustness and generalizability of the learned embeddings.

4.4 Autoencoder Architecture

The architecture of our Autoencoder, illustrated in Figure 1, is meticulously
designed to capture the intricate patterns inherent in high-dimensional census
data. The network consists of an input layer that accepts the preprocessed cen-
sus data, several hidden layers for feature transformation, a bottleneck layer for
representing the compressed knowledge, and an output layer for reconstructing
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the input data. The hidden layers are composed of fully connected neurons with
rectified linear unit (ReLU) activation functions to introduce non-linearity, en-
hancing the network’s capacity to learn complex representations. The bottleneck
layer, the core of the Autoencoder, acts as a constraint to force the network to
distill the most essential information from the input data, resulting in a compact,
low-dimensional representation of the original dataset. This process of encoding
and subsequent decoding is optimized using backpropagation with an Adam opti-
mizer, minimizing the reconstruction loss measured by the Mean Squared Error
(MSE). The optimal architecture and hyperparameters, presented in Table 2,
were determined through extensive hyperparameter tuning using the Optuna
framework. The fine-tuning process balanced the model’s complexity against
its generalization ability, ensuring that the Autoencoder captures a robust and
general representation of the census data features.

Accuracy of Regression Models

0.8

°
Y

RandomForestRegressor
GradientBoostingRegressor
LinearRegression
LinearSVR
DecisionTreeRegressor
KNeighborsRegressor

Accuracy

0.2

0.0-

Fig. 2. Comparative accuracy of various regression models employed in the study, with
the bars representing the K-Fold Cross-Validation scores for each model.

4.5 Accuracy Measurement in Regression Models

Figure 2 presents the accuracy of various regression models assessed in this
study, with the term ‘accuracy’ referring to the proportion of correct predictions
in the validation sets during the K-Fold Cross-Validation process. The models
included, such as Random Forest, Gradient Boosting, and K-Nearest Neighbors,
were selected for their diverse approaches to regression, ranging from ensemble
methods to instance-based learning, providing a comprehensive evaluation of the
embedding’s predictive quality. The validation process employed K-Fold Cross-
Validation with eight folds, ensuring that each model was tested on all data
points while also being trained on diverse subsets of the data. This rigorous
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validation method not only provides an unbiased estimate of the model’s predic-
tive performance but also helps in mitigating the risk of overfitting, as each fold
serves as an independent check against the model’s ability to generalize. The
final accuracy metrics are the averaged results from all folds, offering a robust
measure of performance and a comparative view of how each model leverages
the embeddings produced by the Autoencoder to predict socioeconomic indica-
tors such as median gross rent and per capita income. The superiority of the
embeddings is evidenced by the consistent improvement in accuracy across all
models when compared to their performance with the original high-dimensional
data.

5 Results and Analysis

5.1 Embedding Performance Evaluation

To assess the quality of embeddings generated from both PCA and Autoencoder
dimensionality reduction methods, we reserved one feature from the dataset as
a target variable, excluded from the input features to the models. This approach
enables a direct comparison of how well the compressed features from both em-
beddings predict the target variable. For PCA, we evaluated the performance of
various regression models on this target feature to determine the effectiveness of
the embeddings in predictive tasks. Figure 2 shows a comparative analysis of the
accuracy achieved by different regression algorithms when applied to the vali-
dation set. The RandomForestRegressor emerged as the top-performing model,
with GradientBoostingRegressor and LinearRegression also showing strong re-
sults. This suggests that ensemble methods are particularly effective in leveraging
the reduced feature space for predictive analysis.

5.2 Comparative Analysis of PCA and Autoencoder Embeddings

We further examined the efficacy of embeddings produced by Autoencoders
against those generated by traditional PCA. The R-squared scores, reflecting
the proportion of variance captured by the models for median household in-
come, are plotted against the number of dimensions retained in the models, as
illustrated in Figure 3.

The Autoencoder embeddings displayed a remarkable ability to capture a
significant amount of variance within just 10 dimensions, which is substantially
more efficient than PCA, which required 60 dimensions to achieve a similar level
of variance capture. As depicted in Figure 3, the embeddings consistently out-
performed PCA in terms of R-squared scores across all tested dimensionalities.
This underscores the Autoencoder’s ability to distill more relevant information
for the prediction task, particularly at higher dimensions.

5.3 Case Study: American Community Survey Data

Our analysis extended to a larger dataset from the American Community Survey
(ACS), ensuring comprehensive coverage and enhancing the generalizability of
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Embeddings Vs PCA For Predicting Median Household Income
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Fig. 3. Comparison of R-squared scores for PCA and Autoencoder embeddings across
different dimensions.

our findings. The ACS dataset provides a wide array of social, economic, de-
mographic, and housing characteristics. The five-year estimates from the ACS,
representing data collected over a period, offer enhanced statistical reliability for
less populated areas and smaller population subgroups. The data was retrieved
at the block group level using the ACS 5-Year Data API, aligning with the
granularity of our embeddings. Using the ACS data, we conducted an expanded
evaluation, incorporating additional FIPS block group data. We considered at-
tributes such as ‘Per capita income’, ‘Median household income’; ‘Median gross
rent’, and ‘Aggregate earnings’, which are closely aligned with the demographic
data represented by the embeddings. The ‘download()’ and ‘censusgeo()’ func-
tions facilitated efficient retrieval of these attributes, with a looping mechanism
implemented to traverse through each state’s data.

We constructed four distinct datasets, each with one of the aforementioned
attributes designated as the target variable. A RandomForest regression model
was utilized to calculate the R-squared and variance scores for each target, yield-
ing scores that highlight the predictive strength of the embeddings.

In Figures 4, 5, and 6, the variance results for models using Autoencoder
embeddings for different socioeconomic indicators are presented. The merged
datasets containing both PCA and Autoencoder embeddings with ACS data
demonstrated that the Autoencoder embeddings significantly enhance model
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performance across various socioeconomic predictions, validating the effective-
ness of our dimensionality reduction approach. Figure 7 shows the variance re-
sults for models using Autoencoder embeddings for Median Household Income,
further evidencing the superior performance of Autoencoder embeddings over
PCA in predictive tasks. These results substantiate the effectiveness of PCA
and Autoencoder embeddings and underscore the Autoencoder’s efficiency in
creating compact yet informative representations, particularly when applied to
complex datasets like the ACS FIPS block group data.
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6 Discussion

Our research primarily concentrated on four pivotal business cases: “Per Capita
Income”, “Median Household Income”, “Median Gross Rent”, and “Aggregate
Earnings”. These cases were meticulously chosen to embody the demographic
characteristics foundational to our embedding creation process. The transforma-
tion of 110 original features into compact embeddings yielded dual advantages.
First, it streamlined the dataset for regression models, enhancing manageability
without compromising predictive efficiency. Second, it evidenced the versatility
of embeddings in encapsulating trends across diverse demographic data types.
Parallel to our approach, a study delineated in [12] leveraged user-generated
content from social platforms to create embeddings that characterize distinct
locales, such as addresses, photos, and phone numbers. These embeddings fa-
cilitated K-NN searches and the simplification of duplicate removal in location
data graphs. While this method focuses on encoding information from decen-
tralized sources, our strategy, drawing from comprehensive demographic data,
showcases a different yet equally effective technique in capturing the multidimen-
sional essence of locations. This comprehensive approach endows our embeddings
with wide-ranging applicability.

In a related vein, the work presented in [15] integrates semantic data, temporal-
spatial context, and sequential place connections to forge location embeddings.
These embeddings are instrumental in predicting user check-ins by identifying
close matches in a multidimensional space. While Venue2Vec excels in user lo-
cation recommendations and tracking, we advocate for the use of place embed-
dings, given their efficacy in clustering models and their ability to identify groups
with similar characteristics. This capability is invaluable for governmental and
business entities in assessing and analyzing risks ahead of implementing high-
impact policies. The versatility and potential applications of place embeddings,
as illuminated in our study, are vast, spanning various domains. This discussion
underscores the critical role of embeddings in data-driven decision-making, high-
lighting their capability to discern intricate patterns in demographic data, their
adaptability across various fields, and their broader, far-reaching implications.

7 Future Research Directions and Advancements

The Census2Vec architecture has great potential for future study in the field of
socioeconomic analysis. One such approach involves modifying Census2Vec for
various geographical settings. Applying the technique to fast urbanizing cities
in underdeveloped nations might reveal patterns of social segregation and in-
frastructure inequality. This involves overcoming obstacles including acquiring
accurate census data at a detailed level and considering the changing nature
of informal settlements. Integrating Census2Vec with agricultural and land-use
data can help reveal the socioeconomic factors and impacts of rural change,
such as out-migration and evolving livelihood options. Additionally, integrating
Census2Vec embeddings with high-resolution satellite imagery might facilitate
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the real-time monitoring of socioeconomic changes by analyzing variables such
as variations in building density and infrastructure growth. Integrating graph
neural networks (GNNs) into Census2Vec might improve embedding quality by
capturing intricate interconnections across census tracts, considering aspects like
physical proximity, infrastructural networks, or social ties. Attention-based em-
bedding processes might assist in identifying the most important census factors
that influence socioeconomic distinction in certain circumstances.

Comparative studies in many socioeconomic settings are necessary to fully assess
the effectiveness of Census2Vec. An experiment might be designed to compare
Census2Vec models trained on datasets from high-income nations vs low-income
countries or urban regions versus rural regions. The independent factors consist
of socioeconomic background, data granularity, and embedding methodologies,
whereas the dependent variables comprise prediction accuracy and the inter-
pretability of created embeddings. Including a time aspect in Census2Vec would
enhance predictive demographic modeling. Time-series census data, combined
with real-time auxiliary data sources, might be used to predict Census2Vec em-
beddings over time using recurrent neural networks (RNNs) or their variations
(LSTMs, GRUs). This would enable the examination of changing socioeconomic
patterns and maybe guide preemptive governmental actions.

8 Conclusion

Through the incorporation of geo-embedded data utilizing FIPS codes as unique
identifiers, this work proposes Census2Vec, a novel approach that substantially
enhances the accuracy and granularity of socioeconomic projections. Census2Vec
provides a new perspective for analyzing and comprehending the multifaceted
geographical dynamics of socioeconomic indicators by overcoming the limita-
tions imposed by traditional prediction models. Also, this study explored dif-
ferent strategies for creating these embeddings, including an unsupervised deep
autoencoder model to analyze publicly accessible Census data together with
FIPS codes at state and county levels. This method has uncovered a plethora of
information on location embeddings, demonstrating their strong prediction ac-
curacy in comparison with adept contemporary approaches. Although the results
demonstrate potential, this research acknowledges specific limitations. The study
focused primarily on U.S. Census data, which could not entirely represent the
multifaceted nature of different geographical areas or demographic differences.
This analytical approach serves a purpose yet might require adaptations to ac-
commodate datasets from various countries or areas, taking into consideration
cultural and socio-economic differences.
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