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Abstract

The stochastic frontier model is widely used in economics, finance, and man-
agement to estimate the production function and efficiency of a firm or in-
dustry. In the current literature of stochastic frontier analysis, parametric
forms of production functions, such as Cobb-Douglas and Translog, are often
assumed a priori without validation, which may suffer from model misspecifi-
cation and lead to biased estimates of efficiency. To address this issue, a new
set of stochastic frontier models is proposed, namely, 1) monBART-SFM that
constructs a monotone-constrained nonparametric production function via an
extension of the monotone Bayesian Additive Regression Tree (monBART)
framework; 2) softBART-SFM that is built upon soft BART, a smooth ver-
sion of BART, where both models offer greater flexibility in modeling complex
and nonlinear production functions that may have high dimensional inputs.
The performance of the proposed method is illustrated through simulation
studies and a real data application.
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1. Introduction

The stochastic frontier model (SFM) is a widely used econometric ap-
proach to estimate the technical efficiency of a decision-making unit (DMU),
e.g., firms, farms, organizations, or any entities that produce output using
input factors. SFM assumes that there exists a production frontier that
represents the maximum output that a DMU can produce using its inputs.
However, due to various factors such as managerial inefficiencies or techno-
logical limitations, the actual output produced by the DMU may fall short of
the frontier. SFM estimates the discrepancy between the actual and frontier
outputs, known as the technical inefficiency while accounting for the ran-
dom noise in the data. This information can be used to identify the sources
of inefficiencies and inform decisions that can improve the DMU’s perfor-
mance. SFM has been widely applied in various fields, including agriculture,
healthcare, finance, and manufacturing, education, transports, food industry,
economy of development, macroeconomic, to evaluate the technical efficiency
of DMUs (Wiboonpongse et al., 2015; Wei et al., 2021a; Moshiri et al., 2010;
Chandio et al., 2019; Calmagur, 2016; D’Elia and Ferro, 2021).

The original formulation of SFM, proposed independently by Aigner et al.
(1977) and Meeusen and van Den Broeck (1977), assumes a priori an explicit
parametric functional form of the boundary of the set of feasible production
plans. Commonly used functional forms include the Cobb-Douglas, Translog,
and quadratic forms, among others. Despite of their popularity, these restric-
tive parametric assumptions of the production function in SFM may lead to
model misspecifications. Indeed, previous studies (see,e.g., Giannakas et al.,
2003; Ferrara and Vidoli, 2017) reported that many widely-used conventional
functional forms of the frontier are often too restrictive and inappropriate
to characterize the actual complex production frontier in real applications.
Such issues may introduce substantial bias and lead to misleading conclusions
about the associations between inputs and output, and the entire production
analysis.

To address these issues, researchers have developed non-parametric and
semi-parametric versions of SFM to relax the functional form for the pro-
duction function. Fan et al. (1996) introduced a two-step pseudo-likelihood
procedure via kernel regression for frontier function. Kumbhakar et al. (2007)
developed a local maximum likelihood principle approach. A Python pack-
age (van Rossum, 1995) for the stochastic nonparametric envelope of data
method (StoNED) was proposed by employing the concave regression based



on piecewise linear functions (Kuosmanen, 2008; Kuosmanen and Johnson,
2010; Kuosmanen and Kortelainen, 2012). StoNED provides appealing prop-
erties and economic interpretation of the coefficients, but it is computation-
ally intensive, especially with high-dimensional input or output data as high-
lighted by Lee et al. (2013); Ferrara and Vidoli (2017). Parmeter and Racine
(2013) further considered a nonparametric kernel smoothing estimator of the
frontier model with a shape constraint on the estimator’s derivative, by solv-
ing a standard quadratic programming problem, proposed by Kuosmanen
and Johnson (2010). Prokhorov et al. (2021) extended it in the context with
endogenous regressors. However, as the dimensionality of the input space
increases, the proportion of data points within a fixed-radius neighborhood
of a point tends to decrease exponentially. This “curse of dimensionality”
phenomenon can pose challenges for kernel methods in high-dimensional in-
put problems. Recently, Ferrara and Vidoli (2017) developed a semipara-
metric approach based on the generalized additive models with the sum of
spline-based smooth functions for each input variable (GAM-SFM), which
generalized the work by Fan et al. (1996). Although interactions among in-
puts can be modeled by considering tensor product basis in GAM-SFM, the
dimension of tensor basis grows rapidly as the number of inputs unless one
specifies which inputs have interactions (Ferrara and Vidoli, 2017, See page
763). Simar and Wilson (2022) proposed a transformed model with the non-
parametric regression estimator (e.g., kernel local polynomial or orthogonal
series estimators) based on local MLE approach (Simar et al., 2017). How-
ever, their method requires careful bandwidth selections and may encounter
difficulties when dealing with inputs of higher dimensions.

Bayesian methods have also been used in the context of SFM due to their
capability of incorporating prior knowledge and convenience to produce un-
certainty measures for inefficiency estimates. Van den Broeck et al. (1994)
and Griffin and Steel (2007) developed the Bayesian framework with normal
noise and some one-sided distributions for inefficiency terms, and introduced
the use of Markov Chain Monte Carlo (MCMC) methods for model estima-
tion. Galan et al. (2014) proposed a Bayesian SFM to capture the unobserved
inefficiency heterogeneity. However, these models assume a fully parametric
log-linear model for the production function. Tsionas (2022) proposed a re-
gression tree approach for efficiency estimation using a single decision tree
to partition the input covariate space into hyper-rectangular-shaped subre-
gions. The model fits a monotone concave function within each subregion.
However, this only imposes local monotone and concave constraints, and



the author did not show if this would guarantee that the regression tree is
globally monotone and/or concave. Moreover, it is known that a single de-
cision tree is prone to overfitting because it has to grow deeper to capture
complex functional relationships (See, e.g., P. 301 in Hastie et al., 2001).
Most recently, Tsionas et al. (2023) introduced a Bayesian nonparametric
framework that utilizes neural networks to approximate the deterministic in-
efficiency and model noise with a smooth mixture of normal distributions.
The resulting average frontier is a weighted average of the Cobb-Douglas
or Translog production functions, where the weight may also be a function
of input variables. The shape constraints are imposed by using a rejection
sampler in MCMC by verifying the desired constraints on a selected grid
of input points, which can be expensive because the number of grid points
grows rapidly in high-dimensional input space.

In light of these limitations in existing SFMs, we propose a new Bayesian
machine learning non-parametric SFM, called BART-SFM, where the pro-
duction function is modeled by Bayesian additive regression trees, and the
efficiency term is assigned with a truncated normal prior. To the best of our
knowledge, our work is the first Bayesian additive regression tree approach
in the stochastic frontier literature.

The Bayesian Additive Regression Tree (BART) is a class of machine
learning decision tree boosting type of approach to non-parametrically model
the complex functional relationships between a response variable and a set
of predictor variables (Chipman et al., 2010). It has gained widespread pop-
ularity in recent years due to its superior performance in various regression
and classification tasks. In the regression setting with normal errors, BART
has been proved to have strong theoretical guarantees (Rockova et al., 2020)
for approximating high dimensional nonlinear functions with complex inter-
actions and different levels of smoothness.

In the production frontier models, it is often assumed that the input
factors have monotonic relationships with the production output (Nichol-
son and Snyder, 2012; Ferrara and Vidoli, 2017). This motivates us to ex-
tend the monotone BART (monBART') model recently proposed in Chipman
et al. (2022) for the normal regression case to the context of SEM with non-
Gaussian inefficiency terms. To the best of our knowledge, monBART has not
been extended to the non-Gaussian case. We develop an efficient Bayesian
backfitting algorithm for the posterior inference of the SFM model param-
eters, taking into account the non-Gaussian efficiency terms. In addition,
the algorithm extends the Markov chain Monte Carlo algorithm in Chipman
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et al. (2022) when calculating the proposal ratios of trees and sampling the
proposed leaf node values. Specifically, due to the monotone constraint, the
proposal ratio of trees in monBART involves a double integration, and Chip-
man et al. (2022) proposed to calculate this term numerically by summing
over a grid of values. In this work, we derive the closed-form formulas for
proposal ratios of trees and employ the closed form skew-normal distribution
to sample the proposed leaf node. The improved Bayesian fitting algorithm
leads to enhanced sampling efficiency and speed.

Nevertheless, monBART models are constructed by adding together piece-
wise constant functions, rendering them less suitable for modelling very
smooth production functions or concave production functions, as pointed out
by the editors and anonymous referees. This motivates us to also introduce
the soft version of BART for the stochastic frontier model (soft BART-SFM),
where data are assigned to each subregion probabilistically. Linero and Yang
(2018) developed the soft BART posterior concentration theory and showed
that the posterior distribution of the nonparametric function f concentrates
around any unknown true a—Holder smooth function at near minimax rate.
This theory shows that soft BART can adapt to different levels of smoothness
(See Theorem 2 in Linero and Yang, 2018), including smooth monotone and
concave functions as special cases. Even if the true production function is
smooth monotone concave, the posterior distribution of soft BART-SFM can
approximate it well without imposing shape constraints on the prior model.
In fact, there is a debate in the SFM literature regarding the necessity of
assuming concavity in the production function, especially for high dimen-
sional problems where the production function can be highly complex. Both
Kuosmanen (2001) and Ferrara and Vidoli (2017) underline that “there is
no valid justification for assuming production sets to be generally concave.”
Many non-concave production functions can be found in stochastic frontier
literature, see, e.g., (Fare and Svensson, 1980), (Battese et al., 2004), and
(O’Donnell et al., 2008), among others. The unconstrained soft BART-SFM
offers substantial flexibility in modeling the production function. Neverthe-
less, we remark that BART based SFM can be useful for variable selection,
interaction detection, and the generation of partial dependence plots between
subsets of covariates and response for model diagnostic, which may guide the
model specifications of parametric production functions.

The proposed BART-SFM methods have several other appealing advan-
tages over existing SFM models: 1) the Bayesian paradigm allows for the
incorporation of prior information into the stochastic frontier analysis and



hence can be more robust in cases where the sample size is small or the
production data is sparse; 2) BART-SFM naturally provides posterior dis-
tributions of quantities of interests such as technical efficiencies, in addition
to the point estimates; 3) BART-SFM is appealing for handling large and
complex input data, similar to other ensemble decision tree models such as
Random Forest (Breiman, 2001) and XGBoost (Chen and Guestrin, 2016).

The rest of the paper is organized as follows. A brief review of SFM
is given in Section 2. The proposed BART-SFM method is described in
Section 2.1. An in-depth explanation of the prior models is provided in
Section 2.2. The posterior computation method is given in Section 3. The
soft BART-SFM is derived in Section 4. The simulation studies and a real
data analysis are conducted in Section 5 and Section 6 to illustrate the prac-
tical utility of the proposed method. Section 7 closes the paper with a con-
clusion and future work.

2. Review of SFM

The parametric Stochastic Frontier Model (SFM) is a powerful and popu-
lar tool used throughout the productivity modeling literature. Its original for-
mulation was introduced independently by Aigner et al. (1977) and Meeusen
and van Den Broeck (1977). The SFM provides a method of estimating the
best production frontier, f(-), of different DMUs that describes the maximum
output, Y (e.g., crop yield), given input vector, © = (z1,...,2;)" € R* (e.g.,
labor and fertilizer costs per acre). The estimated frontier is used to evalu-
ate the relative efficiency of different DMUs. In general, SFM can be applied
to problems for which there is a theoretical maximum (minimum) and the
observed counterpart is below (above) this value. The discrepancy between
the two values measures the inefficiency of a DMU. See, e.g., Greene (2008),
for more detailed overviews of SFM.

The canonical parametric SFM for a cross-section of n DMUs can be
expressed as followings

where measurement errors V; ~ N(0,02), U; represents non-negative ineffi-
ciency terms often modeled by U; ~ HN (0, ¢?2), the half-normal distribution
with scale parameter 02, and V; and U; are assumed to be independent. f(-)
defines the production frontier given input x, and in literature, it is often



assumed that f(x|3) has some parametric form involving parameters 3. For
example, assuming Y; is the log-output, the Cobb-Douglas production func-
tion (Zellner et al., 1966) has a constant returns to scale property and takes
the form: f(x;|8) = Bo + S1xi1 + ... + Bpwip, where [ are the elasticities of
output with respect to xx. Then, the SFM can be rewritten as :

Yi=pFo+ fiza+...+ Bpxip + Vi — U,

The above canonical SFM is estimated by likelihood-based inference and
has a straightforward interpretation. However, it comes with very restrictive
(log) linear functional assumptions that can lead to severely biased param-
eter estimations under model misspecification, as evidenced in Ferrara and
Vidoli (2017) and our numerical results to be shown in Section 5. To relax
these parametric assumptions, below we introduce a Bayesian nonparametric
method to more flexibly model the production function f(x;).

2.1. MonBART-SFM for efficiency analysis

In this section, we introduce the BART-based Stochastic Frontier Model
(BART-SFM) in a canonical cross-sectional setting as follows,

Y, = Bo+ Y gil@i Ty M)+ ViU, (1)
j=1

Vv, " N(0,02), U; "X HN(0, 02).

The production function f(x) = By + > gj(x:; Tj, M;) is modeled by a sum-
j=1

mation of the intercept 3y and additive decision tree weak learner functions,
gj(z;; T;, M;). Specifically, each weak learner function g;(x;; 7}, M;) is deter-
mined by a binary decision tree, denoted as T}, and a vector of parameters
at the leaf nodes of Tj, denoted as M;.

A binary decision tree consists of both internal nodes and leaf nodes,
which defines the decision rules to recursively partition the space of input
vector @ into non-overlapping hyperrectangular regions. It begins from a root
node that represents the entire input data space. Each node is associated
with a subset of data, and the internal node is also associated with a decision
rule to further split the data according to one of the input variables, xy,
k=1,...,p. The most commonly adopted decision rule is taking the form
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Figure 1: The plot in the top left panel shows a monotone regression tree T' with 5 leaf
nodes and 4 internal nodes with splitting decision rules. The plot in the bottom left
panel shows the proposal tree T* by further splitting a leaf node p; from T'. p represents
the value of each leaf node. The plots on the right panel show the piecewise monotone
functions corresponding to T and T*. The top node is labeled 1 and the £th non-leaf node
has a left child with label 2/ and a right child with label 2¢ + 1.



xr < ¢ vs x; > c¢. The decision rule defines a split of an internal node 7 into
two offspring nodes. Accordingly, the subset of data assigned to n is also
partitioned into two smaller subsets that are assigned to the two offspring
nodes. We call a node terminal or leaf if it does not further split. All leaf
nodes form a disjoint partition of the entire input variable space so that for
any arbitrary input data point, one can determine the associated leaf node
(i.e., the subregion of the partitioned input space) based on the sequence of
decision rules from the top to bottom of 7} (see Figure 1).

Given such a partition of the input variable space defined by 7}, data at
each leaf node is assumed to take a constant value (also called leaf weight).
Assuming there are n; leaf nodes, we use M; = {uj,... ,ujnj} to denote
the local leaf weights. With a slight abuse of notation, we also use ¢ to
represent the /th leaf node of the jth decision tree. As a result, g;(x;; T, M;)
is modeled by a piece-wise constant function that assigns any input x to a
leaf node and assigns the value of g;(x) according to its corresponding leaf
weight, i.e.,

5
g]<.’,B,T‘],MJ) :Zﬂﬁjz(m77}7€)7 (2)
/=1

where Z(x; 7}, () is the indicator function such that g(x; T}, M;) = pj if and
only if x is associated to ¢th leaf node of tree T} (see Figure 1).

The task of estimating g(x;; T, M;) amounts to estimating the decision
tree structure 7; and its leaf weights M;. Following the Bayesian modeling
framework, we assume that the decision tree 7} follows a generative tree prior
and assign a prior distribution to each leaf weight to model M;. The detailed
prior model specifications will be described in Section 2.2.

In the literature on economic efficiency, it is often reasonable to assume
that the production function is a monotone function (Gijbels et al., 1999)
because of the free disposability of inputs and outputs property, i.e., an
increase in inputs does not decrease production output (Fare et al., 1985;
Shephard, 2015). Such an assumption is easily satisfied by (log)linear SFM,
but nonparametric SFM models require extra care to guarantee monotonicity.
Indeed, in the aforementioned classical BART models, the leaf weights of each
decision tree are often assigned with independent priors, which precludes the
imposition of a monotonicity constraint on the nonparametric function.

In this paper, we consider a monotone-constrained Bayesian additive de-
cision trees method to model the production function, extending a very re-
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cent monotone BART method in Chipman et al. (2022) originally designed
for normal-error regression models. We follow the definition of a monotone
multivariate function given below,

Definition 2.1. (Chipman et al., 2022) For a subset S of the input vector
r € RP, a function f : RP — R is said to be monotone in S if for each
xr €S, f satisfies

flr, ..o,z +6,. .. xp) > flog, oo mp, . o0, Tp),
for all 6 > 0 (nondecreasing).

Note that the monotonicity of each decision tree weak learner guarantees
the monotonicity of the sum of trees. It suffices to restrict the monotonicity
condition for each single tree function g;(x;7;, M;). Recall that each leaf
node py of a tree T is represented by a rectangular region of the form

Ry =A{z|vy € [Lie, Ure), k=1,...,p},

where the interval [Lgg, Uy,) for each input zy, is determined by the sequence
of splitting rules at internal nodes. Ry is said to be separated from Ry« if
Uk < L+, or Ly > Upp for some k. Otherwise, R, is said to be an above-
neighbor of Ry« with respect to xy if Ly = Uy, and below-neighbor of Ry
with respect to xp if Uy = Lge. For example, in T of Figure 1, Ry5 is
separated from R, and Ry;; Ris is the above neighbor of R; with respect to
X5, and also the above neighbor of Ry with respect to z;.

The above- and below- neighboring relationships can be used to define a
monotone tree by constraining the range of the leaf weight assigned to each
leaf node. Specifically, a monotone decision tree is defined by

Definition 2.2. (Chipman et al., 2022) A tree function g(x; T, M) is mono-
tone in the direction of xy if the u level of each of its terminal node regions
18:

(a) not greater than the minimum level among all of its above-neighbor
regions with respect to xy;

(b) not less than the mazimum level among all of its below-neighbor regions
with respect to xy,.
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In addition to the capability of capturing monotonicity, monBART is also
shown to provide smoother function estimates, better out-of-sample predic-
tive performance, and tighter posterior credible intervals, compared with
standard BART (Chipman et al., 2022). It also inherits several other ap-
pealing properties of BART prior models, making it an attractive option for
modeling production functions in stochastic frontier models. Firstly, the de-
cision tree-based piece-wise constant function is nonlinear by nature, and an
ensemble of many such decision trees can capture complex functional rela-
tionships with varying levels of smoothness (Rockova et al., 2020). Secondly,
such models are also suitable for handling high-dimensional input variables.
We will show in Section 3 that during the construction of the decision tree
weak learner, important input variables have a higher chance to be selected
to generate internal decision rules, which can help identify the most impor-
tant predictors in the model and aid in model interpretation. Furthermore,
decision trees incorporate decision rules based on various features, enabling
the detection of interactions among multiple inputs that may have mixed
categorical or numerical types. Additionally, by implementing efficient full-
likelihood-based Bayesian inference techniques (to be discussed in Section 3),
BART-SFM can handle large datasets and high-dimensional input spaces,
while offering a reliable way to estimate model parameters with uncertainty
measures.

2.2. Prior Specification

To perform Bayesian inference on BART-SFM, we need to specify the
prior distributions for each of the parameters in Eq. (1). The unknown
parameters of BART-SFM consist of decision trees {7}}, leaf weights {M,},
intercept [y, random error variance o2 and the variance of the inefficiency
term o2. We assume

p(<T17 M1)7 ) (Tm7 Mm); Oy, Oy, 60) - [HP(M]VZ})])(]—YJ) p<0'v)p(0u>p(60)a (3)
j=1
where the tree components (11, M), ..., (T;,, M,,) are apriori independent

of each other and of ¢, and o,, respectively.
For decision trees, we assume that the prior of each T} follows the gener-
ative decision tree prior specified in the following manner:

e Step 1: Start with a root node representing the full input space.
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e Step 2: Split a leaf node at tree depth d = 0,1, ..., with probability
Dsplit = ﬁ. The parameters a € (0,1) and 8 € [0,00) are selected
to penalize the size of the decision tree by assigning lower splitting
probabilities to deeper leaf nodes. This complexity penalization prior
encourages shallow decision tree weak learns and aids in preventing

BART from overfitting.

e Step 3: If a leaf node splits, with probability p.ue, select an input and
a split point on that input to split the current leaf node into two new
offspring terminal nodes. Uniform distributions are common choices

for Prule-
e Apply Steps 2-3 to the two new offspring nodes respectively.

The distribution of the above generative prior of T can be written as

7(Ty) = [T (1 = popre (119)) [ [ e (3) T [ e (),

m

where {/1;} and {n;} represent the leaf and internal nodes of T}, respectively.

According to the definition of a monotone tree in Def. 2.2, the support of
leaf weights needs to be constrained by their neighboring leaf weights. Let
C' be the set of all trees (T, M) satisfying monotonicity constraints,

C={(T,M): g(a; T, M) is monotone for each x, € S}. (4)
Then, the prior of leaf weights can be specified by incorporating the above

constraints as follows (Chipman et al., 2010):

T

11 p(elT)

(=1

p(M;|Ty) o< Zo(T;, M), (5)

where n; is the number of leaf nodes of tree T; and Z¢ is the indicator function
taking value 1 on C' and 0 otherwise.

We now specify the prior for the leaf weights of each M; given T}, which
is essential to guarantee monotonicity. In standard BART, conjugate normal
priors are assigned to p(su;¢|7;) such that the marginal likelihood ratio for
sampling trees and the posterior conditional distributions of leaf weights have
closed forms. The hyperparameters in the normal priors are chosen based on
the empirical Bayes strategy such that the induced prior on E(Y|z) assigns
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a large probability to the empirical range of Y. Similar priors are adopted
in monBART but with a correction to account for the monotone constraint.
To be specific, for pj, constrained by C' in (4), we assume

(| T;) ~ N(/L“,C2O'Z>, with ¢ = —
This prior choice ensures that the prior variances of the constrained leaf
weights in monBART approximately match those of the unconstrained leaf
weights in standard BART. Chipman et al. (2022) showed that this strat-
egy helps to balance the prior effects across predictors and facilitates the
calibrated specification of o,,.

For priors of ¢, and o, we use the conditionally conjugate inverse gamma
distributions 02 ~ IG(a,, 8,) and 02 ~ IG (v, B.). The hyper-parameters
a, (3 in inverse gamma distributions are specified with a data-informed method
that assigns a substantial probability to the entire region of plausible o values.
This method would avoid overconcentration and overdispersion and facilitate
the mixing of MCMC. To be specific, a value of df is chosen between 3 and
10, and the value of S is selected so that the gth quantile of prior on o is
located at a prior guess, . Note that the residual of BART-SFM is the con-
volution of a normal random variable V' and a half-normal random variable
U, which follows the skew-normal distribution. Therefore, to get a reason-
able &, we first fit the skew-normal distribution to data using selm function
in sn package (Bowman and Azzalini, 2021), and apply the estimated scale
parameter to ¢. Our numerical results indicate that this empirical approach
works well in practice.

3. Posterior Computation

3.1. Posterior Sampling

We propose to generate MCMC posterior samples for each parameter
based on the Bayesian backfitting algorithm. Since the efficiency terms are
of particular interest in SFM, our Bayesian algorithm involves a data aug-
mentation on latent variables U = (Uy, ..., Un)T. We will show below that
this data augmentation strategy also facilitates efficient samplings of other
model parameters.

To be specific, we apply the Gibbs sampler to draw samples of each
parameter from their posterior conditional distributions derived from,

p((Ty, My),...,(Tn, M), Bo, 05, 0, U|Data).
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First, the Gibbs Sampler draws for each tree (7}, M;) for j =1,...,m given
(T_;, M_;, By, 02, 02, U) from the conditional posterior distribution
( M| —]’M—J75070- ol U)

v u?

where M_; = {M,,r # j} and T_; = {T,,r # j}. This step is implemented
using the Bayesian backfitting algorithm by sampling each tree (7}, M;) se-
quentially from

( M’ijﬁova o, U) ( j‘ BOaUm Ous ) (ijMj)

v

where R; =Y — By — > g(X;T,,M,) — U. To simulate a Markov chain
T#j

move from (Tj(t),M](t)) — (7}(t+1),M;t+1)), a localized Metropolis-Hasting
algorithm is implemented to accommodate the monotonicity constraint con-
dition given in Eq. (5) (Chipman et al., 2022). First, a candidate proposal
tree T* is generated with probability q(T @ T7), and let q(T; — T )Y de-
note the probability of the reversed step. There are two basic local moves in
proposing a new tree 7™, namely, the birth move and the death move. Trees
in the left panel of Figure 1 illustrate an example of the birth/death propos-
als, where T" — T™ is a birth move proposal that splits a randomly selected
leaf (e.g., leaf node pg) of T' into two new leaves by assigning a new split-
ting rule, and 7" — T' is a death move proposal by merging two randomly
selected sibling leaves to prune the tree. It is easy to see that birth/death
moves are reversible and complementary to each other.

Under the proposals (T M(t)) — (T}, M;) with the above two types

of local moves, MJ and M; differ only on those u’s having different an-

cestries under T and T7. We further denotes M]@ = (Hsames M. 01g) a0A
M = (f45,5ame> 1, new) Where [4j,same corresponds to the unchanged leaf nodes
and I, .4 corresponds to the leaf nodes in Tj that are replaced by ., in
17 Accordmgly7 we denote R, R, ., and R, ... as the residual data
instances assigned to i old ,u],new, and [t} same, respectively.

Then, the move Tj(tﬂ) =T} is accepted with probability

o . q(T]* — Tj(t)> . p(Tj(*)) . p(R] new T]*7 /'I’j,same)
a = min ol @) @) 15 (6)
oT;" = T7) p(T;7) p(R

]0ld| i 7ILLJsame)

J

The proposal and prior ratios of trees of the first two faction terms in (6)
are calculated in a similar way as the standard BART. See the Appendix in
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Kapelner and Bleich (2013) for a detailed derivation. However, monBART
differs from standard BART in the third marginal likelihood ratio term due
to the monotonicity constraint. Let’s consider the birth move as an example
(the death move would be computed similarly), and omit the weak learner
index j for simplicity of notation. In this case, a leaf node pyq in T® is
split into two offering nodes ., = (1., 1) in 7%, with the corresponding
local residual data, R, = (R,, R,). Note that the BART-SFM assumes
independence of residuals conditional on the decision trees 7; and the leaf
weights M;. One needs to calculate the local likelihood p(R,, R,|T™, pt.,...)
in the numerator of the third marginal likelihood ratio term in Eq. (6),

p(Rnew - (RL7RR)’7_;‘<7/’Lsame) - //p(l’l’lﬂILLR‘T*7lusame>p(RL|/’LL) (7)

p(R |y )durdpg,

where the monotone constrained prior of the local leaf weights is given by

PLs HRIT™, fgme) = 20(1L; o €O ) P(HRS My €Op) Lipp <pnys

where ¢(z; p,0) is the density function of normal random variable with lo-
cation p and scale o.

Let n; and ng be the number of observations on the left and right leaf
nodes, respectively. With some algebra, p(R,, R.|T}, u in Eq. (7) can
be simplified to

Br Br 45 9 o 1 1
R .R.|T =Ko (0;-% L Tt ) ) ®
p( 5 R| ],lllsm,w) ( ’AL AR,C CTMCTU AR+AL 7( )

Same)

where ®(-; i1, 0%) is the univariate normal cumulative distribution function

nL
- ~ 2 _ 2, 2.2 _ 2.2 L2 2
with mean y and variance 0, A, = o} +c?oinyg, By = o, (30 Ri?) +ogpuy,
i=1
nr nRr R
_ 2.2 L2 2,2 _ 2 22 _ 2.2 2
and Cp, = c®op ) Ri? +oju’, and Ap = 0, + c*o;ng, Br = c®o, (3] Ri™) +
i=1 i=1

nR
2 — 252 R2 | 2 2
Oppiy, Cr = oy Y Rj% +opp,, and
i=1

B? Bz
Cp+Cp— =Lt —-=£
G—f,ex Lt Ay Ag
VALAR P 2020,
K =2 ng +ng

(2ro?) 2

v
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We defer the detailed derivation to Appendix.

Furthermore, we also derive the close form distribution to draw posterior
samples of (ur,pr). Assuming T¢HY = T* is accepted, we sample (uz, fig)
conditional on T* and other parameters with constraint {y; < pg} from the
bivariate posterior distribution given by,

p(y’ln MR|RL7 RRa T*7 lusame) X ¢(ML, £L7 TI%)(b(/'LRu £R7 T]%)[{HLSHR}? (9)

whose marginal distributions are

LRy, Ry, T ) < (par; €0, 72)®(—(r — €0); €L — Ery T1)(10)
p(/’LR‘RL7 RR7 T*a :usame) o8 ¢(NR§ fRy T}%)q)(ﬂR - §R§ £L - €R7 Tg)a (11)

and the conditional distribution is

p(l’[/R“"LL?RL?RR?T*?ILLsame) (8 ¢(/‘LR’§R7 T]??)I{NLS/LR}’

where &, = %, T = ogczai/AL, Ep = B—g, T3 = chzai/AR, and Ay, By,
Ag, Bp are given in Eq. (8). Note that Eq. (10) and (11) are densities of the
closed skew-normal distributions (Gonzalez-Farfas et al., 2004). Specifically,
we have py ~ CSNy (&, 77, —1,&L —Er, Th), and g ~ CSNy1(Er, T, 1, €L —
g, T2), which can be easily sampled, for example, by R function “rcsn” in
‘csn’ package (Dmitry Pavlyuk, 2022). Therefore, to sample (pp, ug) from
(9), we first sample py from (10) and then sample pug|py from a truncated
normal distribution in (12).
Remark: In Chipman et al. (2022), the double integration in p(R,, R [T},
towme) 0 Eq. (7) is computed numerically by summing over a grid of u;, and
pr values, and (pur, pg) are drawn using the Metropolis-Hastings algorithm.
By using our derived closed-form formula given in Eq. (8), the Metropolis-
Hastings step for sampling decision trees and the closed-form Gibbs sampler
of (ur, ur) achieves greater accuracy, efficiency, and speed in comparison to
the numerical integration approach proposed by Chipman et al. (2022).
The posterior samples of By, 02, 02, and U are obtained from the following
conditional posterior distributions which all have closed forms thanks to the
use of conjugate priors as described in Section 2.2,

p(Bo|Ty, ..., T, My, ..., My, 0%, 062, U),

p(o?| Ty, ..., Tony My, ..., My, Bo,02,U),

p(c?|Ty, ..., Ty, My, ..., My, Bo,02,U),
and

p(U|Ty, ..., Ty, My,..., My, By, 02, 02).
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The details of the above formulas on the proposed MCMC algorithm are
given in the online supplementary material.

Remark. Similar to other Bayesian nonparametric SFM frameworks pre-
sented in Tsionas (2022) and Tsionas et al. (2023), the estimated production
is not generally concave. If global concavity is required, one may impose
the desired concave constraint on a selected grid of points, and discard the
posterior draws by using rejection sampling within MCMC, as implemented
by Tsionas et al. (2023). However, it should be noted that the grid of points
will expand exponentially as the dimension of input grows, making it com-
putationally very expensive to check for the high dimensional case.

3.2. Posterior inference

We obtain model parameter estimates through posterior inference, by
calculating summary statistics of the posterior samples, such as the mean,
median, standard deviation, and credible intervals of each parameter. In
particular, the estimation of observation-specific technical inefficiency score
(TE) plays a crucial role in many empirical implementations of the stochastic
frontier model, defined as

(I) * x — Ux 1
T = Bl @), o%0f) = Tl P o (S ) 2)
and pi = (Y; — f (:ci))UQ‘f‘UQ and o, = U‘;%‘:EQ. In Bayesian SFM literature,

to evaluate TE for Bayesian SFM, Zhang (2000) proposed to use the Rao-
Blackwell estimator (Gelfand and Smith, 1990), from B posterior samples
for 0,, o, and f(x;), i =1,...,n, the average of conditional posterior means
of TE can be obtained by,

B
Y EE O @), 600,670,

b=1

N
TE = —
B

4. soft BART-SFM

Linero and Yang (2018) developed the soft BART to overcome the lack of
smoothness of BART. softBART converts each hard decision tree in Eq. (1)
into a soft decision tree. They developed the posterior concentration theory
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of soft BART and showed that soft BART can consistently estimate an un-
known function fy € C*([0, 1]?) with the posterior contraction rate adapting
to the smoothness level @ > 0 (See Theorem 2 in Linero and Yang, 2018).
Here C%([0, 1]7) denotes the Holder space with smoothness index «. Because
C*([0,1]7) is a very wide class of functions which include the smooth con-
cave function as a sub-class. Theorem 2 in (Linero and Yang, 2018) shows
that soft BART can approximate the true function asymptotically well, even
without imposing prior concavity assumptions.

For this purpose, we further develop the soft BART based SFM (soft BART-
SFM). Rather than x following a deterministic path down the tree, « in soft-
BART follows a probabilistic path that goes left at branch b with splitting
rule z; < ¢, with probability,

ot = (22%).

Ry

where k;, > 0 is a bandwidth parameter controlling the sharpness of the
decision. And the model approaches a hard decision tree as x; goes to 0, and
approaches a constant model as k;, goes to co. A common choice for ¢(x)
is the logistic gating function, ¥ (z) = (1 + e *)~!. By averaging over all
possible paths, the jth weak learner function g;(; 7}, M;) in Eq. (1) is given
by

Zuwa 0), (13)

with
o(x; T, 1) H V(x5 cp, ki) {1 — b(; p, )},

beA(L)

where A(?) is the set of ancestor nodes of leaf ¢ and R, = 1 if the path
to ¢ goes right at b. The smoothness of soft BART is achieved by replacing
the piecewise constant weak learner with a locally weighted sum of piecewise
constants as shown in (13).

The prior specification in soft BART-SFM are mostly the same as monBART-
SFM as described in Section 2.2 except that the prior of u’s are independent
normals without monotone constraint, see (Linero and Yang, 2018) for de-
tails. For the prior of the bandwidths k;, we have k, ~ Fxp(r), and set
r = 0.1 as a default value. For the splitting proportions s = (sy,...,s,), the
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Dirichlet prior s ~ D(a/p*,...,a/p%), with &€ > 1 is applied, (see Linero and
Yang, 2018; Linero, 2018).

The posterior sampling algorithm of trees in soft BART-SFM still use the
back-fitting algorithm with split and merge sampler. However, the accep-
tance ratio calculations in Eq. (6) are different now due to the change of
marginal residual data likelihood. Specifically, the marginal residual data
likelihood term now takes the form

27 Q)| 1/ R;|I> 1
P(R;|T;) = |2m€2] _H il FoaTO)
g1 H K

(2m02)"/? ’27?021’1/2 207 2

m
where

o2 -1 " b "R b,
_ M o 1% ~ 1,7 ¥t
Q_(EIJrA) A=Y R ama) Ml

P, = (%’1, ce ;wiLt)T and hip = w(azi; Ttag)-

Accordingly, the conditional distribution of leaf weight M; given T} follows
multivariate normal distribution N (g, €2).
5. Simulation Study

In this section, we design a simulation study to evaluate the perfor-
mance of the estimators of the proposed monBART-SFM and soft BART-
SFM with five simulated data generating processes (DGP): (DGP-1) linear
production function case; (DGP-2) nonlinear with exponential production
function; (DGP-3) nonlinear production function with multiple covariates;
(DGP-4) piecewise nonlinear case; (DGP-5) Translog production function
with quadratic and interactions. For each DGP, we simulate n = 200 obser-
vations and repeat the experiments 100 times. For each experiment, we use
m = 100 trees, and the hyperparameters are set following the data-driven
method described in Section 2.2.

DGP-1. Linear case:

K:BU+51X12+‘/2_U17 7::1,...,”,

where 3y = 0.9, 81 =1, V; ~ N(0,02) and U; ~ HN(0,0?) with ¢, = 1 and
o, = 0.5, and X is simulated from Unif(1.5,5).
DGP-2. Non-linear case:

Y; = fo + Brexp(Xy) + Vi — Ui, i=1,...,n,
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where 3y = 10, 8; = 5, V; ~ N(0,02) and U; ~ HN(0,02) with o, = 1 and
o, = 0.5, and X is simulated from Unif(0, 3).
DGP-3. Non-linear case with multiple input variables:

Y; = Bo + Brexp(X1;) + B2 exp(Xa;) + B exp(Xsi) + Baexp(Xai) + Vi — Ui,

where 60 = 10, Bl = 5, and ﬁg = ﬁg = ﬁ4 = 55 = O, Vo~ N(0,0’g), with
o, = 1, and U ~ HN(0,02) with o, = 0.5, X3; ~ Unif(.5,3.5), Xy ~
Unif(1.5,4.5), X3 ~ Unif(2.5,5.5), X4 ~ Unif(3.5,6.5), X5 ~ Unif(4.5,7.5)

DGP-4. Piecewise nonlinear case:

- Bo + Brexp(Xyi) + Vi = U;,
‘ 60+10+ﬁ1 exp(Xh») +‘/z — UZ',

where 3y = 10, 8, =5, V ~ N(0,0?), with 0, = 1, and U ~ HN (0, 02) with
o, = 0.5, and Xy; ~ Unif(.5,3.5).

DGP-5. Multivariate case with quadratic terms and interactions
between variables (Translog Production Function):

Y, = Bo+ BiXu+ BoeXoi + B3Xa3i + S Xt + BoaXa + B33 X5
+512X1: X9 + B13 X1 Xsi + PoasXoi X3 + Vi — Ui,

where 60 = 35, ﬁl = 15, and /82 = 0.3 63 = 057 611 - —11, 622 =
533 = 0, 512 = 35, 513 = 523 = 0, V ~ N(0,0'g), with Oy, = 1, and
U ~ HN(0,02) with o, = 0.5 and Xy; ~ Unif(.5,3.5), Xy ~ Unif(.5,3.5),
Xa; ~ Unif(.5,3.5).

Comparison methods. The inference obtained from BART-SFM is ex-
amined and compared with the results of the Bayesian linear SFM model
and the Semi-parametric generalized additive model based SFM (GAM-
SFM)(Ferrara and Vidoli, 2017). To obtain reasonable Bayesian linear model
estimates under DGP2, DGP3, and DGP4, the input data are transformed
under the exponential function. The GAM-SFM fits the output variable Y
using a sum of smooth functions of covariate input variables,

k
E(Y|X =) =0+ »_¥(z;),
j=1

where 1;(+)s are smooth functions. The monotonicity constraint is imposed
by means of P-spline and is implemented by the pseudo maximum-likelihood
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Figure 2: DGP-2 Nonlinear exponential model (left) and DGP-4 Piecewise nonlinear ex-
ponential model (right) with the true frontier (black), the GAM-SFA fit(green), Bayesian
Linear model fit(red), monBART-SFM fit (blue) and soft BART-SFM (light blue).

estimation in the R package semsfa (Ferrara and Vidoli, 2021). Note that
the package can not model the interactions among covariates (Ferrara and
Vidoli, 2017).
Markov chain Monte Carlo implementation. For the Bayesian analysis
in the simulation and following real data analyses, we use the R program-
ming language for our computations (R Core Team, 2020). B=4,000 MCMC
samples are produced for all results. Convergence was assessed using trace
plots of o, and o, and Geweke’s convergence diagnostics (Geweke, 1992).
The trace plots showed that a burn-in of 1,000 samples was acceptable for
all cases and that the chains are mixing well. Note that all of Geweke’s con-
vergence diagnostics had values that indicated convergence. The simulation
was implemented using R programming language and the computation time
for each BART-SFM fitting is about 229 seconds on computers with macOS
Big Sur Version 11.6 operating system and Intel Core i7 4.2 GHz Processors
with 8 GB memory.
Performance Criteria

To check the performance of the BART-SFM, we report the root mean
squared error(RMSE) and absolute value of bias of estimated production
function, the average bias of 6, and &,, and average bias in technical inef-
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Table 1: The RMSE, BIAS for SFM based on Bayes Linear model (Lin), GAM-SFM

(Sem), BART-SFM (mBT), and softBART-SFM (sBT), n = 200 under DGP1 to DGP5
for 100 simulated data sets.
DGP1 DGP2 DGP3 DGP4 DGP5
Lin Sem mBT sBT Lin SemmBTsBT Lin SemmBTsBT Lin SemmBTsBT Lin Sem mBT sBT
RMSE 16.8316.0910.3414.330.050.04 0.02 0.030.920.02 0.02 0.020.080.03 0.02 0.03111.3345.2724.5624.45
BIAS 0.57 0.54 0.45 0.53 0.150.13 0.11 0.120.920.11 0.10 0.110.220.12 0.08 0.11111.33 0.80 0.57 0.55
Bias,, 0.05 0.09 0.05 0.05 0.070.10 0.05 0.053.430.09 0.04 0.051.840.17 0.08 0.04 0.31 0.29 0.12 0.06
Bias,, 0.14 0.43 0.39 0.63 0.190.44 0.32 0.601.620.45 0.17 0.640.180.53 0.40 0.19 0.30 0.54 0.25 0.53
Bias7Tg 0.06 0.23 0.25 0.07 0.200.25 0.07 0.070.630.21 0.10 0.140.230.30 0.10 0.30 0.12 0.29 0.15 0.01

ficiency scores. The RMSE and BIAS of estimated production function are
defined respectively as,

NN RS AN A 1l |V - Y,
RMSE:Ebzl 52( 7 ) BIAS:EE;; Y (14)
The average bias of 7, and &, are given by,

. 1~ . RN

Bias, = B bz; |Gy — 04, Bias, = B bz; |G — oul. (15)

We also report the mean bias of TE scores obtained by

I
Biastg = — » |TE; — TE,
n

i=1

where TE; is the true TE score for farm ¢ by using true simulation parameters
in Eq. (12).

Figure 2 shows the simulated data under DGP2 with nonlinear patter and
DGP4 with piecewise nonlinear pattern. The monBART-SFM (blue curve)
and soft BART-SFM (light blue curve) fit the data well and are close to the
true data-generating function (black curve). The simulation results for DGP1
to DGP5 are summarized in Table 1, from which we have the following obser-
vations: (i) The RMSE, BIAS, Bias, of monBART-SFM and softBART-SFM
are all smaller than those in Bayesian linear model and GAM-SFM under
DGP1 - DGP5; (ii) The Bias, of monBART-SFM shows smaller values than
GAM-SFM for all cases, and both BART-SFM and GAM-SFM have larger
Bias, than those in the Bayesian Linear model for DGP1-DGP4; (iii) For
DGP 5, monBART-SFM shows smallest RMSE, BIAS, Bias,, Bias,, and
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Biasrg among three models. In summary, monBART-SFM and soft BART-
SFM shows great flexibility in modeling complex nonlinear patterns and the
advantage of fitting data with high dimensional inputs and complex associ-
ations. When the true production function is linear, monBART-SFM and
soft BART-SFM still achieves comparative results as linear models.

6. Real Data Analysis

The World Health Report is a worldwide assessment of the effectiveness
of healthcare delivery. In this section, we apply the proposed BART-SFM
to the 1996 World Health Report data from 168 countries (WHO, 2000).
The output variable Y is a composite measure of health care attainment for
each country, and five input variables are considered: health expenditure
per capita (X;), average years of schooling (X5), Gini coefficient for income
inequality (X3), Gross domestic product (GDP, X}), and population density
(X5) for each country. The complete panel data set from the year 1993
to 1997 was analyzed using the linear model with the maximum likelihood
approach in numerous publications (Greene, 2004, 2005, 2008).

To benchmark the performance of the BART-SFM, we fit linear SFM
models using both Bayesian and maximum likelihood approaches. To com-
pare BART-SFM with the Bayesian linear model, the widely applicable infor-
mation criterion (WAIC) is calculated as the measure of predictive accuracy
for models comparison (Gelman et al., 1995). Recall WAIC is defined by

WAIC = —2Ippd + 2pwaic,

where [ppd denotes the log predictive density and pwaic is the effective num-
ber of parameters to adjust the overfitting,

n B
mpd = 325 p(ule")
b=1

i=1
n 1 B 1 B

bwaic = 22 (108; (E Zp(yile”)) - EZP(%W”)) :
i=1 b=1 b=1

The soft BART-SFM gives lowest WAIC value (126.25), and the WAIC value
(297.84) in monBART-SFM is lower than the WAIC value (342.55) in Bayesian
linear model, indicating a better model fit of soft BART-SFM potentially due
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Table 2: The descriptive statistics of Technical Efficiency for WHO data in 1996 for the
SFM with MLE approach (MLE), Bayesian Linear model (Bayes-Lin.) monBART-SFM
and softBART-SFM are given in left panel. Five farms with highest efficiency scores and
five countries with lowest efficiency scores from soft BART-SFM and monBART-SFM are
shown in the middle panel and right panel, respectively. Efficiency scores are given in
parentheses. The SFM with maximum likelihood approach and Bayesian linear model
fails to give the ranks.

Highest five country code Least five country code
MLE Bayes-Lin. sBART mBART sBART mBART sBART mBART
Mean 1 0.9953 0.8634  0.9111 167 167 516 828
S.D. 0 0 0.0099  0.0118 (0.8843) (0.9324) (0.8164) (0.8655)
Min 0 0.9952 0.8164  0.8655 608 172 828 516
Max 0 0.9953  0.8843  0.9324 (0.8836) (0.9303) (0.8318)  (0.8704)
172 397 109 109
(0.8835) (0.9281) (0.8391) (0.8752)
626 224 430 114
(0.8826) (0.928) (0.8392) (0.8771)
562 450 557 547
(0.8826) (0.9278) (0.8445) (0.8798)

to the more flexible nonparametric production function form. Note that lin-
ear model via maximium likelihood approach fails to fit for the WHO data
from the year 1996. The “sfa” function in ‘frontier’ package (Coelli et al.,
2013) returns a warning message with model mis-specification and provides
zero estimates in MLE of o2, failing to calculate the technical inefficiency
scores. We have similar observations for Bayesian linear model that gives a
very small posterior mean for o2 (0.006). Table 2 shows the summary statis-
tics of the efficiency scores of the fitted models. We observe the range of
TE scores in the Bayesian linear model is almost identical to 0.995 due to
a small posterior mean in o,, while TE scores range from 0.816 upto 0.884
in soft BART-SFM and from 0.864 up to 0.931 in monBART-SFM (also see
Fig. 3 for empirical density plots of the estimated TE scores).

From the BART-SFM results, we also list countries with the five highest
and lowest efficiency scores in Table 2. Furthermore, we can obtain the vari-
able of importance by accounting for the relative frequency of variables used
in generating trees from BART-SFM, which are 71.06% for health expendi-
ture per capita and 10.22% for average years of schooling. These indicate the
health expenditure per capita and average years of schooling are important
factors for the efficiency of the health care delivery system.
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Figure 3: Kernel density of efficiency scores for monBART-SFM (solid line) and soft BART
(dashed line) using WHO data in 1996. The SFM from the maximum likelihood approach
and Bayesian linear model fail to generate the TE scores among countries.
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7. Conclusion

In this paper, we propose a Bayesian nonparametric approach for stochas-
tic frontier analysis. The proposed approach is based on the monotone
Bayesian Additive Regression Tree framework, which allows greater flexibility
in modeling and estimating the production function and technical inefficien-
cies, while providing uncertainty measures. The method is especially suitable
to account for potentially complex relationships with high dimensional data
and address variable selections.

The proposed method can be extended in several directions. We consid-
ered the case of independent and identically distributed residuals and ineffi-
ciency. Nevertheless, in the SFM literature, it is very common to have panel
data with time-dependence or data with spatial temporal structure. In fu-
ture work, the proposed model can be extended to accommodate dependence
in such data (Luo et al., 2021, 2022). In addition, extending soft BART-SFM
models to incorporate shape constraints within their prior models for pro-
duction functions represents an intriguing yet challenging avenue to explore.
Alternatively, neural network based SFM provides another way to impose
the concavity on production function by adding concavity constraint on the
activation function (Amos et al., 2017). Furthermore, the normal distribu-
tion assumption in SFM can be restrictive, which suffers from the “wrong
skewness” problem in the literature (Cho and Schmidt, 2020; Wei et al.,
2021b). An alternative extension of current work could extend the normal
assumption to more flexible distributions in the random noise term in SFM.
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SUPPLEMENTARY MATERIAL

R-package for Bayesian Stochastic Frontier Analysis: R-package BART-
SFM containing code to perform the frontier analysis methods de-
scribed in the article. The package also contains all datasets used as
examples in the article. (GNU zipped tar file).
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WHO data set: Data set used in the illustration of BART-SFM method
in Section 6.

MCMC for BART-SFM fitting: The details on the Bayesian backfitting
algorithm for the BART-SFM.
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