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Summary

! Predicting shifts in species composition with global change remains challenging, but plant
functional traits provide a key link to scale from plant to community and ecosystem levels.
The extent to which functional trait shifts may mediate ecosystem response to climate change
remains a critical question.
! We ran point-scale Community Land Model (CLM) simulations with site-specific functional
trait and phenology observations to represent alpine tundra growth strategies. We validated
our results with site observations and compared parameterized results to those using the
default parameterization. We then quantified the relative contribution of plant functional trait
shifts vs climate change scenarios (and the resulting phenological shifts) to uncertainty in
future tundra ecosystem productivity outcomes.
! We found that using community-specific functional traits and phenology observations sig-
nificantly improved productivity estimates compared with overestimates in a default simula-
tion. Uncertainty in potential plant trait shifts often had a larger effect on ecosystem
productivity responses than uncertainty in the forced response from different climate change
scenarios.
! These findings highlight the key role of functional traits in shaping vegetation responses to
climate change and the value of incorporating site-level measurements into land models to
more accurately forecast climate change impacts on ecosystem function.

Introduction

Predictions of climate change impacts on terrestrial ecosystems
remain highly uncertain. Yet, terrestrial vegetation moderates
land–atmosphere interactions by shaping water, carbon (C), and
energy fluxes (Bonan, 2008; Verheijen et al., 2013), making it
essential to better understand how vegetation responds to climate
change and how these vegetation responses moderate changes in
ecosystem function. Rates of vegetation change can be fast, clo-
sely tracking climate change, or slow, lagging climate changes
and leading to disequilibria (Williams et al., 2021). Considera-
tion of shifts in plant functional traits provides a critical link to
integrate species and community responses to environmental
change factors (Suding et al., 2008; Pacifici et al., 2017). Plant
functional traits (characteristics that influence growth, reproduc-
tion, and survival), particularly those linked to the resource eco-
nomics spectrum (Wright et al., 2004), are indicative of a plant’s
ecological strategies. These traits have been used to predict com-
munity responses to environmental change and have been linked

to ecosystem processes, including nutrient cycling, C storage, and
productivity (Funk et al., 2017; He et al., 2023).

Combinations of functional traits can determine whether
plants have more resource-use conservative or acquisitive growth
strategies as they balance growth potential and longevity against
leaf construction costs. For example, plants with more
resource-acquisitive strategies tend to exhibit faster growth rates,
higher nutrient uptake, and shorter-lived leaves and tissues (Ship-
ley et al., 2006). Accordingly, more resource-acquisitive plants
tend to have higher specific leaf area (SLA; the ratio of leaf area
to leaf dry mass); lower water use efficiency, inferred from C iso-
tope discrimination (lower d13C); higher leaf nitrogen (N) con-
tent; and lower leaf C : N ratios than plants with more
resource-conservative growth strategies (Reich, 2014; D!ıaz
et al., 2016). Responses of vegetation to warming are likely to
include shifts in these functional traits due to changes in species
composition or relative abundance as a result of adaptation, phe-
notypic plasticity, or compositional turnover (Moritz &
Agudo, 2013; Bjorkman et al., 2018). Beyond these functional
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traits, plant phenology, including the timing of leaf onset and
senescence, is also likely to shift with warming, leading to poten-
tial mismatches between vegetation productivity and resource
availability (Cleland et al., 2007). Together, vegetation responses
to warming will likely result in changes in both functional traits
and phenology, but the rate of change of these shifts and their
effect on ecosystem function remains highly uncertain.

In addition to shaping plant growth strategies, functional traits
provide a mechanistic link between plant communities and eco-
system processes and can play a key role in shaping rates of
ecosystem productivity (Tilman et al., 2001; Hooper et al., 2005;
Huxley et al., 2023). In a global analysis pairing flux tower mea-
surements with extrapolated future plant trait maps, Madani
et al. (2018) found strong relationships between local environ-
mental conditions and plant traits, including SLA and height,
suggesting that increasing plant height and SLA will accompany
increases in gross primary productivity (GPP) under future cli-
mate conditions. However, the pace of functional trait responses
to climate change can range from days to decades or centuries,

meaning that ecosystem responses can either track or lag behind
the rate of climate change. This may result in novel combinations
of abiotic climate conditions and functional traits (Fig. 1a; Sven-
ning & Sandel, 2013; Butler et al., 2017; Felton et al., 2022),
that together impact the magnitude and timing of plant produc-
tivity. For example, where leaf out is stimulated by warming or
earlier snowmelt we might expect to see a phase shift in produc-
tivity in response to climate change (Fig. 1b). Shifts in plant
functional traits toward more resource-acquisitive growth strate-
gies could amplify productivity responses to climate change
(Fig. 1c). Finally, interactions between phenological and func-
tional trait changes could result in phase shifts and amplification
of ecosystem processes that would facilitate tracking of changing
climate conditions (Fig. 1d; also see Butterfield et al., 2020 for
evidence of productivity amplification and seasonal phase shifts
in response to interannual climate variability). Previous work sug-
gests that the magnitude of climate disequilibrium is a large
source of uncertainty in projections of future herbaceous net pri-
mary productivity (NPP), outweighing uncertainties among
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Fig. 1 Hypothesized ecosystem productivity responses to climate change depend on the rate of abiotic change (e.g. warming) and associated biotic
responses. The extent of abiotic change is associated with forcing uncertainty from different climate change scenarios, with increasing emissions and
atmospheric CO2 concentrations, illustrated on the x-axis in (a). Biotic responses to climate change may include (a) phenotypic plasticity and community
turnover, leading to plant functional trait changes that track rates of climate change, maintaining optimal productivity of the system (blue and red lines
represent a hypothesized productivity response under Shared Socioeconomic Pathways (SSP) scenarios, SSP2-4.5 and SSP3-7.0, respectively, and wavy
blue and red lines represent a system that is keeping pace with climate change as a result of functional trait changes under the two scenarios). Climate
disequilibria can occur when rates of ecosystem responses lag behind the rate of climate change (represented by the gray line, with dashed lines
representing productivity differences due to disequilibrium). Plant community responses that may facilitate ecosystem tracking of abiotic change could
include: (b) climate-driven phenological changes (e.g. from earlier snow melt) that lead to a phase shift in the annual cycle of productivity; (c) amplification
of the annual cycle of productivity due to improved growing conditions or potential functional trait responses toward more resource-acquisitive growth
strategies; or (d) interacting phenology and functional trait shifts that drive a phase shift and amplification of ecosystem productivity.
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different climate models and emissions pathways (Felton
et al., 2022). Because the potential impacts of these climate dise-
quilibria on ecosystem functions are not well understood, more
work is needed to quantify how uncertainty in changes in plant
traits may lead to tracking or lagging ecosystem responses to abio-
tic change.

High-elevation and high-latitude regions are warming more
rapidly than other regions of the globe (Wang et al., 2016; Ranta-
nen et al., 2022), making alpine and arctic tundra ecosystems
particularly vulnerable to climate change. Increasing tempera-
tures in tundra ecosystems leads to accelerated snowmelt, shifts in
phenology, and altered nutrient cycling (Walker et al., 2006;
Dong et al., 2019; Wieder et al., 2022), but predicting responses
to these synergistic changes remains a challenge. Some studies
suggest that alpine plant communities have shifted toward more
resource-conservative, stress-tolerant functional traits (e.g. lower
SLA and higher water-use efficiency) with warming over the
past several decades (Huxley & Spasojevic, 2021; Oldfather
et al., 2024). Other analyses of tundra global change experiments
and syntheses of long-term observations show increases in
resource-acquisitive traits such as SLA with warming (Bjorkman
et al., 2018; Henn et al., 2024). Because functional traits are
strong predictors of ecosystem productivity (Madani et al.,
2018), we expect these potential shifts in traits to alter patterns of
productivity across tundra ecosystems. This type of ecological
uncertainty, however, rarely factors into physical climate change
projections that focus on natural variability (internal variability
in the climate system), model structural uncertainty, and scenario
uncertainty (uncertainty in future emissions and climate change
trajectories; Hawkins & Sutton, 2009; Bonan et al., 2019). Thus,
approaches quantifying the relative contribution of trait uncer-
tainty, which may contribute to climate disequilibria, in shaping
ecosystem responses to climate change are needed, especially in
comparison to other sources of uncertainty.

To better understand ecosystem sensitivity to plant functional
trait responses that may lag behind or track climate change, we
used local site observations to parameterize a land model to repre-
sent tundra vegetation communities and examined changes in pro-
ductivity under two future climate scenarios. We used the
Community Land Model v.5 (CLM5; Lawrence et al., 2019) with
a hillslope hydrology configuration (Swenson et al., 2019) to run
single-point simulations that represent water, energy, C, and nutri-
ent fluxes at the Niwot Ridge Long Term Ecological Research
(LTER) site. We modified CLM parameters representing func-
tional traits and phenology using site observations, evaluated our
simulations against site observations, and compared our simula-
tions with one using default values of functional traits and phenol-
ogy. We then extended our model simulations through the end of
this century with modified functional trait configurations that
represent shifts toward more resource-use conservative or acquisi-
tive communities that encompass a range of potential trait
responses that could track or lag climate change (Fig. 1). We ran
these future simulations under two climate change scenarios,
which are coupled with phenological changes because leaf onset in
CLM is controlled by soil temperature. This allowed us to assess
the relative contribution of uncertainty in trait responses to that of

climate scenario uncertainty in shaping productivity responses
under climate change. Specifically, we hypothesized that: (1) shifts
in functional traits, climate scenarios, and phenology will interact,
leading to both amplification and phase shift responses in produc-
tivity (Fig. 1d); and (2) the relative contributions of functional trait
uncertainty vs climate scenario uncertainty to tundra productivity
will be mediated by resource availability across tundra commu-
nities. By quantifying both functional trait and climate scenario
uncertainties, our study elucidates the importance of plant trait
responses in shaping ecosystem responses to climate change.

Materials and Methods

Study site and local site observations

This study focuses on Niwot Ridge, Colorado (CO), USA
(40°03 0N, 105°35 0W, c. 3500 m asl), a high-elevation alpine
tundra site in the CO Rocky Mountains, USA. Climate records
from 1953 to present show a strong warming trend at this site,
particularly in spring and summer months, with maximum
annual temperatures increasing at c. 0.5°C per decade (Kittel
et al., 2015). Because most precipitation falls as snow at this site
(c. 80%; Caine, 1996), plants experience a short growing season
of c. 2–3 months. Due to the topographically variable nature of
alpine terrain, snow is redistributed by wind, with some areas
accumulating a deep snowpack while others remain wind-blown
and snow-free (Winstral et al., 2002; Erickson et al., 2005; Litaor
et al., 2008; Mott et al., 2018). This gradient in snow accumula-
tion is a key factor driving variation in community composition
and productivity in tundra vegetation. Wind-blown areas with
little or no snow cover typically host dry meadow or fellfield
communities with shallow, rocky soils, and low statured vegeta-
tion that tends to be less productive (Billings & Mooney, 1968).
Moist meadow vegetation occurs in areas with deep snow accu-
mulation that provides higher soil moisture content and produc-
tivity. Wet meadow vegetation is found in lowland areas that
receive snowmelt from upslope as runoff and have the highest
productivity (Walker et al., 2001).

Foliar traits and phenology To characterize differences in plant
functional traits among tundra vegetation communities at our
site, we used functional trait data collected at Niwot Ridge. We
calculated community-weighted mean trait values of SLA, leaf
C : N, and d13C using species mean trait values from published
trait data for moist, wet, and dry meadow vegetation at Niwot
Ridge (Fig. 2; Spasojevic & Suding, 2012; Spasojevic
et al., 2013, 2022).

To characterize phenological differences among tundra com-
munities, we leveraged a dataset of phenocam images collected
half-hourly throughout the growing season from 2018 to 2022 at
plots in the Niwot Ridge Sensor Network Array (Morse & Niwot
Ridge LTER, 2022). Green chromatic coordinate (GCC) values
were extracted from these images at each plot taken between
09:00 and 13:00 h (Elwood et al., 2022) and categorized as
moist, wet, or dry meadow based on the dominant plant commu-
nity. We then derived a suite of phenometrics from these GCC
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values that characterize the timing and length of the growing sea-
son. To derive these phenometrics, we first determined the spring
snowmelt date either by observing it directly in the images or by
using 5 cm soil temperature probes to determine the first day in
spring when the 5-d running mean diurnal soil temperature
exceeded the (plot-specific) value from years where snowmelt was
observed (in cases where cameras were deployed shortly after
snowmelt). Because fitting curves to snow-free values often gave a
poor fit due to the lack of baseline (dormant-season) GCC esti-
mates, we infilled GCC values before spring snowmelt and after
fall snow onset. We did this by sampling from a normal distribu-
tion with a mean value of plot-specific average ‘max GCC’ values
at snowmelt, averaged over all years, and the corresponding
node-specific SD. We then fitted a double-logistic curve (Beck
et al., 2006) to the complete seasonal series with a 15 : 1 weight-
ing scheme of observed (non-snow-covered): snow-covered days.
We defined the timing of greenup and senescence as the
half-maximum of the fitted curves on the rising and falling limbs,
respectively, and the peak as the derived peak (Fig. 3a). Addi-
tional metrics included the rate of greenup and the rate of senes-
cence (Filippa et al., 2016).

To analyze functional traits and phenology metrics for differ-
ences across vegetation communities, we used the Kruskal–Wallis
test, a nonparametric alternative to ANOVA that does not
assume normality in the data. When significant differences were
detected, post hoc pairwise comparisons were performed using the
Bonferroni–Dunn test. This test adjusts for multiple compari-
sons, identifying pairwise differences while controlling the
family-wise error rate. Results were visualized using boxplots,
with the median and interquartile range (IQR) represented by
the boxes, whiskers extending to 1.5 times the IQR, and outliers
defined as values outside of 1.5 times the IQR.

Model forcing and evaluation To run and evaluate single-point
CLM simulations, we used local observations from a combina-
tion of alpine and subalpine stations at Niwot Ridge, following

the methods of Jay et al. (2023). Meteorological measurements,
including air temperature, barometric pressure, relative humidity,
and wind speed, are available from two alpine eddy covariance
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towers located in fellfield and dry meadow communities at
3480 m asl (AmeriFlux sites US-NR3 and US-NR4; Knowles
et al., 2012; Knowles, 2022a,b); we used US-NR4 measurements
that were gap-filled with measurements from US-NR3. Because
incoming solar measurements were not collected reliably at these
high-elevation sites, we used incoming shortwave radiation data
from a nearby subalpine eddy covariance tower (Ameriflux site
US-NR1, 3050 m asl; Burns et al., 2016). Precipitation data are
available from the Saddle site at Niwot Ridge (3525 m asl) as
well as the subalpine U.S. Climate Reference Network (USCRN)
station 14W (40°02 0N, 105°32 0W, 3050 m asl; NOAA, 2021).
We modified precipitation data from the Saddle site to account
for the effects of blowing snow during October–May following
Williams et al. (1998) and used the half-hourly USCRN record
to distribute the Saddle precipitation record to half-hourly mea-
surements as required to run CLM. Finally, we used a variety of
publicly available Niwot Ridge datasets to evaluate our model
simulations. These included: snow depth collected across 88
gridded points, c. biweekly (D. Walker et al., 2022) and corre-
sponding descriptions of dominant plant communities (Spasoje-
vic et al., 2013), aboveground biomass clippings used to estimate
annual aboveground net primary productivity (ANPP; M.
Walker et al., 2022), and GPP estimates from the alpine flux
towers (Knowles, 2022a,b).

CLM overview and site-specific setup

Abiotic heterogeneity We ran single-point simulations using
the CLM v.5 (Lawrence et al., 2019), the terrestrial component
of the Community Earth Systems Model (CESM; Danabasoglu
et al., 2020), with hillslope hydrology (Swenson et al., 2019) and
active biogeochemistry following the methods of Jay
et al. (2023). We used the hillslope hydrology configuration to
explicitly represent the lateral redistribution of water due to topo-
graphy at the scale of a ‘representative’ hillslope, with three
hydrologically connected columns (two upslope columns for
moist and dry meadows and one downslope ‘lowland’ column
for wet meadow) that are interconnected by surface and subsur-
face lateral flow (see Supporting Information Fig. S1).

To better represent conditions at this high alpine site, includ-
ing strong winds that redistribute snow (Winstral et al., 2002;
Erickson et al., 2005), we made modifications to winter precipi-
tation in CLM that result in maximum snow depths that align
with periodic snow depth measurements collected across the
Saddle grid (D. Walker et al., 2022). Specifically, leeward (east-
facing) slopes accumulate the deepest winter snowpack and sup-
port more productive moist meadow communities, compared
with windward (west-facing) slopes that accumulate little snow
and support less productive dry meadow communities. When air
temperatures were below 0°C we modified precipitation as fol-
lows: moist meadow columns received 100% of observed Saddle
precipitation, wet meadow columns received 75% of observed
precipitation, and dry meadow columns received only 10% of
observed precipitation in the winter (increasing to 25% in the
spring), and when air temperatures were above freezing all col-
umns received the same precipitation as rain.

We also made modifications to soil properties that reflect
observations from Niwot Ridge. These soil property data came
from the National Ecological Observatory Network soil Megapit
measurements (NEON, 2022; as in Lombardozzi et al., 2023),
with additional modifications to reflect local heterogeneity, indi-
cating that wetter areas have deeper, more developed soils
(Burns, 1980; see Table 1 for details). Broadly, (1) wet meadow
columns had higher organic matter and clay content; (2) dry
meadow soils had a lower water holding capacity (reflecting their
rocky characteristics); and (3) all columns had a reduced dry sur-
face layer thickness, which provides a primary control on soil eva-
poration (Swenson & Lawrence, 2014).

To generate initial conditions, including vegetation and soil C
and N pools, we spun up all simulations for 200 yr in ‘acceler-
ated decomposition’ mode by cycling over forcing data from
2008 to 2011. Soil and vegetation C and N pools were then
allowed to equilibrate for another 100 yr (Lawrence et al., 2019).
We used observations of atmospheric data over the experimental
period from 2008 to 2021 to run historical simulations with fixed
CO2 concentrations (409 ppm CO2).

Floristic diversity: functional traits and phenology Before
modifying plant trait values using data collected at the site, we
ran a ‘default’ simulation that used the default CLM5 Arctic C3

grass plant functional type (PFT) with no parameter modifica-
tions. We did not expect this default simulation with an ‘out of
the box’ definition of a single PFT to capture the diversity
of plant growth strategies that is common in tundra ecosystems.
To better characterize tundra vegetation at Niwot Ridge, we sub-
sequently modified PFT parameterizations to represent distinct
tundra vegetation communities (as described in Jay et al., 2023).
Specifically, we created three distinct PFTs (using the Arctic C3

grass PFT as the starting point) representing dry, moist, and wet
meadow vegetation by modifying parameters related to foliar
traits, plant hydraulics, and photosynthetic capacity to match
vegetation growth strategies at our site (see Table 1 for default
and modified parameter values). We modified specific leaf area
(SLA) and foliar C : N ratios based on a synthesis of local site
observations for moist, wet, and dry meadow (described in ‘Foliar
traits and phenology’ in the Materials and Methods section). We
then used observations from the site and values from CLM
Arctic–boreal model development work (Fisk et al., 1998; Birch
et al., 2021) to modify fine root to leaf allocation for each com-
munity (Table 1). We decreased two plant hydraulic stress para-
meters that represent maximum stem and root conductivity
(Kennedy et al., 2019) in the dry meadow in order to represent
more conservative growth strategies. Finally, to better
represent the relatively conservative growth strategies of alpine
vegetation, we decreased two photosynthetic parameters, jmaxb0
and jmaxb1. These parameters specify the baseline proportion of
N allocated for electron transport and the response of electron
transport rate to light availability, respectively, in the mechanistic
model of photosynthesis (leaf utilization of N for assimilation or
LUNA; Ali et al., 2016) used in CLM5.

In addition to functional traits, we modified several phenology
parameters in our simulations using the phenometrics calculated
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from phenocam imagery for each community (described in
‘Foliar traits and phenology’ in the Materials and Methods sec-
tion). As described in Jay et al. (2023), we calculated accumulated
growing degree days (GDD; when surface soil temperatures
> 0°C) before the start of leaf onset using 5 cm soil temperature
observations from each plot and start of growing season dates
from each community. We used these community-specific GDD
values to modify a GDD scale factor in the CLM to incorporate
the higher GDD accumulation required to trigger leaf out in the
dry meadow (a 70% increase compared with moist and wet mea-
dows). We also modified the length of the greenup period in our
simulations (ndays_on parameter in the model; see Table S1) to
reflect the observed number of days between leaf onset and peak
greenness calculated for each vegetation community.

Model projections and uncertainty partitioning

Climate models typically consider uncertainty in the forced
response of climate change that is generated from alternative sce-
narios of future greenhouse gas emissions (Hawkins & Sutton,
2009). To simulate uncertainty among two potential climate
change scenarios and their effects on abiotic conditions, we
extended our simulations to 2100 under the SSP2-4.5 and SSP3-
7.0 scenarios (O’Neill et al., 2016). These represent medium and
high emissions scenarios, respectively, with atmospheric CO2

concentrations reaching 603 and 867 ppm by 2100. In CESM2,
this scenario uncertainty resulted in 2.1°C and 3.4°C degrees of
warming, respectively, in the gridcell that includes Niwot Ridge.
To allow for a smooth transition between the observed

meteorological record (2008–2021) and projected climate change
scenarios simulated by CESM2, we used an anomaly forcing pro-
tocol (Wieder et al., 2015) following the methods of Jay
et al. (2023). Briefly, the anomaly forcing protocol involves cal-
culating mean monthly anomalies of the atmospheric state by
subtracting CESM2 projections under SSP2-4.5 and SSP3-7.0
scenarios through the year 2100 from the climatological mean of
the ‘historic’ baseline (2005–2014). These monthly anomalies
were then added to observed meteorology (recycled over the
observed record from 2008 to 2021) as a way to extend our simu-
lations through 2100 under these two climate change scenarios.
We note that this anomaly forcing protocol only represents a sin-
gle model’s representation of potential climate change trajectories
in each of the SSP scenarios. Moreover, the coarse scale of a
CESM gridcell (nominal one-degree resolution), relative to the
scale of site observations, may underestimate rates of change in
high elevation ecosystems. Despite these limitations, this
approach provides opportunities to project a range of potential
abiotic changes that tundra ecosystems at Niwot Ridge may
experience through the end of this century.

To quantify uncertainty in potential biotic responses to cli-
mate change, we considered how shifts in the expression of plant
functional traits may mediate ecological responses to these two
climate change scenarios. To do this, we conducted plant trait
experiments that included the control case (parameterized for
each tundra vegetation community, as described above) as well as
two additional cases where all three communities were shifted to
have more resource-use conservative or acquisitive traits. To
represent these shifts in resource acquisition strategies, we focused

Table 1 Modifications to foliar, hydraulic, and photosynthetic parameters and soil properties in the Community Land Model (CLM) to better represent
moist, wet, and dry alpine meadow environments.

Parameter Description Units
Moist
meadow

Wet
meadow

Dry
meadow Default

slatop1,2 Specific leaf area m2 g"1 C 0.0215 0.029 0.015 0.0402
leafcn1,2 Leaf C : N g C g"1 N 19.6 17.7 18.5 28.03
ndays_on3 No. of days to complete leaf onset d 21 28 25 10
crit_onset_gdd_sf3 Scale factor modifying GDD Unitless 1 1 1.7 1
kmax2 Plant maximum conductance mm H2O mm"1 H2O s"1 2.42E-09 2.42E-09 2.30E-10 2.42E-09
krmax Root maximum conductance mm H2O mm"1 H2O s"1 8.05E-11 8.05E-11 2.05E-11 8.05E-11
jmaxb0 Baseline proportion of N for electron transport Unitless 0.0225 0.0225 0.0225 0.0331
jmaxb1 Response of electron transport rate to light

availability
Unitless 0.1 0.1 0.1 0.1745

froot_leaf New fine root C per new leaf C allocation g C g"1 C 1.5 1.5 2 2
d_max Dry surface layer thickness mm 10 10 10 15
h_bedrock Depth to bedrock m 1.3 1 1
wat_sat Water saturation (porosity) m3 m"3 wat_sat/2
organic4 Organic matter density kg m"3 80.7 107.6 80.7
sand4 Percent sand % 49.3 44.4 49.3
clay4 Percent clay % 12.7 14 12.7

Default values specified in the parameter file are listed for comparison where available. C, carbon; GDD, growing degree days; N, nitrogen. Adapted from
Jay et al. (2023).
1Values for each vegetation community from Spasojevic et al. (2013).
2Parameters that were modified in functional trait experiments to represent more resource-use conservative or acquisitive communities. See Supporting
Information Table S1 for exact values used in experiments.
3Values for each vegetation community derived from Niwot Ridge phenocam green chromatic coordinate (GCC) data set (Elwood et al., 2022) and
resulting phenometric calculations.
4Values based on National Ecological Observatory Network (NEON) Megapit (NEON, 2022).
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on functional traits, modifying SLA, leaf C : N, and kmax, or
plant maximum conductance, used here as a proxy for water use
efficiency (see Table S1 for modified trait values used in these
experiments), three traits that are important in shaping plant
resource use strategies (D!ıaz et al., 2016). Specifically, we
increased SLA and kmax and decreased leaf C : N to represent
more resource-acquisitive communities (and vice versa for more
resource-use conservative communities; Table S1) based on their
well-established relationships with the leaf economics spectrum,
which extends to tundra ecosystems (Thomas et al., 2020). We
increased/decreased SLA and leaf C : N by 20% based on the
variability in these traits observed at our site (Fig. 2) and
increased/decreased kmax by 10% due to the high sensitivity of
the model to this parameter.

We chose to vary plant functional trait responses toward more
resource-conservative and acquisitive growth strategies this way
because it reflects real uncertainty in the potential direction of
alpine communities to environmental change. On one hand,
more resource-conservative traits may be favored in tundra
patches experiencing longer growing seasons but increasing soil
moisture or thermal stress. By contrast, more resource-acquisitive
traits may be beneficial in patches with higher resource availabil-
ity throughout the growing season. Our simulated magnitude of
trait change is also supported by previous work: Bjorkman
et al. (2018) quantified biome-wide shifts in tundra functional
traits based on measurements across 117 tundra sites over three
decades and found that SLA increased by c. 5% per °C of warm-
ing. By modifying these parameters together, we aim to capture
the range in biotic responses that could occur with climate
change in each vegetation community. We also note that our
experimental design represents an instantaneous shift in plant
resource acquisition strategies. This simplification belies ecologi-
cal uncertainties in the direction and rate of change that a parti-
cular tundra vegetation community may actually express. Our
intent, therefore, is to broadly quantify uncertainties in climate
change scenarios vs shifts in plant functional traits that may be
experienced in tundra ecosystems. In CLM, leaf onset for the
Arctic C3 grass PFT is controlled by soil temperature (via grow-
ing degree days). Thus, phenological shifts are implicitly tied to
the climate scenarios because warmer soils and earlier snowmelt
advance greenup. Our experiments included shifts in functional
trait parameters but not phenology parameters for this reason.

Using the two climate change scenarios and the three plant
trait experiments described above, we ran six different CLM
simulations from 2022 to 2100. We analyzed the outputs from
these six simulations to partition the total uncertainty into plant
trait and scenario contributions using a fixed effects analysis of
variance for two groups following Bonan et al. (2019). We first
calculated ensemble means for each model experiment and then
calculated total uncertainty as the variance across the six-member
ensemble. Scenario uncertainty was calculated as the variance of
the multi-model means, and plant trait uncertainty was calcu-
lated as the mean of the multi-model variances for the SSP2-4.5
and SSP3-7.0 scenarios. We then determined the proportion of
the total variance contributed by plant traits and climate scenar-
ios for each year in our time series (2022–2100).

Results

Observed foliar traits and phenology

We found that community weighted mean functional traits and
phenology differed significantly among moist, wet, and dry mea-
dow alpine tundra vegetation. As expected, functional traits of
dry meadow vegetation were more resource-use conservative,
whereas moist and wet meadow vegetation tended to show more
resource-acquisitive traits (Fig. 2). Specifically, dry meadow vege-
tation had lower SLA, higher leaf C : N, and higher d13C (a
proxy for water use efficiency) compared with wet meadow vege-
tation. Counter to expectations, leaf C : N in the dry meadow
was slightly lower than that of moist meadow, but SLA and d13C
followed expected patterns (Fig. 2b). All pairwise comparisons
between vegetation communities for each trait were statistically
significant (P < 0.001).

Phenology, derived from GCC curves, also differed among
vegetation communities (Fig. 3). Dry meadow vegetation
greened up (Fig. 3b) and reached peak greenness (Fig. 3c) earlier
compared with moist and wet meadow vegetation, though these
differences were not statistically significant. Dry meadow also
senesced later (Fig. 3d; P < 0.05) compared with moist meadow,
resulting in a longer growing season than moist and wet meadow
vegetation. Dry meadow also experienced a faster rate of spring
greenup than moist and wet meadows (Fig. 3d; P < 0.01) and
lower peak greenness (Fig. 3c; P < 0.01). By contrast, in the
moist and wet meadows, where deeper snow delayed the onset
and length of the growing season, median greenup day of year
and rate of spring greenup values were very similar (Fig. 3b,d).

Model evaluation: comparing default and parameterized
plant functional types

Using community-specific plant functional traits and phenology
parameterizations (Figs 2, 3; Table 1) reduced biases in simulated
plant productivity across all vegetation communities relative to
the model default parameterization (Fig. 4). Flux tower measure-
ments from Niwot Ridge suggest that annual GPP in the dry
meadow/fellfield totals 114 # 75 g C m"2 yr"1. The default
parameterization for Arctic C3 grasses produced notably high
annual GPP compared with historic simulations using observa-
tionally based parameterizations for dry meadow vegetation
(1041 # 188 g C m"2 yr"1 and 251 # 39 g C m"2 yr"1 for
default and calibrated model, respectively).

Additional lines of evidence suggest that vegetation-specific
parameterizations improved simulated C-cycle dynamics across
all vegetation communities. By modifying plant trait parameteri-
zations to reflect resource acquisition strategies across tundra
vegetation communities, parameterized model simulations cap-
tured the differences in ANPP. Specifically, productivity values
increased with moisture and snow depth as in the observations
(Fig. 4b). By contrast, in the default simulation, the dry meadow
had the highest ANPP.

Incorporating community-specific phenology derived from
phenocam imagery (GDD and number of days to complete leaf
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onset) improved vegetation phenology in our simulations, but
mismatches remain between modeled GPP and observed GCC
curves (Fig. 5). Phenology observations from the site suggest that
snowmelt controls the timing of greenup in the moist and wet
meadows; the median start of season (sos) day of year was c. 175
and 177 in moist and wet meadows, respectively (Fig. 3b). Simu-
lated snowmelt did not occur until day 190 and 175 on moist
and wet meadow columns, respectively. Thus, greenup was
delayed in the model relative to phenocam observations (Fig. 5a,
b). In the dry meadow, where snow cover is thin and variable, we
increased the number of GDD relative to the default value in
CLM (see Table 1). As a result, the timing of greenup and senes-
cence in our simulations closely matched the timing of phenocam
GCC observations (Fig. 5c). In all three communities, the timing
of the peak of the growing season was similar between our simu-
lations and in situ observations as a result of modifying the num-
ber of days required to complete leaf onset, but the shape of the
curves differed (Fig. 5). Specifically, GCC declined gradually
throughout the growing season in the observations, while GPP
was consistently high throughout the growing season in the CLM
simulations until the critical daylength value was reached to trig-
ger senescence (Fig. 5).

Model projection: plant functional trait vs scenario
uncertainty

Building on our finding that there is significant functional trait
variation within communities at the site (Fig. 2), we made addi-
tional trait modifications under our climate change scenarios that
explore the uncertainty associated with a concurrent shift in trait

expression within communities (e.g. toward a more resource-
acquisitive or resource-conservative suite of traits). To examine
how plant traits and climate scenario uncertainty affect tundra
productivity under climate change, we extended our simulations
to the year 2100 for moist, wet, and dry meadow vegetation
under two different climate change scenarios (SSP2-4.5 and
SSP3-7.0). For each of the three communities, we modified three
parameters (SLA, leaf C : N, and kmax) to represent potential
shifts toward more resource-use conservative or acquisitive
growth strategies that may occur as a result of climate warming,
and included these in our climate change projections. The anom-
aly forcing from CESM2 included increases of 2.1°C and 3.4°C
in air temperature and 11.2% and 12.7% in precipitation by
2100 for SSP2-4.5 and SSP3-7.0, respectively, relative to the his-
torical baseline (Table S2). These projected climate changes
drove shifts in snowmelt, soil moisture and temperature, leaf
onset timing, productivity, and runoff that varied across the
topographically heterogeneous terrain (see Jay et al., 2023 for
more details). Here, we partition the variance in productivity
changes that are projected across tundra vegetation types resulting
from abiotic drivers (from climate change scenarios) and poten-
tial biotic responses to climate change (from potential shifts to
more resource-conservative vs acquisitive plant functional traits).

With projected warming, we found that GPP and ANPP
increased in the moist and wet meadows under both climate
change scenarios. Changes in the dry meadow were more vari-
able, with smaller increases in GPP and little or no change in
ANPP (Figs 6, S2). In all future scenarios, positive GPP values
occurred earlier and peak growing season GPP was higher com-
pared with the historical simulation, reflecting both a phase shift
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Fig. 4 Incorporating site-specific parameters for plant functional traits and phenology parameters greatly improves model estimates of productivity.
(a) Mean annual climatology of gross primary productivity (GPP; averaged by day of year from 2008 to 2021) and (b) boxplots of mean annual
aboveground net primary productivity (ANPP) in a ‘default’ CLM simulation with Arctic C3 grasses compared with a simulation with calibrated, Niwot
Ridge-specific parameterizations and Niwot Ridge observations (Obs) from: (a) eddy covariance measurements (black line) and (b) aboveground biomass
clippings at the Saddle. Moist, wet, and dry meadows are shown in green, blue, and orange, respectively. Boxplot parameters are as follows: median
(white lines), interquartile range (boxes), 1.59 interquartile range (whiskers), and outliers outside of this range (points).
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and amplification of productivity. This phenological shift
resulted from earlier snowmelt (Fig. S3) and warmer soil tem-
peratures that afforded longer growing seasons, especially under
the SSP3-7.0 scenario.

The model also simulated amplification of daily GPP fluxes
under the climate change scenarios from a combination of war-
mer temperatures and higher atmospheric CO2 concentrations.
These factors increase photosynthetic rates (Dong et al., 2019)
and water use efficiency (Keenan et al., 2013), increasing leaf area
index and daily GPP that is simulated by the model under the
future scenarios. This amplification response was strongest in
the moist and wet meadow, and under the SSP3.7-0 scenario
compared with SSP2.4-5 (Figs 6a,b, S1a,b), but we found more
muted C-cycle responses between the two scenarios in the dry

meadow (Figs 6c, S1c). This response reflects the more favorable
resource environments and resource-acquisitive traits found in
the moist and wet meadow communities.

Besides these abiotically driven changes, we found a strong
C-cycle response associated with potential shifts in functional
traits of plant growth strategies. The shaded area for each climate
scenario in Fig. 6 illustrates the magnitude of amplification
uncertainty associated with shifts between resource-acquisitive vs
conservative growth strategies. Specifically, shifts toward more
resource-acquisitive traits (i.e. higher SLA, lower leaf C : N, and
higher kmax) resulted in higher rates of GPP in all three commu-
nity types and under both future climate scenarios. These changes
were stronger for GPP than ANPP, particularly in simulations
for dry meadow communities, and resource-acquisitive traits did
not appear to increase ANPP (Fig. S2).

Variance partitioning analyses revealed that these shifts in
plant functional traits represent a large source of uncertainty
in future C-cycle responses, but the proportion of uncertainty
attributed to traits varied among communities, over time, and by
C-cycle metric (Fig. 7). Before 2060, trait uncertainty contribu-
ted a much greater proportion of variance in GPP than scenario
uncertainty for all three vegetation communities (representing
c. 70–100% of total uncertainty in the moist and wet meadows
and c. 90–100% of total uncertainty in the dry meadow). After
2060, the contribution of functional trait uncertainty to total
uncertainty decreased in the moist and wet meadows, ranging
from 20% to 60% in most years, but remained relatively high
and constant in the dry meadow through the end of this century
(Fig. 7a–c).

There was much less variability in ANPP as a result of modify-
ing plant resource acquisition strategies (Figs 6, S1). Accordingly,
the proportion of variance in ANPP attributed to potential
changes in plant traits was more variable than that of GPP, with
trait uncertainty contributing anywhere from 10% to 100% of
the variance depending on the year and community. Overall, cli-
mate scenario uncertainty contributed a larger proportion of total
ANPP variance in the moist and wet meadows, particularly after
2060, when the trait uncertainty contributed < 20% (Fig. 7d–f).
By contrast, ANPP variance in the dry meadow was still domi-
nated by plant trait uncertainty until nearly the end of the cen-
tury (c. 2080) when the contribution of scenario uncertainty
increased, ranging from c. 40% to 65% (Fig. 7f).

Discussion

Our efforts to synthesize site-level observations into land model
simulations with the CLM revealed significant community-level
differences in functional traits and phenology among tundra
vegetation. Incorporating this variability into ecosystem model-
ing efforts, where these communities would typically be repre-
sented by a single PFT, is critical to better understand how the
ecosystem function of diverse tundra vegetation may shift under
future climate conditions. Our findings reveal that potential plant
functional trait shifts mediate ecosystem productivity responses
to climate change. Specifically, we found that interacting shifts in
the timing of leaf onset (driven by warming and earlier snowmelt
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Fig. 5 Climatologies of simulated snow depth (m; blue lines) and gross
primary productivity (GPP, g C m"2 d"1; brown lines) from the
Community Land Model (CLM) with Niwot Ridge-specific parameter
values for vegetation functional traits and phenology, compared with
phenocam-derived green chromatic coordinate (GCC, green lines) values.
Panels include (a) moist meadow, (b) wet meadow, and (c) dry meadow.
Climatological mean # SD was calculated over the 13-yr data record for
each vegetation community.
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under climate scenarios) and functional traits led to both a phase
shift and an amplification of ecosystem productivity (Figs 1, 6),
suggesting that tundra ecosystems may be able to track future cli-
mate changes with shifts in functional traits. Notably, the effects
of trait uncertainty on productivity were greater than those of
uncertainty among climate scenarios until 2060 – and through
the end of the century for dry meadow communities – indicating
that this type of ecological uncertainty should be considered in
climate change predictions. Our findings underscore the impor-
tance of understanding the direction and rate of biotic responses
to this trait uncertainty in predicting ecosystem responses to
future climate change.

Functional trait and phenological observations reduce
model biases

We found that modifying key parameters corresponding to plant
functional traits and phenology greatly improved the agreement
of modeled C cycle metrics with observations in comparison to a
default simulation. This was particularly evident in the dry mea-
dow, which had the highest ANPP values in the default simula-
tion, a pattern not supported by clip harvests from the site
(Fig. 4b). This indicates that the default Arctic C3 grass parame-
terization does not capture the more resource-conservative

growth strategies that are characteristic of dry meadow vegeta-
tion. However, some biases remain in our calibrated results. Our
simulations overestimated growing season GPP in the dry mea-
dow (Fig. 4a), suggesting that simulated dry meadow vegetation
does not experience adequate soil moisture stress, while underes-
timating ANPP by c. 30–40 g C m"2 yr"1 in dry and moist
meadows, respectively (Fig. 4b). Because these observations are
spatially distinct (with the clip harvests from the Saddle site and
GPP from a drier south-facing site), they represent slightly differ-
ent estimates of dry meadow communities; thus, our results sug-
gest that our simulations are representing a reasonable middle
ground of these different sites.

Our findings highlight the importance of incorporating field
observations of plant traits to represent diverse vegetation growth
strategies that are not captured by broad PFT groupings. Lever-
aging the hillslope hydrology configuration within CLM in com-
bination with local plant functional trait and phenology
observations allowed us to capture environmental gradients
within tundra vegetation (see Jay et al., 2023 for detailed model
evaluation of snow, soil moisture and temperature, and produc-
tivity at this site). Our findings indicate that Arctic C3 grass traits
in CLM are not representative of tundra vegetation, which tends
to be nutrient-use conservative (Reich, 2014) and adapted to
extreme environmental conditions including short growing

(a)

(b)

(c)

Fig. 6 Community Land Model (CLM) estimates of gross primary productivity (GPP) from historical (black) and Shared Socioeconomic Pathways (SSP)
scenarios, including SSP2-4.5 (blue) and SSP3-7.0 (red). Panels show different vegetation communities, including (a) moist meadow, (b) wet meadow, and
(c) dry meadow. Within each SSP scenario, the bold line represents the control simulation and the shading represents the variability due to trait
experiments (from lower values with conservative traits to higher values with acquisitive traits, both represented by dashed lines). Values were averaged by
day of year from 2008 to 2021 (historical) and 2087 to 2100 (SSP scenarios).
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seasons, low temperatures, and nutrient limitation (Litaor
et al., 2008; Testolin et al., 2021). While we modified our simu-
lations based on field measurements available from our site,
further modifications of PFTs, including less frequently mea-
sured parameters such as Vcmax and stomatal conductance (Bonan
et al., 2011; Hudiburg et al., 2013), would further improve the
representation of tundra ecosystems.

Incorporating community-specific leaf-out timing greatly
improved modeled productivity estimates, and remaining biases
in phenology varied among communities. The delay in greenup
in simulated moist and wet meadows revealed limitations of our
calibration of snow for different vegetation communities, where
the spatially heterogeneous nature of available data sources at
Niwot Ridge presents challenges for model calibration. However,

colocated measurements of snow depth, vegetation phenology,
plant traits, and ecosystem fluxes are rarely available at a single
site, and we find that our simulations are broadly representative
of the vegetation communities at this site despite the high spatial
heterogeneity present in alpine terrain (Figs 4, 5; Opedal
et al., 2015). Phenology for seasonal-deciduous cold region PFTs
in the CLM is driven primarily by temperature and daylength,
where temperature triggers leaf onset when accumulated GDDs,
soil temperature, and snow depth reach a critical value. Conver-
sely, senescence and leaf litterfall occur when daylength is shorter
than a critical value. This approach may be appropriate for
energy-limited tundra vegetation, but it neglects the potential
role of water stress that is characteristic of dry tundra commu-
nities. Moreover, the CLM phenology scheme was developed
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Fig. 7 Results of uncertainty partitioning
analysis showing the proportion of total variance
in productivity attributed to uncertainty in traits
(green, blue, and orange for moist, wet, and dry
meadows, respectively) and climate change
scenario (gray) for each vegetation community.
(a–c) Gross primary productivity (GPP), (d–f)
aboveground net primary productivity (ANPP).
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from temperate deciduous forests (White et al., 1997) and results
in delayed predictions of leaf senescence as well as limited inter-
annual variability in alpine vegetation (Figs 4a, 5; Jay
et al., 2023). Potential biases are exacerbated at high latitudes
and elevations; in an evaluation of Arctic–boreal C-cycling in the
CLM5, Birch et al. (2021) found that leaf onset and senescence
were consistently late across PFTs. Analyses of phenocam images
paired with microclimate measurements at Niwot Ridge suggest
that greenup is strongly controlled by snowmelt and soil tempera-
ture, while senescence is controlled by both soil temperature and
moisture (S. C. Elmendorf, unpublished). Taken together, our
findings suggest that incorporating phenocam observations into
modeling efforts and further refining phenology schemes to bet-
ter represent variation among PFTs is critical for accurately pre-
dicting potential shifts in ecosystem productivity and C cycling.

Plant functional trait uncertainty outweighs scenario
uncertainty

Overall, we found that differences among climate scenarios
appear to control the onset of vegetation greenup and the timing
of peak GPP in tundra ecosystems, leading to a phase shift in eco-
system productivity, while functional trait shifts primarily shaped
GPP outcomes integrated over the entire growing season, leading
to an amplification of productivity (Figs 1, 6). The magnitude of
these phase shifts and amplifications, as well as the relative contri-
butions of uncertainties to C-cycle metrics, however, varied
among vegetation communities and over time. The contribution
of plant trait uncertainty to total uncertainty decreased in the
moist and wet meadows after the year 2060, but remained consis-
tent in the dry meadow. This shift after 2060 suggests that the
larger magnitude increases in temperature and atmospheric CO2

concentrations occurring later in the century have a greater effect
on productivity responses. Plant trait and climate scenario uncer-
tainties also varied by C-cycle metric, where the contribution of
trait uncertainty in ANPP was smaller and more variable com-
pared with GPP. This difference between C-cycling metrics
(GPP vs ANPP) is likely related to an increase in autotrophic
respiration with warming (Drake et al., 2016), which led to a
higher contribution of scenario uncertainty to overall variance
in ANPP.

In addition to the differences over time and by C-cycle metric,
we observed variability in responses among vegetation commu-
nities across a snow accumulation gradient. This was unsurpris-
ing given the underlying abiotic heterogeneity that moderates
exposure and rates of response to climate change at local scales in
tundra ecosystems (e.g. Wieder et al., 2017; Oldfather & Ack-
erly, 2019; Jay et al., 2023). Growing season length and peak
growing season GPP increased more between the medium and
high emissions scenarios in the moist and wet meadows than in
the dry meadow, where GPP did not increase substantially
between the two scenarios (Fig. 6). This increase in growing sea-
son length reflects CLM assumptions that phenological shifts
tightly track environmental change, as the environmental triggers
that initiate leaf onset in the model are based on abiotic factors
like snow depth and soil temperature. This earlier greenup under

future climate scenarios is broadly consistent with experimental
field manipulations that accelerated snowmelt at Niwot Ridge
and generally found strong tracking of plant phenology to abiotic
change (Rose-Person et al., 2024). The differences among vegeta-
tion communities are likely due to differences in snow accumula-
tion, where the timing of peak snow depth and snowmelt was
much earlier in the moist and wet meadows under the higher
emissions scenario (but with very little change in maximum snow
depth; Fig. S3). This accelerated snowmelt increased soil tem-
peratures, releasing moist and wet meadow vegetation from short
growing season limitations and leading to a greater contribution
of climate scenario uncertainty to total uncertainty in these com-
munities compared with the dry meadow. By contrast, productiv-
ity of the dry meadow communities is more limited by soil
moisture stress, rather than snow and soil temperature (Wieder
et al., 2017), and growth strategies are more resource-use conser-
vative. Accordingly, productivity increased with shifts toward
more resource-acquisitive traits, but the magnitude of this
increase was likely limited by increased moisture stress under the
higher emissions scenario.

Our model experiments applied an instantaneous shift in
plant functional traits at the beginning of the climate change
scenarios. This allowed us to examine the sensitivity of future
productivity outcomes to climate change scenarios that may
emerge from more resource-use acquisitive or conservative
communities based on trait values that fall within the observed
range of variability at our site (Fig. 2). However, our modeling
experiments do not capture the direction or rate at which plant
traits may shift with climate change, which is likely to vary
across vegetation communities and environmental gradients
(Oldfather et al., 2024). For example, if abiotic change leads
to increased resource availability, this should favor individuals
with more resource-acquisitive traits, while abiotic changes that
create more stressful conditions should favor those with more
conservative growth strategies, but these patterns can be com-
plicated by interacting global change factors and temporal var-
iation in environmental drivers (Pacifici et al., 2017; Huxley
et al., 2023; Henn et al., 2024). These more nuanced vegeta-
tion responses are typically lacking in land modeling efforts
that use static PFT parameterizations (Verheijen et al., 2013).
Similar limitations apply to phenological responses, which in
CLM are tightly coupled to climate drivers; future work could
explicitly assess phenological uncertainty, which has been
shown to propagate into ecosystem carbon uptake (Migliavacca
et al., 2012). Advances in vegetation demographic models seek
to provide computational tools to address these gaps through
improved representation of ecologically relevant processes, for
example by allowing disturbance and light competition to
moderate interactions between plant functional traits and
resource acquisition (Fisher et al., 2015). Given the uncertainty
in ecosystem responses to shifts in plant functional traits, expli-
cit consideration of these mechanisms should be included in
climate change predictions, particularly by incorporating vege-
tation demography and trait–environment relationships that
can account for the functional responses of vegetation into
land modeling efforts.
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Conclusions

Taken together, our results suggest that uncertainties from poten-
tial changes in plant traits can exceed uncertainties from climate
change scenarios in determining plant productivity responses to
warming over the coming decades. The rate and direction of
these trait responses will likely mediate the ability of vegetation
to track (or lag) abiotic shifts driven by climate change (Fig. 1;
Felton et al., 2022). In our model experiments, the interacting
effects of changes in plant traits and climate change scenarios led
to both a phase and an amplification shift of future tundra pro-
ductivity. However, the more stress-tolerant, dry meadow patches
responded more slowly than the wetter, snowier moist and wet
meadow patches, suggesting that spatial heterogeneity in snow
accumulation will moderate whether communities may track, or
lag, future climate changes. Accounting for this ecological uncer-
tainty in future climate change projections is critical for better
understanding terrestrial vegetation responses and their effects on
ecosystem function.
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Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 Overview photo and diagram of the Saddle site and asso-
ciated vegetation communities at Niwot Ridge.

Fig. S2 Community Land Model (CLM) estimates of above-
ground net primary productivity (ANPP) from historical (black)
and Shared Socioeconomic Pathways (SSP) scenarios, including
SSP2-4.5 (blue) and SSP3-7.0 (red).

Fig. S3 Community Land Model (CLM) estimates of snow
depth (m) from historical (black) and Shared Socioeconomic
Pathways (SSP) scenarios, including SSP2-4.5 (blue) and SSP3-
7.0 (red).

Table S1 Plant functional trait values used to modify parameters
for control, conservative, and acquisitive trait experiments for
moist, wet, and dry meadows.
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Table S2 Increase in mean annual temperature and mean annual
precipitation between the historical simulation (averaged over
200–2021) and each of the two SSP–RCP scenarios (averaged
over 2087–2100).
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