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Abstract. We study the free energy of a mean-field spin glass whose coupling distribution has power-
law tails. For couplings with infinite variance and finite mean, we show that the thermodynamic
limit of the quenched free energy exists and that the free energy is self-averaging.

1. Introduction

We study a mean-field spin glass with heavy-tailed (infinite variance) couplings. This model was
introduced by Cizeau and Bouchaud over 30 years ago to understand surprising experimental results
on dilute spin glasses with dipolar interactions [8]. It has been extensively studied by physicists
[17, 11, 5, 4, 1, 16, 18, 15, 20], who have also drawn connections to random matrix theory and
finance [9, 3, 13]. However, to our knowledge, nothing is known rigorously, as the proof techniques
developed for lighter-tailed couplings do not apply. Indeed, even the existence of the thermodynamic
limit of the quenched free energy has not been established. In this note, we prove this existence
result and, in addition, prove that the free energy is self-averaging.

Let us now be more precise. Fix α ∈ (0, 2). Let J be a symmetric random variable such that

P
(
|J | ≥ t

)
=

C0

tα
(1.1)

for all |t| > 1, for some constant C0 > 0, and such that E
[
|J |1|J |≤1

]
< ∞. Let {Jij}1≤i<j≤N be a

collection of independent, identically distributed random variables with the same distribution as J .
We consider the Hamiltonian

H(σ) =
1

N1/α

∑

1≤i<j≤N

Jijσiσj , σ ∈ ΣN = {−1,+1}N . (1.2)

The partition function and the quenched average of the free energy at inverse temperature β > 0
are given by

ZN (β) =
∑

σ∈ΣN

eβH(σ), FN (β) =
1

N
E
[
logZN

]
. (1.3)

Our first main result establishes that the limit of FN (β) as N grows large exists when α > 1. (It
is straightforward to see that FN (β) is infinite when α < 1.)

Theorem 1.1. For every α ∈ (1, 2) and β > 0, the limit limN→∞ FN (β) exists and is finite.

Our second main result establishes that the free energy concentrates around its quenched average
(after taking t = N−δ/2).

Theorem 1.2. For every α ∈ (1, 2), β > 0, and δ > 0, there exists a constant C(α, β, δ, C0) > 1
such that

P

(
N−1

∣∣∣ logZN (β)− E
[
logZN (β)

]∣∣∣ > t
)
≤

CN1−α+2δ

tα−δ
. (1.4)

We now comment on the ideas of the proofs, beginning with Theorem 1.1. It is well known that
given a collection of N independent variables with a distribution of the form (1.1), there will be

approximately a constant number of them of order N1/α, with the rest lower order in N (with high
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probability). This explains the normalization in (1.2): after normalizing by N−1/α, for each spin σi
there will be a constant number of constant order couplings, with the others much smaller. This
configuration of couplings resembles a sparse weighted graph, after neglecting the small couplings.
With this heuristic in mind, we begin by showing that the limit of the quenched free energy for the
heavy-tailed spin glass is equal to that of a sparse spin glass model. We then apply a technique
from the literature on such models, the combinatorial interpolation of Bayati, Gamarnik, and Tetali
[2], to show that the limit of the quenched free energy exists for the sparse model and complete
the proof of Theorem 1.1. This interpolation argument has its roots in earlier work of Franz and
Leone [12]. The proof of Theorem 1.2 is through a short martingale argument, which establishes a
bound on the second moment of the difference considered in (1.4). Then Theorem 1.2 follows from
an application of Markov’s inequality.

Previous work. The existence of the thermodynamic limit of the quenched free energy for a
mean-field spin glass with Gaussian spins (the Sherrington–Kirkpatrick model) was established by
Guerra and Toninelli [14]. Carmona and Hu showed that the limit exists for identically distributed
couplings with finite third moment [6]. Chatterjee then showed that finite variance suffices (which
addresses the case of α > 2 in (1.1)) [7]. Additionally, Starr and Vermesi proved a formula for the
difference of the free energies of two mean-field spin glass models with infinitely divisible coupling
distributions in terms of expectations of multi-spin overlaps [21]. This class of distributions includes
α-stable laws, which have infinite variance for α < 2. At present, it seems difficult to usefully
apply this formula in the heavy-tailed context, since we lack information about the overlaps of such
models.

Outline. In Section 2, we reduce the proof of Theorem 1.1 to the proof of an analogous theorem
for a certain sparse spin glass model. In Section 3, we prove Theorem 1.1 assuming an interpolation
result, given as Lemma 3.1. In Section 4, we prove Lemma 3.1, completing the argument for
Theorem 1.1. Section 5 contains the proof of Theorem 1.2.

Acknowledgments. The authors thank A. Aggarwal, A. Auffinger, and A. Fribergh for helpful
discussions. P.L. is partially supported by NSF postdoctoral fellowship DMS-220289. A.J. acknowl-
edges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).
Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du
Canada (CRSNG), [RGPIN-2020-04597, DGECR-2020-00199].

Notation. For brevity, we take β = 1 throughout, though the arguments are identical for β > 0.
Further, we let C, c > 0 denote constants that may change from line to line, and may depend on C0.
The notation [[a, b]] denotes the set of integers k such that a ≤ k ≤ b.

2. Reduction to Sparse Hamiltonian

In this section, we reduce the problem of establishing the limit of the quenched average of the free
energy for the Hamiltonian H to the analogous one for a certain sparse Hamiltonian H◦

u,v,m (defined
below in Section 2.3), for particular choices of parameters u, v,m. This reduction proceeds in a
series of steps. In Section 2.1, we begin by showing that this problem for H is equivalent to one for

a sparse Hamiltonian Ĥ, which omits all couplings smaller than a certain threshold. In Section 2.2,

we further reduce the problem to studying another sparse Hamiltonian H̃, and in Section 2.3, we
complete the reduction to H◦

u,v,m.
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2.1. The truncated model. We begin by viewing H as a perturbation of the Hamiltonian for a
model that omits couplings smaller than a certain threshold, and showing that the perturbation
term provides a negligible contribution to the free energy. To this end, let ε > 0 be a parameter

that will be chosen later and R = N1/α−ε. We may then write H(σ) = Ĥ(σ) + p̂(σ), where

Ĥ(σ) =
1

N1/α

∑

1≤i<j≤N

Jij1|Jij |≥Rσiσj , p̂(σ) =
1

N1/α

∑

1≤i<j≤N

Jij1|Jij |<Rσiσj . (2.1)

Denote the partition function and free energy for Ĥ(σ) by ẐN =
∑

σ∈ΣN
eĤ(σ) and F̂N = 1

NE[log ẐN ]
respectively. Our goal is to prove the following:

Lemma 2.1. There exists c > 0 such that for all ε ∈ (0, c), we have that limN→∞ F̂N = limN→∞ FN ,
if the limit on the left exists.

The proof of this result will follow by applying the following elementary fact whose proof follows
by repeatedly applying Jensen’s inequality.

Lemma 2.2. Suppose that x(σ) and y(σ) are random processes on some finite set Σ, and let ⟨·⟩
denote expectation with respect to the Gibbs measure π({σ}) ∝ exp(x(σ)). Then

E log
∑

σ∈Σ

ex(σ) + E⟨y(σ)⟩ ≤ E log
∑

σ∈Σ

ex(σ)+y(σ) ≤ E log
∑

σ∈Σ

ex(σ) + logE⟨ey(σ)⟩, (2.2)

provided all the expectations are finite.

We will apply this result with x = Ĥ and y = p̂.

It will be helpful to notice that while Ĥ(σ) and p̂(σ) are nominally dependent due to the common
coefficients Jij , we can introduce independence through the following two-step resampling procedure
for the Jij . Let {Lij}1≤i<j≤N be mutually independent random variables such that

P(Lij = 1) = p, P(Lij = 0) = 1− p, p = pN = P(|J | ≥ R). (2.3)

Let {aij , bij}1≤i<j≤N be a collection of mutually independent random variables (which are also
independent from the Lij variables) such that for every interval I ⊂ R, we have

P(aij ∈ I) = P
(
J ∈ I

∣∣ |J | < R
)

P(bij ∈ I) = P
(
J ∈ I

∣∣ |J | ≥ R
)
.

(2.4)

Then we have the distributional equalities

{Jij}1≤i<j≤N
(d)
= {(1− Lij)aij + Lijbij}1≤i<j≤N

Ĥ(σ)
(d)
=

1

N1/α

∑

1≤i<j≤N

Lijbijσiσj , p̂(σ)
(d)
=

1

N1/α

∑

1≤i<j≤N

(1− Lij)aijσiσj ,
(2.5)

with the dependence between Ĥ(σ) and p̂(σ) expressed through the Lij .
1 Observe that after

conditioning on L, the sums Ĥ(σ) and p̂(σ) are independent.
Before proving Lemma 2.1, we note the following useful moment bound. Under the assumption

|x| ≤ 1, we have ex ≤ 1 + x+ x2. Then for any random variable X such that E[X] = 0 and |X| ≤ 1,
we have

E
[
exp(X)

]
≤ 1 + E[X2] ≤ exp

(
E[X2]

)
, (2.6)

where we used used 1 + x ≤ ex in the second inequality.

1This construction can be viewed as implementing the “total variation” coupling between aij and Jij . See, e.g.,
[19, (17.30)].
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Lemma 2.3. There exists C(ε) < ∞ such that

E
[
exp

(
N−1/α(1− Lij)aij

)]
≤ exp(CR2−αN−2/α)

for all 1 ≤ i < j ≤ N .

Proof. Since
∣∣N−1/α(1− Lij)aij

∣∣ ≤ 1 by definition, (2.6) yields

E

[
exp

(
N−1/α(1− Lij)aij

)]
≤ exp

(
N−2/α

E
[
(1− Lij)

2a2ij
])

. (2.7)

Using (2.4), |Lij | ≤ 1, and pN = o(1) (from (1.1)), we have

E
[
(1− Lij)

2a2ij
]
≤ 2 · E

[
J2
ij1|Jij |<R

]
≤ C

(
1 +

∫ R

1
t1−α dt

)
≤ CR2−α, (2.8)

where the first inequality holds for sufficiently large N (depending on α, ε, and C0), the second
inequality follows from (1.1), and we increased the constant C in its second appearance. Inserting
(2.8) into (2.7) completes the proof. □

We now turn to our reduction.

Proof of Lemma 2.1. Using the representation (2.5), we see that if ⟨·⟩ denotes expectation with

respect to Ĥ , then integrating first in the variables aij yields E⟨p̂⟩ = E⟨Eap⟩ = 0. Thus by Lemma 2.2,
we have that

F̂N ≤ FN ≤ F̂N + logE⟨Eae
p̂⟩.

For a fixed σ ∈ ΣN , the expectation Ea[e
p̂(σ)] does not depend on the values of the spins σi because

the aij are symmetric. Then

Ea[e
p̂(σ)] = Ea

[∏
eN

−1/α(1−Lij)aij
]
≤
(
exp

(
CR2−αN−2/α

))N2

= exp
(
CN2−2/αR2−α

)
, (2.9)

where we used the independence of the (1− Lij)aij variables and Lemma 2.3 for the inequality. By

(1.1) and our choice R = N1/α−ϵ, we have N2−2/αR2−α = O(N1+ϵ(α−2)). Using this bound in (2.9)
completes the proof. □

2.2. Model with fixed edge number. We next consider a sparse Hamiltonian where the total
number of couplings is fixed. Before defining this model, we note the following preliminary lemma.

Let M = MN =
∑

1≤i<j≤N Lij , which represents the number of nonzero couplings in Ĥ(σ).

Recalling that p = C0N
−1+αε by (2.3) and applying the multiplicative Chernoff inequality yields

the following concentration bound on MN .

Lemma 2.4. For every ε > 0, there exists a constant c(ε) > 0 such that
∣∣∣∣E[M ]−

C0

2
N1+αε

∣∣∣∣ ≤ c−1Nαε, P

(∣∣M − E[M ]
∣∣ > c−1N1/2+αε/2+ε

)
≤ 2e−cNε

. (2.10)

We now introduce a new Hamiltonian H̃. Recall the constant C0 from (1.1), and set

SN =

⌊
C0

2
N1+αε

⌋
. (2.11)

Let {L̃ij}1≤i,j≤N denote the adjacency matrix of a graph drawn uniformly at random from graphs

with precisely SN edges on N vertices, so that each L̃ij is 0 or 1. By definition, exactly SN of the

L̃ij are nonzero. Set

{J̃ij}i<j = {L̃ijbij}i<j , (2.12)
4



where we recall that the variables {bij}i<j were defined in (2.4), and we require that the variables

{L̃ij , aij , bij}i<j are all mutually independent. Then define the Hamiltonian

H̃(σ) =
1

N1/α

∑

1≤i<j≤N

J̃ijσiσj ,

and set Z̃N =
∑

σ∈ΣN
eH̃(σ) and F̃N = 1

NE
[
log Z̃N

]
. We now show that F̃ is a good approximation

to F̂ .

Lemma 2.5. There exists c > 0 such that the following holds for all ε ∈ (0, c). We have

limN→∞ F̃N = limN→∞ F̂N , if the limit on the left exists.

Proof. Given a realization of the {J̃ij}, we consider the effect on Z̃ of fixing some (i, j) and changing

L̃ij to 1 − L̃ij (that is, adding or deleting a coupling). If we denote the partition function that

results from this change by Z̃new, we see by direct calculation that

| log Z̃ − log Z̃new| ≤ N−1/α|bij |. (2.13)

Using (2.4), we find E
[
|bij |

]
= O(N1/α−ε), so (2.13) yields

∣∣E[log Z̃]− E[log Z̃new]
∣∣ ≤ CN−ε. (2.14)

for some constant C > 0. Therefore, adding or removing k couplings in this way results in a change
of at most Ck to the expected log-partition function.

Let A be the event on which |M − SN | ≤ c−1N1/2+αε/2+ε holds. We write

|F̂N − F̃N | ≤
1

N

∣∣∣E
[
(log Ẑ − log Z̃)1A

]∣∣∣+ 1

N

∣∣∣E
[
(log Ẑ − log Z̃)1Ac

]∣∣∣. (2.15)

We now consider an alternative sampling scheme for Ĥ. Begin by sampling the mutually

independent variables {Lij , L̃ij , aij , bij}, and let ℓ be the (random) number of nonzero Lij . From

these realizations, we obtain a realization of H̃ ; we will use this realization of H̃ to produce a coupled

realization of Ĥ in the following way. If ℓ > SN , choose uniformly at random ℓ− SN distinct index

pairs P =
{
(ia, ja)

}ℓ−SN

a=1
from the set

{
(i, j) : L̃ij = 0

}
. For 1 ≤ i < j ≤ N , we set L̂ij = L̃ij if

(i, j) /∈ P , and L̂ij = 1− L̃ij if (i, j) ∈ P . Likewise, if ℓ < SN , we choose uniformly at random SN − ℓ

index pairs P =
{
(ia, ja)

}ℓ−SN

a=1
from the set

{
(i, j) : L̃ij = 1

}
; we set L̂ij = L̃ij if (i, j) /∈ P, and

L̂ij = 1− L̃ij if (i, j) ∈ P . Finally, if ℓ = SN , we set L̂ij = L̃ij for all (i, j) such that 1 ≤ i < j ≤ N .
Since this procedure is symmetric with the respect to the edges (i, j), and ℓ equals the number of

nonzero L̂ij labels, we find that

Ĥ(σ)
(d)
=

1

N1/α

∑

i<j

L̂ijbijσiσj ,

and we have produced a coupling between Ĥ(σ) and H̃(σ) through the addition or subtraction of

|ℓ− SN | couplings from H̃(σ).

On the event A, we have |ℓ − SN | ≤ c−1N1/2+αε/2+ε by definition. Therefore we obtain from
(2.14) that ∣∣∣E

[
(log Ẑ − log Z̃

)
1A

]∣∣∣ ≤ CN1/2+αε/2+ε. (2.16)

For the other term in (2.15), we use Hölder’s inequality to show that
∣∣∣E
[
(log Ẑ − log Z̃)1Ac

]∣∣∣ ≤ P(Ac)
ε

1+εE
[
| log Ẑ

∣∣1+ε] 1
1+ε + P(Ac)

ε
1+εE

[
| log Z̃|1+ε

] 1
1+ε .

We give details only for the bound on E
[
| log Ẑ|1+ε

]
, as the bound for E

[
| log Z̃|1+ε

]
is similar.
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By definition, we have |Ĥ(σ)| ≤ N−1/α
∑

1≤i<j≤N |bij |, which implies

2N exp
(
−N−1/α∑

i<j |bij |
)
≤ ẐN ≤ 2N exp

(
N−1/α∑

i<j |bij |
)
.

This in turn implies that
∣∣ log Ẑ

∣∣ ≤ N log 2 +N−1/α
∑

i<j |bij |. Therefore

E
[
| log Ẑ

∣∣1+ε]
≤ E

[
(N log 2 +

∑
|bij |)

1+ε
]
≤ CN2ε

E
[
(N1+ε +

∑
|bij |

1+ε)
]
≤ CN5, (2.17)

for some constant C(ε) > 1. In the second inequality, we used the elementary inequality

(
k∑

i=1

xi

)1+ε

≤ kε
k∑

i=1

|xi|
1+ε,

which follows from Hölder’s inequality. In the third inequality, we used that the (1 + ε)-th moment
of |bij | exists for ε small enough (depending only on α > 1) and is less than CN2 for some C(ε) > 1.
We conclude using (2.10) and (2.17) that there exists c(ε) > 0 such that

P(Ac)
ε

1+εE
[
| log Ẑ|1+ε

] 1
1+ε ≤ c−1N5 exp(−cN ε). (2.18)

The conclusion now follows from combining (2.15), (2.16), and (2.18). □

2.3. Model with multi-edges. The Hamiltonian H̃ may be thought of as arising from a collection
of SN weighted edges on a simple random graph. However, it will be convenient to consider instead
a similar model where the edges are sampled with replacement from pairs of vertices {(i, j)}1≤i≤j≤N .
In particular, self-edges of the form (i, i) are allowed, as well as multi-edges, meaning that an edge
(i, j) may appear two or more times.

We define the Hamiltonian H◦
u,v,m(σ) as follows. The parameters u, v,m denote the edge number,

vertex number, and effective normalization, respectively, as we now explain. Let {ca}1≤a≤u be a
collection of identically distributed, independent random variables, where each ca is an ordered pair
(i, j) chosen uniformly at random from the set {(i, j)}1≤i≤j≤v. We write ca(1) and ca(2) for the first
and second coordinates of ca, respectively. While the definition of the ca variables depends on both
u and v, we omit this from the notation.

We set q = P(|J | ≥ m1/α−ε) and define identically distributed, independent random variables
{da}1≤a≤u = {da(m)}1≤a≤u by requiring that

P(da ∈ I) = q−1
P

(
J ∈ I ∩

(
(−∞,−m1/α−ε] ∪ [m1/α−ε,∞)

))
(2.19)

for every interval I ⊂ R. We define

H◦
u,v,m(σ) =

1

m1/α

∑

1≤a≤u

daσca(1)σca(2),

and set Z◦
v (u,m) =

∑
σ∈ΣN

exp
(
H◦

u,v,m(σ)
)
and F ◦

u,v,m = 1
mE
[
logZ◦

v (u,m)
]
.

We now define a quantity that represents the total number of loops and multi-edges among the
ca. We set

fu,v =
∑

1≤i≤v

∑

1≤a≤u

1ca=(i,i) +
∑

1≤i<j≤v

1

{(
∑

1≤a≤u

1ca=(i,j)

)
> 1

}
·

(
∑

1≤a≤u

1ca=(i,j) − 1

)
.

Lemma 2.6. For every ε > 0, there exists c(ε) > 0 such that

P(fSN ,N ≥ N3αε) ≤ exp(−cN ε). (2.20)
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Proof. Consider a sequence of random multi-graphs Gt on the vertex set {1, . . . , N} built in the
following way. Let G0 be the graph with no edges, and for each t ∈ [[1, SN ]], let Gt be the graph
with edge set {ca}1≤a≤t. The definition of Gt naturally extends to t > SN by choosing additional
multi-edges uniformly at random. Let T = min

{
t : |Et| ≥ SN −N3αε

}
, where

Et =
{
(i, j) : 1 ≤ i < j ≤ N, (i, j) = ca for some a ≤ t

}

is the set of (non-loop) edges that have been added at time t (after removing duplicates). Observe
that

P(fSN ,N ≥ N3αε) = P(T ≤ SN ),

so it suffices to bound P(T ≤ SN ).
Let T1 = min{t : |Et| ≥ 1} and define Ti for i ≥ 2 by

Ti = min{t : |Et| ≥ i} −min{t : |Et| ≥ i− 1}.

Then, by definition,

T =

SN−N3αε∑

i=1

Ti. (2.21)

We say that X is a geometric random variable with parameter p if P(X = k) = (1− p)k−1p for all
k ≥ 1; then E[X] = p−1. We observe that each Ti in (2.21) is a geometric random variable with
parameter

pi =
A−N − i+ 1

A
where A = N(N +1)/2 is the number of possible edges and loops on a graph with N vertices. Using
this representation, (2.21), and an integral approximation, we compute that

E[T ] = A

SN−N3αε∑

i=1

1

A−N − i+ 1
≥ A log

(
A−N

A−N − SN +N3αε + 2

)
≥ SN − 2N3αε (2.22)

for sufficiently large N (depending on ε), where we used log
(
1/(1 − x)

)
≥ x in (2.22). Defining

T ◦ = T − E[T ], we bound

P(T ≤ SN ) = P
(
T ◦ ≤ SN − E[T ]

)
≤ P

(
T ◦ ≤ −2N3αε

)
≤ e−2N3αε

E
[
e−T ◦

]
. (2.23)

Then to complete the proof, it suffices to bound the right side of (2.23).
Writing T ◦

i = T ◦
i − E

[
T ◦
i

]
, we have

E
[
e−T ◦

]
=

SN−N3αε∏

i=1

E
[
e−T ◦

i
]
=

SN−N3αε∏

i=1

e1/pi

1 + p−1
i (e− 1)

≤ exp

SN−N3αε∑

i=1

(p−1
i − 1). (2.24)

We compute

p−1
i − 1 =

A

A−N − i+ 1
− 1 =

N + i− 1

A−N − i+ 1
≤

N + SN − 1

A−N − SN + 1
≤ C1N

−2SN (2.25)

for sufficiently large N , and a constant C1 > 1. Inserting (2.25) into (2.24) and (2.23), we find

P(T ≤ SN ) ≤ exp
(
−2N3αε + C1N

−2S2
N

)
≤ exp

(
−2N3αε + C1N

−2S2
N

)
≤ exp(−cN ε).

This completes the proof. □

Lemma 2.7. There exists c > 0 such that the following holds for all ε ∈ (0, c). We have

limN→∞ F ◦
SN ,N,N = limN→∞ F̃N , if the limit on the left exists.
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Proof. Given (2.20), the rest of the proof proceeds similarly to the proof of Lemma 2.5. We indicate
only the main points here. Let

D =
{
a ∈ {1, 2, . . . , S} : ca = cb for some b < a, or ca = (i, i) for some i ∈ [[1, N ]]

}

denote the set of duplicate edges and loops. As described below (2.15), to sample from the

Hamiltonian H̃ , one may begin with H◦
SN ,N,N , remove all edges ca such that a ∈ D, and restore |D|

edges chosen uniformly at random from all size |D| subsets of distinct edges contained in

{(i, j) : 1 ≤ i < j ≤ N} \ {c1, c2, . . . , cS},

where {c1, c2, . . . , cS} denotes the original set of edges in H◦
S,N,N .

As shown in (2.14), the addition or deletion of some edge ca with weight da(N) in the Hamiltonian
H◦

SN ,N,N changes E
[
logZ◦

N (S,N)
]
by at most a constant C > 1. Let A denote the event where

f ≤ N3αε holds. Then, under the coupling given in the previous paragraph, we have
∣∣∣∣E
[(

log Z̃ − logZ◦
N (S,N)

)
1A

]∣∣∣∣ ≤ CN3αε. (2.26)

Further, by a computation nearly identical to (2.17), we have

E

[∣∣ log Z̃
∣∣1+ε

]
+ E

[∣∣ logZ◦
N (SN , N)

∣∣1+ε
]
≤ CN5. (2.27)

Hölder’s inequality shows that
∣∣∣∣E
[(

logZ◦
N (S,N)− log Z̃

)
1Ac

]∣∣∣∣ ≤ P(Ac)
ε

1+εE

[∣∣ logZ◦
N (S,N)

∣∣1+ε
] 1

1+ε
+ P(Ac)

ε
1+εE

[∣∣ log Z̃
∣∣1+ε

] 1
1+ε

.

(2.28)

The conclusion now follows from combining (2.20), (2.27), and (2.28). □

3. Free Energy for Sparse Hamiltonian

In this section we apply the combinatorial interpolation strategy of [2] to show the existence of
the limit of the free energy for the multi-edge model.

We begin by stating two preliminary lemmas. The first is our main interpolation result. We
prove it at the end of Section 4, below. In its statement, the notation Bi(n, p) denotes a binomial
random variable with n trials and success probability p, and we recall SN was defined in (2.11). We
also recall Z◦

v (u,m) is the partition function for the Hamiltonian H◦
u,v,m defined in Section 2.3.

Lemma 3.1. For every 1 ≤ N1, N2 ≤ N such that N1 +N2 = N , we have

E
[
logZ◦

N (SN , N)
]
≥ E

[
logZ◦

N1
(M1, N)

]
+ E

[
logZ◦

N2
(M2, N)

]
, (3.1)

where M1 is distributed as Bi(SN , N1/N) and M2 = SN − M1 is distributed as Bi(SN , N2/N).
Here M1 and M2 are independent of the random variables in the definition of H◦.

We also require the following sub-additivity lemma.

Lemma 3.2 ([10, Theorem 23]). Suppose that the sequence (aN )∞N=1 satisfies aN ≤ aN1 + aN−N1 + φ(N)
for all N,N1 such that N/3 ≤ N1 ≤ 2N/3, for some positive increasing function φ with

∫∞
1 φ(t)t−2 dt <

∞. Then limN→∞ aN/N = L for some L such that −∞ ≤ L < ∞.
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3.1. Proof of Theorem 1.1. Let 1 ≤ N1, N2 ≤ N be parameters. We define

S(1) =
SNN1

N
, S(2) =

SNN2

N
.

Lemma 3.3. Fix ε > 0. Then there exists C(ε) > 0 such that the following holds. For every

1 ≤ N1, N2 ≤ N such that N/3 ≤ N1 ≤ 2N/3 and N1 +N2 = N , we have
∣∣∣E
[
logZ◦

N1
(M1, N)

]
− E

[
logZ◦

N1
(S(1), N)

]∣∣∣ ≤ CN2/3 (3.2)
∣∣∣E
[
logZ◦

N2
(M2, N)

]
− E

[
logZ◦

N2
(S(2), N)

]∣∣∣ ≤ CN2/3. (3.3)

Proof. We prove only (3.2), since the proof of (3.3) is similar. Recall the definition of M1 from

(3.1), and note that S(1) = E[M1]. By the Chernoff bound, there exists a constant c(ε) > 0 such
that

P (Ac
1) ≤ exp (−cN ε) , A1 =

{
|M1 − S(1)| ≤ c−1N

1/2
1 Nαε/2+ε

}
. (3.4)

Similarly to the coupling given below (2.20), we may couple the Hamiltonians H◦
M1,N1,N

and

H◦
S(1),N1,N

by deleting or adding |M1 − S(1)| edges ca from H◦
M1,N1,N

, where each member of the

set of modified edges is chosen uniformly at random from the set of all possible edges. By (2.14)
and the definition of A1, we have

∣∣∣∣E
[(

logZ◦
N1

(M1, N)− logZ◦
N1

(S(1), N)
)
1A1

]∣∣∣∣ ≤ CN1/2+αε/2+ε. (3.5)

Further, arguing similarly to (2.17), we find

E

[∣∣ logZ◦
N1

(M1, N)
∣∣1+ε

]
+ E

[∣∣ logZ◦
N1

(S(1), N)
∣∣1+ε

]
≤ CN5. (3.6)

Then applying Hölder’s inequality and using (3.4) (as in (2.28)) shows
∣∣∣∣E
[(

logZ◦
N1

(M1, N)− logZ◦
N1

(S(1), N)
)
1Ac

1

]∣∣∣∣ ≤ CN5 exp(−cN ε).

Combining the previous line with (3.5) completes the proof. □

Recall that ε > 0 is a parameter. We write H◦
S(1),N1,N

= Ĥ◦ + p̂◦, where we define

Ĥ◦ =
1

N1/α

∑

1≤a≤S(1)

da(N)σca(1)σca(2)1
∣∣N−1/αda(N)

∣∣≥N−ε
1

, (3.7)

p̂◦ =
1

N1/α

∑

1≤a≤S(1)

da(N)σca(1)σca(2)1
∣∣N−1/αda(N)

∣∣<N−ε
1

. (3.8)

We also define Ẑ◦
N =

∑
σ∈ΣN

exp
(
Ĥ◦(σ)

)
. Set

p(1) = p
(1)
N = P

(∣∣N−1/αd1(N)
∣∣ ≥ N−ε

1

)
=

Nαε
1

Nαε
, (3.9)

where the last equality follows from the definition of da and (1.1), and we supposed that N is
sufficiently large (depending on C0). We let {xa, ya}1≤a≤S(1) be a collection of mutually independent
random variables such that for every interval I ⊂ R, we have

P(xa ∈ I) =
(
1− p(1)

)−1
P
(
N−1/αd1(N) ∈ I ∩ (−N−ε

1 , N−ε
1 )
)

(3.10)

P(ya ∈ I) =
(
p(1)
)−1

P

(
N−1/αd1(N) ∈ I ∩

(
(−∞,−N−ε

1 ] ∪ [N−ε
1 ,∞)

))
. (3.11)
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Let L◦ = {L◦
a}1≤a≤S(1) be a collection of independent, identically distributed random variables such

that P(La = 1) = p(1) and P(La = 1) = 1− p(1). We further impose the condition that the collection
{L◦

a, xa, ya}1≤a≤S(1) is mutually independent.
With these definitions, we have the distributional equalities

{
N−1/αda(N)

}
1≤a≤S(1)

(d)
= {(1− L◦

a)xa + L◦
aya}1≤a≤S(1) , (3.12)

Ĥ◦(σ)
(d)
=

∑

1≤a≤S(1)

L◦
ayaσca(1)σca(2), p̂◦(σ)

(d)
=

∑

1≤a≤S(1)

(1− L◦
a)xaσca(1)σca(2), (3.13)

with the dependence between Ĥ◦(σ) and p̂◦(σ) expressed through the L◦
a. We observe that after

conditioning on L◦, the sums Ĥ◦(σ) and p̂◦(σ) are independent.

Lemma 3.4. Fix ε > 0. Then there exists C(ε) > 0 such that the following holds. For every

1 ≤ N1 ≤ N such that N/3 ≤ N1 ≤ 2N/3, we have

E
[
exp

(
(1− La)xa

)]
≤ exp(CN−2ε).

Proof. By (2.6),

E
[
exp

(
(1− L◦

a)xa
)]

≤ C exp(C · E[(1− L◦
a)

2x2a]). (3.14)

Next, using the definition of da from (2.19), we have

P

(∣∣N−1/αda(N)
∣∣ > t

)
=

1

Nαεtα
(3.15)

for t ≥ N−ε. Then using |L◦
ij | ≤ 1,

(
1− p(1)

)−1
≤ 3 (from (1.1) and the assumption on N1), and

the definition (3.10), we have

E
[
(1− L◦

a)
2x2a
]
≤ 3E

[∣∣N−1/αda(N)
∣∣21∣∣N−1/αda(N)

∣∣<N−ε
1

]
≤ N−αε

∫ N−ε
1

N−ε

t1−α dt ≤ CN−2ε. (3.16)

This completes the proof. □

Lemma 3.5. Fix ε > 0. Then there exists C(ε) > 0 such that the following holds. For every

1 ≤ N1, N2 ≤ N such that N/3 ≤ N1 ≤ 2N/3 and N1 +N2 = N , we have
∣∣∣E
[
logZ◦

N1
(SN1 , N1)

]
− E

[
logZ◦

N1
(S(1), N)

]∣∣∣ ≤ CN1+ϵ(α−2) (3.17)
∣∣∣E
[
logZ◦

N2
(SN2 , N2)

]
− E

[
logZ◦

N2
(S(2), N)

]∣∣∣ ≤ CN1+ϵ(α−2). (3.18)

Proof. We prove only (3.17), since the proof of (3.18) is similar. As a first step towards (3.17), we
claim ∣∣∣E

[
logZN1(S

(1), N)
]
− E

[
log Ẑ◦

N

]∣∣∣ ≤ CN1+ϵ(α−2), (3.19)

where we recall that Ẑ◦
N was defined after (3.8). To this end, note that E⟨p̂◦⟩ = 0 by integrating

first in the xa variables, and that

Ex[e
p̂◦(σ)] = Ex


 ∏

1≤a≤S(1)

exp
(
(1− L◦

a)xa
)

 ≤ exp(S(1)N−2ε) ≤ exp(3N−2εSN ) ≤ exp(CN1+ε(α−2)),

where we used the independence of the (1−La)xa variables for the equality, and Lemma 3.4 for the

first inequality. Thus by Lemma 2.2 with x = Ĥ◦ and y = p̂◦ as in (3.7), we obtain (3.19).
Next, we claim that ∣∣∣E

[
logZ◦

N1
(SN1 , N1)

]
− E

[
log Ẑ◦

N

]∣∣∣ ≤ CN1+ϵ(α−2). (3.20)
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Together with (3.19), the previous equation implies the desired conclusion (3.17).

To prove (3.20), we begin by identifying the distribution of N
−1/α
1 da(N1), the (rescaled) coupling

distribution for the Hamiltonian H◦
SN1

,N1,N1
. Using the definition of da from (2.19), we have

P

(∣∣N−1/α
1 da(N1)

∣∣ > t
)
=

1

Nαε
1 tα

,

for t ≥ N−ε
1 . Similarly, we obtain P

(
|ya| > t

)
= 1/(Nαε

1 tα) for t ≥ N−ε
1 . Hence, the variables

N
−1/α
1 da(N1) and ya are identically distributed, and we have the distributional equality

H◦
SN1

,N1,N1

(d)
=

∑

1≤a≤SN1

yaσca(1)σca(2), (3.21)

where we recall that the ca variables are sampled uniformly from the set {(i, j)}1≤i≤j≤N1 .

Now note that the definition Ĥ◦ in (3.13) differs from (3.21) only in the number of nonzero

couplings ya (given by the indices a such that La = 1). There are S(1) nonzero couplings inH◦
S(1),N1,N

,

and the number nonzero couplings in Ĥ◦ is binomial with S(1) trials and success probability p(1).
The expectation of this distribution is

Nαε
1

Nαε
S(1) = C0 ·

N1+αε
1

2
+O(1) = SN1 +O(1). (3.22)

Then an argument nearly identical to the one that proved (3.2) shows (3.20). This completes the
proof. □

Proposition 3.6. There exists c > 0 such that the following holds for all ε ∈ (0, c). We have

limN→∞ F ◦
S,N,N = L for some L satisfying −∞ < L ≤ ∞.

Proof. Let 1 ≤ N1, N2 ≤ N be integers such that N/3 ≤ N1 ≤ 2N/3. Lemma 3.1 and Lemma 3.3
together imply that

E
[
logZ◦

N (S,N)
]
+ CN2/3 ≥ E

[
logZ◦

N1
(S(1), N)

]
+ E

[
logZ◦

N2
(S(2), N)

]
,

if ε in chosen small enough (relative to α). Then Lemma 3.5 implies that

E
[
logZ◦

N (S,N)
]
+ CN1+ε(α−2) ≥ E

[
logZ◦

N1
(SN1 , N1)

]
+ E

[
logZ◦

N2
(SN2 , N2)

]
.

Now set aN = −E
[
logZ◦

N (S,N)
]
and φ(t) = Ct1+ϵ(α−2), and observe that φ(t)/t2 is integrable on

[1,∞) since 1 + ε(α− 2) < 1. We then apply Lemma 3.2 to conclude. □

Proof of Theorem 1.1. By combining Lemma 2.1, Lemma 2.5, Lemma 2.7, and Proposition 3.6,
we find that limN→∞ FN exists and limN→∞ FN > −∞. It remains to show that this limit does
not equal +∞. To accomplish this, we will show that FN is uniformly bounded. We consider the

Hamiltonian Ĥ⋆(σ) defined by

Ĥ⋆(σ) =
1

N1/α

∑
Jij1|Jij |≥R⋆

σiσj , p̂⋆(σ) =
1

N1/α

∑
Jij1|Jij |<R⋆

σiσj , R⋆ = N1/α.

We note that H(σ) = Ĥ⋆(σ) + p̂⋆(σ), and define ZN,⋆ and FN,⋆ by analogy with (2.1).
The second inequality in Lemma 2.2 yields

E[logZN,⋆] = E
[
log
∑

σ e
Ĥ⋆(σ)+p̂⋆(σ)

]
≤ E

[
log
∑

σ e
Ĥ⋆(σ)

]
+O(N). (3.23)

Therefore, it suffices to bound the expectation on the right side of (3.23). Define the Hamiltonian
H0 by H0(σ) = 0. Its associated partition function is Z0 = 2N . Then removing all the nonzero
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couplings of H⋆ using (2.13) with ε = 0 gives
∣∣ logZ0 − logZN,⋆

∣∣ ≤ N−1/α
∑

1≤i<j≤N

|Jij |1|Jij |>R⋆
, (3.24)

which implies
∣∣∣E
[
logZ0

]
− E

[
logZ⋆

]∣∣∣ ≤ CN2−1/α · E
[
|Jij |1|Jij |>R⋆

]
= O(N), (3.25)

where we used (1.1) to compute E

[
|Jij |1|Jij |>R⋆

]
≤ N−1+1/α. Since | logZ0| ≤ CN , equation (3.25)

implies N−1
E
[
logZ⋆,N

]
≤ C. Combining this bound with (3.23) completes the proof. □

4. Interpolation

In this section, we prove Lemma 3.1.

4.1. Proof of Lemma 3.1. Recall the notation of Section 2.3. Given integers v, u > 0, define
G(v, u) to be the random multi-graph on the vertex set [[1, v]] with edge set {ca}1≤a≤u. We will
construct a sequence of multi-graphs interpolating between G(N,SN ) and the disjoint union of
G(N1,M2) and G(N2,M2).

Given N1, N2 such that N1+N2 and an integer r such that 0 ≤ r ≤ N , we define Gr as follows. Let
χ be a Bernoulli random value that takes the value 1 with probability N1/N , and is 0 otherwise, and

let {χa}1≤a≤N be a collection of independent random variables distributed as χ. Let {c
(1)
a }1≤a≤S be

independent edges chosen uniformly at random from the set {(i, j)}1≤i≤j≤N1 , and define {c
(2)
a }1≤a≤S

similarly for {(i, j)}N1+1≤i≤j≤N2 . We define the random variables {c
(−)
a }1≤a≤S by letting c

(−)
a = c

(1)
a

if χ = 1, and c
(−)
a = c

(2)
a if χ = 0. The graph Gr is then defined for 0 ≤ r ≤ SN by the random

edge set {ca}1≤a≤r ∪ {c
(−)
a }r+1≤a≤S . We see that the graphs Gr interpolate between G(N,S) when

r = SN and the disjoint union of G(N1,M2) and G(N2,M2) when r = 0.
We define a Hamiltonian and partition function corresponding to Gr by

H(r)(σ) = N−1/α
∑

1≤a≤r

da(N)σca(i)σca(j) +N−1/α
∑

r+1≤a≤SN

da(N)σ
c
(−)
a (1)

σ
c
(−)
a (2)

and Z(r) = Z
(r)
N =

∑
σ∈ΣN

exp
(
H(r)(σ)

)
. We also define the graph Ĝr using the random edge

set {ca}1≤a≤r−1 ∪ {c
(−)
a }r+1≤a≤S , which omits the r-th edge. The corresponding Hamiltonian and

partition function are defined by

H(r,−)(σ) = N−1/α
∑

1≤a≤r−1

da(N)σca(i)σca(j) +N−1/α
∑

r+1≤a≤SN

da(N)σ
c
(−)
a (1)

σ
c
(−)
a (2)

,

Z(r,−) = Z
(r,−)
N =

∑

σ∈ΣN

exp
(
H(r,−)(σ)

)
.

Lemma 4.1. For every 1 ≤ r ≤ SN ,

E
[
logZ(r)

]
≥ E

[
logZ(r−1)

]
. (4.1)

Proof. It suffices to show that

E
[
logZ(r)

∣∣ Ĝr

]
≥ E

[
logZ(r−1)

∣∣ Ĝr

]
, (4.2)

where the notation in the previous inequality denotes the conditional expectation over the edges

and weights of Ĝr. The remaining randomness is in the choice of edge cr (or c
(−)
r ) and the weight

dr. We write x = cr(1) and y = cr(2).
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We compute

E
[
logZ(r) | Ĝr

]
− E

[
logZ(r,−)

]

= E

[
log

e−dr
∑

σ 1σx ̸=σy exp
(
H(r,−)(σ)

)
+ edr

∑
σ 1σx=σy exp

(
H(r,−)(σ)

)
∑

σ exp
(
H(r,−)(σ)

)
∣∣∣∣∣ Ĝr

]
. (4.3)

The same expression holds with Z(r) replaced by Z(r−1), and x and y replaced by x(−) = c
(−1)
r (1) and

y(−) = c
(−)
r (2), respectively. In the following two cases, we will compute both of these expressions,

after conditioning on dr. The computations will differ depending on the sign of dr.

Case I: dr < 0. Let µ denote the Gibbs measure for the Hamiltonian H(r,−)(σ). Using (4.3), we
have

E[logZ(r) | Ĝr, dr]− E[logZ(r,−) | dr]

= −dr + E

[
log

∑
σ 1σx ̸=σy exp

(
H(r,−)(σ)

)
+ e2dr

∑
σ 1σx=σy exp

(
H(r,−)(σ)

)
∑

σ exp
(
H(r,−)(σ)

)
∣∣∣∣∣ Ĝr

]

= −dr + E

[
log
(
1− (1− e2dr)µ(σx = σy)

) ∣∣∣∣∣ Ĝr, dr

]
.

Observe that 0 < (1− e2dr)µ(σx = σy) < 1 because dr < 0, so it is permissible to Taylor expand the

logarithm. Therefore, introducing replicas σℓ, we have

E
[
logZ(r) | Ĝr, dr

]
− E

[
logZ(r,−) | dr

]
+ dr

= −
∞∑

k=1

E

[
(1− e2dr)kµ(σx = σy)

k

k

∣∣∣∣∣ Ĝr, dr

]

= −
∞∑

k=1

(1− e2dr)k

k
E


 ∑

σ1,...,σk

exp
(∑k

ℓ=1H
(r,−)(σℓ)

)

(Z(r,−))k
1{σℓ

x=σℓ
y ,∀ℓ}

∣∣∣∣∣ Ĝr, dr




= −
∞∑

k=1

(1− e2dr)k

k

∑

σ1,...,σk

exp
(∑k

ℓ=1H
(r,−)(σℓ)

)

(Z(r,−))k
· E
[
1{σℓ

x=σℓ
y ,∀ℓ}

]
. (4.4)

For every set of replicas σ = (σ1, . . . σk), we introduce the following equivalence relation on [[1, N ]].
For i, j ∈ [[1, N ]], we say that i ∼ j if σℓ

i = σℓ
j for all replicas ℓ = 1, . . . k. Denote the number of

equivalence classes induced by ∼ by J , and let {Os}
J
s=1 = {Os(σ)}

J
s=1 be the set of these equivalence

classes. Recalling the definition of x and y, we compute E[1{σℓ
x=σℓ

y ,∀ℓ}
] =

∑J
s=1(|Os|/N)2. Then,

recalling (4.4), we have

E
[
logZ(r) | Ĝr, dr

]
− E

[
logZ(r,−) | dr

]
+ dr

= −

∞∑

k=1

(1− e2dr)k

k

∑

σ1,...,σk

exp
(∑k

ℓ=1H
(r,−)(σℓ)

)

(Z(r,−))k

J∑

s=1

(
|Os|

N

)2

. (4.5)

The computation for E
[
logZ(r−1) | Ĝr, dr

]
− E

[
logZ(r,−) | dr

]
is analogous, and we now outline

the main steps. Note that in Gr−1, the r-th edge is added using the two-step sampling procedure

described at the beginning of this proof, where first the value χr is sampled, and then c
(−)
r is sampled
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from either c
(1)
r or c

(2)
r , depending on the value of χr. Recall that

(
x(−), y(−)

)
denotes the random

edge c
(−)
r . We find

E

[
1{σℓ

x(−)
=σℓ

y(−)
,∀ℓ}

]
=

J∑

s=1

(
N1

N

(
|Os ∩ [[1, N1]]|

N1

)2

+
N2

N

(
|Os ∩ [[1, N2]]|

N2

)2
)
. (4.6)

Then the analogue of (4.4) holds for E
[
logZ(r−1) | Ĝr, dr

]
−E
[
logZ(r,−) |dr

]
, with x and y replaced

by x(−) and y(−), respectively, and we conclude that

E[logZ(r−1) | Ĝr, dr]− E[logZ(r,−) | dr] + dr =

−

∞∑

k=1

(1− e2dr)k

k

∑

σ1,...,σk

exp
(∑k

ℓ=1H
(r,−)(σℓ)

)

(Z(r,−))k

×

J∑

s=1

(
N1

N

(
|Os ∩ [[1, N1]]|

N1

)2

+
N2

N

(
|Os ∩ [[1, N2]]|

N2

)2
)
. (4.7)

Case II: dr > 0. We proceed as in the previous case to obtain

E[logZ(r) | Ĝr, dr]− E[logZ(r,−) | dr] + dr = E

[
log
(
1− (1− e−2dr)µ(σx ̸= σy)

)
| Ĝr, dr

]
.

Taylor expanding the logarithm, we obtain as before that

E
[
logZ(r) | Ĝr, dr

]
− E

[
logZ(r,−) | dr

]
+ dr

= −

∞∑

k=1

(1− e−2dr)k

k

∑

σ1,...,σk

exp(
∑k

ℓ=1H
(r,−)(σℓ))

(Z(r,−))k
E[1{σℓ

x ̸=σℓ
y ,∀ℓ}

]. (4.8)

We now compute the term E[1{σℓ
x ̸=σℓ

y ,∀ℓ}
]. We recall the equivalence classes Os defined in the

previous case. For every class Os, there exists an equivalence class Or, for some r = r(s), of vertices
such that σℓ

i ̸= σℓ
j for all ℓ if i ∈ Os and j ∈ Or. This gives a pairing of equivalence classes. Then

we have E[1{σℓ
x ̸=σℓ

y ,∀ℓ}
] = N−2

∑J
s=1 |Os||Or| which combined with (4.8) yields

E
[
logZ(r) | Ĝr, dr

]
− E

[
logZ(r,−) | dr

]
+ dr

= −
∞∑

k=1

(1− e−2dr)k

k

∑

σ1,...,σk

exp
(∑k

ℓ=1H
(r,−)(σℓ)

)

(Z(r,−))k

J∑

s=1

(
|Os|

N

)(
|Or|

N

)
. (4.9)

Similarly, we compute

E[1{σℓ

x(−)
=σℓ

y(−)
,∀ℓ}] =

N1

N

J∑

s=1

|Os ∩ [[1, N1]]|

N1
·
|Or ∩ [[1, N1]]|

N1
+

N2

N

J∑

s=1

|Os ∩ [[1, N2]]|

N2
·
|Or ∩ [[1, N2]]|

N2
,

leading to

E
[
logZ(r−1) | Ĝr, dr

]
− E

[
logZ(r,−) | dr

]
+ dr

= −

∞∑

k=1

(1− e−2dr)k

k

∑

σ1,...,σk

exp
(∑k

ℓ=1H
(r,−)(σℓ)

)

(Z(r,−))k

×
(N1

N

J∑

s=1

|Os ∩ [[1, N1]]|

N1
·
|Or ∩ [[1, N1]]|

N1
+

N2

N

J∑

s=1

|Os ∩ [[1, N2]]|

N2
·
|Or ∩ [[1, N2]]|

N2

)
.

(4.10)
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Conclusion. Observe that 1− e2(−x) = 1− e−2x, so the powers (1− e2dr)k in the Taylor expansions
in above two cases are the same if |dr| = x in each case. Further, observe that the density of dr is
symmetric, by definition. We now subtract (4.7) from (4.5), subtract (4.10) from (4.9), and take

expectation over dr and Ĝr in each expression. The upshot of this computation is that to establish
(4.2), it suffices to prove for a fixed replica σ that

J∑

s=1

(
N1

N

(
|Os ∩ [[1, N1]]|

N1

)2

+
N2

N

(
|Os ∩ [[1, N2]]|

N2

)2
)

+
J∑

s=1

(
N1

N

(
|Os ∩ [[1, N1]]|

N1

)(
|Or ∩ [[1, N1]]|

N1

)
+

N2

N

(
|Os ∩ [[1, N2]]|

N2

)(
|Or ∩ [[1, N2]]|

N2

))

≥

J∑

s=1

(
|Os|

N

)2

+

J∑

s=1

(
|Os|

N

)(
|Or|

N

)
.

Fix some replica s and corresponding r = r(s) (as defined in the second case above), and consider
just these terms in the sum. It suffices to show that

(
N1

N

(
|Os ∩ [[1, N1]]|

N1

)2

+
N2

N

(
|Os ∩ [[1, N2]]|

N2

)2
)

+

(
N1

N

(
|Or ∩ [[1, N1]]|

N1

)2

+
N2

N

(
|Or ∩ [[1, N2]]|

N2

)2
)

+ 2

(
N1

N

(
|Os ∩ [[1, N1]]|

N1

)(
|Or ∩ [[1, N1]]|

N1

)
+

N2

N

(
|Os ∩ [[1, N2]]|

N2

)(
|Or ∩ [[1, N2]]|

N2

))

≥

(
|Or|

N

)2

+

(
|Os|

N

)2

+ 2

(
|Os|

N

)(
|Or|

N

)
.

The right side of the previous inequality factors as
(
|Os|
N + |Or|

N

)2
, whereas the left side factors as

N1

N

(
|Os ∩ [[1, N1]]|

N1
+

|Or ∩ [[1, N1]]|

N1

)2

+
N2

N

(
|Os ∩ [[1, N2]]|

N2
+

|Or ∩ [[1, N2]]|

N2

)2

.

The left side is thus greater than the right side by the convexity of x 7→ x2. This establishes (4.1)
and completes the proof. □

Proof of Lemma 3.1. We apply Lemma 4.1 in succession for r = 1, . . . , S to obtain

E
[
logZ(N)

]
≥ E

[
logZ(0)

]
. (4.11)

By the definition of Z(r), equation (4.11) is exactly the claim (3.1). □

5. Self-Averaging

Proof of Theorem 1.2. This follows from the following Proposition together with Markov’s inequality.
□

Proposition 5.1. For all δ > 0,

E

[∣∣∣N−1 logZN −N−1
E
[
logZN

]∣∣∣
α−δ
]
≤ CN1−α+2δ.
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Proof. Let I = {(i, j) : 1 ≤ i < j ≤ N} and fix an arbitrary bijection f : I →
{
1, 2, . . . , |I|

}
. We use

Jx with x ∈ {1, 2, . . . , |I|} as shorthand for Jf−1(x). Set Fx = σ(Jy : y ≤ x) for all x ∈ {1, 2, . . . , |I|},
where this notation denotes the σ-algebra generated by the given couplings Jy. Consider the
martingale

Ax =
1

N
E
[
logZN

∣∣ Fx

]
−

1

N
E
[
logZN

]
, (5.1)

with the convention that A0 = 0.
Define the martingale difference sequence Dx = Ax −Ax−1 for x ≥ 1, so that Ax =

∑
y≤xDy. Set

H(x)(σ) =
1

N1/α

∑

i<j

Jijσiσj1f(i,j) ̸=x, Z
(x)
N =

∑

σ∈ΣN

eH
(x)(σ),

where H(x)(σ) is similar to the Hamiltonian H(σ), except with the coupling Jx set equal to

zero. Let ⟨·⟩x denote the Gibbs measure with respect to H(x). Then we have (by definition)

ZN = Z
(x)
N ⟨eN

−1/αJxσx⟩x. We write

N ·Dx = E
[
log⟨eN

−1/αJxσx⟩x
∣∣ Fx

]
− E

[
log⟨eN

−1/αJxσx⟩x
∣∣ Fx−1

]
,

where we use the equality E
[
Z(x)

∣∣ Fx

]
= E

[
Z(x)

∣∣ Fx−1

]
. Bounding eN

−1/αJxσx in absolute value in
each expectation gives

|Dx| ≤ N−1−1/α
(
|Jx|+ E

[
|Jx|

])
,

which implies |Dx|
p ≤ 2pN−1−1/α(|Jx|

p + E[|Jx|]
p) for any p ∈ (1, 2). By Burkholder’s inequality

with exponent p ∈ (1, α), and the fact that p/2 < 1, we have

E[|A|I| −A0|
p] ≤ CpE[(

∑
xD

2
x)

p/2] ≤ CpE
[∑

xD
p
x

]
≤ CpN

2−p−p/α
E
[
|Jx|

]p
.

Set g(p) = 2− p(1 + 1/α). By choosing p(δ) = α− δ, we find

E
[
|A|I| −A0|

α−δ
]
≤ CN1−α+2δ,

where C = C(δ) > 1 depends on δ. This completes the proof. □
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