EXISTENCE OF THE FREE ENERGY FOR HEAVY-TAILED SPIN GLASSES

AUKOSH JAGANNATH AND PATRICK LOPATTO

ABSTRACT. We study the free energy of a mean-field spin glass whose coupling distribution has power-
law tails. For couplings with infinite variance and finite mean, we show that the thermodynamic
limit of the quenched free energy exists and that the free energy is self-averaging.

1. INTRODUCTION

We study a mean-field spin glass with heavy-tailed (infinite variance) couplings. This model was
introduced by Cizeau and Bouchaud over 30 years ago to understand surprising experimental results
on dilute spin glasses with dipolar interactions [8]. It has been extensively studied by physicists
[17, 11, 5, 4, 1, 16, 18, 15, 20], who have also drawn connections to random matrix theory and
finance [9, 3, 13]. However, to our knowledge, nothing is known rigorously, as the proof techniques
developed for lighter-tailed couplings do not apply. Indeed, even the existence of the thermodynamic
limit of the quenched free energy has not been established. In this note, we prove this existence
result and, in addition, prove that the free energy is self-averaging.

Let us now be more precise. Fix o € (0,2). Let J be a symmetric random variable such that

Co
P(]>1) = 0 (L1)
for all [t| > 1, for some constant Cp > 0, and such that E[|J]1;<1] < co. Let {Ji;}1<i<j<n be a
collection of independent, identically distributed random variables with the same distribution as J.

We consider the Hamiltonian

1

H(o) = Nija Jijoioj, o €Sy ={-1+1}". (1.2)
1<i<j<N

The partition function and the quenched average of the free energy at inverse temperature 5 > 0

are given by
1
Zn(B)= Y MO Fx(p) = E[log Zy]. (1.3)
O'EZN

Our first main result establishes that the limit of Fiy(3) as N grows large exists when o > 1. (It
is straightforward to see that F (/) is infinite when o < 1.)

Theorem 1.1. For every a € (1,2) and § > 0, the limit imy_,oo Fn(B) exists and is finite.

Our second main result establishes that the free energy concentrates around its quenched average
(after taking t = N—9/2).

Theorem 1.2. For every a € (1,2), 5> 0, and 6 > 0, there exists a constant C(«, 3,5,Cp) > 1

such that
Cleoz+25

P (N‘l‘ log Zn () — E[log ZN(B)H > f) S s

We now comment on the ideas of the proofs, beginning with Theorem 1.1. It is well known that
given a collection of N independent variables with a distribution of the form (1.1), there will be

approximately a constant number of them of order N/®, with the rest lower order in N (with high
1
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probability). This explains the normalization in (1.2): after normalizing by N —1/e for each spin o;
there will be a constant number of constant order couplings, with the others much smaller. This
configuration of couplings resembles a sparse weighted graph, after neglecting the small couplings.
With this heuristic in mind, we begin by showing that the limit of the quenched free energy for the
heavy-tailed spin glass is equal to that of a sparse spin glass model. We then apply a technique
from the literature on such models, the combinatorial interpolation of Bayati, Gamarnik, and Tetali
[2], to show that the limit of the quenched free energy exists for the sparse model and complete
the proof of Theorem 1.1. This interpolation argument has its roots in earlier work of Franz and
Leone [12]. The proof of Theorem 1.2 is through a short martingale argument, which establishes a
bound on the second moment of the difference considered in (1.4). Then Theorem 1.2 follows from
an application of Markov’s inequality.

Previous work. The existence of the thermodynamic limit of the quenched free energy for a
mean-field spin glass with Gaussian spins (the Sherrington—Kirkpatrick model) was established by
Guerra and Toninelli [14]. Carmona and Hu showed that the limit exists for identically distributed
couplings with finite third moment [6]. Chatterjee then showed that finite variance suffices (which
addresses the case of @ > 2 in (1.1)) [7]. Additionally, Starr and Vermesi proved a formula for the
difference of the free energies of two mean-field spin glass models with infinitely divisible coupling
distributions in terms of expectations of multi-spin overlaps [21]. This class of distributions includes
a-stable laws, which have infinite variance for @ < 2. At present, it seems difficult to usefully
apply this formula in the heavy-tailed context, since we lack information about the overlaps of such
models.

Outline. In Section 2, we reduce the proof of Theorem 1.1 to the proof of an analogous theorem
for a certain sparse spin glass model. In Section 3, we prove Theorem 1.1 assuming an interpolation
result, given as Lemma 3.1. In Section 4, we prove Lemma 3.1, completing the argument for
Theorem 1.1. Section 5 contains the proof of Theorem 1.2.
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Canada (CRSNG), [RGPIN-2020-04597, DGECR~2020-00199].

Notation. For brevity, we take § = 1 throughout, though the arguments are identical for 5 > 0.
Further, we let C, ¢ > 0 denote constants that may change from line to line, and may depend on Cj.
The notation [a,b] denotes the set of integers k such that a < k < b.

2. REDUCTION TO SPARSE HAMILTONIAN

In this section, we reduce the problem of establishing the limit of the quenched average of the free
energy for the Hamiltonian H to the analogous one for a certain sparse Hamiltonian Hy , ,,, (defined
below in Section 2.3), for particular choices of parameters u, v, m. This reduction proceeds in a
series of steps. In Section 2.1, we begin by showing that this problem for H is equivalent to one for
a sparse Hamiltonian H , which omits all couplings smaller than a certain threshold. In Section 2.2,
we further reduce the problem to studying another sparse Hamiltonian H , and in Section 2.3, we
complete the reduction to HZ

u,v,m*
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2.1. The truncated model. We begin by viewing H as a perturbation of the Hamiltonian for a
model that omits couplings smaller than a certain threshold, and showing that the perturbation
term provides a negligible contribution to the free energy. To this end, let € > 0 be a parameter
that will be chosen later and R = N'/*~¢. We may then write H( ) = H(c) + p(o), where

> Tl =roi05,  Plo) Nl/a Y Tyl <roiog. (2.0)
1<i<j<N 1<i<j<N

H( Nl/a

Denote the partition function and free energy for H(o) by Zy = Y oeSn (@) and Fy = +E[log 7]
respectively. Our goal is to prove the following;:

Lemma 2.1. There exists ¢ > 0 such that for all e € (0, c), we have that limpy_ ﬁN = limy_o0 FiN,
if the limit on the left exists.

The proof of this result will follow by applying the following elementary fact whose proof follows
by repeatedly applying Jensen’s inequality.

Lemma 2.2. Suppose that x(o) and y(o) are random processes on some finite set 3, and let (-)
denote expectation with respect to the Gibbs measure m({o}) exp(x(o)). Then

Elog Z ¢®?) + E(y(o)) < Elog Z 2@)+v(0) < Elog Z 7) 4+ log E(e¥(?)), (2.2)
oeY oceX ceEX
provided all the expectations are finite.
We will apply this result with x = H and y = .
It will be helpful to notice that while H (o) and p(o) are nominally dependent due to the common

coefficients J;;, we can introduce independence through the following two-step resampling procedure
for the J;;. Let {L;;}1<i<j<n be mutually independent random variables such that

P(Lij =1)=p, P(Liyj=0)=1-p, p=pny=P(J]>R). (2.3)

Let {aij,bij}1<i<j<n be a collection of mutually independent random variables (which are also
independent from the L;; variables) such that for every interval I C R, we have

P(ajj € I)=P(J€I||J| <R)

(2.4)
P(b;j € I) :IP’(J el ‘ |J| > R).
Then we have the distributional equalities
d
{Jij hi<icj<n @ {(1 = Lij)aij + Lijbij hr<icj<n
=~ @ (@ 1 (2.5)
H(o) : Nl/o‘ Z Lijbijoioy, plo) = Ni/a Z (1 = Lij)aijoioy,
1<i<j<N 1<i<j<N

with the dependence between H(c) and p(c) expressed through the L;;.* Observe that after
conditioning on L, the sums H (o) and p(c) are independent.

Before proving Lemma 2.1, We note the following useful moment bound. Under the assumption
|z| < 1, we have e* < 1+ 2 + 22, Then for any random variable X such that E[X] =0 and |X| < 1,
we have

E[exp(X)] <1+ E[X?] < exp (E[X?]), (2.6)

where we used used 1 4+ x < €” in the second inequality.

IThis construction can be viewed as implementing the “total variation” coupling between a;; and J;;. See, e.g.,
[19, (17.30)].
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Lemma 2.3. There ezists C(e) < oo such that

E[exp (N1 — Lij)a;;)] < exp(CR* *N~%®)
foralll <i<j<N.
Proof. Since ‘Nfl/o‘(l — Lij)ag;| < 1 by definition, (2.6) yields

E [exp (N‘l/a(l - Ll-j)al-j)} < exp (N‘Q/QIE[(l - Ll-j)Qa?jD . (2.7)

Using (2.4), |L;j| <1, and py = o(1) (from (1.1)), we have

R
E[(1 - Lij)?af] <2-E[J}1),<r] < C (1+/ tl_"‘dt) < CR*™, (2.8)
1

where the first inequality holds for sufficiently large N (depending on «, €, and Cj), the second
inequality follows from (1.1), and we increased the constant C' in its second appearance. Inserting
(2.8) into (2.7) completes the proof. O

We now turn to our reduction.

Proof of Lemma 2.1. Using the representation (2.5), we see that if (-) denotes expectation with

respect to H, then integrating first in the variables a;; yields E(p) = E(E,p) = 0. Thus by Lemma 2.2,
we have that

Fy < Fy < Fy + log E(E,€P).
For a fixed 0 € Xy, the expectation E,[eP(?)] does not depend on the values of the spins o; because
the a;; are symmetric. Then

N2
E,[eP)] [H NV (1=Lij) ‘“J} < (exp (CRZ*O‘NJ/O‘)) = exp (ON*72/0R*7%), (2.9)

where we used the independence of the (1 — L;j)a;; variables and Lemma 2.3 for the inequality. By
(1.1) and our choice R = N¥/*=¢, we have N?~2/@R?~® = O(N'*+<(®=2))_ Using this bound in (2.9)
completes the proof. O

2.2. Model with fixed edge number. We next consider a sparse Hamiltonian where the total
number of couplings is fixed. Before defining this model, we note the following preliminary lemma.
Let M = My = ZngjgN L;;, which represents the number of nonzero couplings in H (o).

Recalling that p = CoN 17 by (2.3) and applying the multiplicative Chernoff inequality yields
the following concentration bound on My .

Lemma 2.4. For every € > 0, there exists a constant c(e) > 0 such that

Co

B[M] -

O nitos| < omlyes p ({M —E[M]| > c*lNl/“aE/“E) <2 M. (2.10)

We now introduce a new Hamiltonian H. Recall the constant Co from (1.1), and set

Co

sv=| %

N”afJ : (2.11)

Let {zij}lgmg ~ denote the adjacency matrix of a graph drawn uniformly at random from graphs
with precisely Sy edges on N vertices, so that each L;; is 0 or 1. By definition, exactly Sy of the
L;; are nonzero. Set

{Jijyicj = {Lijbis }icj, (2.12)
4



where we recall that the variables {b;;}i<; were defined in (2.4), and we require that the variables
{Lij,aij, bij }i<j are all mutually independent. Then define the Hamiltonian

~ 1 ~
H(o) = Ni/a Z Jijoioj,
1<i<j<N
and set Zy = dez (@) and Fy = E[log ZN] We now show that F is a good approximation
to F.
Lemma 2.5. There emsts ¢ > 0 such that the following holds for all ¢ € (0,¢). We have

limpy— 00 FN = limy_soo FN, if the limit on the left exists.

Proof. Given a realization of the {Jij}, we consider the effect on Z of fixing some (i,7) and changing
Lij to 1 — L;; (that is, adding or deleting a coupling). If we denote the partition function that
results from this change by Z,.w, we see by direct calculation that

1108 Z — 108 Znew| < N7V b, (2.13)
Using (2.4), we find E[|b;;|] = O(N1/27¢), so (2.13) yields
|Ellog Z] — E[log Zpew]| < CN7=. (2.14)

for some constant C' > 0. Therefore, adding or removing k couplings in this way results in a change
of at most Ck to the expected log-partition function.
Let A be the event on which [M — Sy| < ¢~ N1/2+ee/2+¢ holds. We write

. . 1 . - 1 . _
|Fy — Fy| < +|E[(log Z — 10g 2)1.4]| + - [E[(10g Z ~ log Z)1.sc] . (2.15)

We now consider an alternative sampling scheme for H. Begin by sampling the mutually
independent variables {L;;, Lw, a;j,bij}, and let ¢ be the (random) number of nonzero L;;. From
these reahzatlons we obtain a realization of H we will use this realization of H to produce a coupled
realization of H in the followmg way. If £ > S N, ¢ choose uniformly at random ¢ — Sy distinct index
pairs P = { Za,ja }Z from the set { ,7) Lij = 0}. For1 <7< j <N, we set Eij = Eij if
(i,j) ¢ P,and Li; = 1 — Lj; i (z j) € P. Likewise, if £ < Sy, we choose uniformly at random Sy —¢
index palrs P = { ia, Ja) }Z SN from the set { i,j) : Lij = 1} we set Ew = E” if (i,j) ¢ P, and
Lw =1-L;;if (i,5) € P. Fmally, if £ =Sy, we set Ll] = L” for all (7, ) such that 1 <i < j < N.

Since this procedure is symmetric with the respect to the edges (i, j), and £ equals the number of
nonzero Eij labels, we find that

1 ~
H(o) = +7a > Lijbijoioy,
1<j
and we have produced a coupling between H(c) and H (o) through the addition or subtraction of
|¢ — Sn| couplings from H (o).

On the event A, we have [ — Sy| < ¢~ IN1/2tee/24¢ by definition. Therefore we obtain from
(2.14) that

[E[(log Z — l0g Z) 1.4] | < ON/2Hee/2te, (2.16)
For the other term in (2.15), we use Holder’s inequality to show that

’E[(logi —1log Z)1 4] | < P(A°)T=E[|log Z|'] T 4 P(A%) T E[| log Z|'*<] o=y

We give details only for the bound on E[|log 2|1+5], as the bound for E[|log Z\HE] is similar.
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By definition, we have ]ﬁ(U)’ < N~V/e > 1<i<j<n |bij|, which implies
2" exp (—Nfl/a i< |bij\) < Zy <2V exp (N7V 30 by ).

This in turn implies that ’ log 2‘ < Nlog2+ N1« |bi;|. Therefore

1<j
E[|log Z|'"] <E[(Nlog2+ Y |bi;)'*<] < CNZE[(N'F= + 3 [b['+9)] < CN5,  (2.17)

for some constant C'(¢) > 1. In the second inequality, we used the elementary inequality

k 1+5 k
Dowi| Sk lal'
=1 i=1

which follows from Holder’s inequality. In the third inequality, we used that the (1 4 €)-th moment
of |b;;| exists for £ small enough (depending only on o > 1) and is less than CN? for some C(g) > 1.
We conclude using (2.10) and (2.17) that there exists ¢(g) > 0 such that

[ fan L
P(A9) T E[|log Z)'7¢] ™ < ¢ ' N° exp(—cN®). (2.18)
The conclusion now follows from combining (2.15), (2.16), and (2.18). O

2.3. Model with multi-edges. The Hamiltonian H may be thought of as arising from a collection
of Sy weighted edges on a simple random graph. However, it will be convenient to consider instead
a similar model where the edges are sampled with replacement from pairs of vertices {(7, j) }1<i<j<n-
In particular, self-edges of the form (i,4) are allowed, as well as multi-edges, meaning that an edge
(i,j) may appear two or more times.
We define the Hamiltonian Hy , ,,(o) as follows. The parameters u,v, m denote the edge number,
vertex number, and effective normalization, respectively, as we now explain. Let {cq}i1<q<u be a
collection of identically distributed, independent random variables, where each ¢, is an ordered pair
(i,7) chosen uniformly at random from the set {(4, j) h1<i<j<o. We write cq(1) and ¢,(2) for the first
and second coordinates of ¢, respectively. While the definition of the ¢, variables depends on both
u and v, we omit this from the notation.

We set ¢ = P(|.J| > m!/*~¢) and define identically distributed, independent random variables

{da}1<a<u = {da(m)}1<a<y by requiring that
P(d, € I) = q’lP’(J € I ((—o0, —mM*~F] U [m!/*~=, oo))) (2.19)
for every interval I C R. We define
o 1
Hu,v,m(o') = mija Z daJCa(l)Uca(Q)a
1<a<u

and set Z,(u,m) =3 .5 €xp (Hy ym(0)) and Fy, . = LE[log Z3(u, m)].
We now define a quantity that represents the total number of loops and multi-edges among the
Cq. We set

fuv= 2 D eyt D 1{( > ﬂca—(aj)) > 1} : ( > Lea(i) — 1)-
1<i<v 1<a<u 1<i<j<v 1<a<u 1<a<u
Lemma 2.6. For every ¢ > 0, there exists c¢(e) > 0 such that

P(fsy.n = N3€) < exp(—cN°). (2.20)
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Proof. Consider a sequence of random multi-graphs G; on the vertex set {1,..., N} built in the
following way. Let Gg be the graph with no edges, and for each t € [1, Sy], let G; be the graph
with edge set {c,}1<a<t. The definition of G naturally extends to ¢t > Sy by choosing additional
multi-edges uniformly at random. Let 7' = min {¢ : |&| > Sy — N3¢}, where

St:{(i,j):1§i<j§N, (i,j):caforsomeagt}

is the set of (non-loop) edges that have been added at time ¢ (after removing duplicates). Observe
that

P(fsy.n > N3°¢) = P(T < Sy),

so it suffices to bound P(T" < Sy).
Let 71 = min{t : |&| > 1} and define T; for ¢ > 2 by

T; = min{t : |&| > i} —min{t : |&] > i — 1}.

Then, by definition,
NSaE

T = Z T;. (2.21)
We say that X is a geometric random variable with parameter p if P(X = k) = (1 — p)*~!p for all
k > 1; then E[X] = p~!. We observe that each T} in (2.21) is a geometric random variable with
parameter

A-—N-—-i+1
pi = A

where A = N(N +1)/2 is the number of possible edges and loops on a graph with N vertices. Using
this representation, (2.21), and an integral approximation, we compute that

SN_NSaS
1 A-N
E[T] = A B E—

7] Z; A-N—it+1- Og(A—N—sN+N3as+2

for sufficiently large N (depending on €), where we used log (1/(1 — z)) > z in (2.22). Defining
T° =T — E[T], we bound

P(T < Sy) =P(T° < Sy — E[T]) < P (T° < —2N%%) < e 2N E[e 17, (2.23)

> > Sy — 2N (2.22)

Then to complete the proof, it suffices to bound the right side of (2.23).
Writing T =T — E[Tf], we have

SN_NSae SN—NSQS 1/171 SN N3as

Ee ™= J] E[T]= ]I =T <exp Z : (2.24)

i=1 i=1
We compute
A B N+i—1 < N+ Sy-—1
A-N—-i+1 T A- N—-i+1~ A-N-Sy+1~
for sufficiently large IV, and a constant C; > 1. Inserting (2.25) into (2.24) and (2.23), we find
P(T < Sn) <exp (—2N3°‘5 + C’lN_QSJQV) < exp (—2N3°‘5 + C’lN_25’12V) < exp(—cN¥).

< CiN72Sy (2.25)

p;l—1=

This completes the proof. O

Lemma 2.7. There exists ¢ > 0 such that the following holds for all ¢ € (0,¢). We have
mpy_seo F§N NN = limpy_ o0 Fiv, if the limit on the left exists.
7



Proof. Given (2.20), the rest of the proof proceeds similarly to the proof of Lemma 2.5. We indicate
only the main points here. Let

D={a€e{1,2,...,5} : ¢, = ¢ for some b < a, or ¢, = (i,%) for some i € [1, N]}

denote the set of duplicate edges and loops. As described below (2.15), to sample from the
Hamiltonian H, one may begin with Hg y y, remove all edges ¢, such that a € D, and restore |D|
edges chosen uniformly at random from all size |D| subsets of distinct edges contained in

{(i,j) : 1 <i<j<N}\{e,co,...,cs},

where {c1,c,...,cg} denotes the original set of edges in HS v
As shown in (2.14), the addition or deletion of some edge ¢, with weight d, (V) in the Hamiltonian
Hg N n changes E[log Z3 (S, N)} by at most a constant C > 1. Let A denote the event where

f < N3°¢ holds. Then, under the coupling given in the previous paragraph, we have
’E[(logi—log Z3(8, N))ILAH < ONos, (2.26)
Further, by a computation nearly identical to (2.17), we have
| 14€ o 14+¢ 5
E[]logz\ } +E[|1ogZN(SN,N)y } < ONP. (2.27)

Holder’s inequality shows that

1 1
< P(A°) 1+s D log Z3:(S, N)‘H_a} e +P(A°) 1+s “ log Z’H—e} e
(2.28)

‘E[(log Z3(S,N) — log Z) ]]__Aci|

The conclusion now follows from combining (2.20), (2.27), and (2.28). O

3. FREE ENERGY FOR SPARSE HAMILTONIAN

In this section we apply the combinatorial interpolation strategy of [2] to show the existence of
the limit of the free energy for the multi-edge model.

We begin by stating two preliminary lemmas. The first is our main interpolation result. We
prove it at the end of Section 4, below. In its statement, the notation Bi(n,p) denotes a binomial
random variable with n trials and success probability p, and we recall Sy was defined in (2.11). We

also recall Z;(u,m) is the partition function for the Hamiltonian Hy, , ,, defined in Section 2.3.

Lemma 3.1. For every 1 < Ny, No < N such that Ny + No = N, we have
E[log Z3 (S, N)] > E[log Z§, (M, N)] +E[log Z3, (Ma, N, (3.1)

where My is distributed as Bi(Sy, N1/N) and My = Sy — My is distributed as Bi(Sy, Na/N).
Here My and My are independent of the random variables in the definition of H®.

We also require the following sub-additivity lemma.

Lemma 3.2 ([10, Theorem 23]). Suppose that the sequence (an)3_, satisfiesan < an, + aN N, + @(N)
for all N, Ny such that N/3 < Ny < 2N/3, for some positive increasing function ¢ with fl =2 dt <
00. Then limy_o0 any /N = L for some L such that —oo < L < oo.
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3.1. Proof of Theorem 1.1. Let 1 < Ny, Ny < N be parameters. We define
SNN1 g _ SNN2'
N N
Lemma 3.3. Fiz ¢ > 0. Then there exists C(c) > 0 such that the following holds. For every
1 < Ny, Ny < N such that N/3 < Ny <2N/3 and Ny + Ny = N, we have

s —

[B[log 23, (M1, N)] — E[log 5, (SW, N)] | < CN?2 (3:2)

[E[10g 25, (Ma, N)] — E[log 23, (5@, V)] | < CN**. (3.3)

Proof. We prove only (3. ), since the proof of (3.3) is similar. Recall the definition of M; from

(3.1), and note that S = E[M;]. By the Chernoff bound, there exists a constant ¢(¢) > 0 such
that

P(AS) < exp (—eN°),  Aj = {|M; — SD| < c7INPNes/2He), (3.4)

Similarly to the coupling given below (2.20), we may couple the Hamiltonians HR, n, y and

H§<1),N1,N by deleting or adding |M; — S(l)] edges ¢, from Hy, y, y, where each member of the

set of modified edges is chosen uniformly at random from the set of all possible edges. By (2.14)
and the definition of A;, we have

E[(log Z3, (M1, N) —log Zg;, (S, N))M] ' < CON/2tos/2re, (3.5)
Further, arguing similarly to (2.17), we find

E [\ log Z3, (M, N)\”‘j +E [} log Z3, (S, N) |1+E] < ON°. (3.6)
Then applying Holder’s inequality and using (3.4) (as in (2.28)) shows

‘IE [( log Z3, (M1, N) —log Z, (SN, N)) 11,45} < ONS exp(—cN?).

Combining the previous line with (3.5) completes the proof. ([l
Recall that £ > 0 is a parameter. We write HS<1 = H° + p°, where we define
N1/a Z da Tea(1)%ca(2) 1|N—1/ada(N)|ZN1_E’ (3.7)
1<a<SM
Nl/a Z da(N)oe, 2)1|N—1/ada(N)|<NfE' (38)
1<a<SM)
We also define Zf{[ =D pexy €XD (ﬁ[o(a)). Set
1 _ _ NO(E
P =py) =PIV Ve ()] 2 N7) = T (39)

where the last equality follows from the definition of d, and (1.1), and we supposed that N is
sufficiently large (depending on Cp). We let {Z4, Ya}1 <4< be a collection of mutually independent
random variables such that for every interval I C R, we have

P(z, € 1) = (1—pM) 'B(N"V2dy(N) € TN (=N;y 5, Ny9)) (3.10)
Py, € I) = (p(l))_I]ID(N’I/adl(N) € In ((—o0, —NTFJU[Ny?, oo))>. (3.11)
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Let L° = {L{},<,<50) be a collection of independent, identically distributed random variables such
that P(L, = 1) = p™) and P(L, = 1) = 1 — p"). We further impose the condition that the collection
{Lg, %, Ya}i<q<g is mutually independent.

With these definitions, we have the distributional equalities

— 6% (d) e} o
{N Y da(N)}lgags(l) = (1 - La)xa + Laya}1§a§3(1)7 (312)
770 (d) o ~o (d) o
H(o) = Z LoyaOc,(1)0ca(2),  D°(0) = Z (1= Lg)®a0c,(1)0cq(2)5 (3.13)
1<a<SM) 1<a<SM)

with the dependence between H°(o) and p°(0) expressed through the L. We observe that after
conditioning on L°, the sums H°(o) and p°(o) are independent.

Lemma 3.4. Fiz ¢ > 0. Then there exists C(c) > 0 such that the following holds. For every
1 < N; < N such that N/3 < Ny < 2N/3, we have

E[exp ((1 = Lo)za)] < exp(CN™%).
Proof. By (2.6),
E[exp ((1 — LY)z,)] < Cexp(C-E[(1 — Ly)?z2]). (3.14)
Next, using the definition of d, from (2.19), we have

_ 1
B(INTdo(N)| > t) = e (3.15)
for t > N7°. Then using L] <1, (1 —p(l))_1 < 3 (from (1.1) and the assumption on Ni), and
the definition (3.10), we have

Ny©

E[(1 - L2)%2] < 3E[\N‘l/o‘da(]\f)\2]1|N_1/ada(N)}<Nl_€} < N_O“E/ fl=0dt < ON~%. (3.16)

—€

This completes the proof. O

Lemma 3.5. Fiz ¢ > 0. Then there exists C(e) > 0 such that the following holds. For every
1 < N1, Ny < N such that N/3 < Ny <2N/3 and N1 + N2 = N, we have

’E [log Z3, (Sn,, N1)] — E[log Z3, (SD, N)] ‘ < ONe(@=2) (3.17)
‘E [ log ZJOVg (SN2’ NQ)] —E [ log ZR72 (5(2)7 N)] ‘ = CNtrelen2), (3.18)

Proof. We prove only (3.17), since the proof of (3.18) is similar. As a first step towards (3.17), we
claim

‘E[log Zn, (SY,N)] — E[log 23] | < oN1ele-2), (3.19)

where we recall that 2]0\, was defined after (3.8). To this end, note that E(p°) = 0 by integrating
first in the z, variables, and that

@] =R, H exp (1= LY)z,) | < exp(SWNT2) < exp(3N"2Sy) < exp(CNI+e@=2),
1<a<S®)
where we used the independence of the (1 — L,)x, variables for the equality, and Lemma 3.4 for the
first inequality. Thus by Lemma 2.2 with z = H° and y = 7° as in (3.7), we obtain (3.19).
Next, we claim that
[E[10g Z5, (S, N1)] — E[log Z3]
10

< ONitela2), (3.20)




Together with (3.19), the previous equation implies the desired conclusion (3.17).
To prove (3.20), we begin by identifying the distribution of N, Y “d4(Ny), the (rescaled) coupling
distribution for the Hamiltonian Hg n, n,. Using the definition of d, from (2.19), we have
12 )

—1/a .
P(‘Nl da(Nl)‘ > t) — w,
for ¢ > Ny °. Similarly, we obtain P(|y,| > ¢) = 1/(N{P<t*) for ¢ > Ny °. Hence, the variables
N, 1 “d,(Ny) and g, are identically distributed, and we have the distributional equality

o )
HSN1 N1,Ny = Z YaOcy(1)0¢q(2)s (3.21)
1<a<Sn,

—

where we recall that the ¢, variables are sampled uniformly from the set {(, ) }1<i<j<n,-
Now note that the definition H° in (3.13) differs from (3.21) only in the number of nonzero

couplings y, (given by the indices a such that L, = 1). There are S™") nonzero couplings in H o) NN

and the number nonzero couplings in H° is binomial with S() trials and success probability p™).
The expectation of this distribution is

N g gy N

N%s< ) =Cp - ;— +0(1) =Sy +0(1). (3.22)
Then an argument nearly identical to the one that proved (3.2) shows (3.20). This completes the
proof. O

Proposition 3.6. There exists ¢ > 0 such that the following holds for all € € (0,c¢). We have
limy o0 F§ y vy = L for some L satisfying —oo < L < oco.

Proof. Let 1 < N1, N < N be integers such that N/3 < N; < 2N/3. Lemma 3.1 and Lemma 3.3
together imply that

E[log Z3(S,N)] + CN*? > E[log Z%, (S, N)] + E[log Z3, (S, N)],
if € in chosen small enough (relative to o). Then Lemma 3.5 implies that
E[log Z3 (S, N)] + CN'<(®=2) > E[log Z}, (Sny, N1)] + E[log Z3,, (Sn,, Na2)].

Now set ay = —E[log Z3,(S,N)| and ¢(t) = Ct'*+<(@=2) "and observe that ¢(t)/t? is integrable on
[1,00) since 1 4 (o — 2) < 1. We then apply Lemma 3.2 to conclude. O

Proof of Theorem 1.1. By combining Lemma 2.1, Lemma 2.5, Lemma 2.7, and Proposition 3.6,
we find that limy_,oo Fiyv exists and limy_,oo Fiy > —oo. It remains to show that this limit does
not equal 4+oc0. To accomplish this, we will show that Fjy is uniformly bounded. We consider the
Hamiltonian H, (o) defined by

1

1 ~
H, (o) = WZJUJL\JMZR*UZ'UL p«(o) = N1/

ZJijILUinR*O-iO-jv R, = Nl/a.

We note that H(o) = H,(0) + px(0), and define Zy , and F . by analogy with (2.1).
The second inequality in Lemma 2.2 yields

Ellog Zn ] = E[log 3", ef+()45:()] < E[log 3=, e(@] + O(N). (3.23)

Therefore, it suffices to bound the expectation on the right side of (3.23). Define the Hamiltonian

Hy by Ho(o) = 0. Its associated partition function is Zg = 2V. Then removing all the nonzero
11



couplings of H, using (2.13) with € = 0 gives

|log Zo —log Zi .| < N7V " [Tyl 1,1, (3.24)
1<i<j<N

which implies

[E[10g Z] — E[log 2.]

< CN* VBT, 5. | = O(V), (3.25)

where we used (1.1) to compute E[’Jij’]]'|Jij|>R*:| < N~/ Since |log Zo| < CN, equation (3.25)
implies N_llE[log Z*,N] < C. Combining this bound with (3.23) completes the proof. (|

4. INTERPOLATION

In this section, we prove Lemma 3.1.

4.1. Proof of Lemma 3.1. Recall the notation of Section 2.3. Given integers v,u > 0, define
G(v,u) to be the random multi-graph on the vertex set [1,v] with edge set {cq}i1<a<u. We will
construct a sequence of multi-graphs interpolating between G(N, Sy) and the disjoint union of
G(Nl, Mz) and G(NQ, Mz)

Given N7, No such that N1+ Ns and an integer r such that 0 < r < N, we define G, as follows. Let
X be a Bernoulli random value that takes the value 1 with probability N;/N, and is 0 otherwise, and
let {xa}1<a<n be a collection of independent random variables distributed as x. Let {cgl)}lgagg be

independent edges chosen uniformly at random from the set {(7, j) }1<i<j<n,, and define {6512)}1Sa§5
similarly for {(, j) } v, +1<i<j<n,. We define the random variables {C((l_)}lgagg by letting &=
if x =1, and c((l_) = 022) if x = 0. The graph G, is then defined for 0 < r < Sy by the random
edge set {cqt1<a<r U {c((f)}rﬂgagg. We see that the graphs G, interpolate between G(N, S) when
r = Sy and the disjoint union of G(Ni, M3) and G(Na, M3) when r = 0.

We define a Hamiltonian and partition function corresponding to G, by

HO (o) = N7V Y da(N)oe, e,y + N7 Y0 da(W)o )00

1<a<r r+1<a<Sy

and Z(" = ](\7,") = Y oexy OXP (H(T)(a)). We also define the graph G, using the random edge

set {cqt1<a<r—1 U {Ct(l_)}7«+1§a§5’, which omits the r-th edge. The corresponding Hamiltonian and
partition function are defined by

HO (@) = N7V 37 du(N)og, @0, + NV D0 da(N)o 00,01,

1<a<r-—1 r+1<a<Sy
Zr=) = Z](\;’_) = Z exp (H(T’_)(O')).
oEXN

Lemma 4.1. For every 1 <r < Sy,
E[log 2] > E[log 2"~ V], (4.1)
Proof. 1t suffices to show that
Ellog 2" | G,] > E[log 2"~V | G,], (4.2)

where the notation in the previous inequality denotes the conditional expectation over the edges

and weights of G,. The remaining randomness is in the choice of edge ¢, (or c(_)) and the weight

d,. We write z = ¢,(1) and y = ¢,(2).
12



We compute
E[log 2" | G,] — E[log 2]
e Lo so, exp (HT(0)) + et 3 1o, =0, exp (H™7)(0))
> exp (H)(0))
(

The same expression holds with Z(") replaced by Z("=1, and z and y replaced by z(~) = cr_l) (1) and

=E |log G, (4.3)

y() = 01(5)(2), respectively. In the following two cases, we will compute both of these expressions,
after conditioning on d,.. The computations will differ depending on the sign of d,..

Case I: d, < 0. Let u denote the Gibbs measure for the Hamiltonian H()(s). Using (4.3), we
have

E[logZ(") |@T,d | — [logZ |d ]

g S ) e () |
> exp (H)(a))

= —d, +E |log (1- (1= " )u(0, = ) | Gy,

Observe that 0 < (1 — €2 )u(o, = 0y,) < 1 because d, < 0, so it is permissible to Taylor expand the
logarithm. Therefore, introducing replicas of, we have

E[log Z") | G,,d,] — E[log 27 | d,] +

o0
-5
k=1

(1= ) u(o, = o,)F
k

G, d,

i e (S H#O) -
_ =gl Ve )
— it (Z(r=))k {ot=cl v} rs Qp
> (1— e2dr k exp <Z§:1 H(T’_)(U€)>
Z (Z(r)k B [ {oi=0y W}] (4.4)
=1 ol,...0o
For every set of replicas o = (o', ...0"), we introduce the following equivalence relation on [1, NJ.

For i,j € [1,N], we say that i ~ j if 0¥ = af for all replicas £ = 1,...k. Denote the number of
equivalence classes induced by ~ by J, and let {Os}7_; = {Os(o)}/_, be the set of these equivalence
classes. Recalling the definition of x and y, we compute E[ﬂ{ggzgfﬂw}] = Z§:1(|08]/N)2. Then,
recalling (4.4), we have

Ellog Z") | G,,d,] —E[log 2" |d,] +d

i (1 — )k 5 exp (Z?:l H(T’_)(U£)> zJ: <|OS‘)2_ (4.5)

)k
] S (Z() A \'N

The computation for E[log Zr=1 | @T, dr] — E[log A | dr] is analogous, and we now outline
the main steps. Note that in G,_1, the r-th edge is added using the two-step sampling procedure
described at the beginning of this proof, where first the value ;. is sampled, and then cﬁ‘) is sampled

13



(1) (2)

from either ¢,/ or ¢;”’, depending on the value of x,. Recall that (1:(_), y(_)) denotes the random
edge c7(f). We find

J 2 2
o N1 ‘Osﬂ[[l,Nl]” Ny \Osﬂ[[l,Ng]H
. [l{gimz"z(—)’w}} =2 (N < Ny TN N, ' (4.6)

Then the analogue of (4.4) holds for E[log Z("=Y | Gy, d,] —E[log Z("7) | d,], with z and y replaced
by z(7) and y(7), respectively, and we conclude that

Ellog 2V | G,,d,] — Ellog Z""7) | d,] + d, =

1- 62dr exp (Zlgzl H(”v*)(ae)>
o Z Z . (Z(r))k

ol,...o

T (N 710,01, MIN2 Ny /10501, Nao] |\ 2
XZ(Nl(' m][[w 1u|> +Nz<| m][[VQ 2u|>>, )

s=1

Case II: d,. > 0. We proceed as in the previous case to obtain
Ellog 2" | Gy, dy] — Eflog 277 | d,] + d, = E[log (1= (1= e 2)u(oy # 0y)) | Gy, dr]
Taylor expanding the logarithm, we obtain as before that
E[logZ |Gr,d] E[logZ |d}

e P

We now compute the term E[1 {ot#at vey]- We recall the equivalence classes O, defined in the

1—6 2d,~k

Z eXP(Zezl ’_)(06))

(Z(T’_))k E[1{0£¢U§,V€}]' (48)

ol,.. ok

previous case. For every class Og, there exists an equivalence class O,., for some r = r(s), of vertices
such that af #* af for all £ if i € Os and j € O,. This gives a pairing of equivalence classes. Then

we have E[l{aé#géw}] = N237_|0,|0,| which combined with (4.8) yields
E[logZ(T) |@r,dr} [logZ |d]

O (1 — e—2dr)k exp (S5_, HW)(6h)) J ) N
B Y .

Similarly, we compute

S 10N [LM]] 0N [L N

BlLt, oot ) = N; L Lol 2 Z_; 05 N ]E[&, Nof| 10:0 J[[V12 Nl
leading to
E[log A | @r,dr] — E[log AR | dr] +d,
X (1 — e~ 2dr)k exp (Zif:l H(T7_)(0£)>
o ; B (2 (4.10)
<N1 Z 10, N [1 Nl 1O, ﬂjE[fll,Nl]]] . J]\\f;i 0, m]&,z\rg]] o, ﬂjE[fl;Ng]H)
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Conclusion. Observe that 1 —e2(=%) = 1 —¢~2% 50 the powers (1 — e¥)* in the Taylor expansions

in above two cases are the same if |d,| = z in each case. Further, observe that the density of d, is
symmetric, by definition. We now subtract (4.7) from (4.5), subtract (4.10) from (4.9), and take
expectation over d, and @r in each expression. The upshot of this computation is that to establish
(4.2), it suffices to prove for a fixed replica o that

5 (z]vv <|os m][[vll,zvln|>2+1]vvz <ros m]uvlz,w)?)

s=1

N J1 (]]\\771 <|OS ﬂ]ilfll’Nl]]) (!Or ﬁ][\[fll,Nl]H) +% (|OS ﬂjE[le,Ng]]\) (Or QJE;17N2H|>)

s=

-2 ()2 ()

Fix some replica s and corresponding r = r(s) (as defined in the second case above), and consider
just these terms in the sum. It suffices to show that

Ny (105N [1, M ]| 2+& 105 N [1, N |\
N Nl N N2
L (M (10N LN Z@ |0, N1, No] |\ 2
N Nl N NZ
o (M (10NN (10,0 LN | Mo (10,0 [LNA] (10,01 Mol
N Ny Ny N Ny Ny
L (104Y7 | (10, (10:1Y (104
~“\UN N N N )
The right side of the previous inequality factors as (IOT;| +

M (0sﬂ[[1’N11]| . lOrﬂ[[laNl]]|>2+N2 <|Osﬂ[[1,N2]]| n IOM[[LJ\’Q]]I)2

2
|?VT|> , whereas the left side factors as

N Ny Ny N Ny Ny
The left side is thus greater than the right side by the convexity of 2 ++ 22. This establishes (4.1)
and completes the proof. ]
Proof of Lemma 3.1. We apply Lemma 4.1 in succession for r = 1,...,.5 to obtain
E[log 2] > E[log 2©)]. (4.11)
By the definition of Z(") equation (4.11) is exactly the claim (3.1). O

5. SELF-AVERAGING

Proof of Theorem 1.2. This follows from the following Proposition together with Markov’s inequality.
O

Proposition 5.1. For all § > 0,

E “Nl log Zy — N™'E[log Z]
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Proof. Let T ={(i,5) : 1 <i < j < N} and fix an arbitrary bijection f: Z — {1,2,...,|Z|}. We use
Jy with x € {1,2,...,|Z|} as shorthand for Jp-1(,). Set F = o(Jy 1y < z) forallw € {1,2,...,|Z|},
where this notation denotes the o-algebra generated by the given couplings J,. Consider the
martingale
1 1
Am:NE[logZN ‘fm] —NE[logZN], (5.1)

with the convention that Ag = 0.

Define the martingale difference sequence D, = A, — A,_1 for x > 1, so that A, = Eygx D,. Set
1 H®) (o
H0) = S7 D 10i031 gy 7y = O,

1<J gEX N

where H®) (o) is similar to the Hamiltonian H (o), except with the coupling J, set equal to
zero. Let (-), denote the Gibbs measure with respect to H®. Then we have (by definition)

Zn = Z](\Q,C)<6N_1/a‘]z"z>x. We write
N.-D, = E[log(eN_l/an”””>w ‘ ]-"x} — IE[log(sz_l/a‘]””"I)gC | }“x_l],

where we use the equality E[Z (@) ’ ]-"x] =E [Z () | .7'}71]. Bounding eV “Y%Je0s iy absolute value in
each expectation gives

IDa] < N7V (L) + B[],

which implies |Dg[P < 22N~V (], [P + E[|J,|]?) for any p € (1,2). By Burkholder’s inequality
with exponent p € (1, «), and the fact that p/2 < 1, we have

B[ Ay — Aol’] < CEI(, DAP/?] < GE[ S, DY) < C,N*-»2/E |, []".
Set g(p) =2 —p(1+1/a). By choosing p(§) = a — 4, we find
E[| Az — 4o|*°] < ON'7o+2,
where C'= C(§) > 1 depends on 6. This completes the proof. O
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