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Abstract—The transient dynamics of microgrids is primarily
impacted by low-inertia power electronic interfaces, energy
generation of distributed energy resources (DERs), load demand
fluctuations, and the control strategies employed for system
integration. This paper focuses on the enhancement of the
transient dynamics to achieve a stable steady-state operation
for the microgrid by minimizing the overall islanded system’s
frequency deviations. A moduolarized physics-informed sparse
identification technique is developed for system identification
that can accurately predict the future states of the microgrid
with interconnected DERs. The data-driven prediction model is
then incorporated into the model predictive control framework
to generate an optimal control input that can augment with
conventional droop control for frequency stabilization. Given the
inherent fluctuations in typical microgrid operations, stemming
from factors such as varying load demands, weather conditions,
and other variables, reachability analysis is also performed in
this work. By doing so, we aim to facilitate the design of
data-driven models and implement effective control strategies
for microgrids subject to disturbances, and thus, ensuring the
safety, reliability, and efficiency of microgrids across a wide
range of operating conditions. The effectiveness of the proposed
approaches is verified in this paper with numerical examples
where the developed controller is tested in various worst-case
scenarios generated by the reachable set computation.

Index Terms—Microgrids, physics-informed data-driven
modeling, sparse identification, model predictive control,
reachability, droop control.

I. INTRODUCTION

MICROGRID is a cluster of micro-sources, storage
systems and loads which presents itself to the grid as a
single entity that can respond to central control signals [1], [2].
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Microgrids are increasingly being considered as a cost-
effective option for power supply in remote or off-grid areas.
They offer greater access to electricity supply that is highly
reliable and resilient [3]. Microgrids can operate in islanded
mode, connected to the distribution network, or connected
to other microgrids [4]. An islanded microgrid refers to a
standalone power system that is disconnected from the main
grid and operates independently. Microgrid control involves
managing and optimizing the distributed energy resources
(DERs) in the different operating modes to ensure a sta-
ble, reliable, and efficient energy supply [2]. [5]. Traditional
frequency and voltage droop control stratepies without using
vector control techniques were used to share real and reactive
powers among two or more DER units. However, this would
cause a significant challenge in reactive power sharing among
DGs, a low power quality, issues associated with voltage
instability, and great difficulty to reconnect MGs and DERs to
grid-tied mode [6], [7].

Microgrid control can also be classified based on the
location of the controllers with respect to the inverters
as centralized and de-centralized controls [8], [9]. In cen-
tralized control schemes, there is one control schemefunit
that is vsed to povern all inverters; it’s more convenient
for smaller microgrids. If each of inverter has its own
control scheme im the decentralized control scheme, this
scheme becomes more suitable for medium-size and larpe-size
microgrids [10], [11], [12]. A robust droop control algorithm
is discussed in [13]. While it has multiple advantages in
controlling the microgrid to operate in a stable manner under
extreme non-linearities and uncertainties, the method can have
a slow response time.

Model Predictive Control (MPC) is a control strategy
that uses a model of the system to predict future behavior
and determine optimal control inputs. MPC offers several
advantages over other traditional microgrid control strategies,
including improved efficiency, flexibility, stability, integration
of renewable energy, and scalability. It can help microgrid
operators to optimize their energy management, reduce oper-
ating costs, and improve overall system performance. It can
be cascaded with the previously discussed methods to provide
additional control to the system to enable increased stability
and improved flexibility [14], [15].

Model development for prediction is extremely crucial in
MPC as it helps to anticipate the future behavior, enabling
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informed decision-making and optimization in various appli-
cations. However, uncertainties in the model parameters,
disturbances, and unmodeled dynamics can lead to prediction
errors. Model uncertainties can degrade the overall con-
trol performance. One of the most common approaches to
overcome the challenges involved in model development is
to utilize data-driven methods such as machine learning or
data mining techniques to develop models. These approaches
can leverape larpe data sets and uncover hidden patterns
or relationships in the data, resulting in more accurate
predictions [16], [17], [18], [19]. [20]. While it is advantageous
to model complex systems whose mechanisms are not well
understood, data-driven models may not be able to capture the
underlying physics accurately without abundance of data [21].

A physics-informed data-driven model incorporates prior
knowledge and assumptions about the underlying physics or
mechanisms into the model construction process and uses
data to further refine and validate the model. This approach
aims to improve the accuracy and physical consistency of the
model by leveraging the strengths of both the approaches.
The purpose of developing mixed approaches is to improve
the reliability of the obtained relations through fundamental
principles [22], [23]. A physics-informed neural network with
sparse regression has been discussed in [24] which possesses
the salient features of interpretability and peneralizability, to
discover governing PDEs of nonlinear spatiotemporal systems
from scarce and noisy data. Another advantage of physics
informed data-driven modeling is its flexibility and adapt-
ability. It can be easily updated and retrained with new
data, allowing them to adapt to changing conditions and
environments. They can also be easily integrated with other
models or systems, such as control systems or optimization
algorithms [25]. Developing a reliable data-driven model
involves the use of statistical and machine learning techniques
in combination with a physics based approach to extract
patterns and relationships that can be used to make future
predictions. These models are ofien based on simple and
interpretable functions, such as linear or nonlinear regression
models, decision trees, or neural networks [26].

In the context of microgrid dynamics, MPC can be used
to optimize the operation of DERs, such as renewable energy
sources, energy storage systems, and controllable loads. The
MPC algorithm computes a control sequence that minimizes
a cost function, such as the operating cost or the carbon
emissions, subject to constraints on the system variables, such
as the power balance and the state of charge of the energy
storage systems. MPC can ensure that the DERs operate within
their physical limits and that the power balance is maintained,
even in the presence of stochastic variations in the renewable
energy sources [27] and the load demand. To implement MPC
in microgrids, a dynamic model of the system is required.
This model can be derived from first principles or can be
identified from data using system identification technigues.
Two major challenges in implementing the MPC are listed
below:

1. It is difficult to obtain an accurate prediction model

which has an interpretable closed-form expression and is
consistent with the basic physical laws.

2. The microgrid system features are not deterministic and
the developed model should have the capability to address
the uncertainties in the system.

Reachability analysis is a technique for analyzing the
behavior of a system by computing its reachable set, which
is the set of all states that can be reached from a given
initial state, subject to constraints on the system dynamics
and control inputs. It can be defined as computing the set
of states that are reachable by a dynamical system from all
initial states and for all admissible inputs and parameters.
It is a fundamental problem motivated by many applications
in formal verification, controller synthesis, and estimation, to
name only a few [28].

In the context of microgrids, reachability analysis can be
used to evaluate the performance and safety of the system
under different operating conditions [29]. By computing the
reachable set and identifying the set of possible system
models, reachability analysis can help in designing data-driven
models and control strategies for microgrids that are safe,
reliable, and efficient.

MPC and reachability analysis can be used in conjunction
to incorporate the reachable set into the MPC optimization
problem [30], [31], [32]. This can be done by adding con-
straints on the reachable set to the MPC problem, which can
improve the robustness and safety of the control strategy. For
example, by constraining the MPC solution to lie within the
reachable set, the controller can ensure that the system will not
violate safety constraints even in the presence of uncertainties
or disturbances. Another way to use MPC and reachability
analysis together is to use reachability analysis to compute
the least optimistic system model for MPC. This can be done
by using reachability analysis to identify the set of possible
system models that are consistent with the available data and
using these models in the MPC optimization problem. This can
improve the accuracy and robusiness of the control sirategy, as
it can capture the uncertainties and nonlinearities in the system
dynamics more effectively. This work employs reachability
analysis to determine the efficiency of the proposed MPC to
control the transients in the least optimistic cases.

The major contributions of this paper are summarized as
follows:

1. A hierarchical multi-layered modularized sparse identifi-
cation algorithm is developed in this paper to capture the
non-linearities in the microgrid transient dynamics. This
method is successful in predicting the future operating
states of the microgrid model under various disturbances
since the primary layer of the developed algorithm is built
using the prior knowledge of the various non-linearities
that are typically present in the power systems domain.
This method of identification has a lower reliance on the
data and is computationally efficient. The modularization
aspect of the proposed identification algorithm can be
used for extending the model to predict the dynamics of
a scaled and reconfigured system.

2. The islanded microgrid is sensitive to disturbances and
the traditional droop controller has a slow transient
response, taking a significant amount of time to stabi-
lize the system. The prediction horizon of the model
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predictive controller (MPC) is developed based on a
novel hierarchical multi-layer sparse repression based
prediction model and is cascaded along with the tra-
ditional droop controller to develop an adaptive droop
control that can quickly stabilize the frequency of the
overall system.

3. The advantages of adaptive control is combined with that
of model predictive control in this work. While the MPC
can handle the input disturbances through its optimization
process, adaptive control addresses the unmodeled dis-
turbances that might not be explicitly considered in the
standalone MPC model. In this paper, an algorithm is
designed to quickly stabilize the transient dynamics in
the microgrid system and reach the desired steady state
operation.

4. The microgrid dynamics are more stochastic in nature due
to the inherent variability of renewable energy sources
which are subject to fluctuations in input such as external
weather conditions and topology changes. It is impor-
tant to understand the possible operating region of the
microgrid system under various conditions to develop the
model predictive control algorithm so that the system is
robust to multiple input variations and initial conditions.
Reachability analysis is leveraged and developed as a
powerful tool to determine the variable operations of the
microgrid and quantify the performance of the developed
controller.

5. A robust model predictive controller explicitly accounts
for uncertainties in the system and attempts to optimize
the controller performance in the worst-case scenarios
within the uncertainty set. The set-based methods are
used to compute the reachable set of the system which
accounts for uncertainties in the system parameters.

The remainder of the paper is orpanized as follows.
Section Il outlines the overall idea of the transient dynam-
ics stabilization by the development of an adaptive droop
controller which stems from the conjunction of MPC and
traditional droop controller. The predictive model development
using a physics informed data driven technique is also dis-
cussed in detail. Finally, the section describes the need for the
reachable set computation and the impact of the combination
og MPC and reachable set. Section III provides numerical
examples to verify and validate the efficiency of the proposed
algorithm. Conclusions are drawn in Section IV.

II. THEORETICAL CONTRIBUTIONS

A. Modeling of Microgrid Transient Dynamics

Modeling of the transient dynamics in a microgrid involves
capturing the system’s dynamic response to disturbances or
changes in the operating conditions. The overall transient
dynamics model of a microgrid integrates the individual
dynamic models of generators, energy storage elements, power
electronics, and loads to capture their interactions and their
system response accurately. Mathematically, this integration
can be achieved by modeling the microgrid system as a set
of nonlinear differential algebraic equations (DAEs) [33], [34]
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when the power-electronic interfaces are modeled using
dynamic averaging. This is given by Eqg. (1).

(1a)
(1b)

where x € B" is the state variable vector, e.g., state variables
in the controller of DER power-electronic interfaces, y € R™
is the alpebraic variable vector, e.g., bus voltage amplitude and
angle, line currents, and u € B represents the input variations/
disturbances, e.g., power output fluctuation of the DERs and
power load changes.

X(f) = f(x(t), ¥(t), u(r)),
0 = g(x(1), (), u(n),

B. System Identification and Prediction

Sparse Identification of MNonlinear Dynamics (SINDy) is
a data-driven method that is vsed for the discovery of
governing equations of dynamical systems from observa-
tional data [35], [36], [37]. Modularized sparse identification
method realizes distributed discovery of nonlinear dynamics
by partitioning a higher-order microgrid system into multiple
subsystems and introducing pseudo-states to represent the
impact of neighboring subsystems [38].

1) Preliminaries on Modularized SINDy With Control for
Modeling the Microgrid Transient Dynamics: The time series
data required for the system identification includes the state
variables (x(f)), the alpebraic variables (v(f) and i(f)) and
the input disturbance variables (u(f)). After identifying the
variables corresponding to the different modules in the system
(x; represents the states corresponding to the /* module) based
on the microgrid generational units as shown in Eq. (2) and
Eqg. (3), the data set is denoted.

7)) X () ]’
Xj=|vjm)  v{(t2) vy (t) @
ijm) i ij ()
U =[ufc) ) uij:r]T 3)

A simple set of candidate functions is represented by
Eqg. (4). Here, Xf'z represents the second order polynomial
terms of X;. Similarly, sin(X;) and cos(X;) represents the
sinusoidal terms of X;.

X U)=[1 x; X7
sin{)ij} CD’S{X]] U] XJUj
sin(Uj)  cos(Uj) Xjsin(Xj) ---]@)
The final step of system identification is the sparse regres-
sion of the data set to identify the governing equations of
the modules. The transient dynamics of the microgrid can be
modeled using only a few terms from the set of all non-linear
candidate functions. Thus, the linear combination of non-linear
terms that would accurately describe the system’s governing
equations can be obtained using the sparse regression method.
If the sparse vector coefficients identified using regression
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Fig. 1. Schematic representation of the overall algonthm.

is given by B = [6 & &), then X can be

represented as,
X; = EOT(X;, 1), (5)

2) Physics-Informed Hierarchical Sparse Identification for
Prediction: While the basic SINDy algorithm can be used
for the overall model identification, this paper focuses on the
development of a physics-informed modular sparse identifica-
tion technique because:

1. The incorporation of physical principles to the data
driven technique acts as a regularization mechanism. It
constrains the model to conform to the physical laws and
can avoid fitting irrelevant features in the data and provide
more reliable predictions.

2. A physics-informed data-driven model can achieve more
accurate predictions with lesser training data. This
method requires fewer training samples to learn the
underlying dynamics accurately which is particularly
valuable while collecting larpe amounts of training data
as the data collection process can be expensive and time-
consuming.

In the context of microgrid modeling, the terms that
contribute to the system non-linearities arises from the trigono-
metric and quadratic non-linearities.

The trigonometric non-linearity stems from the dq trans-
formation that is used to convert a three-phase signal into

Computation

two orthogonal components, namely the d-axis and the g-axis.
This simplifies the analysis and control of the three-phase
systems. The d-axis component is proportional to the average
value of the three-phase signal, while the g-axis component is
proportional to the quadrature component of the three-phase
signal.

The dq transformation is a mathematical tool used in power
systems to convert a set of voltage or current phasors in a
rotating reference frame into a two-dimensional space in the
dq reference frame.

Va| | cos(8) sin(@) || Vr ®)
Vgl | —sin(®) cos(®) || Wi
Ig| | cos(8) sin(@) | [ Ig o
Ig| | —sin(®) cos(®) || h

The dq transformation was developed to simplify the control
of the power electronic converters, as it separates the control
of the active and reactive power flows [39]. Additionally, this
property is leveraged in this paper to develop the modulars
based on d-axis state variables and g-axis state variables
to improve the efficiency of the physics informed sparse
identification.

The voltage magnitude is another important parameter that
is used to describe the state of the system. The non-linearity
of this term arises from the following quadratic equation
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C axis

formulation:

Vi =[V2+ V2 (8)

Based on the prior knowledge of the non-linear terms in
the set of the DAEs that describe the microgrid transient
dynamics, a hierarchical modular sparse identification method
is introduced in this paper to simplify the process of system
identification with an improved computational efficiency.

The input data required for the primary layer of the
hierarchical sparse identification model consists of the system
state variables (x(f)), output bus voltage (real and imaginary
components) (vif)) and line current data (real and imaginary
components) (i(f)). This is given by Eq. (9), which is a
rearrangement of Eq. (2).

x () - --xg(fy) wvilty)---vplty) ipin)---iplty)
x1(f2) - - -xpl(tz)  wilta) - --vpltz) iyit2)---iplta)
XL = . .
X (fm) - - Xpltm) V1(Em) - - - vpllm) i1 (Em) - - - ipltm)
(9

The library of candidate functions for the first layer of the
hierarchical SINDy can be established as:

xM

[ 1 X sin{ X}
O (X, V. 1) = cos(X) ¥ Xy sin{¥) cos(¥)
aas I X1 sinfl)y  cos(I)
X sin(X) - IsindX) Vsi(X) --- ]
(10)

Sparse Regression is performed to identify these special
non-linear terms (&(f)) using input data sent to the first
layer using the basic sparse regression algorithm discussed
in the previous subsection. The output of the primary layer
consists of the voltage magnitude, and the bus voltages and
line currents in the d-q framework.

In addition to the already gathered system state variables
data, the identified non-linear functional data, represented by
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Algorithm 1: Sparse Regression of Nonlinear Dynamics
Data:
Input Data:
System State Variables, Input Disturbances, Primary
Layer Output (Inverter dg-axis Voltage, Inverter dg-axis
Line Current)
Features:
System Transient Dynamics based on fix, v, u)
Result:
Identified = matrix based on LASSO regression
1 Step 1: Set Regularization Parameter A = 0.1
2 Step 2: while i < 1 : 100 do
3 Update the intercept term - coefficient matrix 2
4 Check for convergence to verify if change of
coefficients is below a given threshold
E = argming |[[@E" — X[|2 + A|I1E'||x
s end while

d(t) are added to develop the input data for the second
layer of the hierarchical modularized SINDy model. The
entire microgrid is decomposed into multiple subsystems,
each subsystem consisting of the variables belonging to the
individual generators.

ef(xs e Ut ) =1 xs' @' U] (D)

Furthermore, the states, voltages and non-linearities within
each generator are split into d-axis and g-axis components to
simplify the overall identification.

Here, X is the set of all the state variables. & is the output of
the first layer of the developed model which comprises of the
algebraic terms contributing to the non-linearity in the model.
U is the external disturbances that drives the system dynamics.

X! = gfef (X o5 ) (12)

Eﬂ is the sparse vector coefficients identified by regression

for the first penerator. The set of all the sparse vector
co-efficients can be put together to identify the overall
microgrid system.

(13)

The algebraic part of the microgrid model represents the
network topology and these details are assumed to be known
to the system operator.

The sparse regression algorithm to learn and tune the
coefficients & matrix of primary and secondary layer to fit the
terms of B, and O, to determine the microgrid’s transient
dynamics fix, y, u) is given by Alp. 1.

The identified E matrix can be used to develop the
prediction model. Based on the predictive model, a model
predictive controller with quadratic loss can be used to sta-
bilize the frequency deviations more quickly in the microgrid
system, as discussed in the following sections.
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C. Adaptive Droop Controller for Microgrids

Droop control is a widely used technique in microgrids to
achieve decentralized power sharing and voltage regulation
among DERs. In a droop-controlled microgrid, each DER
adjusts its output based on the deviation from the nominal
frequency or voltage, allowing for a decentralized and self-
regulating operation [40].

In a droop-controlled system, when the system param-
eter deviates from its nominal value (such as frequency
or voltage), each penerator adjusts its output power (or
voltage) based on its droop characteristic. This adjustment
helps maintain power balance, share the load, and regulate
system parameters within acceptable limits. The typical P — @
and ) — V droop characteristics are described in [40]. The
mathematical equation to describe conventional droop char-
acteristic of a single generator is illustrated by Eg. (14)
and Eg. (15).

(14)
(15)

f=f"—Kg(P*—P)
V=V"—Kp(Q"-Q)

Here, f, V. P, O are the frequency, voltage, active power
output and reactive power output of the generator. Kp and
Ky represents the frequency droop coefficient and the voltage
droop coefficient. f*, V*, P*, (* are the initial nominal values.
The inherent trade-off in a conventional droop controller lies
in the selection of the droop coefficient value. Increasing
the droop coefficients results in good power sharing but a
degraded voltage regulation [41]. The conventional droop
technique also has a slow transient response and poor steady
state performance with multiple renewable energy resources. A
modified droop controller has been proposed in this paper with
adaptive droop coefficients to improve the transient stability
of the system by utilizing the concept of model predictive
control.

The proposed adaptive droop controller is effective in
minimizing the transients in the overall system frequency. In
an islanded microgrid, frequency is controlled by the power
balance between generation and load within the microgrid and
is sensitive to the power imbalances caused by the variations
in load demand or fluctuations in peneration output. The
equations of the voltage and frequency of the microgrid
developed based on the adaptive droop controller are shown in
Eq. (16) and Eq. (17). Here, uy and u, are the control inputs
generated by MPC to convert the traditional droop controller
into adaptive droop controller. The frequency deviation (Aw)
is responsible for the transients in one of the state variables
of f{-) and is determined based on the droop slope between
frequency and active power generation. This term is also
used to add the dynamics constraint to the model predictive
controller. In a typical microgrid system, the droop coefficients
are fixed in the controller. The proposed adaptive droop
controller actively updates the droop coefficients to determine
the frequency reference Aw for the DER.

(16)
(17

f:f*_KP[P*_P]um
V=V Ko(Q" — Ot

401

D. Parameter Design for Adaptive Droop Controller Using
Model Predictive Control

Model Predictive Control takes full advantape of the
developed system model under specific constraints to
gain better control signals by minimizing predefined cost
functions [42]. Constraints on the state and output variables
of interest are usually formulated inside the cost function.
The general format of cost function considering the Euclidean
distance between the predicted and the desired values is
usually expressed as:

cost = Z;(W;Ix* — &k + 1)]) (18)

Here, x* is the desired value, W; is the weight coefficient
and Ik + 1) is the predicted wvalue. In this paper, the
prediction model is developed using the hierarchical modu-
larized physics-informed sparse identification. Typically, the
optimal control action of the MPC is developed by observing
the system over a finite time horizon. The prediction horizon
provides information about the future system behavior and
allows the controller to make better decisions.

The physics-informed SINDy-based identification model
can be used to determine the N-step predicted states at f; as
Xk+ 1) — xtk +N).

The microgrid chosen for this study operates in the islanded
mode. Under the different power generations/ load variations
and the absence frequency support from the main grid, the
primary control objective of the islanded system is to provide
a stable frequency/voltage supply. The existence of multiple
droop-controlled DERs in the system, requires the generators
to adjust their output power to maintain a common frequency
across all DERs within a specified range. As discussed in the
previous subsection, this causes a slow transient response and
a longer time to achieve frequency stabilization.

The objective function is developed to minimize the
frequency oscillations across the predicted horizon and reach
steady state operation as quickly as possible. For example, if
there are two droop controlled DERs in the system (f; and f>
are the corresponding frequencies), the objective is to develop
an adaptive droop coefficient, so that Aw = 2x|f; — fi| = (.
The cost function for this simple case can be developed as:

N

min ZI: Aw] Qmpe Awi + uh Rupcit;
i=

s.L
Aw < Awy, Ama, ..., Aoy < Ao

P=P.P;. ,Py<P (19)

Aw defines the reference frequency deviation in the g-axis
current controller and A defines the measured frequency
deviation. The constraints to calculate the adaptive droop
coefficient (uy « Kp) are based on the frequency deviation
parameter and the available active power generation. The
dynamics of the microgrid can be controlled within the
operable limits based on these constraints.

The weights Qmpe and Rppe are chosen to minimize the
frequency error and obtain the optimal controls while sat-
isfying the conditions on the bounded constraints. The £
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Algorithm 2: Algorithm to Compute the Adaptive Model
Predictive Droop Controller

Data:

System dynamics function - f(-), g(-)

Initial adaptive droop parameters - uy,, = 1

Initial MPC parameters (based on prediction horizon) -

-0 -0 0 .. U.l—l
Q;: - - " : ,R;: : . :

o ... 10 0 ' ’

0 ... 0 10 0 ... EI.IJ
Result:

Compute uy,; for reduced frequency transients in the
microgrid dynamics based on the adaptive model
predictive droop controller

1 while { «—1; : t, do

2 Measure the state/ output variables for i iteration

3 while j « f; : fizp do

4 Step 1: Compute the system states for the
prediction horizon

5 Step 2: The goal of the optimization problem is

to minimize the cost function

N
i T T
m Eﬁm,- Ompc Awi + gy Rmpctim,

i=1

s.L
Aw = Awy, Awy, --- Aoy = Aw
P<P, Py .. .-Py<P (21)
7 Step 3: Determine the optimal control signal ug,

determined by the optimization problem

8 end while

9 Step 4: Implement the control signal to modify the
adaptive droop coefficient in the actual system for

the next time step
1 end while

norm is a popular choice for the cost function in MPC
because it is easy to compute and has desirable mathematical
properties. The £; norm is also sensitive to both the magniude
and the direction of the deviation between the predicted and
desired outputs, which can make it more informative than other
performance metrics. The optimal control solution obtained
will be applied to the actual model at f = f;1; to minimize
the system transients. Based on the optimal control u, the
droop equations can be modified as shown in Eqg. (20) which
incorporates the adaptive droop coefficient to the system and
achieves a faster steady state response.

f ZF - KP“(P* - P}! KP@ = KPHM (20}

To study the robustness of the new adaptive control
under different conditions, a reachable set of dynamic
responses is developed in the next subsection and the opti-
mistic control u, is applied to the reachable worst case
SCenarios.
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The alporithm (Algorithm 2.) to represent the model
prediction based droop controller formulation is given below.

E. Reachability Analysis

The reachability analysis can bound all the possible tra-
jectories of a dynamic system. It is a set-based approach
and incorporates the benefit of time/ frequency domain
simulations [43]. The set of intervals on R is denoted by IR =
[A=[AAIA AR A< A}

Given f : X — YV with & € R" and ¥ < R™, we
define an interval extension of f as an interval valued function
[ IR® —s IR™ such that

flA) 2R, A ={flx)lxe A, vA € X} (21)

Given a set I; = & of states at time f; and a set V < I
of control signals, the reachable set of the dynamics at time
t=tisgiven by Rit, T, Vi={z e XA e L, v e V.2 =
x(t, x;, v} [44].

The external input disturbances contributing to the
microgrid transient dynamics can be the non-linear load
changes or the active and reactive power generations at the
different DERs. In order to quantify the set of possible
outcomes caused by these input changes at the different load
points and power gpenerations at the non-dispatchable DERs
such as the wind or PV, reachability analysis is performed. It
is used to study the dynamic behavior of the microgrid system
to determine the set of states that the system can reach from
the possible set of given initial states and input disturbances.

This paper focuses on the development of a reachable set
based analysis to test the reliability of the application of
the optimistic control inputs generated by the MPC for the
pessimistic cases. Here, [x(0), ¥(0)] € R(0) and uif) e U.
R(0) is the over-approximated set of the initial states of the
microgrid system and I{ is the set of possible inputs [45].
We represent a set of input interval on B as IR = {i{ =
[UULUUeRU<U).

We assume Eq. (1) has a unique solution [46] denoted by
p(t, x(0), vi0), u(-)) for all the initial states x(0) B™ and
¥(0) € ™. Here, ui-) refers to a piecewise continuous input
trajectory instead of a single input at a specific point of time.
The analysis idea is to find a set of reachable states over some
time horizon f < [0, ] as:

RE([0.17]) = {y (¢, x(0), ¥(0), u(-N}|
[x(0), ¥(O)] € R(O), u(t) e U, t € [0, 17] (22)

The reachable set is the set of all states that can be
reached by the system under perfect knowledge of the initial
conditions, dynamics, and inputs. The reachable set can be
computed using various techniques, such as numerical simu-
lations or analytical methods. However, in practice, it is often
impossible to obtain perfect knowledge of these factors, and
there may be uncertainties or disturbances in the system that
affect its behavior. Therefore, it is often necessary to work
with an over-approximation of the reachable set, which is a
larger set that includes all possible states that the system could
reach, even under worst-case scenarios or in the presence of
uncertainties. Thus, we compute R([0, ir]) = R0, f]).
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Algorithm 3: Algorithm to Compute the Reachable Set

Data:

Initial dynamics states - x(fg). ¥(fg)

Initial input set - u(fg) I

System dynamics function - £{-), g(-)

Result:

Set of all reachable states, R([tp, tf]) computed by parsing I{
through £(-) and g(-)

Step 1: For each of the control inputs wi-) in I, set the current
state to the initial state and initialize a trajectory list with
current states

2 Step 2: Compute the following state using the current set of

states and control inputs

3 while i — ¢} : 1, do

a | A=A +E(X )AL

s end while

& Step 3: Add the set of unique states to the trajectory list at its

comesponding time steps
Step 4: Repeat steps 1 to 3 for different sets of control inputs L4
g Step 5: The final trajectory list will consist of the
over-approximated reachable set of dynamics for the given
system

=

m Micro-turbine 1

Fuel Cell 1
1
Fuel Cell 2
10 -
Load 2 2 | |:|mi 7
Circuit
Hrukcr 1
'.l' J @ @
Battery 1 Muin Corid
5 Load 9
.I.ua:l_'i Lavad 4 8 o
]
PV 1 Load 5y va g

Fig. 3. 10 bus micrognd test system.

The projection of the reachable set to obtain the possible
set of state variables is given by RI([0, fr]) and the projection
of the reachable set to obtain the possible set of algebraic
variables is given by R([0, ff]).

The algorithm to compute the reachable set is given by
Alg. 3.

Computation of reachable set is instrumental in designing
controllers that guarantee certain performance or safety spec-
ifications for the different domain applications.

IT1. NUMERICAL EXAMPLES

A 10 bus test system with multiple loads and DERs is
developed to study the proposed hierarchical modularized
SINDy-based adaptive droop controller cascaded with MPC.
The one-line diagram of the system is shown in Fig. 3. The
circuit breaker 1 is open and the microgrid operates in islanded
mode. The loads based on the constant impedance model are
connected at the buses 2,3,4.7.8 and 9. The DERs at buses 1
and 3 are repulated using a droop based controller. The other
generational units are controlled using the standard P() based
controller. Transient dynamics are introduced in the islanded
test system by varying the generations at different DERs and
the loads connected to the different buses.

%%

Bus Voltage Magnitude (V)
8 - = &

=
e

5 10 15 20 25
Time (s)

Fig. 4. Companson of the identification and prediction model with the ground
truth voltage at Bus 1.

A. Identification and Prediction Using the Proposed
Alparithm

Input disturbances are introduced to the test system at
very close time intervals to generate a dynamic data set for
training the identification algorithm. The high fidelity model
identified by the proposed hierarchical modularized physics
informed sparse identification can be used to predict the future
operations of the test system when new disturbances are
applied.

Fig. 4 is used to display the effectiveness of the proposed
algorithm in training and testing scenarios. The training
data-set is used to train the algorithm which enables the
identification model to learn the patterns and relationships
between input variables and the state variables which can
accurately explain the dynamics of the output variables. The
algorithm’s performance is then evaluated using the testing
data-set which serves as an independent evidence to further
elucidate the identification model's effectiveness.

It is rather easy to obtain the measurement of the bus voltage
magnitude and phase angles using phasor measurement units.
On the other hand, it is not common to obtain the time series
measurement of the state variables. In this work, we assume
the availability of all the state variables data to validate the
proposed algorithm. This work also presumes the availability
of the bus topology which can be used to determine the
algebraic part of the set of DAEs which represents the overall
microgrid test system.

The inverter d-axis modulation index of the droop-
controlled DER is one of the most dominant state variables
in a microgrid system and undergoes maximum dynamic
variations. Fig. 5 shows zoomed in fipures of the identification
and prediction model of the state variable x4, which represents
the d-axis modulation index. The average root mean square
error between the training and the identified data was found
to be around +1.85¢ 7% across all the state variables. The
average root mean square error between the testing data and
the predicted data was also calculated and was found to be
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Fig. 5. Comparison of the identification and prediction model with the ground
truth of the d-axis modulation index with zoomed in images.

around +6.46¢~*% across all the state variables. This indicates
that the algorithm has successfully learned the underlying
patterns and is able to generalize its predictions to unseen data
with good accuracy.

The modularized identification model was sampled at the
rate of 1000 Hz (1000 samples per second) and recorded a
computational time of 32.4s per module for identification. The
centralized identification model required a sampling rate of
10000 Hz and required 672.075 for the overall computation.
Thus, the modularized identification model is computationally
more efficient and has lower reliance on data.

B. Improved Dynamic Performance With MPC for the
Adaptive Droop Controller

The prediction model for the MPC is developed based on
the hierarchical physics informed SINDy based identification.
The N-steps after the current time step is predicted based
on this algorithm to determine the future frequency devia-
tions between the two droop controlled resources. A 3-step
prediction horizon is utilized in this paper to minimize the
error between the two droop controlled frequencies.

The positive impact in the reduction of system’s transient
dynamics due to the introduction of a model predictive
controller in addition to the traditional droop-based double
loop controller can be seen in Fig. 6. While the traditional
droop controller with fixed droop coefficients can stabilize the
microgrid system, it takes a longer response time to reach
the steady state operation. The proposed MPC-based adaptive
droop controller can quickly stabilize the frequency deviation
between the different grid forming DERs.

The nominal frequency of the traditional droop controller
oscillates between £0.25 Hz to provide the most optimal
power sharing in the test system. The adaptive droop controller
changes the droop coefficients at certain time intervals to
minimize the overall deviations in the microgrid system and
quickly restore the nominal frequency deviation to be between
+0.02 Hz.

In Fig. 6, the performance with MPC is better in minimizing
the frequency deviations between the two droop controlled
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Fig. 6. Companson of the frequency deviations in the system with and
without MPC.
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Fig. 7. Control inputs for the two adaptive droop controlled DERs.

DERs. The aim of the optimization problem is to reduce
the frequency deviation between the two DERs to enable
synchronization. Based on the plots, the DER controller with
no MPC have not reached the synchronous state after 0.5
while the DERs with MPC have reached the synchronous
state. Similar results can be clearly observed from the times
2s to 2.5s.

The control outputs generated by the MPC algorithm which
is cascaded with the droop controller to generate the adaptive
droop coefficient is plotited in Fig. 7. It can be seen that the
control input values ranges from ( to (.1. Cascading this value
with the traditional droop controller helps to achieve a smaller
droop coefficient value. A smaller adapative droop coefficient
has tighter load sharing, improved stability and better voltage
regulations with smooth transitions between operations.

C. Reachable Set Computation

This test is performed to compute the reachable set under
various active power and DC load fluctuations. As the set
of reachable input disturbances changes in real time, the
reachable set of the states and voltages results can be obtained
to bound the overall system operations under extreme input
variations. The bounds corresponding to the reachable set of
voltape magnitude is shown in Fig. 8. It can be seen from
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Fig. 8. Reachable set data of voltage magnitude at Bus 1.

the result that the deterministic operation of the system can
be bounded by the worst case input disturbances in the active
power and load changes.

D. Application of MPC Input to Stabilize Reachable Set of
Operations

The computational complexity of MPC poses a great chal-
lenge by having a large computational time, especially when
dealing with systems that require fast response times for online
applications. Additionally, it is important to appropriately
select the MPC tning parameters, such as prediction horizon,
control horizon, and constraints.

The reachable set typically represents the set of all possible
worst case states that a given system can reach from the set
of given initial conditions and input disturbances within a
specified time horizon. In this work, the authors developed the
control inputs required to stabilize the most optimistic case
of deterministic operation in the microgrid system. The same
set of control inputs were applied to stabilize the worst case
scenario results generated by the reachable set computation.

Fig. 9 shows the results of the application of the result of
the MPC developed for the optimistic case to the worst case
operations of the microgrid bounds.

1) The worst case transient dynamics are stabilized by the

control input generated for the best case scenario.

2) The new dynamics penerated by the reachable set
computation with MPC can bound the deterministic
operation well.

The impact of the adaptive droop controller with MPC on
the reachable set is illustrated by Fip. 10. The performance of
the dynamics stabilization of the reachable set is better for the
system with adaptive droop controller in comparison to the
traditional droop controller. The reachable set is computed by
varying the load demand and the DER power generations by
+804% to obtain the worst case microgrid operations.

E. Impact of Missing Data on System Identification

While the availability of all the state variables and output
variables can help to identify the exact black-boxed system,

Frequency Deviation (Hz)

e Diptzrmimistic operation = with MPC
B —— Ciperatiozal Bounds = MPC applied from optimistic case T

.25 : : : :
1] 0.5 1 1.5 2 15

Time (5

Fig. 9. Application of optimistic MPC inputs to the worst case reachable set.
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Fig. 10. Comparison of the reachable set data bounds with traditional droop
controller and adaptive droop controller.

additional results corresponding to missing sensor data and its
impact in the prediction model is provided in this section.

Fig. 11. and Fig. 12. represent the reduced accuracy in
identification when the data corresponding to the PLL angle
is missing. It can be observed that the impact of the missing
PLL angle is more in the determination of g-axis modulation
index than the determination of d-axis modulation index.

Fig. 13. has missing inverter modulation indices data. The
d-axis modulation index data is represented by Ed and the g-
axis modulation index data is represented by Eq. While the
identification model is able to follow the dynamics of the true
system, the amplitude is offset by Ed and Eq value due to
the absence of these data. Thus, it can be verified that the
PLL angle and modulation indices are the dominant states that
determine the overall dynamics of the inverter based DER in
a microgrid system.

While missing these critical data can be detrimental to the
overall system identification, it has also been verified that
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Fig. 12. System identification of modulation indexes with missing PLL angle
data

the unavailability of certain state variables does not impact
the identification model as much. Fig. 14. represents the case
where the critical state variables’ information is provided and
other states in the controller are not being measured for system
identification. While this model is not accurately representative
of the original system, it does not inhibit the development of
model predictive controller to optimize the system dynamics.

The collected data has also been processed to include 10%
additional white pgaussian noise (AWGN) to represent the
potential issues caused by random noise while collecting data
in real-time.

E Investigation on Re-Configurable and Scalable Microgrid
Drynamics

The modularization property of the proposed algorithms
helps to individually integrate the identified DERs to a dif-
ferent system. Thus, the proposed model can be used for a
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Fig. 14. System identification with missing data passed through the low pass
filter.

large scale system, such as networked microgrid, in which
computational efficiency would be a concern when developing
the controller.

The reconfigured test system with 12 buses and an addi-
tional 6th DER (PV 2) is shown by Fig. 16. The simulation
results of the system reconfiguration have been shown in
Fig. 15., where the 5 DERs identified have been incorporated
in a different test setup with 12 buses and additional variable
loads. The results of the system scalability property are also
explained in Fig. 15, where the identified Photo-Voltaic (PV)
based inverter model is added as the 6th DER to the 12-
bus test system. Based on the simulation results, we can
observe successful prediction of this scaled and reconfipured
test system. This is possible because of the block matrix
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Fig. 16. 6-DER based 12 bus test system.

structure of the identified = matrix and the modularization
property of the proposed algorithm.

. Response to Extreme Grid Events

The identified system has been tested under extreme grid
events. The loss of generators, i.e., the micro-turbine outage
is simulated by opening of inverter interconnection with the
network fromt =9 s to t = 9.1 s. The testing data set includes
a 3 phase LG (line to ground) fault for 0.05 s at Bus 1 and
Bus 3 at t = 8 5. A close tracking of the microgrid transient
dynamics by the identified model under extreme prid events
can be observed in Fip. 17.

IV. CONCLUSION

This paper focuses on the development of an adaptive
droop controller for frequency stabilization in microgrids.
The adaptive droop controller is developed by cascading the
traditional droop controller with a model predictive control
algorithm that modifies the droop coefficients to achieve
minimum frequency deviation. The availability of abundance
of data in the power systems domain has been leveraged to
develop a data-driven model that is employed in the MPC
to predict the future behaviors of the system. A hierarchical
modularized physics informed sparse identification method has
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Fig. 17. Transient dynamics prediction under extreme grid events.

been formulated to identify the system's transient dynamics.
This method of identification is computationally efficient and
has less reliance on high frequency data in comparison to the
existing methods. The effectiveness of the proposed MPC is
additionally tested by the application of the control inputs to
the reachable set developed by the uncertainties in the system
inputs. The reachable set dynamics are also quickly stabilized
with minimal frequency deviations when the conventional
droop controller is cascaded with the MPC. Numerical results
have been discussed to explore the effectiveness of the overall
algorithm in a microgrid system.

V. FUTURE WORK

There are multiple challenges in real time implementation of
data-driven models to MPC. Efficient algorithms and hardware
{e.g., GPUs) might be required to address and satisfy the high
computational demand caused by the optimization problem
that is solved by the MPC in real time. Incremental learning,
parallel computing and simplified models can be used to
balance accuracy and computational efficiency. Additionally,
modular and scalable design approaches that allow easy
adaptation and upgrades. The authors have recognized this key
concern and as a step to port this knowledge of this paper to
real world application, the RTDS real-time simulator can be
utilized for a future work to validate the implementation of
the proposed algorithm in real-time.

APPENDIX

Details reparding the microgrid test system and the control
strategies used in this model are presented here. The system
topology details for the 5-DER based 10-bus system are
provided by Tables I, 11, IIL.

The system has two specific control sirategies comesponding
to the grid-forming DERs (Droop Control) and grid-following
DERs (P-) control). The double-loop controller for the grid
forming and prid following DERs is also shown in Fig. 18.
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TABLE 1
DER GENERATIONS AT EAcH Bus

P (kW)
576
223 4.1
23 4.1
L0 30.0
200 200

Qn(kVar)
49.4

EE?\-F-*-H--?

TABLE 11
Power Loaps aT Eacu Bus

P.(kW) | Qu(kVAR)
1275 791
17.75 591
17.75 591
4251 26,34
61.15 20.63
401,00 3790
12.75 7.91

\DW'--J"-.ﬂ-hWHE

TABLE Il
LiNE IMPEDANCE BETWEEN BUSES

Rif1/km)
00154
0.0021
0.0086
0.0096
0.0025
00033
00041
00346
0L.0160

L{H /km) Length(rn}
0.0468 x 107 45
0.0482 » 10-# 30
0.0408 = 10-#* 30
0.1881 = 10—% S0
0.0864 » 10-* Al
0.0403 = 10-% A
0.1446 = 10-* 45
00468 = 10-* 20
00880 x 10— 20

qqhhmmmaag

8~ b B o= w k|

and Fig. 19. Equations explaining the details of the double-
loop controller for the grid following and grid forming DERs
are piven below.

The differential equations (f(x(f), v(f), u(f))) that describe
the dynamics of the control system for the grid-forming DER
in Fig. 18 is given by (25)-(32). V,, and Aw references are
defined by the droop controller parameters Kr and Kp as

Aw = Aw* — Kp(P* — P) (23)

fm = V; - KQ(Q* - Q} (24)

The differential equations (f(x(f), v(f), u(f))) that describe
the dynamics of the control system for the grid-following
DER in Fig. 19 is given by (33)-(40). The alpebraic equation,
o(x(r), y(t), u(f)), describes the network power flow. The over-

all microgrid system can be described using the differential
algebraic equations defined by fi-) and g(-).

i=V, -7, (25)
X = Aw (26)
X3 = Vin — [ IVal> + Vg @n
X =Aw— Aw (28)
s =la—lu (29)
s =1l — 1 (30)
i = (V§™ —x1) /1y (31
iy = (V§™) —x5) /Ty (32)
K=V, -V (33)
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Fig. 19. Double loop controller for gnd following DERs with/ without MPPT
depending on the DER capability to dispatch active power.

% = Aw (34)
=Py —P (35)
X3 = Qry — 0 (36)
Xs =1 — Iy (37)
X =1, -1, (38)
i = (Vg™ —x)/Ty (39)
xs = (V§™ —xs)/Ty (40)

where, V; and V; represent the d-axis and g-axis bus voltages
at the point of interconnection between the inverter and
the network. Aw is the change in frequency of the system
calculated by the PLL design. Ty is the time constant used in
the low pass filter.
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TABLE IV
CONTINGENCIES FOR CREATING TRAINING DATASET
Time (s) Qgen Load Variation
0.0 045 increase 4%, increase G50 increase
05 6% increase 28% increase 50% increase
1.0 8% decrease 22 increass 20% increase
1.5 56% increaze 2% increase 10% decrease
2.0 T8Y increase | 18% decrease 5% increase
25 62% increase 16% increase 90% decrease
0 102% increase | 189 increase 20% decrease
35 94% increase | 18% decrease G0% increase
40 8% decrense 165 increase 50%% increase
4.5 56% increase 18" increase 20% increase
30 T8% increase 84% increase 10% decrease
55 625 increase 8% increass 5% increase
6.0 102% increase | 229 increase BO% decrease
6.5 18% decrease 2%, increase 5% decrease
7.0 36% increase | 18% decrease 8% increase
15 285 increase 165, increase 16% decrease
a0 46% increase 18% increase 28% increase
8.5 6% increase Q8% increase 109 decrease
9.0 34% increase 2% decrease 20% decrease
9.5 145 increase 54% increase 25F decrease
10.0 6% increase 16% decrease 59% decrease
10.5 58% increase 58% increase 9% decrease
1.0 24% decrease | 18% increase 5% increase
11.5 9G5% increase 16%: decrease 5% increase
12.0 4% decrease 16% increass 21% increase
12.5 TO% decrease 0% increase 0% increase
13.0 34% decrease | 489 increase Q0% decrease
13.5 G6% increase G8% increase 150%% increase
14.0 865 increase 305 increase 150% increase
14.5 4% decrease 34% decrease T1% increase
TABLE ¥V
CoNTINGENCIES FOR CREATING TESTING DATASET
Time(s) Pgen Ugen Load Variation
150 5200 increase | d40p decrease 0% increase
15.5 TO% decrease | B0, decrease 0% decrease
16.0 34% decrease %% increase 1605 increase
16.5 34% decrease | 409 increase 160% increase
17.0 42% increase 309 increase B8% increase
17.5 28% increase | 347 decrease 27T% increase
18.0 A6% increase | 34% decrease 10% decrease
18.5 46% increase | BO%: increase 10% decrease
19.0 34% increase | BO% decrease 20% decrease
19.5 14% increase 8% decrease 22% decrease
20.0 12% decrease | 54% increase 59% decrease
0.5 6% increase 16% decrease 2% increase
2.0 2% increase 585 increase 4% increase
21.5 T&% increase 18% increase 90% decrease
220 625 increase | 16% decrease 20% decrease
25 102% increase | 16% decrease 60% increase
3.0 4% increase | 48% decrease 50% increase
235 6% increase 18% decrease 201% increase
24.0 8% decrease 16% increase 10% decrease
24.5 2%, increase 18% increase 5% increase

Multiple disturbances in the system load and power pener-
ation has been simulated to create transient dynamics in the
microgrid model. A detailed description of the contingencies
used is shown in Tables IV and V.
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