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ABSTRACT

Medical robotics has revolutionized healthcare by enhancing precision, adaptability, and clinical outcomes. This field has further

evolved with the advent of human-machine interfaces (HMIs), which facilitate seamless interactions between users and robotic
systems. However, traditional HMIs rely on rigid sensing components and bulky wiring, causing mechanical mismatches that
limit user comfort, accuracy, and wearability. Flexible sensors offer a transformative solution by enabling the integration of adapt-

able sensing technology into HMIs, enhancing overall system functionality. Further integrating artificial intelligence (AI) into

these systems addresses key limitations of conventional HMI, including challenges in complex data interpretations and multi-

modal sensing integration. In this review, we systematically explore the convergence of flexible sensor-based HMIs and Al for

medical robotics. Specifically, we analyze core flexible sensing mechanisms, Al-driven advancements in healthcare, and appli-
cations in prosthetics, exoskeletons, and surgical robotics. By bridging the gap between flexible sensing technologies and AI-
driven intelligence, this review presents a roadmap for developing next-generation smart medical robotic systems, advancing

personalized healthcare and adaptive human-robot interactions.

1 | Introduction

Medical robotics has witnessed remarkable growth in recent
years, driven by escalating demands to address aging popula-
tions, chronic disabilities, and the need for improved patient care,
minimally invasive treatments, and enhanced rehabilitation out-
comes. Over the past decade, advancements in robotics, materials
science, sensors, and artificial intelligence (AI) have accelerated
the development of diverse medical robotic systems, including
prosthetics, exoskeletons, and surgical robots. Prosthetic devices
now offer amputees enhanced limb control and sensory feedback
to mimic natural movement and perception, while exoskeleton
systems are revolutionizing mobility rehabilitation by provid-
ing assisted and adaptive training for stroke patients [1-4].

Additionally, surgical robots provide unprecedented precision
and dexterity, facilitating complex procedures with reduced
trauma and quicker recovery times [5, 6]. These technologies
are increasingly deployed in clinical, rehabilitative, and home-
care settings, addressing critical gaps in personalized and acces-
sible healthcare. As technological advancements redefine the
capabilities of medical robotics, human-machine interfaces
(HMIs) have emerged as critical enablers of intuitive and
adaptive interactions between users and robotic systems. HMI
systems, reinforced by sensors that capture various biophysiolog-
ical and external signals, serve to translate human intentions into
robotic commands while enabling real-time sensory feedback,
thereby enhancing precision, user autonomy, and safety [7-10].
For instance, HMIs can decode signals from the user’s muscles to
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control robotic gloves, realizing dynamic and targeted active
rehabilitation training [11].

Although there has been considerable progress in integrating
HMI systems with robotic equipment, many of these technolo-
gies continue to rely on rigid sensing electronics and bulky
machines that emphasize robotic control while lacking sufficient
feedback. Rigid sensors, typically fabricated from inflexible met-
als or semiconductors, suffer from mechanical mismatches when
interfacing with the human skin, soft biological tissues, and the
surface of the robotic body, therefore limiting accuracy, wearabil-
ity, user comfort, and overall functionalities. These limitations
are particularly pronounced in dynamic applications such as
prosthetic grip control or exoskeleton joint monitoring, where
rigid sensors fail to conform to curvilinear body surfaces or detect
subtle force variations. With the rapid advancement of flexible
electronics, HMIs are transitioning from conventional bulky
equipment to miniaturized, intelligent systems [12]. Flexible sen-
sors can be engineered from stretchable polymers, nanomateri-
als, or hybrid composites to address these challenges by offering
flexibility, biocompatibility, conformability, and high sensitivity
to multimodal stimuli, making them ideally suited for HMI sys-
tems [8, 13, 14]. Current flexible sensing technologies that detect
mechanical stimuli mainly include triboelectric sensors that con-
vert mechanical inputs into electrical signals due to the triboelec-
tric effect, piezoelectric sensors that generate electrical signals in
response to mechanical strain, and piezoresistive and capacitive
sensors that change resistance or capacitance under deformation
[14, 15]. Additionally, electrophysiological sensors can monitor
various bioelectric signals based on electromyography (EMG),
electroencephalography (EEG), electrooculography (EOG), and
electrocardiography (ECG) from activities of the muscles, brain,
eyes, and heart, respectively [7, 16]. While these sensors are pre-
dominantly based on contact modalities, recent technological
advances have enabled the development of noncontact sensing
modes for HMIs. For instance, Lu et al. developed a flexible
resistive-based humidity sensor for noncontact HMI in medical
settings [17]; Le et al. integrated a piezoelectric resonant humid-
ity sensor and a triboelectric sensor for non-contact HMI [18];
Gao et al. proposed a thermoelectric sensor enabling noncontact
information transfer and also functioning as tactile electronic
skin via piezoresistive effects [19]. Such approaches help reduce
mechanical wear, lower cross-infection risk, and enhance envi-
ronmental adaptability, showing promising potential in medical
robotics applications. As medical robots evolve to perform com-
plex tasks in dynamic environments, sensor requirements have
expanded to include multimodal sensing fusion, high precision
and intelligence, miniaturization, and robustness against envi-
ronmental interference.

To further optimize user experience and the performance of med-
ical procedures, Al can be integrated into HMIs for medical
robotic applications to not only significantly enhance real-time
adaptive interactions but also facilitate complex data interpreta-
tions from single to multimodal sensing. To fully harness the
potential of flexible sensor-based HMIs in medical robotics, Al
plays a crucial role in overcoming inherent limitations such as
complex signal variations and system uncertainty [20]. In the
absence of advanced Al capabilities, these systems may struggle
to efficiently extract meaningful patterns from vast and unstruc-
tured sensor data, leading to reduced accuracy in detecting subtle

physiological changes or executing precise robotic control with
solely preset thresholds [21]. Furthermore, the lack of Al-driven
learning mechanisms limits adaptability to user-specific varia-
tions and real-time decision-making, which are essential for opti-
mizing medical procedures and ensuring seamless interactions
between humans and machines. Currently, Al has made great
advancements in various aspects of sensing systems for medical
robotic HMIs, contributing to advancements in flexible sensing
system design, signal processing, and multimodal sensing
through numerous machine learning (ML) and deep learning
(DL) methods [22]. For intelligent robotic HMIs, one compelling
application of Al-driven signal processing techniques is to enable
advanced preprocessing and feature extraction of the acquired
signals, facilitating intelligent signal augmentation and pattern
recognition that enhance system functionality and provide
context-aware interpretation of complex physiological and envi-
ronmental inputs [23]. This fusion integrating AI with flexible
sensor-based HMI systems resolves longstanding limitations of
conventional HMIs, such as their inability to adapt to dynamic
biological environments, lack of nuanced feedback in surgical
robots, and mechanical incompatibility of rigid sensors with soft
tissues.

There have been numerous published reviews on flexible sensors
for HMI applications, focused on sensing mechanisms [8, 24-26],
material selection [27-30], design strategies [15, 31, 32], and
robotic applications [20, 33]. By contrast, this work distinguishes
itself by bridging the gap between flexible sensing technologies
and Al-enabled HMI frameworks to strategically advance the
development of smart, human-centric medical robotic systems.
By systematically exploring sensing mechanisms, Al technologies
that enhance HMI systems, and their applications in smart med-
ical robotics, this review provides a comprehensive and unique
approach into the synergistic interaction between flexible
sensor-based HMI systems and effective AI algorithms that
can transform the landscape of modern healthcare (Figure 1).
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FIGURE 1 | A schematic overview of the flexible sensor-based HMI
with Al, categorizing flexible sensing, Al-integrated HMIs, and their
applications in medical robotics.
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Specifically, we begin by exploring the operational mechanisms
of key flexible sensing mechanisms, including triboelectric, pie-
zoelectric, piezoresistive, capacitive, and electrophysiological
methods. Next, we methodically address the transformative role
of Al in optimizing sensor system design, processing multimodal
signals, and enabling context-aware HMIs for healthcare. Then,
we emphasize real-world healthcare applications using medical
robotics, detailing prosthetics applications with perception and
control, adaptive exoskeletons for personalized healthcare and
force augmentation, and sensor-integrated surgical robots for
enhanced precision and safety. Finally, we conclude with the
challenges and future perspectives in this field.

2 | Fundamentals and Advances of Flexible
Sensing Technologies

Flexible sensors that rely on physical sensing mechanisms can
detect various mechanical stimuli, such as pressure and strain,
and convert them into electrical signals. Typically fabricated
from soft, stretchable, or bendable materials, these sensors can
be seamlessly integrated into various wearable devices. Their
high sensitivity, lightweight design, versatile sensing capabilities,
and excellent adaptability to complex surfaces enable natural and
unobtrusive interactions with the human body while maintain-
ing robustness under dynamic deformations, making them par-
ticularly suitable for HMI applications. As the backbone of
intuitive, intelligent, and responsive interfaces, these sensors
play a critical role in enhancing user experiences and facilitat-
ing seamless interactions. In particular, flexible sensing technol-
ogy can improve precision, functionality, and automation, paving
the way for significant advancements in medical robotics. Based
on their working mechanisms, flexible sensors can be broadly
categorized into several types: triboelectric, piezoelectric, piezor-
esistive, capacitive, and electrophysiological sensors [34-38].
Herein, we briefly introduce the principles of each sensing
technology.

2.1 | Triboelectric Sensors

Triboelectric devices, considered an emerging and pivotal devel-
opment in the realm of energy technologies, were first introduced
in 2012 by Zhonglin Wang [39]. These devices operate based on
the coupling of triboelectricity and electrostatic induction,
enabling the conversion of diverse mechanical stimuli into elec-
trical signals. This functionality provides significant potential for
applications in sensing, where accurate and efficient detection of
various stimuli is increasingly in demand. Typically, triboelectric
sensors primarily involve two critical components: triboelectric
layers and electrodes. When mechanical stimuli such as pressure,
vibration, bending, or sliding are applied to triboelectric sensors,
they induce contact and separation or relative motion between
the triboelectric layers, enabling the generation of triboelectric
charges due to the different electron affinity of such materials.
As a result, materials that tend to donate electrons acquire posi-
tive charges, whereas those that accept electrons attain negative
charges. Simultaneously, the electron transfer and separation
between the two layers create a potential difference between
the electrodes to produce electrical signals. The signal output

of triboelectric sensors is typically influenced by the frequency,
magnitude, and contact area of the external stimulus, ensuring
accurate and real-time feedback. To achieve high sensitivity
and enhanced signal generation, triboelectric sensors are often
designed with flexible structures to optimize charge transfer effi-
ciency. In particular, flexibility is a critical characteristic of tribo-
electric sensors for HMI applications, allowing them to conform
seamlessly to non-planar or irregular surfaces, such as human
skin or textile-based substrates. This adaptability not only enhan-
ces user comfort but also facilitates precise signal acquisition,
which is essential for effective interaction in HMI. In addition,
flexible sensors can withstand prolonged mechanical stress from
bending, stretching, or twisting. This is vital for dynamic HMI
systems, such as robotic control interfaces, where durability
under frequent deformation is needed. Therefore, choosing the
appropriate triboelectric layer and electrode material is crucial
to enhance the functionality and reliability of HMI technologies.

Typically, synthetic polymers, natural or bio-based materials, and
composite materials are widely utilized to fabricate triboelectric
layers of flexible triboelectric sensors. Synthetic polymers such as
polytetrafluoroethylene (PTFE), polydimethylsiloxane (PDMS),
polyimide (PI), polyamide (PA), polyurethane (PU), polyethylene
terephthalate (PET), polycaprolactone (PCL), and ecoflex can
offer excellent flexibility and ensure the adaptability of triboelec-
tric sensors. Natural or bio-based materials like human skin, silk,
and cellulose are also commonly utilized due to their excellent
biocompatibility and eco-friendly performance. Composite mate-
rials that integrate multiple functionalities and enhanced tribo-
electric performances are ideal candidates for triboelectric layers
of triboelectric sensors. To improve the charge density and sen-
sitivity of the triboelectric layer materials and triboelectric sen-
sor, micro/nano textures or porous structures can also be
designed on the surface of flexible triboelectric layers [40, 41].
In addition, the electrodes in triboelectric sensors determine
the effect of electrostatic induction and electrical signal transmis-
sion in HMI applications. Common electrode materials for tribo-
electric sensors include pure metals (such as Au, Ag, and Cu),
metallic nanostructures (such as silver nanowires), liquid metals
(such as eutectic gallium-indium), carbon-based materials (such
as graphene, carbon nanotubes (CNTs), and MXenes), conduc-
tive polymers (such as polyaniline, poly(3,4-ethylenedioxythio-
phene):polystyrene sulfonate), and composite conductors (such
as graphene and poly(3,4-ethylenedioxythiophene):polystyrene
sulfonate composite) that combine these materials for an
enhanced electrical performance [42, 43]. Flexible electrodes that
demonstrate strong compatibility with triboelectric layers can
prevent cracking or delamination under repeated mechanical
stress, thus enhancing sensor durability and ensuring reliable
HMI performances. Overall, the diverse flexible material options
for both the triboelectric layers and electrodes provide extensive
functionality for a broad range of HMI applications. For example,
Chang et al. developed a highly flexible and self-powered tribo-
electric tactile sensing array using PDMS, PCL nanofibers, and
poly(3,4-ethylenedioxythiophene): polystyrene sulfonate electro-
des. This multi-channel array was integrated with a data acqui-
sition system and a computer, creating an HMI system for
monitoring pressure distribution within a prosthetic limb [44].
Luo et al. utilized PDMS, silicon rubber, and copper electrodes
to fabricate a triboelectric bending sensor-based smart glove
toward intuitive multi-dimensional HMI applications, such as
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controlling robotic hands and functioning as a virtual keyboard
with user identification capabilities [45]. These flexible triboelec-
tric sensors enable integration into a wide variety of applications,
opening up innovative and unobtrusive HMI solutions.

To achieve optimal performance in these applications, the direc-
tion of the polarization change and electrode configuration of the
triboelectric sensors give rise to four fundamental working
modes, consisting of contact-separation mode, lateral-sliding
mode, single-electrode mode, and freestanding triboelectric-layer
mode [46, 47]. Each working mode of the triboelectric sensors
possesses distinct characteristics and advantages, contributing
to its effectiveness in various sensing contexts [9]. For example,
contact-separation mode generates an alternating electric field
based on repetitive contact and separation between different tri-
boelectric surfaces (Figure 2a®). This mode features a straight-
forward structure and easy fabrication and can be applied in
pressure or impact-based sensing applications. Lateral-sliding
mode involves lateral motion and continuous contact and sepa-
ration of triboelectric materials, enabling enhanced power out-
put, advanced designs, and compact packaging (Figure 2a®).
Single-electrode mode requires only one electrode for operation,
whereby electron flow occurs relative to the ground potential
(Figure 2a®). This approach diminishes the complexity and cost
associated with the sensors while improving their design flexibil-
ity. Freestanding triboelectric-layer mode operates by utilizing
a freely moving triboelectric layer that interacts with two
stationary electrodes (Figure 2a®). This interaction creates an
asymmetric electric field that induces electron flow between
the electrodes. In practical applications, it is essential to select
an appropriate working mode tailored to a specific application
scenario for better sensing performances. Benefiting from the
simplified design and ease of integration, single-electrode mode
is one of the most commonly used modes in flexible triboelectric
sensors for various HMI applications. For example, a screen-
printed single-electrode textile triboelectric sensor was proposed
by Zhang et al. for self-powered wearable HMI sensing applica-
tions and was customized into a flower pattern with a large sur-
face area [53]. Ma et al. integrated a biomimetic fish lateral line
system fiber-based single-electrode triboelectric sensor into tex-
tile for constructing HMI interfaces that controlled robotic legs
and virtual drone movements (Figure 2b) [48].

Compared to conventional technologies, flexible triboelectric
sensors offer diverse materials, ease of fabrication, structural ver-
satility, scalability, and, most importantly, self-powered sensing
capabilities. In addition, the sensitive electrical signal response of
triboelectric sensors allows them to detect minute mechanical
stimuli and provide real-time interactions (Figure 2c) [48].
These attributes position them as promising candidates for
HMI applications, where lightweight, cost-effective, adaptable,
sensitive, and multimodal sensing capabilities are paramount.
However, the output signals of most current triboelectric sensors
are generated from dynamic stimuli, limiting their practical
application in static sensing. Innovative approaches are required
to enhance the capability of triboelectric sensors under static con-
ditions, thereby broadening their applicability in the field of
HMI. With advancements in material design and energy harvest-
ing techniques, future developments could overcome these
limitations and unlock new possibilities for static sensing appli-
cations in HMI systems. By improving the sensor’s ability to

respond to low or constant stimuli, the integration of triboelectric
sensors into diverse human-machine interactive devices may
become more seamless and efficient.

2.2 | Piezoelectric Sensors

Piezoelectric materials are inherently self-powered sensing mate-
rials, as they can generate electric charges in response to applied
mechanical stresses [54]. Specifically, their internal crystal struc-
tures become distorted when mechanical stresses, such as vibra-
tions or bending, are applied to piezoelectric materials. This
distortion rearranges the charges within the crystal lattice, result-
ing in polarization due to the asymmetry of the charges. As a
result, electric charges are generated on both surfaces of the
material (Figure 2d®,®) [55]. This unique feature eliminates
the need for an external power source for sensing applications
while also enabling force sensing capabilities, making them ideal
for self-powered HMIs. Recently, researchers have developed pie-
zoelectric sensors that can placed on various human body parts.
The generated piezoelectric signals, which correlate to specific
body movement through various forms of mechanical stresses,
have been acquired and analyzed for use in diverse HMI appli-
cations [56, 57]. Another sensing technology enabled by piezo-
electricity is ultrasonic transduction, which includes both
sensing and actuating of the piezoelectric material-based ultra-
sonic transducers. In particular, these ultrasonic transducers uti-
lize the converse piezoelectric effect, where an applied electric
field causes mechanical deformation, leading to expansion or
contraction based on the field’s polarity (Figure 2d®) [55].
This deformation produces high-frequency vibrations, enabling
the generation of ultrasound waves. These waves can also be
detected by the piezoelectric materials of the transducer, achiev-
ing ultrasonic sensing. This dual capability of piezoelectric mate-
rials is essential for flexible ultrasonic sensors used in medical
imaging and HMI applications [58-60]. When applying piezo-
electric sensors to these applications, selecting the appropriate
material for specific HMI tasks is crucial to enhancing the
sensor’s performance. Ensuring a positive user experience also
requires selecting piezoelectric materials that optimize the
biocompatibility, flexibility, conformability, stability, and dura-
bility of the sensors. This section categorizes and summarizes
the commonly used piezoelectric materials for HMI applications,
including piezoelectric ceramics, crystals, and polymers.

Among these, piezoelectric ceramics are extensively utilized in
HMI applications for their superior piezoelectric performance,
characterized by their high piezoelectric coefficients and excel-
lent sensitivity. A notable example of this material is lead zirc-
onate titanate (PbZr,_,Ti,Os;, PZT), which features a high
piezoelectric coefficient (ds3) ranging from approximately 300-
1000 pC/N, making it ideal for applications that require high sen-
sitivity and efficient energy conversion [61, 62]. For HMI appli-
cations, PZT has been widely used as human motion monitoring
sensors or stimulators [63, 64]. However, they still face limita-
tions, such as bulkiness, brittleness, toxicity, and poor biocom-
patibility, making them unsuitable as wearable sensors for
HMI applications. To address concerns about toxicity and poor
biocompatibility of lead-based piezoelectric ceramics, researchers
have developed lead-free alternatives [65]. These materials
primarily feature perovskite (such as BaTiO;, (K, Na)NbOs,
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FIGURE 2 | Working mechanisms, examples, and signals generated from flexible sensors. (a) Four fundamental working modes of triboelectric

sensors: ® Contact-separation mode, @ Lateral-sliding mode, ® Single-electrode mode, and ® Freestanding triboelectric-layer mode. (b) Digital image
of a fiber-based single-electrode triboelectric sensor. Reproduced with permission [48]. Copyright 2024, Cell. (c) Open-circuit voltage of a fiber-based
single-electrode triboelectric sensor at different compression frequencies. Reproduced with permission [48]. Copyright 2024, Cell. (d) Working mech-
anisms of piezoelectric sensors: ®,@ Direct piezoelectric effect, ® Converse piezoelectric effect. (e) Digital image of a bioinspired and textured P (VDF-
TrFE) nanofibrous piezoelectric sensor. Reproduced with permission [49]. Copyright 2024, Elsevier. (f) Voltage outputs of a bioinspired and textured
P (VDF-TrFE) nanofibrous piezoelectric sensor under different forces [49]. Copyright 2024, Elsevier (g) Working mode of piezoresistive sensors:
@ Piezoresistive mode with a sandwich structure, @ Piezoresistive mode using interdigital electrodes. (h) Digital image of an all paper-based piezor-
esistive sensor with interdigitated electrodes. Reproduced with permission [50]. Copyright 2019, ACS. (i) Feedback signals of a glove equipped with
piezoresistive sensors performing different hand gestures. Reproduced with permission [51]. Copyright 2024, Elsevier. (j) Working mode of capacitive
sensors. (k) Digital image of a liquid metal elastomer-based flexible capacitive sensor. Reproduced with permission [52]. Copyright 2025, ACS. (1) Response
signals of a soft gripper with capacitive sensors grasping plastic balls of varying diameters. Reproduced with permission [52]. Copyright 2025, ACS.

BiFeOs) or wurtzite (such as GaN, ZnO) crystal structures, both coefficients, poor thermal stability, and more challenging
of which enable piezoelectricity through noncentrosymmetric manufacturing processes compared to lead-based materials like
lattice distortions. While lead-free ceramics are both environ- PZT [66-68]. Despite offering a sustainable alternative, lead-free
mentally and user-friendly, they often exhibit lower piezoelectric ceramics still require further research to address their limitations
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and improve their performance and scalability. Moreover,
advanced fabrication methods, including sol-gel, hydrothermal
synthesis, electrospinning, and doping, have been widely applied
to both lead-based ceramics such as PZT and lead-free ceramic
materials such as ZnO, BiFeOs, BaTiOs3, (K, Na)NbOs, and BZT-
BCT to realize thin-film structures with flexible substrates like
Mica, PI, or PDMS [69-73]. These approaches enable precise con-
trol over the morphology, composition, and microstructure of
inorganic piezoelectric thin-films, thereby tuning the piezoelec-
tric and mechanical properties to meet the requirements of
diverse HMI applications [74].

To further expand the material options for HMI applications,
researchers have also explored piezoelectric single crystals.
Piezoelectric single crystals are materials with ordered atomic
structures and uniform crystal lattices. Compared to piezoelectric
ceramics, piezoelectric crystals often show higher piezoelectric
and coupling coefficients and exhibit stronger electromechanical
responses and sensitivity. One of the most common single crys-
tals is lead titanate PbTiO; (PT), which has a high piezoelectric
coefficient and great thermal stability [75]. Especially, relaxor-
based single crystals such as lead magnesium niobate-lead tita-
nate (PMN-PT) and lead zinc niobate-lead titanate (PZN-PT)
demonstrate exceptional piezoelectric properties near the mor-
photropic phase boundary (MPB), exhibiting ds3 values up to
around 2800 pC/N, which is approximately three times higher
than that of PZT ceramics [75, 76]. However, the production
of piezoelectric single crystals is costly and intricate, involving
techniques such as solid-state crystal growth (SSCG) to transform
ceramics into single crystals [ 77], the modified Bridgman method
that utilizes directional solidification [78], and the chemical
vapor deposition (CVD) that grows crystals directly on substrates
through chemical deposition reactions [79]. Moreover, transfer-
ring techniques can also be used to relocate single crystal mate-
rials on flexible substrates for fabricating piezoelectric single
crystals-based flexible sensors [80, 81]. For example, Yang
et al. and Zhou et al. fabricated piezoelectric single crystal sens-
ing materials using the CVD growth method, in which the crys-
tals were then transferred onto a flexible PI substrate for
fabricating piezoelectric sensors [82, 83]. The proposed sensors
demonstrated applications of self-powered HMI by monitoring
human hands and controlling robotic prosthetic hands. While
piezoelectric single crystals exhibit superior electrical performan-
ces, including high electromechanical coupling coefficients,
enhanced energy conversion efficiency, and superior sensitivity,
ongoing researchers have focused on enhancing their flexibility
and usability through innovative fabrication methods and sub-
strate integration for advanced applications. In summary, to
overcome the mechanical limitations of bulk piezoelectric
ceramics and single crystals, researchers have increasingly
focused on developing those inorganic piezoelectric materials
in thin film form for flexible and wearable HMI applications.
These flexible inorganic thin films retain the superior electrome-
chanical properties of their bulk counterparts while offering
enhanced mechanical compliance and compatibility with flexible
substrates. By combining inorganic piezoelectric materials
with polymeric substrates, piezoelectricity is improved while
maintaining flexibility and durability, which makes them highly
suitable for next-generation flexible sensor-based HMI applica-
tions. These advancements significantly broaden the scope of

high-performance inorganic piezoelectric sensing materials for
intelligent and adaptive HMISs.

Despite these efforts, achieving mechanical compliance with bio-
logical tissues remains a challenge, prompting increased interest
in alternative materials. Piezoelectric polymers offer unique
advantages over ceramics and single crystals due to their intrinsic
flexibility and long-chain molecular structures with weak inter-
molecular forces, making them inherently flexible and elastic
[84]. Among these polymers, polyvinylidene fluoride (PVDF)
and its copolymer poly (vinylidene fluoride-co-trifluoroethylene)
(P(VDF-TrFE)) are the most commonly used piezoelectric poly-
meric materials because of their excellent flexibility and biocom-
patibility [85-88]. These polymers contain molecular structures
that impact their piezoelectricity by aligning dipoles within their
polymer chains. Specifically, different alignments of polymeric
chains form different crystalline phases that significantly influ-
ence their piezoelectric properties, in which they exhibit crystal-
line phases «, f, v, 6, and €, with the B, v, and & phases primarily
contributing to piezoelectricity [89]. As the most dominant elec-
troactive phase, the p phase has the highest dipole moment and
the greatest piezoelectric coefficient and is further distinguished
by its all-trans chain configuration. Therefore, researchers have
developed various processing techniques, including mechanical
stretching, high-temperature annealing, and electrical poling, to
increase the proportion of the  phase and enhance the piezoelec-
tric performance, thereby improving voltage output [90-92]. For
example, Kwon et al. proposed bioinspired piezoelectric nanofib-
ers with textured morphologies to design flexible piezoelectric
sensors that were able to detect multiple biophysiological signals
(Figure 2e) [49]. The proposed piezoelectric sensor could detect
pulse waves by capturing real-time arterial pressure fluctuations
on the wrist as well as seismocardiogram (SCG) signals, which
measured subtle chest vibrations caused by cardiac contractions,
enabling multifunctional monitoring (Figure 2f). Moreover,
PVDF-based piezoelectric sensors have also been used in medical
HMI applications by controlling robotic prosthetics. Jiang et al.
designed flexible piezoelectric sensors capable of harnessing
mechanical energy from the bending of multiple finger joints
and subtle arm muscle movements into electric signals, enabling
efficient and self-powered control of robotic prosthetic hands for
amputees [57]. The relatively low ds; values of the piezoelectric
polymers, such as PVDF ranging from 20 to 33 pC/N, still remain
a challenge for achieving efficient sensing [93]. To further
enhance the piezoelectric coefficient of polymers, researchers
have developed fabrication techniques that introduce microstruc-
tures such as porosities and incorporate fillers like piezoelectric
ceramic nanoparticles within the polymeric matrix [59-62].
Despite the drawback regarding the low piezoelectric coeffi-
cients, piezoelectric polymers exhibit advantageous properties
such as biocompatibility, lightweight construction, chemical
resistance, and thermal stability, which show extraordinary
potential in HMI applications especially for long-term use.
As a result, some researchers have further explored the use
of piezoelectric polymers for HMI applications, including fluoro-
polymers, polyureas, polyamides, polypeptides, polysaccha-
rides, and polyesters [94]. The flexibility, biocompatibility, and
advanced fabrication processing of piezoelectric polymers make
them ideal for biophysiological signals-based medical HMI
applications.
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Overall, piezoelectric materials can be made into self-powered
sensors that convert mechanical stress into electric signals, mak-
ing them essential for a wide range of HMI applications with a
focus in the medical field. These sensors are valued for their abil-
ity to function without external power, enabling innovative appli-
cations in areas like wearable devices, medical technologies, and
robotics without the use of a separate power source. While pie-
zoelectric sensors offer advantages such as sensitivity and adapt-
ability, their performance is often a trade-off between factors like
flexibility, durability, and biocompatibility and thus requires
thorough consideration of the types of piezoelectric materials
used. Advances in design and manufacturing have improved
their functionality, addressing limitations like brittleness and
biocompatibility concerns, thereby expanding their utility as flex-
ible sensors in medical-based HMI technologies.

2.3 | Piezoresistive and Capacitive Sensors

Piezoresistive sensors operate based on the principle that mate-
rials exhibit changes in electrical resistance when subjected to
external stimuli such as pressure and strain [95, 96]. These
changes can be converted into electrical signals related to the
measured physical quantity. The active sensing elements and
conductive electrodes are considered the most significant in
terms of designing piezoresistive sensors. The active components
function by combining with two electrodes to form a sandwich
structure (Figure 2g®) or attaching to a pair of planar electrodes
such as interdigital electrodes (Figure 2g®@). To adapt to the con-
tinuous mechanical deformation during the sensing process, the
active elements of piezoresistive sensors are usually composed of
flexible matrix materials and conductive fillers. The flexible
matrix materials serve not only as the supporting structure to
respond to the repetitive mechanical stimuli but also as protec-
tive layers for conductive fillers to enhance the durability and
ensure structure stability of the overall flexible sensor. When
embedded into the matrix, conductive fillers form sufficient
charge transport paths for electrical current flow to convert
mechanical deformation into electrical signals. During the sens-
ing process, conductive paths with varying resistances will form
under different matrix deformations, enabling the sensors to gen-
erate distinctive resistance responses and the corresponding elec-
trical signals. In particular for piezoresistive sensors, the
resistance response in the circuits can be mainly attributed to
the variation of volume resistance and contact resistance. The
variable volume resistance of sensors is attributed to the forma-
tion of diverse conductive pathways, which result from the strain
of active elements when combined with conductive fillers under
external mechanical stimuli. Regarding volume resistance, the
sensitivity of strain-induced sensing can be optimized by adjust-
ing the ratio between the matrix and the conductive fillers. For
contact resistance, the mechanical stimuli can increase the con-
tact area between the active materials and the electrodes, thus
decreasing the resistance of the sensors that leads to the variation
of voltage or current in the circuits. Sensors with contact-induced
resistance variation have high sensitivity, which is usually
achieved by creating rough structures on the surfaces of the
active matrix or fabricating micro- or nanostructured matrices
[13]. Overall, the sensing principle of volume resistance-based
and contact resistance-based sensors is straightforward, making
them easy to design and implement in HMI applications.

For example, piezoresistive flexible sensors can be integrated into
touch panels for various HMI applications, such as keystrokes,
gesture recognition, and tactile sensing [97-99].

To fabricate flexible active components for piezoresistive sensing,
various polymers (such as PDMS, PU, PET, and ecoflex), fiber-
based materials (such as Kevlar fibers, cotton fabric) and non-
conductive hydrogels (such as polyacrylamide) have been used
as the flexible matrix. For the electrically active component,
metal-based materials (such as Ag and AgNW), carbon-based
materials (such as Gr, CNT, MXene, and graphene), conductive
polymers (such as PPy, PANI), and conductive hydrogels can be
utilized [100, 101]. In addition to serving as conductive compo-
nents in active sensing elements, these materials can also func-
tion as electrodes, enabling sensor integration with external
circuitry to measure resistance changes. By integrating advanced
conductive materials with flexible active components, piezoresistive
sensors can achieve high responsiveness and mechanical adaptabil-
ity, making them ideal for applications in flexible wearable
electronics. For example, Liu et al. proposed a flexible sandwich-
structure piezoresistive sensing array based on PI, Au, multiwalled
CNT, and PDMS for wearable sensing applications [102]. Gao et al.
developed an all paper-based piezoresistive pressure sensor for bio-
degradable, flexible wearable electronics by utilizing tissue paper
coated with AgNWs as the sensing material, nanocellulose paper
with printed silver interdigitated electrodes, and nanocellulose
paper as the top encapsulating layer (Figure 2h) [50]. When utilized
in HMI applications piezoresistive sensors are essential tools due to
their simplicity, cost-effectiveness, and versatility. In particular, pie-
zoresistive sensors can provide a stable and continuous signal out-
put under static pressure, ensuring an accurate and consistent
signal response in HMI applications (Figure 2i) [51]. However, pie-
zoresistive sensors are not self-powered and thus require an exter-
nal power source for operation, increasing the energy demands of
the system and dependency on batteries. In addition, they are sus-
ceptible to environmental factors such as humidity and tempera-
ture, which can alter resistance values and reduce reliability.

Similar to piezoresistive sensors, capacitive sensors are generally
comprised of two parallel flexible conductive electrodes that are
separated by a dielectric material (Figure 2j). This configuration
enables the sensor to detect changes in capacitance that result
from the variations of applied pressure, displacement of the elec-
trodes, and proximity of an object. The capacitance (C) is deter-
mined by the equation C = go¢,;A/d, where & is the permittivity of
vacuum, ¢, is the relative permittivity of the dielectric material, A
is the overlapping area between the two conductive electrodes,
and d is the distance between the two conductive electrodes
[103]. Furthermore, flexible capacitive sensors can be con-
structed from a range of materials, including dielectric substan-
ces such as PDMS, PU, and ecoflex, as well as conductive
elements such as various metals, CNTs, graphene, gallium
indium tin, and indium tin oxide, that allow for variations of
designs and configurations for HMI applications. For example,
Tchantchane et al. developed a flexible capacitive textile-based
sensor using two conductive Ag electrodes sandwiched between
a dielectric layer of ecoflex, which was integrated into a glove for
real-time control of a commercially available robotic hand and a
drone, as well as sign language recognition [104]. Kang et al. uti-
lized gallium-indium-tin, ecoflex, and Ag fiber composite fabric
to prepare a liquid metal elastomer-based flexible strain sensor for
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monitoring human motions, soft gripper electronic skin, and
motion posture monitoring of robotic arms (Figure 2k) [52]. It pro-
vided continuous and stable changes in capacitance in response to
mechanical stimuli variation when used for object grasping with a
soft gripper, ensuring precise and responsive sensing capabilities
(Figure 21). In summary, capacitive sensors exhibit high sensitivity,
excellent durability, and remarkable capability of noncontact sens-
ing, which present significant potential for HMI applications [105].
Nonetheless, they also face challenges, including sensitivity to
external electromagnetic interference and complex circuits, which
can limit their applications in certain conditions that require high
precision, stability, or operation in harsh environments with
strong electromagnetic fields. Overall, both piezoresistive and
capacitive flexible sensors leverage the principle of impedance var-
iation to convert external mechanical stimuli into precise electrical
responses. Their flexibility, sensitivity, and adaptability allow them
to provide responsive and precise interaction in HMI systems,
enabling applications such as tactile sensing, gesture recognition,
and intelligent robots. However, their power consumption, limited
durability, and environmental sensitivity need to be considered
and addressed to further enhance the sensing performance and
application potential in HMI systems.

2.4 | Electrophysiological Sensors

Triboelectric, piezoelectric, triboelectric, piezoresistive, and
capacitive sensors detect mechanical stimuli, converting them

P2 REF

EOGR  GND
EOGV

FIGURE3 | Representative electrophysiological sensors and their signal outputs. (a) Digital image and signal output from an EEG sensor for brain—

into electrical signals, whereas electrophysiological sensors focus
on detecting bioelectric signals from biological systems.
Electrophysiological signals are electrical impulses generated
by biological tissues during physiological activities, providing
critical insights into the functional state of the human body.
Common types of electrophysiological signals include EEG,
EOG, EMG, and ECG, in which each signal type reflects electrical
activity from specific bodily systems when in use, such as the
brain, eyes, muscles, and heart respectively. As shown in
Figure 3, EEG records synchronized electrical signals from brain
activity using scalp electrodes placed over specific cortical regions
such as the frontal, temporal, central, and occipital lobes
[110, 111]. Transitioning to eye-related signals, EOG captures
eye movements by detecting voltage changes between the posi-
tively charged cornea and negatively charged retina [112]. For
muscular signals, EMG monitors the electrical activity of muscle
fibers during contraction and relaxation, initiated by neurotrans-
mitter release at the neuromuscular junction following motor
neuron stimulation [113]. Lastly, ECG measures the heart’s elec-
trical activity through surface or implantable electrodes [114],
capturing depolarization and repolarization cycles of the heart
chambers. Such biophysiological signals can be captured using
implantable or wearable sensors, in which implantable sensors
offer high precision and stability due to the proximity of the bio-
logical tissue but require surgical procedures to position them
safely within the human body. Wearable sensors, on the other
hand, are noninvasively attached to the skin surface but may face
challenges like noise and reduced signal quality. Although

interface-related application. Reproduced with permission [106]. Copyright 2022, Springer Nature. (b) Digital image and signal output from an EOG

sensor for eye-movement controlled application. Reproduced with permission [107]. Copyright 2022, Wiley. (c) Digital image and signal output from an
EMG sensor for muscle-movement-related application. Reproduced with permission [108]. Copyright 2023, Springer Nature. (d) Digital image and signal

output from an ECG sensor for cardiac monitoring. Reproduced with permission [109]. Copyright 2022, Springer Nature.
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electrophysiological sensors are typically powered externally and
incorporate rigid electronics like amplifiers and noise filtering
chips for signal preprocessing, their integration into HMIs has
enabled groundbreaking applications, including prosthetic con-
trol, health monitoring, and assistive technologies like exoskele-
ton manipulation, effectively bridging the gap between humans
and machines [20].

Biophysiological sensors used in HMI systems are fundamentally
electrodes designed to detect the body’s electrical signals during
physiological activity. Their effectiveness critically depends on
the electrode material’s conductivity, biocompatibility, mechani-
cal durability, and ability to conform to the skin with low
electrode-skin impedance [115]. While traditional Ag/AgCl
wet electrodes remain the clinical standard due to their high sig-
nal fidelity, their dependence on conductive gels poses challenges
for long-term use, including dehydration, skin irritation, and
poor reusability, limiting their practicality in wearable systems.
To address these limitations, flexible and stretchable dry electro-
des are designed by utilizing materials such as PEDOT:PSS, gra-
phene, MXenes, and metallic nanowires, to be embedded in
elastomeric matrices like PDMS [115, 116]. For EEG and
EOG, which are typically positioned on the forehead or around
the eyes, soft conductive polymers and nanomaterial-based dry
electrodes, including microneedle or hydrogel patches, offer
enhanced comfort and reduced motion artifacts. EMG electrodes,
designed to sense muscle activity from various body regions,
employ serpentine or textile-based designs using breathable sub-
strates and conductive nanomaterials to maintain signal quality
under skin deformation. Implantable EMG systems further
require encapsulation with Parylene-C and use biocompatible
metals such as platinum for chronic stability [117, 118].
Moreover, ECG sensors benefit from capacitive-coupled architec-
ture and washable, textile-based electrodes made from CNTs to
support unobtrusive and continuous cardiac monitoring [119].
These advancements in material science and device structure
are transforming rigid electrode systems into seamless, skin-inte-
grated interfaces that enable reliable, long-term, and comfortable
physiological monitoring for next-generation wearable HMIs.

Once the sensing material selection and electrode design are opti-
mized, high-quality and stable biophysiological signals can be
reliably acquired for diverse HMI applications. For instance,
the EEG signal characteristics of amplitude and frequency reflect
various brain states, including relaxation (alpha waves), active
thinking (beta waves), light sleep (theta waves), and deep sleep
(delta waves) [120], by capturing the degree of synchronization
among large populations of neurons (Figure 3a) [121]. EEG can
be utilized to enable thought-driven interactions, offering new
opportunities for individuals with mobility or muscle impair-
ments while advancing brain-computer interfaces through
real-time cognitive signal processing [122]. For example,
Kilicarslan et al. proposed a system that uses EEG signals to con-
trol a lower-body exoskeleton, allowing a paraplegic user to walk
using only their brain activity [123]. Their method demonstrated
real-time control of the exoskeleton with minimal training time
but with high accuracy, highlighting the potential of noninvasive
EEG-based control for assistive walking devices.

In addition to brain signals, EOG provides an eye-movement-
based approach for human-machine interaction. EOG signals

are capable of characterizing eye movements, in which the lateral
and medial rectus muscles govern the horizontal motions, while
the superior and inferior rectus muscles control the vertical
motions. Meanwhile, the corneal-retinal electric potential shifts
to create signals that correspond to the direction and amplitude
of the eyeball movements (Figure 3b) [112]. By translating eye
movements into control signals, EOG signals can then be widely
applied in HMI applications of gaze-controlled interfaces for
assistive technologies, such as eye motion-based control of pros-
thetics and exoskeletons, which are especially valuable for indi-
viduals with severe mobility disabilities. For instance, Wang et al.
designed a novel eye movement-controlled robotic wheelchair
system based on the analysis of EOG signals using a flexible
hydrogel biosensor, enabling a high accuracy of 96.3% using
ML to detect eye movements for seamless and precise wheelchair
navigation [124].

Beyond eye movement tracking, EMG monitors the muscle
motor unit by capturing muscle activation patterns. When a mus-
cle motor neuron sends an action potential, it triggers neurons to
release neurotransmitters, causing depolarization to generate
electric pulses as EMG signals (Figure 3c) [108, 113]. And they
can be further applied to control assistive devices like prosthetics
and exoskeletons for medical-based HMI applications [125, 126].
To measure EMG signals, electrodes are used for either attaching
on the skin above the muscle to acquire surface electromyogra-
phy (SEMG) or inserting directly into the muscle tissue to get
intramuscular electromyography ((EMG) [127]. Hye et al. pro-
posed the SEMG-based robotic hand control by classifying mus-
cular movements via sEMG [128]. By placing the surface
electrodes on the upper limbs, they were able to correspond
the EMG signals into different robotic hand movements with
convenience. In contrast, Vu et al. proposed a prosthetic control
system that utilizes implantable electrodes to achieve long-term,
reliable upper-limb prosthesis control [129]. The acquired iIEMG
signals remained stable for over 3 years, allowing participants to
control prosthetic hands with high accuracy and without fre-
quent recalibration.

Different from EMG signals, which monitor skeletal muscle
activity, ECG signals can accurately represent heart motions
on their waveform patterns. An ECG signal has three main wave
components: the P wave, the QRS complex, and the T wave. The
P wave corresponds to atrial depolarization, reflecting atrial con-
traction to fill the ventricles; the QRS complex correlates to ven-
tricular contractions to pump blood to the lungs and body; the T
wave signifies ventricular repolarization, indicating muscle relax-
ation and ventricular filling (Figure 3d) [130-132]. The patterns
of ECG waves correlate directly to the patient’s cardiovascular
health in HMI applications. Specifically, wearable ECG devices
such as smartwatches and chest straps allow users to track their
cardiac health in realtime, providing early detection of abnormal-
ities [133, 134]. Rachim et al. proposed a wearable armband that
uses ECG signals to monitor heart activity in real-time while
eliminating the need for direct skin contact due to the capacitive-
coupled electrodes that measure the signals through clothing or
air gaps [135]. In summary, electrophysiological signals play a
crucial role in monitoring and analyzing the body’s electrical
activity of various bodily systems, especially in synergy with
HMI-based applications that facilitate enhanced medical diag-
nostics and personalized care. Through these advancements,
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electrophysiological sensing technologies are revolutionizing
healthcare, rehabilitation, and assistive technology, bridging
the gap between biological signals and innovative engineered
solutions.

2.5 | Summary of Flexible Sensors

Flexible sensors are innovative devices that can bend, stretch, or
conform to different shapes while maintaining functionality in
HMI applications, offering advantages such as high sensitivity,
adaptability to curved surfaces, and compatibility with not only
wearable systems but also robotic sensing and control systems.
These sensors offer unique capabilities that enable seamless

TABLE 1 | Comparison of different flexible sensors.

interaction between humans and machines, but their perfor-
mance can vary depending on the sensing mechanism. This sec-
tion summarizes the advantages and disadvantages of various
flexible sensing technologies that can be used in the field of
HMI, providing insights for selecting optimal solutions based
on application-specific requirements, as detailed in Table 1.
Flexible triboelectric sensors leverage the triboelectric effect
and electrostatic induction to generate electrical signals in
response to mechanical stimuli, making them highly suitable
for HMI applications. Unlike piezoresistive or capacitive sensing
technology, triboelectric sensors possess self-powered sensing
capabilities that eliminate the need for external power sources,
and their inherent flexible and lightweight characteristics further
enhance their suitability by integrating into a variety of flexible

Sensor type Sensing mechanism

Key advantages

Limitations

Triboelectric sensors
electrostatic induction

+ Capable of sensing dynamic

stimuli

 Lightweight, scalable, and low-

cost

Triboelectric effect and  « Self-powered sensing

« Not capable of sensing static stimuli
« Poor durability

« Sensitive to environmental factors
(such as humidity and temperature)

« High sensitivity and wide
detection range

« Diverse material options and
working modes

« Simple fabrication

Piezoelectric sensors Piezoelectric effect + Self-powered sensing « Not capable of sensing static stimuli
«+ Capable of sensing dynamic » Limited by mechanical strain range
stimuli and need for signal conditioning

» High sensitivity

« Simple and diverse designs

Piezoresistive

Sensors

Capacitive sensors

Variation in resistance =+ Broad detecting range « Require external power source

Variation in capacitance

Capable of sensing dynamic and
static stimuli

Cost-effective design

Simple and diverse structure

Noncontact sensing capability

Capable of sensing dynamic and
static stimuli

High sensitivity and durability

High energy consumption

Sensitive to environmental factors
(such as humidity and temperature)

Require external power source and
complex circuits

Limited by the need for precise
calibration

Sensitive to environmental factors
(such as electromagnetic interference)

Electrophysiological Bioelectric signals «+ Reflect physiological conditions Require external power source
Sensors of various organs and tissues -
& Complex circuits needed for
« Versatile applications and processing signals
ersonalized healthcare - . .
P Requires electrodes, signal noise, and
« Capable of real-time monitoring interference issues
and feedback
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substrates to ensure the functionality, comfort, and practicability
of the overall sensor design. Combined with scalable and
low-cost features, triboelectric sensors are well-suited for effec-
tive sensing from the human body in HMI applications and
can offer high sensitivity and broad detection ranges, which
are ideal for detecting touch, motion, or vibration in interactive
systems. In addition, the diverse material options and working
modes enhance the adaptability of the triboelectric flexible sen-
sors, enabling wider HMI applications that encompass prosthet-
ics, healthcare rehabilitation, surgical environment perception,
and much more. However, their reliance on dynamic stimuli lim-
its their functionality in static conditions, and the sensing perfor-
mance of triboelectric sensors may degrade due to repeated
mechanical stimuli. Furthermore, the sensitivity of the triboelec-
tric sensors to environmental factors like humidity and temper-
ature can reduce their reliability in challenging environments
governed by such factors.

Piezoelectric sensors, which can be fabricated using ceramics,
single crystals, or polymers, detect a wide range of dynamic
motions produced by the human body when they are applied
as wearable sensors. By employing piezoelectric ceramics and
single crystals, the fabricated wearable sensors can demonstrate
the advantage of high piezoelectric coefficients to generate large
voltage outputs, while piezoelectric polymers can optimize the
overall sensor’s biocompatibility and flexibility. By selecting
the most suitable piezoelectric material for a specific HMI appli-
cation, the piezoelectric effect can be effectively induced to
empower HMI systems to be more ergonomic, scalable, respon-
sive, and reliable. Despite these advantages, piezoelectric sensors
possess a fundamental limitation in that they are only capable of
detecting dynamic pressure due to the intrinsic dependence of
the piezoelectric effect on the rate of change of the applied pres-
sure or force. When pressure or force is maintained or applied
constantly, the internal crystal lattice of the piezoelectric mate-
rial stabilizes, resulting in no additional charge displacement.
The sensor fails to produce electrical impulses, hence incapaci-
tating its ability to sense static stress. This trait restricts the appli-
cation of piezoelectric sensors to scenarios only involving
vibrations, impacts, and other swiftly varying mechanical stim-
uli, necessitating the employment of alternative sensing technol-
ogies for effective measurement of both dynamic and static forces
for advanced HMI applications.

Piezoresistive and capacitive sensors can monitor deformations
or pressure variation through resistance or capacitance changes,
enabling precise detection and cost-effective manufacturing.
Benefiting from the unique properties of the piezoresistive and
capacitive mechanisms, such sensors are capable of detecting
and responding to various types of mechanical stimuli that are
both dynamic and static. Owing to their flexible and cost-effective
design along with their simple yet diverse structural configura-
tions, piezoresistive sensors provide high sensitivity and reliable
performances, facilitating seamless integration into a wide range
of HMI applications. In addition, piezoresistive sensors offer an
extensive detection range from minute to substantial deforma-
tions while maintaining remarkable stability and robustness
even under extreme strain conditions. Their ability to reliably
detect large deformations renders them particularly well suited
for HMI applications that involve significant physical interac-
tions, such as in soft robotics and prosthetic devices. However,

these sensors often require external power sources for operation,
coupled with high energy consumption, which may limit their
portability and practicability in long-term wearable use for
HMI systems.

Additionally, the resistance is sensitive to environmental factors
much like triboelectric sensors, which should be considered in
actual HMI applications with varying environmental conditions.
While piezoresistive sensors excel in detecting large deforma-
tions, capacitive sensors offer distinct advantages in capturing
subtle mechanical changes with higher sensitivity and stability,
making them particularly suitable for precise measurements.
Flexibility and low-power consumption also ensure the output
stability and cost-effectiveness of capacitive sensors. Notably,
their noncontact capability allows for precise detection of object
proximity without requiring direct physical interaction, which is
particularly beneficial in noncontact HMI systems such as ges-
ture recognition, virtual reality (VR), and augmented reality
(AR). However, flexible capacitive sensors come with some dis-
advantages that can impact their application and performance in
terms of power consumption and design. For example, capacitive
sensors often require complex and sensitive electronics for signal
processing, leading to bulkiness and redundancy of the overall
sensing system, and they are also sensitive to electromagnetic
interference, which can introduce noise and affect measurement
accuracy.

Electrophysiological signals play a central role in health monitor-
ing applications that utilize HMIs, with different types of signals
tailored to specific applications. For instance, EEG is a corner-
stone of brain—computer interfaces, while EOG is widely used
in gaze-controlled systems. EMG is frequently used in prosthetics
and exoskeletons, and ECG is well suited for health monitoring
of cardiovascular health. More robust and intuitive HMIs can
also be employed when integrating multiple electrophysiological
signals to be a multimodal sensing system, providing higher pre-
cision, adaptability, and functionality while empowering real-
time data processing, personalized user interactions, and
enhanced decision-making for advanced medical and assistive
technologies. Such systems offer a more comprehensive under-
standing of human physiological and cognitive states and facili-
tate adaptive control strategies, optimizing performances in
dynamic environments while providing deeper insights into user
intent, workload, and physiological that mitigate the limitations
of single-sensor systems. For example, Zou et al. introduced an
underactuated hand exoskeleton using a multimodal EMG-EEG
fusion and a series elastic actuator for a precise and responsive
exoskeleton, which accomplished natural grasp restoration with
higher robustness due to its multimodal sensing ability [136]. For
electrophysiological sensing-based HMI systems, it is also crucial
to decide between surface or implantable sensors. Compared to
implanted electrophysiological sensors, surface sensors are non-
invasive and more accessible, making them ideal for wearable
devices. However, they are heavily affected by noise and less reli-
able than implantable sensors, which offer superior precision and
stability but require surgical procedures. To overcome these
drawbacks between wearable and implantable electrophysiolog-
ical sensors, current trends in advanced sensor technologies,
including flexible electronics, Al integration, multimodal sens-
ing, and bio-friendly and biodegradable sensors, are bridging
these gaps to enable lightweight, biocompatible, stretchable,
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and smart sensors for wearable and implantable applications. By
overcoming the challenges of existing sensor technologies and
addressing the diverse requirements of flexible-based sensing
applications, these advancements are setting the stage for trans-
formative improvements in medical HMIs.

3 | AI-Driven Advancements in Flexible
Sensor-Based HMIs

Recently, HMIs have been revolutionized with the integration of
AT and flexible sensing technology, enabling more intelligent,
adaptive, and user-centric systems. Traditional HMIs rely on pre-
defined sensor configurations and rule-based processing, limiting
their ability to respond dynamically to diverse and evolving user
needs. However, with the advent of Al-driven methodologies,
flexible sensors can now be optimized, enhanced, and autono-
mously calibrated to provide superior performance in a wide
range of applications, including healthcare, robotics, and assis-
tive technologies. By leveraging AI approaches, flexible sensor-
based HMIs can refine the design of flexible sensors, leading
to a new generation of intelligent, responsive, and context-aware
interactive systems. Specifically, ML and DL algorithms, such as
inverse design frameworks and statistic evaluation models,
enable rapid optimization of sensor architectures by predicting
optimal configurations that maximize sensitivity, durability,
and efficiency. By incorporating AI into every stage of sensor
development, from initial design to real-time operation, flexible
sensor-based HMIs can achieve unprecedented levels of adapt-
ability, making them indispensable in fields ranging from neuro-
prosthetics to immersive virtual environments. Moreover,
Al-assisted digital signal processing (DSP) enhances the interpre-
tation of complex sensor outputs, enabling robust and noise-
resistant data extraction, which can be paired with multimodal
sensor fusion to synchronize and process diverse physiological
and environmental signals for facilitating more intuitive and
adaptive system responses. This section explores Al-driven
advancements in flexible sensor-based HMIs, covering sensing
system optimization along with synaptic transistor design, signal
processing, and multimodal integration.

3.1 | AI-Driven Optimization of Sensing Systems

Due to the inherent ability to conform to various surfaces and
subsequently capture intricate physiological and biomechanical
signals, flexible sensors have gained increasing attention in HMI
systems. However, optimizing their morphology, material selec-
tion, and functionality has traditionally been a labor-intensive
process requiring extensive trial and error. Optimizing the design
of flexible sensors with ML and DL algorithms can be leveraged
to further synergize with HMI systems for improved performance
and interaction in various applications. In this section, cutting-
edge Al-driven design technologies for flexible sensing systems
are mainly organized into Al-driven flexible sensor design and
Al-driven synaptic transistor design, in which AI-driven method-
ologies effectively optimize the design of flexible sensors that are
applied in the field of medical HMISs, allowing for improved sens-
ing capabilities and a more seamless integration with the func-
tionality of HMIs.

3.1.1 | Design Strategies for Flexible Sensors

Flexible sensors are critical components in applications ranging
from healthcare and soft robotics to wearable electronics, in
which the design plays a crucial role in determining their perfor-
mance and integration proficiency in HMI systems. Traditional
sensor designs often rely on simple structures, in which the sen-
sor optimization is solely based on a repetitive cycle between
manual parameter tuning and sensor testing, leading to an over-
all time consuming and inefficient process. However, Al-driven
design of flexible sensors focuses on optimizing the shape, mate-
rial distribution, material selection, and functionality, aiming
to significantly elevate the performance of flexible sensors in
real-world applications. Recently, ML has emerged as a powerful
tool to accelerate sensor development. By leveraging experimen-
tal data and advanced computational techniques, ML-based
approaches are enabling the prediction of sensor performances,
the rapid discovery of optimal material compositions, and the
inverse design of sensors tailored to meet specific functional
requirements.

Sensor performance optimization is rapidly emerging as a corner-
stone in the development of next-generation intelligent tactile
systems. By leveraging ML techniques, researchers are able to
fine-tune sensor characteristics such as sensitivity, dynamic
range, and response linearity directly from design parameters,
thereby drastically reducing the reliance on traditional trial-
and-error methods. Lu et al. proposed an ML design strategy
for flexible tactile sensors to enhance dynamic touch decoding
(Figure 4a) [137]. Statistical learning methodologies were inte-
grated into the design phase of the sensor hardware by introduc-
ing an intelligent design approach, in which a support vector
machine (SVM)-based method optimized different sensor fea-
tures such as surface textures and electrode layouts. The pro-
posed ML method increased their classification accuracy
among six dynamic touch modalities to 99.58%, demonstrating
their advanced capabilities of dynamic texture sensing in their
application of Al-optimized robotic HMI.

Additionally, ML-driven sensor design, combined with simula-
tions, can also be applied to optimize sensor microstructures
[143, 144]. Li et al. proposed a strategy integrating ML with
high-throughput phase-field simulations to optimize the struc-
ture of oxide-polymer piezoelectric nanocomposites [145].
By systematically varying oxide filler geometries in a PVA matrix,
they generated 400 composite architectures while also assessing
the optimal stress distribution, electric field, and material
properties. Regression-based ML established predictive relation-
ships between filler geometry and key properties like the piezo-
electric coefficient, dielectric permittivity, and elastic stiffness.
Furthermore, ML-driven sensor performance optimization can
also facilitate systematic inverse design, which is an approach
that begins with the desired sensor characteristics and methodi-
cally works backward to identify the most effective fabrication
method. Liu et al. also proposed a data-driven inverse design
framework to achieve optimized sensing properties for capacitive
iontronic sensors tailored to specific applications [146]. The
approach combined a reduced-order model (ROM) with a
‘jumping-selection’ technique to efficiently optimize material
and structural parameters that designed pressure sensors with
a highly linear capacitance response and accuracy across a broad
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design via fabrication parameters optimization. Reproduced with permission [137]. Copyright 2023, Wiley. (b) Active learning-based and automatic
sensing material synthesis. Reproduced with permission [138]. Copyright 2024, Lippincott. (c) Bioinspired three-terminal nickelate synaptic transistor
device. Reproduced with permission [139]. Copyright 2013, Nature Portfolio. (d) Multimodal triboelectric sensor fusion framework for robotic object
recognition. Reproduced with permission [140]. Copyright 2024, Wiley. (e) Multimodal thermistor-based tactile sensor fusion with computer vision in
robotic housekeeping. Reproduced with permission [141]. Copyright 2024, Nature Portfolio. (f) MNN for real-time sleep monitoring and posture recog-
nition using a flexible hydrogel sensing patch. Reproduced with permission [142]. Copyright 2025, Springer Nature.

pressure range while also minimizing computational costs.
Validation through simulations and experiments confirmed
superior performance in the application of robotic tactile sensing
and healthcare monitoring. By bridging the gap between sensor
material selection and application-driven performance optimiza-
tion, the research enabled a systematic and scalable approach to
developing next-generation flexible sensors in intelligent HMIs.

Active learning, another important ML-driven sensor design
strategy, iteratively refines sensor design by strategically selecting

the most informative experiments [138, 147, 148]. In this
approach, the model initially learns from a limited dataset
and then identifies the regions in the design space where uncer-
tainty is highest. By focusing subsequent experiments on the crit-
ical areas, the predictive accuracy of the model can dramatically
improve and provide direct guidance on which design parame-
ters or configurations to test next. The predictive accuracy can
also accelerate the discovery of optimal sensor designs, reduce
the number of experiments needed, and minimize costs. Yang
et al. proposed a comprehensive ML framework to optimize
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the fabrication of their strain sensor [147]. The feasible bound-
aries of their strain sensor design were first established by train-
ing an SVM classifier on 351 different sensing material mixtures.
Iterative active learning loops were then used to explore the
design space, in which a set of fabrication methods was first
tested to measure strain sensor metrics, and then a navigation
model built with K-nearest neighbor algorithm (KNN) and
Random Forest was used to identify the most informative experi-
ments. Over 12 loops, 125 sensors were fabricated, significantly
reducing uncertainty and enhancing prediction accuracy. Next,
data augmentation was used to expand the dataset points, and
a genetic algorithm assisted in determining an optimal model.
This ultimate prediction model was then integrated into a reverse
design process using Bayesian optimization to recommend the
most optimal fabrication method of the strain sensor that met
target performance metrics. Further research has also explored
utilizing the active learning-aided design of flexible sensors to
optimize sensor arrays. Zhao et al. proposed an active learning-
assisted approach for optimizing piezoelectric material synthesis
by iteratively refining material recipes through ML (Figure 4b)
[138]. Using Decision Tree, k-Nearest KNN, and Random
Forest algorithms, they trained a model on 300 initial samples,
then iteratively fabricated 105 new samples over 10 learning
loops, improving prediction accuracy and reducing RMSE by
19.4%. The model selected the most uncertain samples for further
testing, efficiently exploring the material space. A Bayesian opti-
mization-based reverse design further refined material selection
based on target properties. The optimized materials, applied in
flexible wearable sensors, demonstrated the potential of active
learning in accelerating material discovery. While active learning
does not improve the sensor designs directly, they are capable of
effectively optimizing prediction models that can lead to a more
efficient, targeted design process for the sensors, guaranteeing
that each experiment progressively refines the design with each
iteration.

3.1.2 | Design Strategies for Flexible Synaptic
Transistors

As the integration of ML and simulation techniques accelerates
efficient sensor design, another frontier in smart materials and
devices lies in the development of artificial synaptic transistors,
which mimic the functionality of biological synapses to enable
efficient processing in neuromorphic systems. Artificial synaptic
transistors are inspired by the structure and function of biological
synapses in the human brain and are considered an emerging
class of neuromorphic devices. Shi et al. proposed synaptic tran-
sistors made of a thin film of samarium nickelate (SmNiO3) that
mimic the signal transmission and adaptive learning capabilities
of biological synapses by using materials with unique electrical
properties capable of modulating the connection strength (syn-
aptic weight) between the input and output signals (Figure 4c)
[139]. Unlike conventional transistors, where input and output
signals are distinct and separated by a gate, synaptic transistors
utilize flexible materials such as conductive filaments, ion gels,
and organic semiconductors to enable non-volatile, analog
changes in conductivity in response to input stimuli, mimicking
the way neurotransmitters modulate synaptic strength in the
brain [149]. By incorporating flexible material technology
directly into the design of synaptic transistors, the devices
achieve not only enhanced mechanical resilience but also a closer

mimicry of the plasticity inherent in biological systems. Such
integration enables the transistors to endure conditions com-
monly encountered in wearable electronics and bio-integrated
systems, such as bending, stretching, and twisting, without
compromising their non-volatile, analog switching behavior.
In addition, the incorporation of flexible sensors presents a trans-
formative opportunity for applications of synaptic transistors, in
which flexible sensors can enable more resilient and adaptive
sensing architectures that better emulate the adaptability of bio-
logical systems, paving the way for next-generation neuromor-
phic devices to seamlessly integrate sensing and processing
functionalities.

Flexible sensors such as triboelectric sensors can be connected to
synaptic transistors with direct electrode contact, in which the
voltage signal output provides a waveform similar to biological
synaptic responses. Common materials used in these devices
include transition metal oxides such as zinc-oxide, organic poly-
mers, 2D materials like graphene, and ion-conductive electro-
lytes such as Se doped lithium phosphate [150-152]. By
integrating with sensors to receive their output signals, these arti-
ficial synapse transistors can transform the acquired sensing sig-
nals into voltage outputs that mimic the human synaptic
response. This significantly enhances flexible sensor-based
HMIs by enabling real-time, adaptive signal processing. Sultan
et al. proposed a synaptic sensing system by connecting triboelec-
tric sensors with artificial synaptic transistors [153]. This conver-
gence allowed their flexible sensing systems to emulate synaptic
functions like short-term plasticity (STP) and long-term potenti-
ation (LTP), which are critical for intelligent learning and mem-
ory. Alternatively, they also proposed a tactile sensory synapse
based on organic electrochemical transistors (OECTs) monolith-
ically integrated with an ionogel triboelectric layer to mimic bio-
logical mechanoreceptors. The device utilized triboelectric
coupling to generate output voltage signals upon mechanical
stimulation to modulate ion movement in the PEDOT:PSS chan-
nel, enabling synaptic functionalities such as spike number-
dependent plasticity (SNDP) and spike duration-dependent
plasticity (SDDP). This integration allowed the synaptic device
to sense, adapt, and recognize various materials using ML algo-
rithms, demonstrating significant advancements in self-powered,
bioinspired artificial tactile systems.

Ultimately, Al-driven design technologies have the potential to
significantly refine the development process of flexible sensors
and synaptic transistors, substantially boosting their adaptability,
efficiency, and integration into HMIs. Traditional sensor design
relies on repetitive manual tuning and trial-and-error testing,
making sensor development slow and resource-intensive.
Alternatively, Al-driven flexible sensor design leverages various
AT algorithms to optimize material selection, structural configu-
ration, and sensor performance. To effectively accelerate the
development of flexible sensors, techniques such as inverse
design, which determines the optimal fabrication process based
on desired sensor characteristics, and active learning, which stra-
tegically refines sensor designs by selecting the most informative
experiments, can be utilized. Additionally, computer simulations
combined with ML enable precise microstructural optimization,
further improving sensing efficiency and leading to high-
performance, Al-optimized sensors for applications in wearable
electronics for healthcare monitoring and medical robotics.
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Moreover, Al-driven synaptic transistor design also introduces a
paradigm shift in neuromorphic computing by mimicking the
biological synapses of the human brain. These transistors, built
with materials such as transition metal oxides, organic polymers,
and ion-conductive electrolytes, enable adaptive, low-power sig-
nal processing that can dynamically learn and respond to sensory
inputs. By integrating flexible sensors with artificial synaptic
transistors, researchers can develop bioinspired HMIs capable
of real-time signal adaptation, allowing for enhanced prosthetics,
soft robotics, and self-powered tactile sensing systems.

3.2 | AI-Enhanced Signal Processing

By conformably attaching to the human skin, flexible sensors
generate output signals that are not only more complex but also
richer in unique characteristics, offering deeper medical insights
into individuals. Specifically, ongoing research is increasingly
focused on applying multimodal flexible sensors in HMIs to
enhance the perception dimension of the sensing, thereby out-
putting larger data sets from the overall more comprehensive
HMI system. Therefore, it is crucial to apply effective statistical
methods for processing and analyzing these larger and more
complex data sets in HMI applications. A method that can be
applied in most flexible sensor-based HMI systems is DSP, which
is a mathematical algorithm that can analyze, modify, and opti-
mize the acquired digital signals in real-time. Owing to the adap-
tive capability, efficiency, automation, and intelligence of Al
algorithms, Al-enabled DSP has greatly improved the advance-
ment of flexible sensor-based HMIs.

The first stage of AI in HMI applications is signal preprocessing.
Initially, time-series raw signals from flexible sensors are filtered
in the frequency domain to remove unwanted noise. The filtering
algorithms applied are mostly the traditional Fast Fourier
Transform (FFT)-based filtering algorithms, specifically low-
pass, high-pass, or band-pass filters, which are used to cut noises
from different frequency domains. Some researchers use Al algo-
rithms such as Convolutional Neural Network (CNN) to do
highly precise filtering of output signals from flexible sensors
[154, 155]. After filtering, normalization is applied, which
rescales all the filtered signals to a fixed range by applying map-
ping calculation. This step can scale the filtered signals to a com-
mon range, so that their features are now contributed equally to
the pattern recognition AI model, thus preventing features with
larger values from dominating the learning process and ulti-
mately improving the accuracy and stability of the intelligence
in HMIs [156]. The last step in signal preprocessing, signal seg-
mentation, further divides the filtered and normalized signals
into smaller and more manageable data sets that are studied
in the analyzing model. Specifically, the traditional sliding win-
dow method is mostly used for dividing signals by extracting a
window of fixed length along with a defined step size. For exam-
ple, Liu et al. systematically evaluated how varying window sizes
affect fall detection accuracy by inputting wearable tri-axial
accelerometers into different ML models such as SVM and
KNN [157]. Their findings emphasize that careful tuning of
window length is crucial for maximizing model accuracy in
wearable-based HMI systems. Following signal segmentation,
some researchers also implement extra signal augmentation,
which can enhance data quality and diversity by applying

transformations such as employing pitch shifting, adding con-
trolled noise, or performing Principal Component Analysis
(PCA). For instance, Wu et al. applied PCA to reduce the
dimensionality of windowed multichannel strain sensor data
[158]. They extracted the top 30 principal components, capturing
97.3% of the variance, and used them as input features for gesture
classification. These techniques simulate real-world variations,
improving the robustness and generalization of AI models.
For limited data sets, signal augmentation is especially useful,
as it increases training data, reduces overfitting, and improves
the model’s ability to adapt to new conditions in HMI applications.

Signal feature extraction serves as an essential intermediate step
in the data analysis process, where meaningful and representa-
tive attributes are identified and extracted from the preprocessed
signals to facilitate efficient pattern recognition and decision-
making. This crucial step transforms filtered and normalized sig-
nals into a set of discriminative features that capture the essential
characteristics of the data, enabling the AI model to learn and
interpret patterns more effectively. Various Al algorithms have
been developed over the years, including traditional ML, which
uses structured statistic models to evaluate different data charac-
teristics, and DL, which applies multi-layered neural networks
for higher-level learning of implicit data features. Within small
sets of data, ML classification algorithms, including SVM,
Random Forest, and KNN, are often deemed effective at dealing
with such signals. This is particularly beneficial during the early
prototyping stage of the proposed sensors when only a limited
number of experiments have been conducted, such as in cases
when signal data sets are small. For example, SVM identifies opti-
mal decision boundaries in high-dimensional signal spaces,
excelling at separating complex or overlapping classes by maxi-
mizing the margin between them, even in small datasets. Zhao
et al. applied an SVM algorithm to classify signals from a
triboelectric patch that was applied for object recognition in
their HMI sensing system [159]. The SVM model effectively
distinguished 11 objects with an accuracy of approximately
94%. Furthermore, KNN classifies signals based on local similarity
metrics, dynamically adapting to intricate or non-linear patterns in
sparse datasets without requiring assumptions about underlying
data distributions. Yu et al. proposed an Al-powered multimodal
robotic sensing system (M-Bot) with an all-printed soft electronic
skin-based HMI [160]. Using KNN, sEMG signals were decoded
for robotic hand control, achieving a 97.29% gesture recognition
accuracy. In addition, by projecting data into a lower-dimensional
space, linear discriminant analysis (LDA) maximizes the separa-
tion between signal classes, thereby preserving discriminative fea-
tures critical for classification while reducing computational
complexity. Wu et al. used LDA for signal pattern recognition
in their wearable sensor-enabled sign language translation system,
specifically used to analyze the signal patterns by maximizing class
separability based on these extracted features [158]. After applying
PCA, the trained model was validated using five-fold cross-
validation, and its performance was tested on unseen gesture data,
contributing to high accuracy in recognizing both single and com-
bined sign language gestures.

For large-scale, high-dimensional data with complex patterns,
DL classification algorithms, including Artificial Neural
Networks (ANN), CNN, and Recurrent Neural Networks
(RNN), are particularly effective at processing them, making
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them indispensable for advanced sensor systems and applications
requiring hierarchical feature extraction. To enable the robust
modeling of intricate signal patterns even with moderately sized
datasets, ANN employs interconnected layers of neurons to
approximate non-linear relationships in data by using activation
functions and backpropagation to iteratively refine weights.
Wang et al. proposed a flexible and stretchable flexible triboelec-
tric sensor fabricated from graphene oxide and polyacrylamide
hydrogels for high-precision gait recognition in hemiplegic
patients and people with Parkison’s disease [161]. They used
ANN to classify gait patterns from sensor data, achieving
99.5% accuracy for daily-life gait recognition and 98.2% for path-
ological gait recognition. Moreover, CNN specializes in spatial
and temporal signal analysis through convolutional layers that
automatically detect local features such as edges, textures, and
pooling operations that reduce dimensionality, excelling in tasks
like image recognition or spectral signal classification by preserv-
ing spatial hierarchies. Xie et al. proposed an ML-integrated flex-
ible sensor using a triboelectric design for real-time tactile
detection and voice recognition [162]. They employed CNN to
analyze sensor signals, achieving 94.6% accuracy in speech rec-
ognition. The flexible sensor was integrated into a facemask to
capture vocal vibrations, enabling hands-free voice recognition
for HMI applications. Furthermore, RNN processes sequential,
time-series signals such as sensor readings over a specified time
period, using recurrent connections to maintain the memory of
previous inputs, leveraging architectures like Long Short-Term
Memory (LSTM) to handle long-range dependencies and tempo-
ral dynamics critical for real-time or continuous monitoring
applications. Wajahat et al. developed an Al-enabled sign
language-predicting glove integrating 3D-printed triboelectric
sensors with DL for advanced gesture recognition [163]. They
employed the LSTM model to process sequential sensor data,
achieving 99% accuracy in classifying hand gestures correspond-
ing to the alphabet from A to J. The ability of the applied LSTM
model to capture temporal dependencies enabled precise and
reliable interpretation of finger movements. Overall, while DL
algorithms demand larger datasets and computational resources
compared to traditional ML methods, their ability to autono-
mously learn abstract representations makes them powerful tools
for deploying refined sensor systems or analyzing complex, mul-
timodal data streams.

3.3 | Al-Augmented Multimodal Sensing Systems

The evolution of flexible HMIs has ushered in a paradigm shift
toward multiple modality sensing systems, where heterogeneous
signals such as pressure, temperature, and bioelectrical inputs
are synergistically combined to enrich interactions between
humans and machines. By effectively processing a diverse range
of sensory inputs, Al-driven approaches empower multimodal
sensing systems to seamlessly combine heterogeneous data sour-
ces, transcending the limitations of single-modal sensing that
only captures signals one modality at a time. In contrast, multi-
modal sensing systems have the potential to capture diverse and
comprehensive physical and physiological phenomena, improv-
ing the accuracy, robustness, and adaptability in complex envi-
ronments. Here, two main Al-based techniques, sensor fusion
and multimodal neural networks (MNNSs), are explored in detail

for their significant applicability in the field of multimodal flexi-
ble sensor-based HMIs in healthcare.

The technique of sensor fusion plays a pivotal role in extracting
cross-modal correlations, suppressing noise, and resolving con-
flicts between data sources, ultimately enabling systems to infer
user intent with higher fidelity. Specifically, sensor fusion refers
to the process of integrating heterogeneous data streams from
multiple sensors to generate a unified, context-rich representa-
tion of a system or user state [164-166]. In multimodal flexible
sensor-based HMIs, this involves harmonizing inputs from
diverse modalities such as SEMG, pressure, strain, optical, and
temperature sensors to capture comprehensive physiological,
kinematic, and environmental insights [167-170]. Furthermore,
sensor fusion can be categorized as early fusion, intermediate
fusion, or late fusion depending on the integration stage.
Early fusion combines raw sensor data at the feature level, maxi-
mizing cross-modal correlations but requiring precise synchroni-
zation. Intermediate fusion merges partially processed data,
balancing cross-modal dependencies while preserving unique
modality-specific features. Late fusion, on the other hand, inte-
grates information at the decision stage, where independent clas-
sifiers analyze different sensor inputs before aggregating their
outputs, ensuring flexibility at the cost of losing fine-grained
interactions. The choice of fusion strategy depends on the
requirements of the specific application since it can greatly influ-
ence the robustness, adaptability, and accuracy of user intent
recognition.

Unlike traditional HMIs that rely on isolated sensor signals,
sensor fusion leverages the complementary strengths of each
modality to overcome individual limitations. For example,
SEMG sensors track muscle clenching conditions, and flexible
pressure sensors detect tactile interactions or posture shifts
[140, 141, 168, 171]. By fusing these multimodal sensing signals,
HMIs achieve enhanced accuracy, robustness, and adaptability,
such as compensating for motion artifacts in ECG signals using
SCG signals, utilizing multimodal sensing systems to handle sen-
sor failures, and enabling real-time calibration to user-specific
biomechanics. Recently, Zhao et al. proposed a flexible triboelec-
tric multimodal tactile sensor (TMTS), which is composed of PI
and PTFE layers with ecoflex and Cu shielding, that integrates
Al-based sensor fusion to enhance robotic tactile perception
(Figure 4d) [140]. Specifically, through the triboelectric effect,
the TMTS is capable of detecting material properties, curvature,
and pressure. To achieve high-precision perception, the system
employs DL-based fusion by transmitting multimodal tactile sig-
nals from robotic fingertips to a cloud-based AI processor. An
LSTM neural network extracts features, decouples sensing
modalities, and compensates for variations in pressure, enabling
robust object classification with 99.2% accuracy and softness rec-
ognition with 94.1% accuracy. This Al-driven fusion framework
significantly enhances robotic object manipulation, intelligent
grasping, and dexterous material recognition, paving the way
for advanced human-like robotic interactions. Moreover, Mao
et al. proposed a flexible tactile sensor based on thermosensa-
tion, integrating pressure, temperature, thermal conductivity,
texture, and slip detection for multimodal sensor fusion with
vision in robotic housekeeping (Figure 4e) [141]. To enhance
robotic perception, a tactile-visual fusion framework combines
camera-based vision for object localization and tactile sensing
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for real-time grip adjustment, ensuring stable handling of fragile
objects like a cup with liquid. A cascade Al classifier first applies
You Only Look Once (YOLO) for visual object detection, then
refines recognition using tactile features (pressure, thermal con-
ductivity, texture) to distinguish visually similar items. This
fusion enables robots to autonomously perform object sorting,
stable grasping, and desktop cleaning, demonstrating human-
like dexterity in real-world environments. Through the seamless
integration of heterogenous signals, sensor fusion frameworks
that employ AI models can enable HMIs to deliver durable
healthcare solutions that bridge the gap between clinical preci-
sion and daily usability.

Other than sensor fusion, MNNs are also applied uniquely in
multimodal sensor-based HMIs [140, 141, 172, 173]. Built by
combining branches of single-model neural networks, MNNs dif-
fer from standard neural networks by their ability to process mul-
tiple input modalities and generate several types of outputs
simultaneously. Unlike traditional neural networks that typically
handle a single type of data and output a single prediction, MNN’s
are designed to fuse and interpret heterogeneous signals such as
electrophysiological signals, tactile feedback, and vision data, to
allow for more comprehensive decision-making in HMIs.
Typically, neural networks can be transformed into an MNN
by introducing separate input branches for different data types,
each optimized with modality-specific feature extraction layers
(such as CNNs for spatial data, RNNs for sequential data, and
attention mechanisms for contextual learning). These modality-
specific features are then fused at a shared representation layer,
enabling the network to understand complex relationships
between different sensor inputs. Finally, a multi-output architec-
ture can be implemented, where different fully connected layers
or task-specific decoders generate multiple predictions simulta-
neously, such as gesture classification, force estimation, and
fatigue detection.

For flexible sensor-based HMI applications, MNNs have been
mainly used in tactile sensing systems for healthcare. Yu et al.
proposed an alterable robotic skin that leveraged material gene
expression modulation to dynamically adjust its mechanical and
electrical properties [172]. The multi-layered robotic skin inte-
grated position and pressure sensing to recognize multi-
dimensional touch patterns, in which their tactile sensing system
simultaneously outputted semantic labels such as ‘light tap’ or
firm press’ and quantitative motion characteristics by using
MNN. By fusing data through CNNs for spatial features and
RNNs for sequential patterns, they demonstrated accurate haptic
recognition and adaptive robotic responses, advancing intelligent
HMISs and interactive robotics. Ongoing research has also applied
MNNs for monitoring human movements in medical applica-
tions using flexible sensor-based HMIs [142, 174, 175]. Wang
et al. proposed a multimodal CNN for processing signals from
a flexible hydrogel sensing patch (Figure 4f) [142]. The system
collected and processed pressure, temperature, and proximity sig-
nals through different sensing mechanisms and integrated them
into a one-dimensional CNN for real-time sleep monitoring.
The neural network outputs three distinct information types:
pressure changes from tracking head movement, temperature
variations from body heat monitoring, and proximity data
through non-contact detection. By analyzing these multimodal
signals together, the system demonstrated accurate sleep posture

recognition and real-time detection of sleep quality patterns,
facilitating comfortable and unobtrusive sleep monitoring solu-
tions. By enabling real-time processing of heterogeneous sensor
data, the MNN approach allows HMIs to dynamically adjust to
variations in user input, improving response precision and facili-
tating more intuitive, context-aware interactions.

3.4 | Summary of AI-Driven Progress in Flexible
Sensor HMI

In the field of flexible sensor-based HMIs, Al can assist through-
out the entire workflow from sensor design and signal processing
to final application deployment. However, tremendous Al algo-
rithms have been developed over the decades, each tailored to
specific statistical challenges within diverse flexible sensor-based
HMI datasets. Therefore, it is crucial to select the most appropri-
ate and effective Al algorithms for optimizing different phases of
flexible sensor-based HMI research, as using inappropriate algo-
rithms may lead to suboptimal and even incorrect outcomes. At
the end, Table 2 summarizes and organizes the algorithms dis-
cussed in the above sections.

During the sensor design phase of flexible sensor-based HMIs, Al
algorithms have been widely applied to optimize material selec-
tion, structure, and functionality. On the one hand, statistical
learning models of SVM and regression analysis are used to
directly predict and enhance sensor performance metrics like
sensitivity, linearity, and durability. On the other hand, active
learning algorithms, including KNN, Random Forest, and
Bayesian optimization, are leveraged to iteratively refine sensor
configurations by analyzing experimental datasets, thus acceler-
ating development while minimizing cost and trial-and-error.

Signal feature extraction is a critical intermediate step that trans-
forms preprocessed signals into meaningful features for efficient
classification and decision-making in HMI systems. For small
datasets, traditional ML algorithms such as SVM, KNN, LDA,
Random Forest, and PCA are commonly used due to their sim-
plicity and effectiveness. These models have been successfully
applied in object recognition, gesture decoding, and sign lan-
guage translation. For large-scale or high-dimensional data,
DL algorithms such as ANN, CNN, and RNN/LSTM are
employed. These models are capable of learning hierarchical,
abstract representations from complex signal patterns, making
them suitable for signals such as gait analysis and speech recog-
nition in wearable sensor applications.

For signal preprocessing, most algorithms are traditional
methods that do not inherently involve Al. Filtering, normaliza-
tion, and segmentation are primarily conventional techniques.
However, they play a critical role in enabling AI applica-
tions by ensuring that the input data is clean, consistent, and
well-structured for accurate learning, unbiased analysis, and
effective pattern recognition. In addition, signal augmentation
methods such as PCA are increasingly used to extract the most
informative features from complex sensor signals, reducing
computational complexity and enhancing learning efficiency
and performance for improving model generalization and
robustness.
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Application in Flexible Sensor-based HMIs

Applied to reduce dimensionality of sensor signals in
gesture recognition, enhancing machine learning
model efficiency.

Used for object/texture recognition in triboelectric
Sensors.

Used for flexible sensor design, and applied in activity
recognition using triboelectric or piezoresistive sensors.

Used for real-time motion classification in resistive
sensor-based wearables.

Utilized in multi-gesture recognition systems based on
piezoresistive or capacitive sensors.

Used for classifying gait signal patterns, and employed
in EMG signal interpretation for prosthetic control
interfaces.

Used for suppressing noise, spatial signal classification.
Application in handwriting or gesture recognition from
capacitive and resistive sensor arrays.

Used for classifying sequential signals in speech or
continuous gesture recognition from wearable sensors.
Used for classifying hand gesture-based sequential
signal. Application in time-series analysis of biosignals
(such as heartbeat and EMG) for adaptive HMI
systems.

Real-time visual object detection. Application in vision-

TABLE 2 | Comparison of different Al algorithms.
Al algorithm Type Key features
PCA Signal + Unsupervised learning
preprocessing Reduces input dimensionality
+ Preserves principal variance
SVM Classification + Supervised learning
« Effective for small datasets
Random Classification « Ensemble learning
Forest « High accuracy
« Robust to overfitting
KNN Classification e« Instance-based learning
« Computational cheap
» Low complexity
LDA Classification « Supervised dimensionality reduction
» Efficient for linearly separable data
ANN Classification « Multi-layer perceptron
« Learns complex nonlinear
relationships
» High accuracy with enough dataset
CNN Classification « Convolution layers for spatial feature
extraction
» High accuracy in image-like data
RNN Classification « Efficient for sequential pattern
recognition
LSTM Classification « Efficient for sequential pattern
recognition with higher accuracy but
computational expensive
« Long-term sequence learning
YOLO Object « Real-time spatial pattern recognition
Detection « Computational expansive
MNN Multimodal ¢ Cross-domain learning
intedga;:lation « Sensor fusion ability

based HMISs for tracking gestures and objects in real
time.

Enhances decision-making in systems combining
multiple sensor types (such as EMG and pressure
sensors).

In addition, advancements in flexible sensor-based HMIs can
harness Al-driven multimodal sensor fusion and neural net-
works to seamlessly integrate diverse sensor inputs and create
cohesive and adaptive systems that enhance real-time decision-
making, improve interaction precision, and dynamically respond
to user intent and environmental changes. For sensor fusion,
heterogeneous signals are synthesized to enhance accuracy, resil-
ience, and context awareness, enabling applications like surgical
robotics and prosthetics to dynamically compensate for noise or
sensor failures. MNNs process these heterogeneous inputs
through specialized architectures and fuse features to generate
simultaneous outputs, offering real-time, context-sensitive
interactions for applications that involve gesture recognition
and force estimation. Innovations like robotic skins with

MNNs demonstrate multimodal touch interpretation, blending
spatial and sequential data for responsive haptic feedback.
Collectively, these AI techniques transform fragmented flexible
sensor-based data into intelligent, personalized, and highly
adaptable HMIs, critical for advancing healthcare, rehabilitation,
and interactive robotic prosthetics that effectively bridge clinical
precision with real-world adaptability.

Table 2 compares and summarizes various Al algorithms applied
in flexible sensor-based HMIs, categorizing them by type, key
features, and specific applications. ML methods such as PCA
are primarily used for signal preprocessing to reduce input
dimensionality, thereby enhancing downstream ML/DL perfor-
mance. ML classification algorithms like SVM, Random
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Forest, KNN, and LDA are effective for analyzing small datasets,
with applications ranging from object recognition in triboelectric
sensors to sign language interpretation using piezoresistive sen-
sors. In contrast, DL algorithms such as ANN, CNN, RNN, and
LSTM utilize multi-layered neural networks capable of learning
complex patterns directly from large datasets, often achieving
higher accuracy than traditional ML methods but at the cost
of greater computation and data size demands. CNNs are partic-
ularly suited for spatial pattern recognition, while RNNs and
LSTMs are designed for handling sequential signals. Advanced
DL-based algorithms like YOLO enable real-time object detec-
tion, while MNNs support cross-domain sensor fusion, enhanc-
ing the intelligence and adaptability of multimodal HMI systems.

4 | Flexible Sensor-Based HMIs in Medical
Robotics

4.1 | Advancing Prosthetic Perception and
Control

Traditional prosthetics rely heavily on mechanical structures and
rigid sensor systems that typically struggle to conform to the
user’s body movements, making it difficult to accurately translate
the user’s intent. To address such issues, flexible sensor technol-
ogies have been applied to significantly transform prosthetics.
When attaching flexible sensors to the user’s body parts, they
can seamlessly integrate with the prosthetic socket or conform
to the human skin, not only enhancing user comfort but also
improving the ability of prosthetics to interpret biological signals.
This leads to more intuitive, adaptive, and precise interactions
between the user and the artificial limb. Furthermore, integrat-
ing prosthetics with flexible tactile sensors enhances artificial
limbs with advanced sensory capabilities, enabling them to per-
ceive and detect objects and their surroundings with greater pre-
cision that closely emulates human-like perception. For flexible
sensor-based prosthetic applications, this section categorizes
their operation through two key aspects: sensing of surroundings
and user intent, and control of limb motion. Sensing mechanisms
detect and capture the user’s biosignals, which are generated
through the dynamic interactions between the prosthetics and
nearby objects or environmental factors. The signals are then
converted into meaningful data for advanced prosthetic percep-
tion and user monitoring. The other fundamental aspect involves
the control mechanisms, which process the acquired human bio-
signals using techniques such as threshold-based control, propor-
tional control, and pattern recognition to successfully translate
the signals into prosthetic motion.

4.1.1 | Prosthetic Perception

In flexible sensor-based prosthetics, sensing perception is a
crucial enabler for overcoming the inherent limitations of con-
ventional prosthetics, which often struggle with inadequate
human-prosthetics interaction and reduced functionality.
Traditional prosthetics often force users to rely on visual compen-
sation and inferred proprioception, leading to compromised dex-
terity, safety risks, and heightened cognitive loads. To address
such issues, smart prosthetics can be integrated with various sen-
sors to enable real-time environmental perception and translate

these signals into electrical, mechanical, or neurostimulatory
feedback. Coupled with Al-driven adaptive algorithms, these
advancements in sensing systems pave the way for prosthetics
with biomimetic sensory autonomy, bridging the gap between
artificial devices and biological sensory-motor integration. In
particular, pressure sensing within the field serves as an essential
sensing modality to detect and quantify mechanical forces
between the prosthetic device and its environment, enabling
adaptive control and real-time interaction for the user. Owing
to their mechanical flexibility, conformability, and rapid
response characteristics, flexible sensors are exceptionally well-
suited for pressure detection in these applications.

Various flexible sensors have been developed to augment tactile
pressure feedback by facilitating real-time monitoring and
enhancing user comfort. For example, Chang et al. developed
a highly flexible triboelectric tactile sensing array with PDMS,
PCL nanofiber membrane, and PEDOT:PSS electrodes to quan-
tify the pressure distribution between an amputee’s residual limb
and the socket’s internal environment for improving prosthetic
fit [44]. Li et al. developed a cost-effective and large-area capaci-
tive pressure sensor array that achieved high sensitivity and fast
responses, which could be integrated into prosthetic hands to
enable an object recognition system assisted by convolutional
neural networks [176]. In contrast to single-mechanism sensors
in the applications of prosthetics, which are often constrained by
trade-offs between sensitivity, bandwidth, and environmental
stability, pressure sensors integrated with multiple-mechanism
sensing capability combine complementary sensing modalities
such as piezoresistive, capacitive, piezoelectric, and triboelectric
mechanisms to achieve expanded dynamic range, enhanced
environmental robustness, and multidimensional force charac-
terization. This shift toward multimodal systems improves
user-prosthesis interactive authenticity in diverse real-world sce-
narios. Wang et al. utilized porous nanocomposites to fabricate a
stretchable hybrid pressure sensor that combines piezoresistive
and capacitive mechanisms [177]. This sensor offered high sen-
sitivity to pressure while minimizing sensitivity to stretch or
shear, ensuring accurate pressure sensing in dynamic and
stretchable environments in the applications of soft robotics
and prosthetics. In addition, other flexible pressure sensors uti-
lizing both piezoresistive and capacitive sensing for prosthetic
applications were developed by Ha et al. and Huang et al.
[13], by minimizing stretching interference for enhanced sensi-
tivity and enabling wide-range detection through capacitive-
piezoresistive dual-mode conversion, respectively [178, 179].

While pressure sensing has equipped artificial limbs with some
degree of sensing capability, the evolution toward multimodal
sensing has significantly enhanced the performance of smart
prosthetics especially when integrated into prosthetic hands.
By integrating diverse sensor inputs, multimodal sensing systems
can accurately interpret user intent and environmental interac-
tions in real time, allowing natural and responsive limb percep-
tion. Han et al. developed a hierarchical bimodal sensor
consisting of a laser-induced graphene/silicone rubber layer
for pressure-sensing and a NiO layer for temperature sensing,
integrated into the fingertips of a smart glove (Figure 5a)
[180]. Their smart glove differentiated objects by size, shape,
and temperature using resistance variations and also achieved
over 92% classification accuracy through DL algorithms,
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FIGURE 5 | Various sensing and control systems for prosthetic applications. (a) Hierarchical pressure-temperature bimodal sensing system for
accurate object classification. Reproduced with permission [180]. Copyright 2023, Wiley. (b) An artificial sensory system emulating human touch
for recognition of material types, surface roughness, and contact pressure. Reproduced with permission [181]. Copyright 2024, Wiley. (c) A stretchable
dual-mode sensor array integrated into a prosthetic hand for proximity, pressure, and strain sensing. Reproduced with permission [182]. Copyright 2019,

Elsevier. (d) Piezoelectric sensor-based prosthetic control using smart threshold-based algorithms. Reproduced with permission [57]. Copyright 2024,

Wiley. (e) Multimodal tactile sensing fused with computer vision. Reproduced with permission [183]. Copyright 2024, Frontiers Media SA.

(f) Triboelectric based artificial synaptic transistor for controlling prosthetics biomimetically. Reproduced with permission [184]. Copyright 2023, Wiley.

demonstrating a huge prospect in intelligent prosthetics.
Moreover, Sundaram et al. designed a scalable tactile glove with
548 piezoresistive sensors and deep convolutional neural net-
works for object recognition, weight estimation, and tactile
pattern analysis [185]. Recent advancements in triboelectric tech-
nology have also spurred the development of diverse multimodal
sensing systems for prosthetics by integrating triboelectric mech-
anisms with other sensing modalities. For example, Ma et al.
developed a smart skin that integrated triboelectric-hygroelectric
sensing with ML to simultaneously detect pressure, vibration,
and humidity for applications in robotics and prosthetics
[186]. Xia et al. proposed a biomimetic electronic skin based
on a micro-frustum ionogel, leveraging iontronic capacitive
and triboelectric mechanisms alongside ML to achieve high-
sensitivity multimodal perception of material properties and con-
tact pressures (Figure 5b) [181]. In addition, Li et al. proposed a
flexible dual-modal sensor using a ‘neutral surface’ structural

design technique to integrate a capacitive PDMS/BaTiOs-based
temperature sensing layer and a resistive NigoCr,-based strain
sensing layer, thereby enabling independent detection and effec-
tive decoupling of temperature and strain signals [187]. This
sensor exhibited excellent temperature and strain sensing capa-
bilities with high sensitivity, broad measurement ranges, and fast
response time, highlighting its potential for advanced tactile per-
ception in intelligent prosthetics. Zhang et al. also developed a
stretchable dual-modal sensor array integrating cross-grid liquid
metal electrodes with micro-structured dielectric layers for
multifunctional prosthetic robotic systems, providing comple-
mentary capacitive sensing for high-pressure and proximity
detection and triboelectric sensing for highly sensitive low-
pressure tactile measurements (Figure 5c) [182]. In addition,
Osborn et al. developed a bioinspired multilayered electronic der-
mis that mimicked mechanoreceptor and nociceptor functions to
enable continuous tactile perception of both innocuous and
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harmful stimuli [188]. The neuromorphic interface integrated
sensory feedback and pain reflex controls to allow amputees
to distinguish object curvature and sharpness while advancing
naturalistic tactile perception in prosthetic systems.

In summary, innovative sensing strategies have evolved pros-
thetic perception from basic, unimodal systems to sophisticated,
multimodal platforms that facilitate real-time environmental
awareness and adaptive interaction. By integrating diverse sensor
modalities with flexible materials and Al-driven adaptive algo-
rithms, these sensing systems provide enhanced sensory—motor
integration and natural user-prosthesis interaction. Future
advancements will prioritize seamless human-device integration
through self-powered systems and Al-enhanced cognitive hap-
tics, advancing prosthetics toward biomimetic sensory autonomy
in dynamic environments.

4.1.2 | Prosthetic Control

Early stages of prosthetics primarily served as decorative replace-
ments for missing body parts, such as rudimentary wooden limbs
[189]. Technological advancements eventually led to body-
powered prosthetic limbs, such as shoulder-driven controlled
prosthetics. Today, advances in electronics and power systems
have enabled amputees to use externally powered prosthetics
by equipping the affected limb with sensors, enhancing function-
ality and synergizing user control. In addition, flexible sensors
further evolve the control system of prosthetics by conformably
attaching to different body parts and outputting adaptive signals.
The use of flexible sensors enables a more scalable and custom-
izable sensing system that gathers unique biosignals from users
that are then converted into commands for controlling prosthet-
ics. Control algorithms play a crucial role in translating these bio-
signals into precise and responsive prosthetic movements by
processing the acquired signals. These algorithms enable seam-
less interaction between the user and the prosthetic device,
ensuring that movements are accurate, effective, and intuitive.
With the majority of flexible sensor-based prosthetic control sys-
tems categorized as either electromechanical or electrophysiolog-
ical sensing systems, their control algorithms can be mainly
divided into four parts: threshold-based control, proportional
control, proportional-integral-derivative (PID) control, and pat-
tern recognition.

Control strategies for prosthetic movement vary in complexity,
ranging from basic to advanced approaches. Threshold control
is the simplest method for prosthetic movement, relying on signal
value-based ‘if statement’ commands to trigger ON-OFF
responses for basic binary activation [190-192]. Jiang et al. intro-
duced a porous piezoelectric sensor that uses muscle clenching to
generate voltage pulses, which are translated into preset com-
mands for Morse Code or multi-clench gestures for object manip-
ulation (Figure 5d) [57]. Despite its versatility, threshold control
lacks real-time adaptability and proportional force modulation,
making it unsuitable for complex flexible sensor-based prosthetic
applications. To enhance adaptability and user intent recogni-
tion, proportional control builds upon threshold-based methods
by adjusting prosthetic forces based on biosignal intensity to
allow for more fluid and natural interaction [193, 194].
However, precise tuning is necessary to maintain an accurate
proportional relationship between sensor signals and prosthetic

output. As a more advanced closed-loop control strategy, PID
control continuously refines prosthetic movement through
proportional, integral, and derivative terms, ensuring smoother
and more stable operation [195]. Duan et al. implemented a
PID-based EMG or EEG controller for stable grip force regulation
[196], while Gohain et al. developed an adaptive PID system
integrating force-sensing resistors and kinematic sensors for
real-time slip prevention [197]. Although more effective than
threshold and proportional control algorithms, some traditional
PID control methods still require manual tuning and need care-
fully dealing with nonlinear sensing systems [198, 199]. Beyond
that, advanced strategies like Fuzzy Logic and self-tuning PID
can enhance adaptability, improving responsiveness and reliabil-
ity in prosthetic applications.

While traditional control algorithms improve reliability and pre-
cise feedback-based adaptation, their limitations in handling
dynamic, nonlinear interactions and individual user variations
highlight the need for more advanced approaches. To overcome
these challenges, Al-driven closed-loop pattern recognition
methods leveraging ML algorithms such as nonlinear regression
(NLR), multilayer perceptron (LP), LDA, Decision Tree, and
SVM have emerged, offering adaptive, predictive, and personal-
ized control for flexible sensor-based prosthetics [200-204].
Among these, SVM can achieve the highest accuracy with spe-
cialized kernels but demands significant computational resour-
ces, limiting its suitability for embedded applications. MLP
similarly delivers high accuracy yet requires substantial memory
and processing power. LDA is computationally efficient and
widely used but struggles to capture nonlinear relationships,
restricting adaptability for complex movements, and conversely,
NLR provides an optimal trade-off between accuracy and compu-
tational cost, making it particularly suitable for embedded
systems despite needing careful optimization to prevent overfit-
ting. Marinelli et al. comparatively evaluated these algorithms
for controlling the Hannes prosthetic hand, demonstrating that
NLR offered performance comparable to LDA while significantly
reducing sensor quantity and system complexity, thus highlight-
ing its effectiveness for real-time prosthetic control [205].
Recently emerging as more sophisticated solutions, DL methods
including CNN, RNN, and LSTM have expanded beyond ML to
further enhance prosthetic control through advanced feature
extraction, adaptability, and superior responsiveness to complex
neuromuscular signals. Zbinden et al. developed a DL-based sys-
tem comparing shallow and deep neural networks for real-time
motor intent decoding [206]. Their study demonstrated that deep
models, integrating CNN with squeeze and excitation module
(CNN-SE) architectures, significantly outperformed shallow net-
works, achieving superior precision and robustness in real-time
prosthetic limb control during human-in-the-loop testing.
Furthermore, DL methods excel in multimodal sensor integra-
tion, significantly benefiting flexible sensor-based prosthetics
[207, 208]. Zandigohar et al. proposed a multimodal fusion
framework combining CNN-based visual grasp intent classifica-
tion with sEMG-based gesture recognition via an extra-trees
ensemble, achieving an impressive accuracy of 95.3% through
Bayesian fusion (Figure 5e) [183]. These results underscore
the transformative impact of integrating AI algorithms and
multimodal sensor fusion, enabling prosthetic systems to
achieve unprecedented adaptability, precision, and real-time
responsiveness.
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Despite advances in these control algorithms, conventional flexi-
ble sensor-based prosthetics still rely on external hardware com-
puting and predefined processing frameworks, limiting their
biological realism and real-time processing efficiency. To over-
come these challenges, flexible synaptic transistors, which inte-
grate memory and computation at the hardware level, are
gaining attention for enabling more seamless and biomimetic
prosthetic control by mimicking biological synapses. This is
due to those artificial synaptic transistors that can similarly trans-
form the input pulse signals into real synaptic-like responses.
Moreover, to potentially offer self-learning abilities for prosthet-
ics, the artificial synaptic transistors can mimic synaptic plastic-
ity, which is the ability of biological synapses to strengthen or
weaken over time in response to neuron activity levels [209].
Currently, researchers have increasingly utilized triboelectric
sensors to trigger synaptic responses that precisely control the
prosthetics, in which the sensors simultaneously work as both
the flexible sensing system and input pulse suppliers [210].
Geng et al. proposed an artificial neuromuscular system for
bimodal HMI by integrating triboelectric sensors, SnErOx neuro-
morphic transistors (SENTs), and a signal-converting system
(Figure 5f) [184]. The system mimicked biological neuromuscu-
lar processes, enabling muscle contraction, muscle fiber shift,
muscle movements, and transformation of neuron communica-
tion from the input signals of the triboelectric sensor. Both
contact-based and non-contact-based HMI were employed using
sEMG decoding and supercapacitive iontronic effects respec-
tively. The proposed system achieved real-time gesture recog-
nition and robotic manipulation, offering a pathway for
next-generation interactive electronics with multimodal interac-
tion capabilities. Similarly, Park et al. developed a multi-layered
triboelectric sensor that generated multiple voltage pulses from a
single touch for low-power artificial synaptic devices [211]. By
integrating micropatterned PDMS and BaTiO; composite films,
the triboelectric sensor enhanced charge generation and storage,
and coupled with an organic electrochemical transistor (OECT),
it also replicated biological synaptic plasticity to enable memory
training in robotic hands and to further provide huge potential in
neuromorphic computing, human-machine interfaces, and self-
powered electronic applications. Overall, such advancements lay
the foundation for next-generation bioinspired interactive elec-
tronics, facilitating seamless real-time decision-making and
adaptive multimodal interaction to help realize the development
of intelligent,

In summary, flexible sensor-based HMIs have demonstrated sig-
nificant potential in advancing prosthetic applications by inte-
grating adaptive mechanisms with high-performance sensing
and control capabilities, as summarized in Table 3. The sensing
systems exhibit key features such as reliable sensing responses
with minimal hysteresis, high accuracy in real-time signal acqui-
sition, and multimodal signal detection comprising of pressure,
strain, temperature, and electrophysiological modalities for com-
prehensive perception and closed-loop movement control. Their
applications span precise gesture recognition for natural pros-
thetic movements, real-time force feedback for enhanced control
precision, and neural signal interpretation to support seamless
closed-loop operation, thereby improving prosthetic responsive-
ness and functionality significantly. For flexible sensor-based
prosthetic systems, they achieve response times typically ranging
from 10 to 170 milliseconds (ms), enabling near real-time

adaptation to dynamic user inputs. Enhanced stability is also
attained through advanced structural engineering techniques,
with engineered devices enduring over 10,000 cycles, thereby
ensuring long-term durability and reliability. Furthermore, the
integration of ML-augmented signal processing substantially
improves control accuracy, effectively overcoming traditional lim-
itations in conventional prosthetics and paving the way for more
natural and responsive user interactions. The convergence of these
attributes enables natural replication of limb movements and bidi-
rectional sensory feedback that provide a transformative pathway
for developing intuitive, patient-specific prosthetic solutions.

Despite promising performances in laboratory settings, such as
rapid response, high sensitivity, and robust durability, current
evaluations of flexible sensor-based HMIs remain largely con-
fined to controlled environments, with limited validation in real
medical robotic contexts. Key performance metrics like sensitiv-
ity and durability are often derived from idealized tests that do
not reflect complex, real-world conditions. Dynamic loading sce-
narios such as joint movement, repeated deformation, and multi-
directional stress may degrade sensor performance over time, yet
these effects remain underexplored. Similarly, prolonged use can
introduce sensitivity decline, signal drift, material fatigue, and
delamination, yet long-term reliability data under real-use
conditions remain scarce. In addition, biocompatibility remains
a critical yet often overlooked aspect in current research.
Although many sensors employ biocompatible materials or
encapsulation layers such as PDMS, most sensing systems have
not undergone standardized or clinical-level biocompatibility
testing, leaving their long-term safety with skin-contact or
implantable applications uncertain. Furthermore, sterilization
compatibility remains a challenge, as most sensors can withstand
only basic disinfection, with few capable of enduring clinical ster-
ilization protocols without functional degradation, thus limiting
their suitability for prosthetic applications. To advance clinical
translation, future work must prioritize comprehensive valida-
tion under realistic conditions, integrating biocompatibility cer-
tification, dynamic mechanical testing, long-term performance
monitoring, and sterilization resilience, which can ensure that
flexible sensor-based HMIs are safe, durable, and effective for
real-world medical robotics applications. In addition to these
application-related gaps in developing flexible sensor-based pros-
thetics, there are ongoing technical hurdles in reconciling sensor
miniaturization with high-resolution signal capture, maintaining
robust signal interpretation under mechanical and environmen-
tal noise, and optimizing energy efficiency without compromis-
ing computational performance. Addressing these limitations
requires future research to focus on innovative material and
structure design, multimodal sensor fusion, adaptive control sys-
tems driven by ML algorithms, and bioinspired neural interfaces
to improve prosthetic responsiveness and emulate natural
human movement.

4.2 | Adaptive Exoskeleton Systems

Robotic exoskeletons represent an emerging technology within
the field of HMI, functioning in tandem with flexible sensors
to effectively assist human users. Exoskeletons, also referred
to as exosuits, are wearable assistive devices designed to
augment the user’s musculoskeletal system by exerting external
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mechanical forces through actuators that enhance the user’s
strength, endurance, or mobility [212]. While exoskeletons are
primarily utilized in medical applications such as physical reha-
bilitation, they also hold significant potential in industrial set-
tings, where mechanical performance can be enhanced and
the risk of injury can be reduced by targeting the exoskeleton
to specific areas of the body, including the upper and lower limbs
and back muscles. For exoskeleton applications, HMI is crucial
for capturing and interpreting the user’s physiological signals
such as muscle activity and joint movements to enable intuitive
control and seamless integration between the user and the
device. Central to this interaction are flexible sensors, which
serve as a key enabling technology for HMI-enabled exoskeletons
and play a vital role in healthcare and rehabilitation. These soft,
adaptable, and durable devices excel at detecting physical phe-
nomena like force and pressure, allowing for precise detection
of user inputs while maintaining compatibility with clothing
and wearable systems, ensuring both functional performance
and ergonomic integration [213]. They are also instrumental
in recording critical data for both monitoring user progress dur-
ing rehabilitation and assisting in actuating exoskeletons for
task-specific operations [214]. The implementation of flexible
sensors constructed from soft, lightweight materials alleviates
these issues, thereby enhancing comfort, wearability, and ergo-
nomic acceptance during prolonged exoskeleton applications.
When further integrated with AI technologies, such as DL algo-
rithms, these systems enable accurate intention recognition and
fast response, effectively reducing muscular effort and facilitating
intuitive user control in real-world scenarios [215]. For this sec-
tion, the application of flexible sensors in robotic exoskeletons
will be further explored across healthcare, mobility support,
and industrial domains.

421 | Enhancing Healthcare and Rehabilitation

Robotic exoskeletons play a pivotal role in enhancing healthcare
and rehabilitation by augmenting mobility restoration in
impaired or injured individuals. They usually integrate advanced
sensor technologies and real-time control systems to continu-
ously monitor and regulate movements, allowing for personal-
ized and adaptive rehabilitation protocols that significantly
improve therapeutic outcomes. Exoskeletons serve multifaceted
roles in healthcare and rehabilitation, with muscular rehabilita-
tion considered a core function that enhances muscle strength,
coordination, and functional recovery through mechanized assis-
tance or resistance training. These systems enable quantitative
functional sensing assessment through various flexible sensors,
which can detect electrical signals or mechanical movements
in the user’s body.

Specifically, the hand exoskeleton can sense movement in the
user’s body and provide a physical therapy in the form of strength
training if the user lacks muscular control, thus retraining
muscles and neural pathways and enabling proper muscular
rehabilitation. Kladovasilakis et al. developed a soft robotic hand
exoskeleton system using flexible sensors for physical therapy
based on mirror therapy principles (Figure 6a)[216]. The system
included a control glove and a soft exoskeleton glove, where soft
flexible sensors captured finger motions in the healthy hand, and
actuators replicated them in the affected hand using pneumatic
control. Clinical trials demonstrated the system’s ease of use,

comfort, and effectiveness in improving force output and motion
accuracy for stroke and neurological disorder patients.
Chen et al. introduced a wearable hand rehabilitation system
combining mirror therapy and task-oriented therapy using
sensory and motor gloves made of soft, flexible materials for
enhanced comfort and safety [220]. ML enabled accurate
gesture recognition (93.32% for 16 finger gestures) and real-time
task-oriented rehabilitation (89.4% accuracy), allowing for pre-
cise, fine-grained finger training and coordinated movements.
Building on these advancements, integrating flexible sensors
with exoskeleton systems further augments virtual reality
(VR)-based rehabilitation by immersive exercise environments,
accurate motion monitoring and correction, tailored training
programs, and increased patient engagement through gamifica-
tion. In addition, Wang et al. developed a fully flexible multi-
modal HMI interface using hydrogel-based sensors and a
flexible circuit board to accurately collect and decode EMG
and FMG signals with Al assistance (Figure 6b) [11]. This system
achieved a gesture recognition accuracy of 91.28% with only two
channels, enabling precise control of a pneumatic robotic glove
for stroke rehabilitation and broader applications in intelligent
robotic systems.

In addition to exoskeletons centered around the hands, other
upper-body exoskeletons have also proven effective in rehabili-
tation for neurological disorders or afflictions, aiming to assist
in muscular support, resistance training, and corrective therapy.
Paredes-Acufia et al. developed a lightweight upper-limb exoskel-
eton with SEMG sensors and robotic skins to monitor user intent
and enhance therapy, serving as an alternative to traditional
physical therapy [221]. The device reduced muscular load by
40% during assisted exercises and increased muscular activation
by 30% during resistive therapy, demonstrating its dual role in
muscular assistance and rehabilitation. In addition, Bhatia
et al. designed a gravity support device for shoulder rehabilitation
using an origami-based structure integrated with foldable tribo-
electric sensors [222]. The rehabilitation tasks were based on the
exercise-gaming approach, where the triboelectric sensors served
as self-powered sensors for gaming tasks and energy harvesters
for exercise tasks. This device effectively demonstrated an
improved range of motion for the upper arms of stroke patients,
indicating its potential for home-based tele-rehabilitation. Along
with the advancements of upper limb exoskeletons, lower limb
exoskeletons are also in high demand to address mobility chal-
lenges and enhance gait performance.

Another major challenge for lower limb exoskeleton design is
ensuring a sustainable and lightweight energy supply, as high-
precision sensors and power-outputting machinery require sig-
nificant energy. To resolve this, Hu et al. developed a knee joint
exoskeleton with a magnetic-driven piezoelectric cantilever gen-
erator that converted mechanical energy to electrical energy dur-
ing usage (Figure 6c¢) [217]. This system not only powered
sensors but also integrated a joint angle sensing module for joint
activity and rehabilitation tracking, improving efficiency while
reducing battery dependency. Pan et al. electrospun piezoelectric
PVDF fibers to develop a mechanomyography sensor, which was
integrated with interdigitated electrodes and applied to detect the
human body motion for the lower limb rehabilitation exoskele-
ton [223]. This sensor demonstrated a high signal amplitude and
signal-to-noise ratio, thereby enhancing the sensitivity and
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FIGURE 6 | Flexible sensor-based HMIs for adaptive exoskeleton applications. (a) A soft exoskeleton glove for hand rehabilitation and assistance

purposes. Reproduced with permission [216]. Copyright 2022, MDPI. (b) Multimodal HMI integrated with hydrogel-based EMG and pressure sensors for
active rehabilitation. Reproduced with permission [11]. Copyright 2024, Wiley. (c) Wearable exoskeleton system integrated with a magnetic-driven
piezoelectric cantilever-based generator for energy harvesting and knee joint rehabilitation training. Reproduced with permission [217]. Copyright
2022, ACS. (d) Flexible LIG-based wearable exoskeleton for walking gait recognition. Reproduced with permission [218]. Copyright 2024, Springer
Nature. (e) DL-driven upper-body exoskeleton for force augmentation. Reproduced with permission [215]. Copyright 2024, Springer Nature.

(f) Stretchable microneedle adhesive patch-based lower-body exoskeleton for lifting leg force support. Reproduced with permission [219].

Copyright 2024, American Association for the Advancement of Science.

effectiveness of the lower limb rehabilitation exoskeleton in
movement assistance. Li et al. also developed an HMI-enabled
lower limb exoskeleton that integrated multimodal biosignals,
specifically EEG and sEMG signals, to accurately interpret
user motion intentions [224]. Through precise, adaptive, and
personalized interventions, flexible sensor-based robotic
exoskeletons are transforming healthcare and rehabilitation by
bridging real-time sensing with personalized therapeutic
actions. Future advances in Al-driven control, lightweight
energy-harvesting designs, and multimodal sensor integration
will further boost responsiveness and precision of robotic
exoskeletons.

4.2.2 | Human-Centric Mobility Assistance and
Augmentation

Other than for rehabilitation purposes, exoskeletons can also be
designed for mobility support to enhance human movement by
reducing physical strain, improving gait efficiency, and providing
adaptive assistance. These systems aim to enhance gait efficiency,
stability, and endurance by integrating sensors that monitor mus-
cle activation, foot pressure distribution, and joint kinematics
[218, 225, 226]. By leveraging wearable gait recognition sensors
and tactile-based gait phase detection, mobility-assisting exoskel-
etons can dynamically adjust joint torque and support levels
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based on real-time feedback, enabling natural and intuitive
movement patterns for users [218]. Unlike force augmentation
exoskeletons, which primarily target upper-limb applications,
mobility-assisting exoskeletons prioritize lower-limb function,
making them particularly valuable for elderly individuals
[227, 228]. To develop flexible sensing systems for lower-limb
exoskeletons, researchers have explored triboelectric, and piezor-
esistive pressure sensors to provide high-resolution force detec-
tion and muscle activity monitoring while also maintaining
comfort and durability [212, 226]. These sensors are often embed-
ded in smart insoles, or sensor-integrated exoskeleton joints,
enabling continuous gait phase classification and movement
adaptation [218, 226]. With flexible sensing systems delivering
real-time physiological and biomechanical data, advanced con-
trol strategies such as fuzzy logic control and other DL-based
motion predictions are progressively being utilized to improve
gait pattern recognition and optimize assistance levels
[226, 228]. For instance, Sun et al. developed laser-engraved
wearable gait
recognition sensors that demonstrated an accuracy of 99.85%
in real-time gait classification, significantly improving human-
exoskeleton interaction for mobility assistance (Figure 6d)
[218]. Moreover, adaptive actuation mechanisms, such as soft
pneumatic actuators, variable stiffness actuators (VSAs), and
cable-driven actuators, are central to the functionality of mobil-
ity-assisting exoskeletons since they can modulate joint support
based on real-time sensor feedback [216, 225]. A recent study pro-
posed by Zhang et al. introduced a hip exoskeleton controlled via
soft pneumatic force sensors, enabling seamless transition
between gait assistance, resistance, and transparent modes
for daily mobility assistance [227]. Similarly, triboelectric bi-
directional sensors have also been incorporated into exoskeletons
to provide multi-degree-of-freedom motion tracking, allowing
users to navigate real and virtual environments with improved
precision [212].

Unlike mobility-supporting applications, exoskeletons designed
for force augmentation focus on enhancing a user’s strength,
endurance, and load-carrying capabilities. These systems provide
mechanical reinforcement to the musculoskeletal system,
enabling individuals to lift heavier loads, sustain physically
demanding tasks for extended periods, and reduce muscle
fatigue. By utilizing flexible sensors for real-time biomechanical
feedback and adaptive force-distribution mechanisms that
dynamically adjust load assistance, force-augmenting exoskele-
tons help redistribute strain across multiple muscle groups,
reducing localized fatigue and minimizing the risk of
overexertion-related injuries. Such exoskeletons are particularly
valuable in industrial, military, and labor-intensive work envi-
ronments. The majority of force augmentation exoskeletons
are designed for the upper limbs, as many physically demanding
tasks such as lifting and carrying heavy loads and tool operation
primarily rely on arm and shoulder strength [229]. Recently, soft
exoskeletons, defined as a lightweight, flexible wearable system
that provides assistive force augmentation using soft materials,
have been gaining increasing attention due to the ongoing need
for ergonomic solutions [230]. To build flexible sensing systems
for soft exoskeletons, various flexible sensors such as piezoresis-
tive, piezoelectric, and capacitive sensors have been developed,
facilitating accurate and responsive sensing and motion control
[231-233]. The working process for upper-limb exoskeletons

typically involves sensor input, signal processing, actuation,
and feedback loop control. With flexible sensing systems provid-
ing real-time data, control algorithms play a crucial role in proc-
essing these signals to generate precise and adaptive assistance,
ensuring smooth and intuitive exoskeleton performance. Upper-
limb exoskeletons employ various control algorithms to ensure
precise, adaptive, and intuitive assistance, in which PID-based
controls are commonly used for trajectory stabilization and
movement tracking while adaptive impedance control dynami-
cally adjusts stiffness and force based on user interaction
[234-237]. Currently, more advanced systems integrate ML
and Al-based prediction to anticipate user intention using bioe-
lectronic signals, enhancing real-time responsiveness. At the end
of each control cycle, different actuation mechanisms, such as
pneumatic actuators or cable-driven actuators will then be trig-
gered to assist users for force augmentation. Lee et al. proposed
an intelligent DL-driven control algorithm for an upper-limb exo-
skeleton that enables real-time, intention-driven strength aug-
mentation (Figure 6e) [215]. Their system leveraged soft
wearable bioelectronic sensors to capture muscle activity, which
was processed through a cloud-based DL model to predict user
intentions with an accuracy of 96.2% within 500-550 ms. The pre-
dicted motion commands were then executed by soft pneumatic
artificial muscles, providing a force of 897 N and a displacement
of 87mm to assist upper-limb movements and significantly
reducing muscle activity by a factor of 3.7, ultimately highlight-
ing its potential to enhance mobility control based on user
intentions.

While upper-limb exoskeletons focus on enhancing arm strength
for various daily tasks, lower-limb exoskeletons also play a cru-
cial role in force augmentation for lower-body endurance and
load-bearing support, particularly in industrial applications. By
leveraging flexible sensing systems, lower-limb exoskeletons
can continuously monitor a user’s motion conditions in real time,
assessing parameters such as joint angles, muscle activity, pos-
ture stability, and force exertion. This real-time motion analysis
enables the exoskeleton to accurately interpret the user’s inten-
tion and biomechanical state, ensuring that the assistance is
adaptive, natural, and seamlessly integrated into their move-
ment. Kim et al. proposed a stretchable microneedle adhesive
patch (SNAP) for reliable electrophysiological sensing and exo-
skeleton robot control, which integrated a stretchable platform
with serpentine interconnects and silicon microneedle arrays
to penetrate the stratum corneum without reaching pain recep-
tors (Figure 6f) [219]. The electrically conductive adhesive com-
posed of silver flakes and high-tack silicone ensured secure skin
adhesion and low impedance even under dynamic motion and
skin contamination. Compared to existing gel-based and flexible
microneedle electrodes, SNAP exhibited superior mechanical
adaptability, reduced motion artifacts, and improved user com-
fort during long-term use. After processing the user’s movement
patterns, exoskeletons precisely control actuators to reduce
fatigue during prolonged activity or enhance force while lifting
heavy loads to prevent overexertion. Compared to upper-limb
exoskeletons that provide supplementary strength for lifting
and carrying objects, lower-limb exoskeletons assist in walking
long distances, providing leg force support, navigating uneven
terrain, and reducing joint stress. These capabilities are particu-
larly beneficial in physically demanding fields such as construc-
tion, military operations, and healthcare. Additionally, the
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integration of flexible sensors into exoskeleton systems has revo-
lutionized the sensing accuracy, exoskeleton responsiveness, and
overall user experience. By embedding such sensors into the exo-
skeleton’s joint structures and limb attachments, real-time motion
detection, force distribution, and biomechanical feedback can be
improved to provide more precise and adaptive assistance, making
the overall integrated system an invaluable tool for enhancing
human-machine interfacial performance in everyday tasks.

4.3 | Human-Robot Synergy in Surgical Systems

As a medical intervention, surgery is a procedure involving inva-
sive manual or instrumental techniques to diagnose, treat, or
repair physiological conditions through targeted alteration of tis-
sues or organs. Traditional open surgery, characterized by rela-
tively large incisions, offers direct access to internal organs but is
associated with significant drawbacks such as increased trauma,
extended recovery periods, and higher risks of infection and post-
operative complications for patients [238]. Minimally invasive
surgery, including techniques such as laparoscopic and endo-
scopic procedures, reduces these issues by minimizing incision
sizes and facilitating faster recovery. However, they still highly
rely on the surgeon’s manual dexterity, which may fall short
in achieving the micro-level precision required for complex or
delicate procedures due to factors like hand tremors and fatigue.
To address those issues, robotic-assisted surgeries are presented
as an advanced evolution of minimally invasive surgery, incor-
porating a patient-side robotic platform, a surgeon’s console,
and an integrated sensing and feedback system. They can
enhance surgical precision and enable complex procedures with
minimal tissue trauma, reduced postoperative pain, accelerated
recovery, and lower infection risks while simultaneously improv-
ing surgeon ergonomics, mitigating fatigue, and ensuring real-
time adaptability during prolonged operations [239]. In the
robotic-assisted surgical context, flexible sensors serve as critical
components that can facilitate seamless interaction between sur-
geons and robotic instruments. Their superior flexibility and
mechanical conformability allow them to closely interface with
various tissues, enabling precise monitoring of tool-tissue inter-
actions and accurate quantification of the mechanical properties
of biological tissues, which in turn improves tactile feedback.
Additionally, these sensors enable real-time monitoring of phys-
iological signals to improve surgical control and reduce the
impact of tremors and fatigue. Furthermore, they can continu-
ously track surgeon performance and patient vital signs, ensuring
optimal clinical outcomes and patient safety. This section system-
atically examines flexible sensor-based surgical robotics through
two distinct functional paradigms: surgical tactile perception and
force feedback, and electrophysiological monitoring for surgical
control and safety.

4.3.1 | Sensor-Integrated Tactile Perception and Force
Feedback for Precision Surgery

In conventional open surgeries, surgeons have direct access to
the surgical site and can diagnose tissue abnormalities through
physical palpation. This direct tactile interaction provides essen-
tial feedback that aids in nuanced tissue assessment. However, in
traditional robot-assisted minimally invasive surgeries, the
absence of direct haptic feedback poses a significant challenge

in accurately identifying various tissue structures. To address
such issues, tactile sensing has emerged as an effective surrogate
for palpation in advancing surgical robotics, which can offer the
ability to perceive and interpret physical interactions during sur-
gery operations. By mimicking the sense of touch, tactile sensors
provide crucial mechanical information such as stiffness and
elasticity when embedded in robotic surgical systems, enabling
surgeons to detect anomalies by remotely differentiating between
soft and hard tissues, as it is essential for delicate and minimally
invasive procedures. For example, tissue stiffness, often increased
in cancerous tissues, serves as a key marker for malignancy due
to changes in tissue composition and heterogeneity during cancer
development [239]. Real-time detection of tissue stiffness via sur-
gical robot systems allows surgeons to precisely delineate tumor
margins and assess cancer progression during surgeries. This
capability provides a significant advantage over blood tests
and imaging procedures, which often fall short in capturing local
tissue mechanical properties.

Building on these clinical benefits, researchers have introduced
a range of flexible sensor-based innovations to seamlessly inte-
grate tissue stiffness assessment into robotic surgery. Nguyen
et al. developed a single-chip elasticity sensor using micro-
electronic-mechanical systems (MEMS)-based piezoresistive can-
tilevers with different tactile properties for use in robotic hand
manipulation and tissue stiffness discrimination in minimally
invasive surgery (Figure 7a) [240]. Talasaz deployed DL models
to characterize tissue stiffness properties during telerobotic pal-
pation and localization of tissue abnormality while estimating its
depth [246]. This method utilized a minimally invasive probe
with a mounted capacitive tactile sensor at the tip to capture
the pressure distribution map and the indentation depth for each
tactile element, thereby generating a stiffness map for the pal-
pated tissue. To overcome the challenge of precisely localizing
tumors and identifying their boundaries in minimally invasive
en bloc tumor resection, Hong et al. proposed a piezoelectric-
based tactile sensor integrated onto a robotic endoscopic injec-
tion needle to detect tissue hardness through changes in resonant
frequency [247]. They developed an autonomous boundary rec-
ognition algorithm to improve the accuracy of tumor localization
and boundary identification. In addition to the advances in real-
time tissue stiffness monitoring, some innovative approaches that
integrate advanced robotic technology with precise tissue detec-
tion have also demonstrated enormous potential. For example,
continuum robots have garnered significant attention in recent
years owing to their high flexibility and multiple degrees of free-
dom that have led to potential applications in confined-space
procedures and minimally invasive surgery. However, they face
limitations in accurately detecting and responding to collisions
due to their lack of advanced tactile perception. To address this,
Sun et al. proposed a self-powered triboelectric tactile perception
ring that can sense tiny collision pressures in four directions
[248]. This sensor can be integrated into each joint of the contin-
uum robot to detect collisions and adjust posture, demonstrating
the ability of obstacle avoidance and adaptive crawling. For high
sensitivity, durability, and real-time feedback in robotic surgeries
through physical palpitation, tactile sensing technologies can
empower robotic systems to interact safely and effectively with
the complex and variable environments within the human body.
Future developments are expected to focus on integrating multi-
modal tactile sensing with AI technology to enable real-time,
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zoresistive cantilevers for robotic hand manipulation and tissue stiffness discrimination in minimally invasive surgery. Reproduced with permission
[240]. Copyright 2019, Elsevier. (b) A highly integrated 3D MEMS force sensing module with variable sensitivity for robotic-assisted minimally invasive
surgery. Reproduced with permission [241]. Copyright 2023, Wiley. (c) VR-directed pacemaker lead implantation surgery enabled by using the smart
piezoelectric hydrogel ring as a self-powered wearable HMI. Reproduced with permission [242]. Copyright 2025, Elsevier. (d) A sutureless soft robotic
epicardial device for drug delivery during surgery. Reproduced with permission [243]. Copyright 2024, Cell Press. (e) Evaluation of a surgeon completing
various tasks on the da Vinci simulator with an EEG headset and eye-tracking glasses. Reproduced with permission [244]. Copyright 2023, Frontier
Media SA. (f) EMG-based proximity assessment of surgical instruments to the patient’s nerve roots. Reproduced with permission [245]. Copyright

2022, Wiley.

adaptive decision-making and predictive tissue characterization
during surgery. Advancements in biocompatible, high-density
sensor arrays, coupled with closed-loop robotic control systems,
could further enhance spatial resolution, dynamic responsive-
ness, and autonomous surgical precision, ultimately transform-
ing robot-assisted platforms into intelligent, context-aware
partners in complex clinical interventions.

In addition to tactile perception, force feedback is another impor-
tant parameter in robotic-assisted surgeries since it can improve
precision and stable surgical control to ensure safer and more
intuitive surgical operations enabled by flexible sensor-based
HMIs. This capability is achieved by converting minute mechan-
ical interactions into real-time haptic signals through advanced
flexible sensors and sophisticated control algorithms, thereby
ensuring meticulous manipulation of delicate tissues. As exertion
of inappropriate amounts of force in surgeries can lead to the risk
of unintended tissue injuries, incorporating a force feedback sys-
tem would allow the surgeon to have a more natural interaction

between surgical tools and biological tissues, closely resembling
the tactile experience of open surgery. With an additional sensing
and feedback system that provides real-time quantitative meas-
urements of exerted force, delicate manipulation of surgical tools
during operations would drastically improve.

Various technologies and methods have been developed to design
force feedback sensors for robotic surgery with careful consider-
ation of the precision, safety, and integration needs of the surgical
environment. To facilitate surgeons with force telepresence dur-
ing surgery, Hou et al. proposed a MEMS-based piezoresistive 3D
force sensing module with variable sensitivity integrated at the
end of palpation probe tips and forceps to achieve a high preci-
sion perception of the salve manipulator for robotic-assisted min-
imally invasive surgery (Figure 7b)[241]. Oh et al. implemented
advanced ZnO piezoelectric field-effect transistors on flexible
substrates for high-speed switching elements and tactile sensing
to demonstrate slip and grip with robotic fingers across various
scales [249]. The fabricated array exhibited excellent spatial and
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temporal resolution with strong sensitivity to normal force, and
with an additional 3D pillar structure fabricated from PDMS,
excellent sensitivity was also demonstrated to the magnitude
and direction of shear force, highlighting its potential in surgical
robotic applications. To achieve triaxial force detection in sur-
gery, Hou et al. applied orthogonal membrane arrangements
of the piezoresistance-sensing and PDMS cap to develop a mini-
ature force sensor and integrated it in the grasping head of a con-
tinuum robot to provide force feedback [250]. The biocompatible
PDMS cap enhanced the measurement range of the sensor and
enabled triaxial force detection. Arshad and Hussain et al. also
demonstrated their multi-axis capacitive tactile force sensors
with high sensitivity, presenting a good prospect in robot-assisted
surgery [251, 252].

In addition to detecting tissue mechanical properties and moni-
toring the state of applied surgical forces, force feedback in
robotic-assisted surgeries can also be used for precise control
to enhance the surgeon’s ability to perform delicate and accurate
operations, thus ensuring safer and more positive surgical out-
comes. To minimize the risks of tissue trauma and improve sur-
gical performance, Aubeeluck et al. proposed an ultrathin and
flexible screen-printed capacitive tactile sensor for the interior
jaws of a disposable surgical magnetically-controlled microgrip-
per [253]. It could monitor and regulate tool-tissue manipulation
of pressure and forces in real time to improve grasping perform-
ances and quality of surgical procedures. Puneetha et al. devel-
oped an ultra-flexible self-powered graphene/nylon/PDMS
coaxial fiber-shaped multifunctional robotic-hand controlled
sensor [254]. Due to its piezoresistive mechanism, this sensor
boasted a fast response of 120 ms and recovery time of 55ms,
offering promising applications in robotic-hand controlled medi-
cal surgeries. Arabagi et al. utilized a stacked multi-lamina
design and a mechanical amplification technique to develop a
flexible and biocompatible cylindrically-packaged piezoresistive
pressure sensor array [255]. It was incorporated into robotic
endoscopes and catheters to create a co-robotic controller that
facilitated shared motion control between the clinician and
the robot. Zhang et al. developed a smart piezoelectric hydrogel
ring as a self-powered and wearable HMI for operating pace-
maker lead implantation surgery in a VR interface (Figure 7c)
[242]. Through simple finger motions, users could control the
movements of the lead from the superior vena cava to the right
ventricle, highlighting the potential of HMI for surgical guidance
and training and also paving the way for advancements in robotic
surgery, where robotic instruments perform procedures under
VR-based HMI control. In summary, force feedback in robotic-
assisted surgeries significantly enhances precision, control, and
safety by providing surgeons with a natural and intuitive
interaction with tissues. By remotely enabling the meticulous
manipulation of delicate anatomical structures, tissue trauma
can be minimized while also refining surgical outcomes
for an overall improved patient recovery and reduced risk of
complications.

4.3.2 | Electrophysiological Monitoring for Surgical
Control and Surgeon-Patient Safety

In surgical settings, electrophysiological sensors have been
employed on surgeons or patients to obtain various bioelectrical
signals during operation for the purpose of medical instrument

control. For surgeons, the upper limb muscles play a crucial role
in performing precise and dexterous movements during surgery,
enabling them to manipulate instruments with accuracy and
control. Their forearm muscles are heavily utilized to operate sur-
gical instruments, often leading to fatigue during prolonged sur-
geries. To address this issue, muscle contraction-induced surgical
robotic control systems based on EMG signals have been used to
provide real-time, intuitive control of robotic instruments by
directly translating muscle activity into movement commands.
This approach reduces physical strain on surgeons, minimizing
fatigue during prolonged procedures while enhancing precision
and stability. Compared to manual operations, EMG-driven
robotic control enables consistently steadier movements, reduces
tremors, and allows for enhanced dexterity in minimally invasive
surgeries, ultimately improving surgical outcomes.

Moreover, this technology opens new opportunities for individ-
uals with physical disabilities to pursue surgical careers, as EMG-
based control systems can compensate for limited hand function,
permitting disabled surgeons to operate surgical robots effec-
tively. Yang et al. demonstrated the integration of EMG signals
into teleoperated robotic surgery systems, showing the potential
of utilizing EMG signals for improving automation level of the
robotic surgery [256]. Furthermore, Yang et al. introduced a pro-
portional control system that maps EMG signal intensity to
robotic gripper movement, facilitating hands-free surgical oper-
ations and providing accessibility for surgeons with physical dis-
abilities [257]. To further advance hands-free surgical operations,
EEG signal-based surgical robotic control has been developed.
Such systems assess the surgeon’s cognitive workload during
robotic-assisted surgeries, improving performance in sophisti-
cated procedures requiring heightened concentration. For exam-
ple, Yang et al. designed an mental workload-based adaptive
automation system using EEG-based workload level sensing to
reduce perceived workload and enhance surgeons’ task outcomes
[258]. By utilizing DL, the surgeon’s variable cognitive patterns
were identified and used as the workload status to trigger a
higher automation level of the surgical robots. Barragan et al
invented a semi-autonomous blood suction system for robotic
surgery that activates based on the surgeon’s cognitive workload
detected via EEG and eye tracking [259]. Their system improved
task efficiency and reduced mental demands compared to man-
ual suction control. In contrast, ECG signal-based surgical robot
control technologies have also been utilized on patients to ana-
lyze their cardiac signals in real time during surgery, which are
then integrated into closed-loop control algorithms that synchro-
nize robotic movements with the heart signals. For instance,
Cheng et al. developed a teleoperated robotic system that utilized
ultrasound-guided, neural network-based motion prediction and
impedance control to enable non-oscillatory force feedback and
real-time heart motion compensation [260]. Their simulated
heart motion was temporally matched to ECG rhythms to repli-
cate realistic cardiac dynamics during evaluation. Mendez et al.
also proposed a sutureless soft robotic system called SmartSleeve
that used the patient’s ECG signals to trigger the closed-loop
real-time epicardial drug delivery (Figure 7d) [243]. Their
ECG-integrated robotic system ensured precise and timely
administration of medication during cardiac surgeries, highlight-
ing its potential for responsive and targeted treatment of various
cardiac conditions.

30 of 43

Advanced Robotics Research, 2025

ASUAOIT SUOWIWO)) 0ANEAI) d[qedrjdde oY) Aq pauIoA0S a1e SA[ONIE () oSN JO SN 10§ AIRIqIT dur[uQ) AJ[IA\ UO (SUOHIPUOI-PUB-SULIA)/WI0d" KI[IM" AIRIqI[aul[uoy/:sd)y) SUOnIpuo)) pue swd ], oy 39S *[§707/80/S 1] uo Areiqry aurjuQ L[IM ‘LZ000SZOT HP/Z001 0 1/10p/ w0 AAIm  KIeIqI[aul[uo°pasueApe,/:sdny woj papeojumo( ‘0 ‘€L66EY6T



Robotic-assisted technologies have also developed advanced
monitoring systems to ensure optimal surgeon performance
and well-being. Biophysiological signal-based surgeon monitor-
ing has emerged as a powerful approach to assess the physical
and cognitive states of surgeons during real-time surgery.
These systems support applications such as ergonomic assess-
ments, cognitive workload evaluations, and stress monitoring
by leveraging biophysiological signals derived from the entire
biological system, such as EMG, EEG, and ECG signals. For
instance, applications of monitoring physical workload and mus-
cle fatigue during surgeries are effectively supported by EMG sig-
nals, which have been obtained from surgeons by placing SEMG
sensors on different body parts. For example, Niu et al. evaluated
the ergonomics of robotic-assisted laparoscopic surgery versus
traditional laparoscopic surgery by monitoring SEMG signals
from the surgeon’s upper limb muscles, which are heavily uti-
lized for surgeries requiring fine motor control [261]. They dem-
onstrated the potential of EMG-based systems in identifying
ergonomic challenges and optimizing surgical robot design by
analyzing muscle activation in robotic-assisted laparoscopic sur-
gery (RALS), with their data showing that the RALS system
reduced shoulder strain while increasing wrist engagement.
These findings highlight the need for ergonomic refinements,
such as adjustable consoles and wrist support, to enhance sur-
geon comfort and efficiency. Assessing the cognitive workload
of surgeons during robotic-assisted surgeries has also been signif-
icantly advanced through EEG-based systems. For example,
Shafiei et al. utilized EEG and eye-tracking data to develop
ML models for evaluating surgical performance and distraction
levels in robot-assisted surgery [262]. D’Ambrosia et al. devel-
oped a system integrating EEG-based neurophysiological metrics
with real-time error detection in robotic-assisted surgery simula-
tions to assess cognitive and affective responses to intraoperative
errors (Figure 7e) [244]. These applications emphasize the utility
of EEG to address cognitive challenges in demanding surgical
environments that require high levels of concentration and skills.
In addition, monitoring the surgeon’s cardiac status and work-
load in surgical scenarios is effectively achieved using ECG sig-
nals. For example, Pérez-Salazar et al. invented ECG-based
technology to monitor ergonomics and stress during conven-
tional and robotic-assisted laparoscopic surgeries, revealing
reduced stress levels with robotic systems and highlighting their
potential to enhance surgical performance [263].

From the perspective of the patient, biophysiological signals-
based monitoring in real-time also plays a pivotal role in optimiz-
ing clinical outcomes and ensuring patient safety during
robotic-assisted surgeries. Applications such as neuromuscular
monitoring and cardiovascular health assessment have been
greatly advanced by such systems by leveraging signals from
muscle activity and cardiovascular responses to provide detailed
and objective insights during surgery. These monitoring methods
enable patient-centric surgeries and are adaptable to various clin-
ical needs such as drug delivery management, early detection of
surgical complications, and real-time assessment of physiological
stress responses. Specifically, EMG monitoring has emerged as a
critical tool in advancing patient safety and surgical strategies,
offering precise insights into the patient’s neuromuscular activity
and enabling tailored interventions in clinical settings. For
instance, Li et al. invented an EMG-integrated robotic system
to assess the proximity of surgical instruments to nerve roots

during spinal surgeries (Figure 7f) [245]. By providing real-time
feedback to surgeons, risk of nerve damage was reduced and sur-
gical precision was enhanced by attaching EMG sensors to the
biceps femoris muscles of a rabbit. Alternatively, Hislop et al.
conducted a meta-analysis, a statistical approach of combining
results from two or more separate studies, to compare the muscle
activation of patients during traditional and robot-assisted lapa-
roscopic surgeries [264]. ECG-based monitoring systems have
also been instrumental in monitoring the patient’s cardiac stress
levels during surgical procedures. Ivanova et al. introduced a
novel wireless ECG sensor integrated into a robotic modular lap-
aroscopic instrument, enabling real-time cardiac monitoring dur-
ing minimally invasive surgeries [265]. The ECG-integrated
robotic system continuously assessed the patient’s vital parame-
ters throughout the entirety of the surgical procedure. Overall, to
bridge physical recovery and stress management for holistic
patient care, utilizing electrophysiological signal-based systems
can comprehensively offer complementary insights to the
patient’s overall health status during surgery. In particular, com-
bining muscle activity and heart rate variability data could also
enhance post-surgical monitoring, addressing both physical and
autonomic recovery needs after surgery.

Surgical robot interaction systems vary in their adaptability
and precision, each with its own advantages and challenges.
Some approaches are highly sensitive to external noise and
environmental factors, requiring advanced signal processing
and machine learning techniques to maintain reliability.
Additionally, variations in signal patterns from its sensing system
may necessitate individualized calibration and extended training,
which can be impractical in high-demand clinical settings. In
contrast, certain sensor-based methods provide robust, consistent
measurements, making them well-suited for real-time force feed-
back and motion detection. However, these systems may have
limitations in adapting to dynamic surgical conditions. A hybrid
approach that integrates multiple sensing modalities could
enhance precision, adaptability, and intuitive control in surgical
robotics. Overall, flexible sensor-based HMIs, integrated with
Al-driven technologies, are revolutionizing medical robotics by
enhancing prosthetic perception and control, optimizing
adaptive exoskeletons, and advancing human-robot synergy
in surgical systems, ultimately enabling more intuitive, precise,
and adaptive human-machine interactions in healthcare
applications.

5 | Conclusions and Future Perspectives

This review provides a comprehensive overview of flexible
sensor-based HMI and Al-driven technologies in advancing
medical robotics. By leveraging various sensing mechanisms that
include triboelectric, piezoelectric, piezoresistive, capacitive, and
electrophysiological sensing technologies, such HMI systems
enhance the sensitivity and responsiveness of robotic systems
to enable adaptive, real-time interactions between humans
and machines. Al technology further strengthens the functional-
ity and intelligence of HMI and robotic systems by improving
sensing system designs including Al-driven synaptic transistors,
optimizing signal processing performances, and enhancing mul-
timodal sensing systems. Moreover, flexible sensor-based HMIs
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are transforming medical robotics by enhancing prosthetic
perception and control, optimizing adaptive exoskeletons, and
refining human-robot synergy in surgical systems. These
advancements enable seamless interaction, precise control,
and enriched sensory feedback, driving the evolution of intelli-
gent, patient-centered robotic solutions for safer and more intui-
tive healthcare applications. Although significant progress has
been made in this field, several critical challenges persist and
need to be addressed in the near future through multiple
perspectives.

5.1 | Material Innovation

As the performance demands for flexible sensor-based HMI
in medical robotic applications intensify and are driven by the
need for enhanced functionality, reliability, and adaptability,
the material requirements are becoming increasingly stringent
and sophisticated. As the fundamental building blocks of
sensors, materials play a critical role in defining device
performance in physiological environments, which is essential
for flexible sensors to seamlessly integrate with the human
or robotic body while achieving superior functionality and
high-fidelity signal acquisition. To fulfill specific requirements,
a diverse range of materials has been explored to optimize
sensor performance. For example, flexible substrates like biocom-
patible PDMS can provide mechanical adaptability and
mitigate inflammatory risks, ensuring seamless integration
and safety with the human body. Conductive nanocomposites
such as graphene-elastomer hybrids and CNT-infused polymers
allow for high-fidelity signal acquisition, while ionic materials
like ionogels enable high-sensitivity detection of multimodal
signals by mimicking the bioelectrical properties of human tis-
sues. Transitioning to stimuli-responsive functional materials
such as thermoresponsive hydrogels provides dynamic adaptabil-
ity, allowing sensors to autonomously modulate mechanical
properties or thermally tune their response to physiological
changes, enhancing flexibility and user interaction in HMI
applications.

While individual material functionalities are relatively easy to
achieve, integrating multiple essential properties, such as flexibil-
ity, durability, stability, biocompatibility, and biodegradability,
into a single material remains a significant challenge since the
development of these advanced materials usually faces persistent
trade-offs between the desired properties. For example, stretch-
able polymers and nanocomposites provide mechanical adapt-
ability but often suffer from material fatigue and interfacial
delamination. Biocompatibility and biodegradability add further
complexity, necessitating materials that balance functional lon-
gevity with physiological safety and sustainability. Moreover,
environmental interference can hinder sensing stability, requir-
ing appropriate material encapsulation and adaptive AI algo-
rithms for compensation. Future advances will likely focus on
multi-scale material innovations, such as bioresorbable conduc-
tive polymers and self-healing composite materials, to maintain a
balance between mechanical resilience and eco-friendly degrada-
tion. Al-driven computational modeling will also accelerate the
discovery of materials with tailored degradation kinetics and
strain-insensitive electrical properties. Collaborative efforts
across materials science, AI, and clinical disciplines will be

pivotal to translating these innovations into scalable, clinically
viable solutions, ultimately enabling intelligent HMIs that seam-
lessly adapt to human physiology while aligning with global sus-
tainability goals.

5.2 | Structural Design of Sensors

Both biological tissues and active robotic systems exhibit com-
plex, time-varying mechanical properties. However, conven-
tional rigid sensors lack the necessary mechanical compliance
to seamlessly interface with these dynamic environments, result-
ing in signal inaccuracies, user discomfort, and limited long-term
usability. In contrast, flexible sensors offer superior mechanical
adaptability and biocompatibility, showing great promise in var-
ious long-term HMI applications. However, the integration of
flexible sensors with HMI for medical robotic applications usu-
ally requires real-time, high-precision detection of various physi-
cal and physiological signals and operational intent to enable
advanced Al-enabled systems, placing higher demands on the
overall performance of flexible sensors. Thus, innovative struc-
tural designs of sensors remain pivotal in achieving seamless
interactions between soft sensors and dynamic biological sys-
tems. Advanced structures, such as serpentine layouts, kirigami-
inspired patterns, and porous architectures, enable sensors to
move in harmony with tissues or human-machine interfaces,
ensuring stable conformal contact for accurate signal acquisition.
In addition, hierarchical and gradient-based structural configu-
rations can not only enable sensors to distribute external
mechanical stimuli more uniformly but also facilitate controlled
deformations that accommodate large strains without
compromising the sensor’s electrical performance while main-
taining stable conformal contact with irregular and moving
surfaces.

Concurrently, the miniaturization of the sensor design is
also critical for unobtrusive integration into flexible HMI systems
for medical robotic applications. However, this objective must
be carefully balanced with preserving signal-to-noise ratios
and managing power budgets in constrained physiological
environments. Emerging nanofabrication techniques such as
transfer-printing and laser-assisted patterning can enable
submillimeter-scale sensors to achieve highly sensitive sensing
ability for micron-level variations. Additionally, energy harvest-
ing innovations are overcoming limitations in sustainable power
delivery for flexible sensors. For example, leveraging energy
harvesting methods that hybridize multiple mechanisms, such
as tribo-piezoelectric synergy technology, could redefine the
durability and stability of sensor-based HMI applications.
Such hybrid approaches can strategically decouple the energy
supply from external charging infrastructure while enhancing
device longevity. In addition, Al-driven customization holds
transformative potential in advancing flexible sensor design that
enables adaptive, user-specific solutions tailored to diverse
physiological and environmental demands. By employing vari-
ous machine learning algorithms, sensors can be structurally
optimized through predictive modeling of material properties
and geometric configurations, enhancing sensitivity, stretchabil-
ity, and durability while minimizing mechanical mismatch with
biological tissues.
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5.3 | System Integration and Power Supply

The seamless integration of flexible sensors, Al algorithms, and
wireless communication/control modules is key to achieving func-
tional, closed-loop HMI systems in medical robotics. Effective inte-
gration enables real-time data acquisition and bidirectional
interaction between humans and machines, as seen in biomimetic
prosthetics. Flexible sensors capture physiological signals, which
are then processed by embedded Al to generate control commands
for soft actuators, while wireless modules transmit feedback to
external devices. However, achieving this synergy involves over-
coming significant challenges, including mechanical compatibility
between heterogeneous components (such as rigid electronics and
soft substrates), signal interference in densely integrated systems,
and the development of unified communication protocols for low-
latency data exchange. Advances in hybrid fabrication techniques
such as 3D printing of multifunctional materials or laser-assisted
heterostructure assembly can embed sensors and wireless compo-
nents into conformable, miniaturized platforms. Furthermore, the
rise of edge computing and ultra-low-power wireless standards can
enable localized data processing, rapid signal response, and
reduced reliance on external infrastructure. This approach sup-
ports the seamless integration of flexible sensor-based HMIs
enabled by AI by enhancing real-time responsiveness, energy effi-
ciency, and overall system reliability.

Integrating multiple modules, sensors, and control units provides
superior functionalities but increases overall power consump-
tion, necessitating a more robust and stable power supply to
maintain reliable operation under fluctuating load conditions.
Furthermore, certain sensors based on piezoresistive, capacitive,
and electrophysiological principles inherently rely on a stable
power supply to uphold continuous operation and sensing accu-
racy, making a sustainable energy source crucial for long-term
performance and system stability. Traditional power solutions,
such as tethered connections or bulky batteries, impose signifi-
cant limitations on user mobility and long-term usability.
Emerging wireless energy transfer methods such as near-field
communication and self-powered technologies such as piezoelec-
tricity, triboelectricity, and biofuel cells offer promising alterna-
tives by harvesting energy from body movements, environmental
vibrations, or biochemical processes. These innovations enable
untethered power management and reduce dependency on fre-
quent recharging and battery replacements. However, challenges
persist in scaling these technologies for applications with high
energy demands, such as soft prostheses or active exoskeletons,
where significant improvements in power density and efficiency
are critical. Future research should focus on hybrid energy sys-
tems that combine multiple harvesting mechanisms, adaptive
power management algorithms, and advanced energy storage
materials such as flexible supercapacitors to balance energy
autonomy with device performance. Additionally, integrating
energy-efficient Al-driven control systems could optimize power
consumption dynamically, extending operational lifetimes while
maintaining responsiveness.

5.4 | Intelligent Sensing and Interaction

In HMI applications, intelligent sensing and interaction enables
systems to perceive, process, and respond to environmental and

user inputs in an adaptive and autonomous manner. In particu-
lar, medical robotic systems demand high precision, real-time
adaptability, and comprehensive physiological monitoring to
ensure safe, personalized, and context-aware interventions for
improved clinical outcomes. Multimodal sensing, which integrates
multiple signals, offers holistic insights into user intent, physiolog-
ical states, and environmental conditions, thereby improving sys-
tem performance and reliability in diverse medical environments.
For instance, hybrid sensor arrays embedded in prosthetic limbs
can simultaneously detect pressure distribution, muscle activity,
and temperature, providing nuanced and more comprehensive
control signals for prosthetic movement actuation. However, mul-
timodal sensing systems face inherent challenges in signal entan-
glement, in which separation of the different subsets of data is
necessary, but very few Al-driven algorithms have been used
for robust signal decoupling. Currently, multimodal sensing sys-
tems rely on traditional signal-processing techniques, which have
difficulty managing the dynamic, nonlinear multimodal outputs of
flexible sensors. To effectively extract meaningful insights from
multimodal data, Al techniques such as sensor fusion and predic-
tive analytics can be used to decode these heterogeneous data
streams, allowing for real-time interpretation, robust decision-
making, and intelligent adaptation by simultaneously assessing
various physiological parameters of the user. For instance, physics-
informed neural networks could disentangle multimodal signals by
embedding sensor-specific physical constraints such as strain-
response relationships into the training process. Future research
can prioritize a universal Al algorithm to enable real-time, robust
decoupling of different flexible multimodal sensing systems.

In addition, the majority of the flexible sensor-based HMIs rely
on supervised learning for most current medical robotic applica-
tions with Al-integration, which requires extensive labeled data-
sets. Yet, unsupervised learning remains underexplored within
the premise of intelligent sensing and interaction despite its
potential to expand healthcare-related applications to detect sub-
tle anomalies in biosignals like irregular heartbeats and muscle
tremors. This capability is significant since advanced sensing sys-
tems can detect unknown disease patterns that may indicate
underlying health issues. When compared to supervised learning
ML algorithms, unsupervised techniques such as variational
autoencoders (VAEs) could assist in identifying deviations in
unlabeled physiological data, flagging patterns that elude tradi-
tional diagnostic thresholds. By leveraging unsupervised techni-
ques, flexible sensor-based HMIs could evolve into proactive
health-monitoring tools that can also be integrated into medical
robotic applications by allowing robots to autonomously detect
early signs of health issues, thereby enabling personalized and
adaptive interventions without relying on predefined disease
models. Especially in the field of medical robotics, the future
of intelligent flexible sensor-based HMI will be driven by trends
such as advanced multimodal decoupling and self-learning Al
models, in which the integration of AI will significantly expand
healthcare potential and facilitate dynamic and intuitive interac-
tions across a range of healthcare applications.

5.5 | Data Security and Model Reliability

In Al-enabled medical robotic applications, flexible sensor-based
HMISs continuously collect and process highly sensitive personal
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medical data, such as physiological signals, movement patterns,
and biochemical markers. To protect user autonomy and advance
data security, integrated frameworks should incorporate
dynamic consent management and transparent, context-aware
interfaces. These systems enable precise control over data-
sharing permissions and translate complex data usage policies
into linguistically accessible formats through adaptive visualiza-
tions. For example, a prosthetic user might permit motion data
sharing for calibration but block cloud-based analytics. Given the
critical nature of medical-related sensing data in clinical decision-
making, which is collected and processed during system opera-
tions, it is essential to implement robust encryption mechanisms
and safe communication protocols during data transmission and
storage to prevent unauthorized access, data breaches, and cyber
threats. In addition, limiting data collection to only what is essen-
tial for system functionality and decision-making can significantly
reduce personal data security risks. Failure to implement adequate
security measures may not only compromise patient confidential-
ity but also undermine the reliability of Al-driven diagnostic and
therapeutic interventions.

Additionally, flexible sensors often produce highly individualized
signal patterns due to material variations, body morphology, and
environmental factors, complicating the collection of large, stan-
dardized datasets. Since the signals are often small, domain-
specific, and require labeling, this data scarcity limits the direct
applications between the sensing signals and large language
models (LLMs), which typically require massive training corpora
and process with texts instead of sequential signals. To resolve
this dilemma, transfer learning can offer a potential solution
by leveraging pre-trained neural networks. Simple neural net-
works can be initially trained with smaller, domain-specific data-
sets from flexible sensors and subsequently modify their output
layers to be compatible with texts, which can then be connected
to LLMs for advanced applications. For example, a lightweight
neural network could be trained to map physiological signals
to a structured format compatible with an LLM’s Application
Programming Interface (API). This network could continuously
adapt via online learning as it collects data from new users, opti-
mizing neuron weights to account for inter-subject variability.
Such a framework could enable novel applications, such as cou-
pling LLMs with real-time biometric data from passengers in
autonomous vehicles. Here, the LLM could analyze both sensor-
derived health metrics, such as stress levels and vehicle
telemetry, to enhance safety and could alert the system if a pas-
senger’s vital signs indicate distress during an emergency
maneuver. This approach could effectively democratize the
use of LLMs in flexible HMI contexts, provided that challenges
like computational efficiency and privacy-preserving data
aggregation are addressed. Thus, to ensure the safety of highly
sensitive personal medical data, the integration of flexible
sensor-based HMIs in Al-enabled medical robotics necessitates
a robust focus on data security, user autonomy, and dynamic
consent management. Addressing challenges related to compu-
tational efficiency, standardized data collection, and privacy-
preserving frameworks remains crucial, but the successful
implementation of these measures can not only advance medi-
cal robotic applications but also pave the way for broader real-
time biometric data analysis across diverse human-machine
interface contexts.

5.6 | Commercialization toward Market Demands

The commercialization of flexible sensor-based HMIs for medical
robotic applications is propelled by increasing market demands
for precision, minimally invasive procedures, and personalized
healthcare. However, the majority of current performance claims
regarding flexible sensor-based HMI systems are still based
on theoretical modeling, benchtop experiments, or short-term
simulations. Quantitative data from clinical trials or user-
centered studies remain scarce, making it difficult to assess
real-world effectiveness, user comfort, and learning adaptability.
Therefore, experimental validation involving human partici-
pants, especially over extended periods of use, will be essential
to achieving true commercial translation of these systems. In par-
ticular, reliability and long-term stability must be verified under
dynamic conditions such as mechanical deformations, repeated
usage, and exposure to biological environments. Biocompatibility
and safety of the overall system must also be validated to prevent
adverse reactions and ensure compliance with medical regula-
tions. Optimizing signal accuracy and implementing noise
reduction strategies are also crucial for precise physiological
monitoring and minimizing motion artifacts and external
interferences. In addition, validation of user comfort, such as
breathability, wearability, and skin compatibility, should be con-
ducted, especially for long-term prosthetic or exoskeleton use.
Furthermore, assessing the learning adaptability of AI-driven
control systems in real users is crucial for ensuring effective
human-machine coordination over time. To support these com-
prehensive validation efforts, future systems must be grounded in
multifunctional materials, scalable manufacturing processes, and
intelligent AT algorithms that collectively enhance system perfor-
mance and adaptability. Moreover, power supply demands and
energy efficiency necessitate innovative and sustainable energy
solutions like energy harvesting or low-power electronics to
enable continuous operation without the need for bulky batter-
ies. Finally, the fabrication of current advanced flexible electron-
ics is predominantly confined to laboratory settings and relies
heavily on manual processes, resulting in performance variability
and impeding scalable mass production. Scalable, cost-effective
manufacturing methods, such as roll-to-roll printing, laser proc-
essing, 3D printing, and inkjet techniques, should be considered
to facilitate the transition from lab prototypes to mass production
while ensuring batch-to-batch consistency.

Before progressing towar commercialization, regulatory stand-
ards must also be met. The integration of Al-driven flexible
sensor-based HMIs for medical applications demands strict
adherence to rigorous regulatory standards to safeguard patient
safety, ensure ethical Al deployment, and secure personal data.
Existing frameworks, such as the U.S. Food and Drug
Administration’s Software as a Medical Device (FDA’s SaMD)
guidelines, the European Union Medical Device Regulation (EU
MDR), and the Health Insurance Portability and Accountability
Act (HIPAA), need to be met for pre-market validation and post-
market surveillance. However, traditional static approval pro-
cesses often struggle to accommodate the constantly evolving
nature of self-learning AI systems. In response, innovative
approaches such as regulatory sandboxes and adaptive compli-
ance models have emerged, while global harmonization remains
a significant challenge, with organizations like the International
Medical Device Regulators Forum and the World Health
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Organization working toward standardized AI governance. In
addition, achieving market readiness for successful entry into
the market further demands a comprehensive strategy that inte-
grates regulatory, technical, and commercial imperatives. A stra-
tegic, phased go-to-market approach should encompass a series
of clinical trials ranging from early feasibility studies to large-
scale validations that demonstrate safety, efficacy, and tangible
user benefits such as reduced surgical times and enhanced
patient mobility. Equally important is the development of scal-
able, cost-effective manufacturing processes and the seamless
integration of these systems into existing clinical workflows.
Robust stakeholder education through pilot programs, demon-
stration projects, and case studies will be crucial to build user
trust and drive adoption. Additionally, targeted strategies such
as subscription-based AI updates for premium healthcare insti-
tutions, expansion into telemedicine, and the integration of
advanced materials like self-healing materials will position these
technologies to meet evolving clinical demands and realize com-
mercial viability. Ultimately, by aligning research and develop-
ment with regulatory milestones, incorporating user feedback,
and fostering rapid iteration through strategic partnerships, flex-
ible sensor-based Al systems can successfully transition from lab-
oratory prototypes to widely adopted commercialized clinical
solutions, addressing unmet needs in surgical robotics, rehabili-
tation, and diagnostic wearables.

In summary, the integration of flexible sensor-based HMIs with
Al for medical robotic applications represents a transformative
frontier in clinical technology. This interdisciplinary field lever-
ages advances in sensor design, including novel structures and
multifunctional materials, to achieve high sensitivity, long-term
durability, and seamless conformity with dynamic biological
interfaces. Concurrently, breakthroughs in system integration,
power management, and edge computing are facilitating real-
time data acquisition and energy autonomy, while sophisticated
AT algorithms enhance multimodal signal processing and user-
specific adaptation. Robust data security also measures and
adheres to rigorous regulatory frameworks, such as FDA’s
SaMD, EU MDR, and HIPAA, which are critical to ensuring
patient safety and ethical AI deployment that follow healthcare
privacy and security regulations. Furthermore, as commercializa-
tion strategies evolve to include scalable manufacturing and
phased clinical validations, ongoing collaborative efforts across
material science, Al, and clinical disciplines promise to translate
laboratory prototypes into widely adopted, clinically validated
solutions. Ultimately, the synergistic advancements in flexible
sensor-based HMIs, Al-driven analytics, and robust system inte-
gration herald a transformative era in medical robotics, promis-
ing to deliver intelligent, adaptive, and patient-centric solutions
for enhanced clinical outcomes.

Finally, several critical challenges must be resolved or at least
partially addressed to enable the real-world deployment and
commercialization of Al-integrated flexible sensor-based HMIs.
These include flexible sensing system integration, material selec-
tion with sensor structure design, and AI compliance. Among
these, material selection, system integration, and power supply
strategies are the most immediate priorities, as the realization
of any specific medical application depends on a stable, well-
powered, and fully integrated sensing system, and short-term
progress can be made through rapid prototyping from ongoing

research efforts. Sensor structure design is also pivotal in influ-
encing signal fidelity, mechanical durability, sensor scalability,
and overall system conformability. Extensive research in solid
mechanics and material science has made single modal flexible
sensor design converge into maturity, as various sensor structure
strategies like serpentine or kirigami architectures have been
developed. However, advanced sensing systems such as multi-
modal flexible sensors often require longer development cycles
due to the need for comprehensive optimization to achieve
enhanced sensing performance and multi-functionality. The
emergence of Al-driven sensor design techniques has the potential
to accelerate this process, yet this field remains underdeveloped
and needs further validation and standardization. Long-term chal-
lenges persist in the broader landscape of Al-assisted flexible
HMIs, including decoupling Al-aided multimodal signals, estab-
lishing standardized datasets for Al training, and ensuring com-
patibility with LLMs. While these issues currently hold a lower
implementation priority due to the availability of traditional alter-
natives or dependencies on progress in adjacent fields, they may
become major barriers to achieving artificial general intelligence
(AGI) in future HMI systems. By prioritizing feasible research
efforts, researchers can accelerate the translation of flexible
HMI technologies from conceptual prototypes into clinically
impactful, intelligent, and adaptive medical robotic systems.
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