ADELIC ROGERS INTEGRAL FORMULA

SEUNGKI KIM

ABSTRACT. We formulate and prove the extension of the Rogers integral formula ([26])
to the adeles of number fields. We also prove the second moment formulas for a few
important cases, enabling a number of classical and recent applications of the formula
to extend immediately to any number field.

1. INTRODUCTION

1.1. History and motivation. The Rogers integral formula [26] (also see Theorem 1.1
below) is one of the main tools in the geometry of numbers, that allows one to study the
statistical properties of the points of a random lattice. It is the natural generalization of
the celebrated Siegel integral formula [38], which Siegel stated at the end of the paper
without proof.

Theorem 1.1 (Rogers [26], Siegel [38] for case k = 1). Let k < n be positive integers, and
f: (R")* — R be a Borel integrable function. Let X,, = SL(n,Z)\SL(n,R) be the moduli
space of the lattices in R™ of covolume 1, and u be the unique right SL(n,R)-invariant
probability measure on X,,. Then

(1.1) /X Z f(z1g, ..., 2r9)du(g) :/(Rn)k f(z1, ..., xp)dzy ... dag.

nowq,...,@y, LT
indep.

In addition, let us interpret (R™)* = Matyxn(R), the set of all k x n matrices over R.

Then
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where the sum over D is over all m X k row-reduced echelon forms over Q of rank m,
N(D) is the density of the vectors x € Z™ such that xD € ZF.

Since their development in the mid-twentieth century, these formulas of Siegel and
Rogers — called the mean value formulas in the literature — have been applied extensively
to the study of lattice problems, such as the packing and covering of R™ by spheres, and
they still stand as one of the most powerful tools for such problems. Indeed, Davenport-
Rogers [8] had provided the best known lower bound = 1.68n2~"™ for the sphere packing
density in dimension n, until Ball [5] improved it to = 2n2~" several decades later. After
a few more decades, Venkatesh [48] adopted the method of Rogers [25] to further improve
it to &= 65963n2~" for all sufficiently large n, which is the current best record. Moreover,
Rogers [29] remains the best known bound on the covering density by a ball to this
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day, although for the covering by the general convex bodies, there is a recent substantial
improvement by Ordentlich-Regev-Weiss [23].

One also considers the distributional variants of these lattice problems, for instance,
questions such as “What is the p-measure of lattices that yield at least this much packing
density?” Investigating problems of this kind relies heavily, if not entirely, on the Rogers
integral formula. The quoted problem above, in particular, had been intensively studied
in a series of works by Rogers (see e.g. [27], [28]) and Schmidt (e.g. [33], [34]; also see
the references in [34]). Recently, their ideas and methods have been further developed by
the author ([15], [16]), S6dergren (e.g. [41], [42]) and Strémbergsson-Sédergren [40], with
applications to the study of the Epstein zeta functions ([43], [39]).

Perhaps surprisingly, nowadays the mean value formulas have become a standard part
of arsenal for homogeneous dynamics as well. Since the late 1990’s to the present day, they
have been employed in countless works in the field for various purposes, including a number
of influential works, such as Eskin-Margulis-Mozes [10] on the quantitative Oppenheim
conjecture, Kleinbock-Margulis [19] and Athreya-Margulis [3] on one-parameter flows,
Marklof-Strombergsson [22] and Athreya-Margulis [4] on counting problems, and so on.
To quickly give one concrete application among many, the Rogers formula yields the upper
bound portion of a logarithm law for free, that is, a statement of the form

A(Ag)

lim sup = q,
t—o00 10g t

where A is some function on X,,, A is a generic element of X,,, (g¢)ter is a one-parameter
subgroup of SL(n,R), and « is a constant depending only on A and n — see [19], [3], [1§]
for instance.

Naturally, there have been numerous efforts to extend the mean value formulas to a
variety of contexts. There are variants that impose various different conditions on the sum
on the left-hand side of (1.1), such as summing over the primitive elements of Z"™ — see
Section 1 of Schmidt [34] for examples. More recently, there are versions for the rational
points on Grassmannians [17], translation surfaces ([47], see also related [2]), and for cut-
and-project sets [30], the latter two proved by ergodic theoretic methods. There are also
extensions to S-unit lattices [14], to ASL(n,R) ([9], [1]), and to sums over translates of
Z™ ([12], [1]), which require one to consider the quotient of SL(n,R) with respect to a
congruence subgroup.

1.2. The main theorem. The goal of the present paper is to prove the following theorem,
which extends the Rogers integral formula to the adele of a number field.

Theorem 1.2. Let F' be a number field, and X,, be GL(n, F)\G,,, where
G, ={A € GL(n,Ap) : || det A||a, = 1}.
Also let 1 < k < n. Then for a Borel integrable function f : (A%)* — R, we have

X sxoa= [ fode

n xe(Fn)k (A%)k
rows indep.
where p is the unique right G, -invariant probability measure on X, , and ap is the Tam-
agawa measure on Ap, the Haar measure on Ap normalized so as to descend to the Haar
probability measure on Ap/F.
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In addition, we have

/ > f(Xg)du

Xn XG(F”)]"
no zero rows

_ nk‘+ / DtrX d nm
[+ 25

m=1 D

where the sum over D is over all m X k row-reduced echelon forms over F of rank m.

We note that the case k = 1 has been proved by Thunder [46, Lemma 1], who applies
it to refine Siegel’s lemma. Also see Venkatesh [48, Theorem 1], where the case k = 1 and
of level 1 for the cyclotomic fields is proven in the classical language.

The main idea of our proof of Theorem 1.2 is inspired by the original proof by Rogers of
his formula [26], although his argument contains a gap. Rogers argues that the left-hand
side of (1.1) is equal to the limit of the integral of the sum

Z f(mlgw-'amkg)

T ,..., 2 EIT
indep.

along a certain family of unipotent orbits in SL(n,R), which in turn is equal to the
Lebesgue measure of f. We now know both claims to be true by hindsight, but in proving
the former he cites an incorrect statement about the fundamental domain of X,, ([26], p
256, lines 2-8). We circumvent this problem by replacing the integration over unipotent
orbits by the estimates on certain Hecke operators. This idea first appeared in the author’s
previous work [17], in which it was implemented in the classical language.

By this method we obtain the so-called “level 17 case of the adelic Rogers formula
(Theorem 3.1 below). To extend it to all levels and thereby fully prove Theorem 1.2, it
turns out that we need the adelic version of the primitive analogue of Theorem 1.1, i.e.
the statement

[ X sxeme=| II <o) [ s

xe@m)k j=n—k+1
completes to SL(n, Z)

a result due to Schmidt [32]. Such a statement (Theorems 4.5 and 4.6) is derived from the
level 1 case by an inclusion-exclusion argument, which again involves the Hecke operators.
The “higher level” version (Theorem 4.8) follows from this by a simple folding-unfolding
trick on the sum over (F™)™, and subsequently an approximation argument yields Theo-
rem 1.2.

It is easy to translate Theorem 1.2 into the classical language, and unsurprisingly,
certain recently proved variants of the Rogers formula (e.g. [14], [1]) follow immediately
this way. Let us also demonstrate a quick example involving a number field other than Q:

Corollary. Let F' be a number field of class number 1, and X, (F) = SL(n, Or)\SL(n, F®
R), equipped with the probability measure u. Let A be the Lebesgue measure on F ® R
normalized to assign covolume 1 to the lattice obtained by the natural embedding Op —
F ®R. Then, for a Borel integrable foo on Matyx,(F ® R),

/ > o= [ foa,
Xn(F) Xe(op)k (FR)"*

rows indep. / F
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and

o (Xg)d
/Xn(F) > fo(Xg)dp

Xe(op)k

no zerorows

k—1
— nk n ir nm

m=1 D (F®]R)nm

where the sum over D is over all m X k row-reduced echelon forms over F' of rank m, and
N(D) is the density of the vectors x € OF such that xD € Ok%.

This follows from Theorem 1.2 simply by taking f = 1opk fso and noting that
GL(n, F)\G,/K = X,,(F),

where Of = ][, Oy and K =[], GL(n,0,) (see e.g. [11, Appendix A.3]). The class
number 1 condition can be dropped, by taking an appropriate adaptation of the proof
of Theorem 3.1; moreover, we can average over any rank n torsion-free Op-submodules
of (FF ® R)™ of a given Steinitz class, and obtain the same formula. For general F,
GL(n, F)\G,,/K has CI(F') connected components, each being a moduli space of the Op-
modules of each Steinitz class; our proof of Theorem 3.1 carries over if we restrict X, to
any of these components.
Another point worth noting is that

N(D)" = /A lopk(D"X)daj™,
f

where Ay is the finite part of Ap and af is the Haar measure on Ag that assigns measure
1 to O¢. By replacing 1O?k with other suitable function, one can obtain the congruence
subgroup variant of the above corollary.

1.3. Second moment estimates. Even the simplest case k = 2 of the classical Rogers
integral formula alone has proved to be tremendously useful in the literature, through the
second moment estimate of the lattice-point counting functions that follows from it. We
present an adelic analogue of such, as an application of Theorem 1.2.

Theorem 1.3. Let n > 3, and suppose f : A}, — R is a nonnegative function of the form
ftfoo, where fris the characteristic function of Hwoo A,, where each A, is an integrable
subset of )}, and f is a function on A7, satisfying a bound of the form, for any v € F*

and a constant C > 0,
(1.2) foo (@) foo (y)dag, < Ca?’.o(f)min(l,rr}in 151"
An o|oo
here o is the Haar measure on A, compatible with ap in Theorem 1.2. Then
2

/ S Fg) | du = (@) + OR(Ca(f)).
Xn \ zeFn\{0}

The reason we require a condition such as (1.2) is that, when applying Theorem 1.2 to
f and k = 2, we confront an expression of the form

Z /M foo(T) foo (Yuz)dal, .

ueOr,
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Since O% is in general an infinite set, in order to show this sum is not too large, we need
some bound on the inner integral that approaches zero reasonably quickly as maxy|« [|ul»
approaches infinity.

Examples of functions satisfying (1.2) are:

e any function of the form f, = Ha|oo fo, where each f, : F} — R>¢ is bounded
and integrable, with C' = HU|00 SUP,epn fo(2)

e the characteristic function of a ball or an annulus in A7 centered at origin (see
Section 2.2 or 5.2 for the metric on Ay)

For the former, (1.2) follows quickly from the Holder inequality; for the latter, it is
proved in Lemma 5.3 below. The interest in the functions of the latter kind arises from
the idea of Venkatesh [48], who interpreted rank-2 Z[(4]-modules, where (; is a primitive
d-th root of unity, as lattices in R?#(9) with the rotational symmetry coming from the
multiplication by (4, and then exploited this symmetry to finesse an improved lower
bound on the sphere packing density in certain dimensions.

The numerous known results that rely on the & = 1,2 cases of the Rogers integral
formula — e.g. [35], [3], [4], [12] — may thus be extended almost immediately to the
adelic context, by simply plugging in the estimate of Theorem 1.3 and repeating the
argument verbatim. For instance, we have the following generalization of the famous
discrepancy bound of Schmidt [35, Theorem 1].

Corollary. Let n > 3. Let ® = {Sy}vso be an increasing (ordered by set containment)
family of Borel sets Sy € (F @ R)™ of ol -measure V, whose characteristic functions
satisfy (1.2) with uniform C. Define, for a rank n torsion-free module M C (F @ R)"™ of
covolume 1,

D(M,V):7|Mmi‘,/|_v

Choose any non-decreasing function ¥ : Rvg — Rsq such that fooo Y(s)"tds converges.
Then for almost every M (in the sense of the Haar measure on GL(n, F)\G,/K),

D(M,V) =0V ~21og Vip/2(log V).

Remark. To obtain the second moment estimate in the case n = 2, one could either appeal
to the spectral theory of automorphic forms, as in [3, Section 4.2], or prove the Rogers
formula in case n = k = 2, as in [35, Section 8]. The latter, and the cases n = k in general,
could in fact be obtained using the method of the present paper, though the fact that
GL(n,Ar), while transitive on (Ax\{0})"~1, is not transitive on (Ap\{0})" necessitates
an additional ingredient in the argument.

We also prove the following estimate for the rational points on the projective spaces,
which may be seen as yet another analogue of the primitive lattice points in the classical
context.

Theorem 1.4. Let n > 3. For B > 0, let Pg(g) be the number of the rational points
x € P"~Y(F) such that the height of x twisted by g is less than or equal to B (see Section
2.4, especially the paragraph below (2.1), for the definition of the twisted height). Then
there exists a function fp : A% — R such that

Ps(g)= > [fslzg).

xzeFm\{0}



6 SEUNGKI KIM

In addition, we have
/X (Pu(9))?dp = (a(f5))? + Or (@ (f5)),

and &% (fB) = CB™ for an explicit constant C' depending only on F and n.

The proof in Section 5.3 provides the explicit formulas for both fg and C.

The higher moments are substantially more challenging to compute, again due to the
infinitude of O%: for the k-th moment we encounter a sum of integrals over (k — 1)-tuples
of units. A remarkable progress in this direction is made in a recent work of Gargava,
Serban, and Viazovska [13].

1.4. Organization. Section 2 provides a summary of most of the number-theoretic back-
ground, notations and conventions that we use throughout the paper. In Section 3, the
“level 1”7 case of Theorem 1.2, Theorem 3.1, is proved. Theorem 3.1 is then further ex-
tended in Section 4, where we prove the primitive version (Theorem 4.6), the higher level
version (Theorem 4.8), and ultimately the main result Theorem 1.2. Section 5 is dedicated
to the second moments, proving Theorems 1.3 and 1.4 above.

Acknowledgment. This work was supported by NSF grant CNS-2034176. The author
thanks the referee for the numerous helpful comments and suggestions that led to a con-
siderable improvement over the original manuscript.

2. PRELIMINARIES

In this section, we clarify the basic facts and conventions that we use throughout this
paper. It is by no means sufficient for an introduction or a guide to the subject matter.
The reader who seeks such resource may refer to any standard text on algebraic number
theory, e.g. Cassels-Frohlich [7], Weil [49]. For the Tamagawa measure, see Thunder [46]
or Weil [50]. For the Hecke operators, see Shimura [37], Chapter 3; it is written in the
classical language, but all the results there extend to the adelic context in a straightforward
manner.

2.1. Number fields. A number field F' is an algebraic field extension over @ of finite
degree d. We denote by Of the ring of integers of F. Throughout this paper, we fix F'
once and for all, and work over this F' only. For a prime ideal p of F' (more precisely, of
Or), we define the norm N(p) = |OF : p|, the index of p as an additive subgroup of Op.
We extend N(-) to all fractional ideals of F so that it becomes multiplicative on the group
of the fractional ideals of F'. For an element xz € F, we define N(z) = N((x)).

By a place of F';, we mean an equivalence class of absolute value defined on F';, where
two absolute values |- |1,] - |2 are said to be equivalent if and only if |z|; < 1< |z]|2 < 1.
Let us write Pp for the set of all places of F'. Each and every finite place v, or equivalently,
class of nonarchimedean absolute values, corresponds to a prime ideal of O, say p,, and
vice versa. We define || - ||, : F — Q associated to p, to be ||z|, = N(p, ) °"4* where
ord,x is the exponent of p, in the unique factorization of the principal ideal (z). We will
write f for the set of all finite places of F.

On the other hand, every infinite place of F, i.e. equivalence class of archimedean
absolute values, arises from a field embedding F' — C. There are exactly d different field
embeddings o1,...,04, r1 of which have their images contained in R, thus called real
embeddings, and the rest of which consist of ro conjugate pairs of complex embeddings,
so that d = r1 4+ 2ry. Following the common convention, we let o1,...,0,, be the real
embeddings, and 0, 1; = G 4,45 for 1 < j < 73 be the pairs of complex embeddings.
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Each embedding o yields an infinite place on F' represented by the archimedean absolute
value z — |o(x)|. Note that a conjugate pair of complex embeddings define the same
place — hence there are ry + ro infinite places total. As in the finite case, we refer to each
infinite place by the associated embedding or the conjugate pair of embeddings of F. We
sometimes write o | co to indicate that o is an infinite place.

Due to the tight connection between places and primes, places are sometimes referred to
as primes, including the infinite ones. Also we shall use the notations for places and primes
interchangeably when we find it more expedient. For instance, || - ||, means the absolute
value associated to the place v corresponding to p; and the letter v, while typically used
to denote a place, can refer to the prime ideal associated to it.

For each place v of F, let F, be the completion of F' at v. If in addition v € f, let O,
be the ring of integers of F,, and we also choose its uniformizer «, € O,, so that () is
the unique maximal ideal of O,,.

There exists the canonical embedding p of F into R™ x C2"2, defined by

plz) = (o1(z), ..., 0a(x)).

The image p(F') spans a vector space of dimension d over R, which we may identify with
F ®g R. We endow an inner product on F' ®qg R by simply restricting to it the standard
inner product on R™ x C272, so that

(p(x), p(y)) = Zai(m)f’n(y),

and

lp(@)|* = (p(), p(x)) =Y los(=) .
i
For any Z-basis {b1,...,b,} of Op, the discriminant of F' is the quantity

Ap = (det(o3(bj)1<ij<n)’

This definition is independent of the choice of the basis. It is known that |Ap|'/2 is the
covolume of the lattice p(OF) in F ®g R with respect to the metric above.
There exists also the logarithm map Log : F* — R™ "2 defined by

LOg(Z‘) = (log |O’1(l‘)|, v 710g |UT1 ($>|a 21Og |0r1+1 (.’17)|, ceey 210g |0r1+r2 (.’1?)|)

Its kernel is pp, the set of the roots of unity in Op; we write |ur| = wp. Log takes O%
to a lattice in R™*"2 of rank 7 := r{ + ro — 1, called the unit lattice. Its covolume, with
respect to the standard metric on R™ 72, is called the regulator Rp.

2.2. Adeles. The ring of finite adeles Af of F' is the restricted direct product
Ae=[]'F
vef

with respect to (O,),cs, which is the set of all elements x = (x,),ef such that all but
finitely many x, € O,.
We also define the ring of infinite adeles A, to be

A =[] Fo.
o|oo

We identify A, with FF® R by their natural isomorphisms to R™ x C"2, and assign the
metric compatible with that of F'® R under this identification.
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The adele ring Ap of F is the restricted direct product of F, over all places of F|,

namely

Ap= ] B = Aex A
veEPr

For z an element of Ar (or, more generally, of G(Afr) for an algebraic group G, such as
A% or GL(n,Ar)), let us write x, for its coordinate at place v. Similarly, for P C Pp,
let us write xp = H/VGP x,. There is the natural diagonal embedding F' — Ap that is
the product of the embeddings F' — F), over all v € Pr. We identify F with the image
of this embedding.

Ar is equipped with the restricted product topology, whose base consists of all sets of
the form HuePF O,, where each O, C F,, is open, and for all but finitely many finite places
O, = O,. With this topology, Ar is locally compact, separable, and regular Hausdorff,
and thus much of the well-known results in functional analysis apply. In addition, F' C Ag
becomes a discrete and cocompact (i.e. Ap/F is compact) subgroup under this topology.

On each F, we assign an “almost-norm” | - ||, as follows. If v is a finite prime lying
over a rational prime p, then ||z, ||, is the absolute value associated to v, as defined in the
previous section. If v is real, then ||z, ||, is the standard absolute value on R, and if v is
complex, then ||z, ||, is the square of the standard absolute value on C. For z € A, we

let
I2llar = ] lzoll.-
v

The product formula states that if © € F™*, then ||z|[a, = 1.

Another important fact we will use frequently is the strong approximation ([20]; see also
[24, Theorem 2.3]), which states that, for any finite set of places S C Pp, and a connected
absolutely almost simple algebraic group G over F such that G is simply connected and
Gs = I1,es G(F,) is noncompact, G(F) is dense in G(A®) = H/ues G(F,). In particular,
this applies for G = A™ (the affine n-space) and G = SL,,, but not for G = GL,,.

2.3. Tamagawa measure. For each place v of F', we define the measure «, on F), as
follows:

e If v is finite, «v, is the Haar measure on F, normalized so that «,(0,) = 1.

e If v is real, o, is the usual Lebesgue measure on R.

e If v is complex, «,, is twice the usual Lebesgue measure on C.

af:Hauaaoo = Haaa

vef oloo

We also write

for the corresponding measures on Ay and A, respectively, and let
1
arp = |Ap|T2as0.

This is called the Tamagawa measure on Ar. The choice of the constant factor ensures
that ap(Ap/F) = 1.
On each GL(n, F,), there is the invariant measure

wno(A) = |det A" ] awlay),
1<i,j<n
where a;; refers to the (4, j)-entry of A. On GL(n,Ap), we have the Tamagawa measure

wo = [T wnw x [TQ ~ Imll) wn-

v|oco vef
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Define
G, ={A € GL(n,Ap) : || det A||a, = 1},T,, = GL(n, F).

G, is equipped with a measure pu, such that

Wp = Un X Ba
where (3 is the Haar measure on R given by df(z) = dx/x. Moreover, u,(I'z\Gr)

is finite ([46, Section 3]). We write &,, = I',\G,, for short, and normalize p, so that
fin (Xn) = 1.

2.4. Height. We follow Thunder [45, Part I, Section 1] for the notion of height; see also
Schmidt [36, Section 1.1]. On each place v, the height of X, € Mat,,x»(F)) is defined as
follows. First suppose that m =1, i.e. X, = (a1,...,a,) € F*. Then we let

max; ||la;i||, if v is finite
H,(X,)= a?+...+a? if v is real
lai|? + ...+ |an|? if v is complex.

This extends naturally to general m < n, where we write x; for the i-th row of X,,, and
define

Hy(X,) = Hy(m1 A~ Azm).

Here recall that 21 A--- A x,, € Fy(m)

For v infinite, it is sometimes helpful to note the following equivalent definition of
H,. For a (not necessarily square) matrix X of real or complex entries, let us write
|det| X = v/det X Xt*. Then we have

Hy(X,) = || |det| X, ][,
For X € Mat,,xn(Ar) and Xoo € Mat,,xn(As), we define respectively

(21) H(X) = H HV(XV)7 Hoo(Xoo) = H HU(XU)'

vEPR o|oo

The product formula implies that H(X) is invariant under the multiplication by F™*.
This property allows us to define the height over the projective space Gry, ., (F) using
H. Let us recall the definition, although we only need the m = 1 case in this paper, for
which Gry, m(F) = P"7}(F). For L € Gry,,n(F), and X € Mat,,«,(F) any choice of a
representative of L, i.e. a matrix whose row vectors span L over F', we define the height
of L to be H(X). More generally, for g € GL(n,Ap), following Thunder [45] we define
the height of L twisted by g to be H(Xg).

Later we will need a few simple facts about H.,; we state and prove them below.

Lemma 2.1. Let X be an m x n matriz with entries in A.,. Denote by x; the i-th row
vector of X. Then

Ho(X) < Hoo(x;).

s

=1

Also, forn’ < n, if Y is an m X n' matriz consisting of any choice of the n' columns of
X, then

Hoo(Y) < Hoo(X).
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Proof. 1t suffices to prove the corresponding inequalities in case X is a complex-valued
matrix, namely

|det| X < [ Idet|z;, and |det|Y < [det| X.
i=1
The former follows from the well-known inequality

m
[det| X < T llzill
i=1
which can be seen by observing that |det| X = ||z1 A ... A 2|, which is maximized for
fixed [|z1]l,..., ||#m| when the z;’s are pairwise orthogonal. The latter is an immediate
consequence of the Cauchy-Binet formula. O

Given a fractional ideal I of F', we can associate with it the lattice p(I) in the Euclidean
space F' ®g R. Denote by Ap the discriminant of F. It is known that ([36, Theorem 1],
also see [45, Theorem 1))

(2.2) det p(I) = |Ap|? Np(I).

In general, given an Op-submodule M of F™, we can define p(M) C (F®gR)™ by naturally
extending p to F™.

Lemma 2.2. For a lattice L in a FEuclidean space, let \(L) be the length of a shortest
nonzero vector of L. Then for any fractional ideal I of F

VAN ()7 < M(p(I)).

Similarly, take nonzero x € F™, and consider the rank one Op-submodule I -z C F™.
Then

VAN(I)# Hoo () < M1 (p(I - 7))

This lemma is well-known, and there is also a “reverse inequality”

M(p(1)) <\ AAEN (D
see e.g. [21, Lemma 2.9].

Proof. Take any nonzero a € I. Then

%
Ip(a)|* = Z|O'z |2>d<H|aZ 2) > dN(I)7.

The middle inequality is the arithmetic-geometric mean inequality; the one on the right
follows from the fact that J C I = N(J) > N(I) for fractional ideals I, J. The second
inequality follows similarly. O

The following is in a sense a generalization of (2.2).

Lemma 2.3. Let S C A} be an integrable set. Let M be the set of all elements v € F"
such that xy € S. Then ratio of the natural density of p(M), that is,

i volp(M) N By)
V—oco VO](Bv)

where By C (F ®@R)" is the ball of volume V', to that of p(OF) is given by o (S).
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As a corollary, if p(F™NS) forms a lattice in (F®R)™, then its determinant(covolume)
is given by |Ar["2(a}(S))"".

Proof. Choose an ideal I =[], ceph* C Op, and let Sy = [, c¢mh O, be the associated
neighborhood of the identity of Af. For the lemma, it suffices to consider the case S =
v+ S§ for some v € (FNAg)™, since S in general can be approximated arbitrarily well by
taking unions and/or complements of finitely many sets of such form. But in this case,
the lemma is obvious because |Op : I|™" = af(So) = of (5). O

2.5. Hecke operators. This paper employs two distinct families of the Hecke operators,
each for different purposes. To describe the first family, let ¢ : A, — C be a measurable
function. Choose a prime p of F, and write a, = diag(mp,1,...,1), K, = GL(n,0,). Also
for r € R write

Too=(1,...,1, r...,r ) €Ap.
—_——— =

finite places infinite places

The Hecke operator T}, is defined as the integral

1 nd
Tod(g) = m /Kpapr ¢(Np&s gh)dwy (h).

Here, inside the argument of ¢, h should be understood as an element of GL(n, Ar) whose
projection to GL(n, F},) is h and the rest are the identity. It is clear that T,¢ is also a
measurable function on A,.

It is sometimes convenient to realize T, as a sum rather than an integral. To this end,
let us choose a set of coset representatives h € GL(n, F},) of K,a,K,, so that

Kpap, K, = RhK,.
Let Ry, € O, be a set of the coset representatives of O, /pO,. By the theory of the Hecke
operators (see e.g. [37, Chapter 3]; Shimura develops the theory over Z, but his argument

applies to any PID, the main tool being the theory of the Smith normal form), we can
choose the set of the representatives to be
L={h(jia1p,...,0n—j—1,):0<j<n—1a,, € Rp}.
where
1d;
Tp Q1p --- Qp—j—1p

h(j;al,pv---7afTL—j—1,p) = 1

1

The cardinality of £is 1+ Np+ ...+ Np"~! which is also equal to wy(KpayKy). Now
one may write

T, = (N "d
polo) = - Kpap %) };QZ) p3s
The second family of the Hecke operators is denoted by the letter 7, and is more of
a combinatorial device than an operator on the space of automorphic forms. This time,
choose m < n, and write K, = GL(m,F,) for v € f. For a sequence v** D ... D v%m of
nonzero ideals in O, and a measurable function f on Mat,,«,(Ar) invariant under K,
from the left, define the operator T (v*,...,v%") by

T(V“l,...,y“m)f(X)z/K ot - f(’y_lX)dw,,('y).
iag(m, o
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Clearly the output is also a measurable function on K, \Mat,,x,(Ar). There is also the
invariant called degree, defined by

deg T (v*,...,v%") = (# of cosets of K, in K, diag(7%,...,7¢m)K,).

The operators of the form 7 (v%,...,v%) together with R (which acts by the scalar
multiplication), under the usual addition and the composition operations, generate a
commutative ring with 1 called the Hecke ring. The map deg extends to a homomorphism
from the Hecke ring to Z.

In general, for a sequence I1 O ... D I, of nonzero ideals in O, define

T(L,... L) f(X) = (H Tt u“dv“m))) F(X),

vef

and also, for an ideal I # 0 of O, define

TOFX)= Y. TU,....In)f(X).

Iy Im=1I

Both are elements of the Hecke ring.

2.6. Miscellaneous. Throughout this paper, we adopt the following notation. We iden-

tify an element (z1,...,7x) € (A%)* with a k x n matrix
11 e T1np
X = € Mathn(AF)
Tk1r .. Tkn

whose ¢-th row is equal to ;. When we say X is linearly independent or etc., we mean
the row vectors of X has those properties. In particular, for f : (A%)¥ — R and g €
GL(n,Ar), we write f(Xg) for f(x1g,...,zLg).

We omit the subscripts when there exists no ambiguity as to what they should be,
e.g. dp = duy,dw, = dw,,,, and so on. Also, if f is a function defined on G(Ap) for
some algebraic group G over F' and zg € Gg for some finite set S C Pp, f(xg) is to be
understood as f evaluated at z, for v € S and at Idgr,) for v ¢ S. We extend this
convention to other similar situations, e.g. if x € G(F) then f(z) is f evaluated at the
diagonal embedding of = to G(Ap).

3. THE “LEVEL 1”7 CASE

3.1. A reduction, and a word about the proof. Let S be the set of all functions

[+ A%t — R such that f = foofe = foo - [[,c¢fvs where fo is a Riemann integrable

function on (F ® R)™ that is bounded and compactly supported, and for v finite f, is the

characteristic function of 7» O} for some e, € Z, all but finitely many of which are 0.

Accordingly, let S be the set of all functions f : (A%)* — R such that f(z1,...,21) =
, . ; NO)

Hle f@O(x;) for f@ € S. Thus #$ s the characteristic function of [I,cem” Of for
, , @

some el(,z) € Z, all but finitely many of which are 0. Write I(9) = ]_[Vefpf;” for the ideal

corresponding to the support of ftfi).
The goal of this section is to prove
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Theorem 3.1. Let 1 < m < k < n be integers. Let D be an m X k row-reduced echelon
form over F of rank m, and f € S*. Then

(3.1) | X r0 X = [ A0 (x).

Xn xernym (Ag)™
indep.

One might reasonably name this the level 1 subcase of Theorem 1.2, since for f € S*
the sum inside the left-hand side of (3.1) is invariant under the right action of GL(n, O,)
forall v € f.

A few remarks are in order before we proceed:

(i) Without loss of generality, by reordering f()’s and the columns of D if necessary,
we may assume that the pivots of D are its first m columns, i.e. D is of the form

1 k... %
D:

1% - %

(ii) There is one small but important trick that seems to facilitate the computations to
come later. For g € GG,, denote by g* its inverse transpose. The map g — g¢* then
induces a degree two automorphism on X, since it is compatible with the action of
T',,. In particular, it holds that

[ romxpd = [ Y DX o)

Xn Xe(Fn)m X, Xe(Fmn)ym
indep. indep.

and in the proof of Theorem 3.1 to follow, we work with the right-hand side.

The bulk of our effort for proving Theorem 3.1 is devoted to the following asymptotic,
which one may take as a discrete analogue of [26, Theorem 2].

Proposition 3.2. There exists a sequence {p; }icz., of primes of F' with lim,_, Np; = 00
such that, for each g € G,

(3.2) T, | S rovxe) | - / F(D" X)da} (X)
xe(mmym (Ag)™

as i — 00.

The proof of this statement we provide later in this section may appear technical due to
the use of the adelic language, but the main idea is in fact quite simple: the left-hand side
of (3.2), when unraveled, reduces to a “lattice-point counting estimate.” We illustrate the
point by briefly explaining the simplest case, where F = Q,k =m =1,D = (1),g =1d, in
the classical language. For ¢ : X,, — C and a rational prime p, T,¢(Id) is the average of
¢ over the sublattices of Z" of index p scaled by p~'/". Denote those sublattices of Z" by
Ai,...,Apq1. Then, for ¢(g) = sz#zg f(xg), where f: R™ — R is, say, the characteristic

function of a bounded open set B, T,¢(Id) equals

p+1

Y s

—1 ze€A;
220
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But upon inspecting the distribution of the points of Aq,...,Ap41 — they are “equidis-
tributed mod p” in Z", other than at the origin — one observes that this equals

p+1 Zf 71/n Z f l/n

TEL™ xEPL™
240

As p — oo, the first sum converges to vol B = ffd:n, because B has = p - vol B points
of p~1/"Z™; the second sum vanishes (but, if we allow z = 0, converges to f(0)). Our
proof of the general case has more or less the same structure as this toy example; although
the setup is a bit more intricate and the error estimates are longer, the “equidistribution
mod p,” Lemma 3.8 below, lies at the heart of the argument, and everything else is built
around it.

The two lemmas below, combined with Proposition 3.2, yield Theorem 3.1. As with
Proposition 3.2, both of them have counterparts in the original argument by Rogers [26].

Lemma 3.3. Let ¢ : X,, — R be integrable. Then

/Xn pdp = /Xn Ty pdp.

Proof. This is immediate from the right invariance of dpu. O

This lemma is, in a sense, a “correction” of the error in [26] that we pointed out in the
introduction. The following lemma is an adaptation of [26, Theorem 1] to our context.

Lemma 3.4. Let {p;}icz., be a sequence of primes of F such that lim; ..o Np; = o0.
Let ¢ : X, — R be a measurable function such that, for almost every g € X,, Ty, #(9)
converges to a finite real number I as i — oo. Then ¢ is integrable, and

/ pdp = 1.

n

Proof. For any real-valued function F and h € R, write [F]p, := min(F, k). For any h > I,
the dominated convergence theorem implies

/ Ty, du — T

n

as i — 0o. Also by Lemma 3.3, we have

/Xn [P]ndp = /X

n

T, [élndp < / [Ty, 6lnd.

Xn

Taking ¢ — oo and then h — oo here, by the monotone convergence theorem we obtain

the upper bound
/ pdp < 1.
Xn,

In particular, this shows that ¢ is integrable.
On the other hand, Fatou’s lemma and Lemma 3.3 imply that

I:/ lim T}, ¢du < hm/ Ty, pdp = / odp,
X,

i—00

which is the lower bound that we need. O
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Proof of Theorem 3.1, assuming Proposition 3.2. By Proposition 3.2,
dlg)= >, [(D"Xg")

Xe(Fn)m
indep.

satisfies the assumptions of Lemma 3.4. Thus
| du= [ fOUXdapnx),
Xn (A}ﬁ)m

But the left-hand side here is equal to the left-hand side of (3.1), as remarked in comment
(ii) under the statement of Theorem 3.1. O

3.2. Proof of Proposition 3.2: preparation. First, let us determine the sequence
{pi}icz.,. We choose it to be the sequence of the primes p, in the ascending order of the
norm, satisfying
(i) p = (7p) is principal. If necessary, we adjust m, by a factor of O}, so that 7, maps
to m, under the natural embedding Op — O,.
(ii) p is coprime to I for any i.
By the Tchebotarev density theorem, there are infinitely many such p.
The next, lengthier, step is to write out the left-hand side of (3.2) to recast our problem
as that of “lattice-point counting,” loosely speaking. We first need some preparations.
Fix g € G,, from now on. Define € A% by 1, = detg}; we have ||n|la, = 1. Also
write a,, = diag(n,1,...,1). Then g*a;1 is an element of SL(n,Ar), where the strong
approximation applies. Thus there exists k € SL(n, F') such that

(3.3) (kg")e=1"(an)s

for some I € [], c¢SL(n, O,) arbitrarily close to the identity. Let us make [ so close that,

for each v € f, [, is equal to the identity matrix modulo a sufficiently large power of
o)

7, (depending only on g and f), so that [, fixes the set (Hl T (’),’j) (ay)y,

1
., when

multiplied from the right.
In what follows, p is a prime that satisfies the two conditions (i),(ii) above, and has a
sufficiently large norm, so that it satisfies the additional condition

(iii) gp € Kp. This implies n, € Oy, so that (a,), € K.
Our starting point is the following lemma, that simplifies the impact of g on our sub-
sequent computations.

Lemma 3.5. With all the notations and assumptions above, we have

1 5 _ 1
T f(D"Xg") :————/ F(Np=® D™ X h*ay )duw (1)
xe(FZ")m wp(Kpapr) Kpap Ky Xe;)m
indep. indep.

for some f € S* such that fr= ff and @M (fo 0 D) = agbo"(foo o D¥).
Proof. From the definition of T}, we have
r * 1 r L *
| X 0N | s s [ Y DX (N gy sy 1)

Xe(rmym wp (KpapKy) papKp xemmym

indep. indep.
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The set of independent m-tuples of F™ is invariant under the right multiplication by
GL(n, F), so we can replace X by Xk above. Also, by (3.3),

K(NEEgh)* = Npxikg™h* = N (kg")ool(an)eh"
Plugging this in, we obtain

wp<K:pr>/K S F(NpIT DX (kg )aol (@) h* )y ().

pap Ky xemnym
indep.

From our assumptions on ! and a,,, we see that this is equal to

ST fe o 2 TONP DX (k) ) ()

pap Ky xemnym
indep.

1 / _1
. S F(Npoo" D™ X (kg*) oo h™ (an)g)dwy (h)
wp (KpapKy) Kpap Ky XE(XF;W ! :
indep.

1 / — 1 y—1
=" F(Npo" D" Xh*a,((kg*) ta,) 2 )dw, (h).
wp (Kpap Ky) Kpap K, XE;W K K P

indep.

To simplify, we introduce f(X) := fe(X) foo (X ((kg*) " ay)<). Since det((kg*)ta,), = 1
for all o | 00, foo and foo have the same volume, and by the same principle, so do fo, o D'
and fo o D'. Therefore, the above is equal to

1 / ~ _ 1
_— F(Npoo™® DY X h*a, )dw, (R),
wp(KpapKp) Jx Z ( )iy ()

pap Ky Xe(Fn)ym
indep.

as desired. O

In order not to overburden ourselves with notations, in what follows below, we abuse
the language slightly and continue writing f in place of f . It does not make a difference
in the end, since we are interested in volume computations, and f and f have the same
volume. In summary, the quantity under question has become

1 / S
_— f(Npoo" D™ X h*a,))dw,(h).
wp(KpapKyp) J Z n)dep(h)

pap Ky xepmym
indep.

As discussed in Section 2.5 above, we may express this integral as the sum

1
(3.4) f(Nps"? D" X h*ay).
Kpapr hze:ﬁ Xe(zf;)m

We make one more modification before the main computation.
Lemma 3.6. For each h € L, there exists v € GL(n, F') such that
(vh*)p € GL(n,0y), (yay)y € (ay)y - GL(n, O,) for all finite v # p.

More precisely, let I = ﬂ i1 I® . Then there exists a subset R C I that bijects to Ry by
reduction modulo p. For h = h(j;a1,p,...,an—j—1,p) € L, the corresponding v = vy(h) will
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14
W(j;ala"'aa‘n—j—l): ’

An—j—1 1

where a; — a;,, under the said bijection.
Proof. Consider the Op-module map
vl 19 - 0,
where the first map is inclusion, and the second map is the restriction to the place p.
Because I is coprime to p, ¢ is a surjection. It also induces the Op-module isomorphisms
I/pI =19 /pIV) = 0, /pO, =: F.
Choose any R’ C I so that R’ bijects to R, under ¢. Next, choose § € Op such that
8p = 1(mod p), d,,(6n), € p, " ' N O, for all finite v # p.

Let R := dR’. This step ensures that both a and na are integral at all finite places for
any a € R, a property we will need below.

For h = h(j;a1,p,...,an—j—1,p), we match v = v(j;a1,...,an—j—1,), where a; is the
(unique) element of R such that ¢(6~a;) = ¢(a;) = a;,p € Ry; in particular we have (a;), —
aip € pO,. Our choice of R allows us to check by straightforward matrix multiplications
that (yh*), € GL(n,0,) and that (v,a,), € (ay), - GL(n,0,) for finite v # p, as
desired. 0

Let M be the set corresponding to £ by Lemma 3.6. It will be convenient to partition
M= U;L;Ol MU where

MY = {y(jiar,...,an_j1) s a; € R}.
By replacing X with Xv(h), (3.4) can now be rewritten as

1 1
— fe(D" Xyh*ay) foo (N (p) ™72 (DY Xyay) o)
wp (Kpap Ky) ~eM XE;W ! !
indep.
1 1
(3.5) =— foo(N(p) ™77 (D" Xvay) ),
wP(KPaPKP) 7;,1 xg(pn)zm: indep. - v

Dt X el]; 1;’721 % (1()yn—1

where

If?i)l = I(l) . Hp;ordvﬁ.
vef

3.3. Proof of Proposition 3.2: the main term. It turns out that the main contribu-
tion to (3.5) comes from the partial sum

1 I
(3.6) — > > foo(N(p) ™77 (D" Xvyay)0)-
wp(KpapKy) ;
FEM(O) XE(F™)™ indep.
Dtr X e[]; I,(,Z—)l x (1(i)yn—1

In this section we compute an asymptotic for (3.6).
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For X € (F™)™, let X be the m x (n— 1) matrix obtained by removing the first column
of X. Let us write explicitly

Ti0 L1 ... Tigp—1 Tl ... Tin-1
x=|: L] x=
Tmo Tml - Tmp—1 Tml - Tmon—1
Thanks to our assumption about the shape of D (comment (i) after the statement of
Theorem 3.1), for 1 < ¢ < m we may assume that the i-th row of X is an element of
I,,(Ii—)l x (I)»=1 and similarly for X. For convenient reference, we also write out
Z107p + Z?;ll a;Ti; Tl ... Tlp-1
(3.7) X7 = z : 3
TmoTp + Z?;ll QGiTmi Tyl - T

where v =v(0;a1,...,a,-1) € MO,

We first show that those X for which the corresponding X is dependent mod p — more
precisely, its rows, reduced mod p, are linearly dependent over F,, — do not contribute at
all to (3.6), provided Np is sufficiently large.

Lemma 3.7. Take the notations above, and suppose X is dependent mod p. Then at
least one row z;7y of Xy satisfies Hoo(2577) > Npt/™d where the implied constant is only
dependent on n and IV, ... 1(™),

Proof. Using the surjectivity of the projection SL(m,Or) — SL(m,F,) we can find A €
SL(m, OF) such that one row of AX is a multiple of 7, i.e. has entries in >_, pI. Then
the corresponding row of AX+~ also has entries in ), pJ (), but it is guaranteed to be
nonzero, since the rows of AX+~ are independent. Hence, for the matrix Y € (3, I())»m
obtained from AX+~ by dividing that row by 7,

Hoo(X7) = Hoo(AX7) = N(p)Hoo (Y) > rem) N(p)

(the latter lower bound is a consequence of the reduction theory — see e.g. [6, Lemma
16.2]). Lemma 2.1 now implies that H.(z;y) > Np'/™ for some i, where x; denotes
the i-th row of X. By Lemma 2.2, p(2;7) € (F ® R)" has length > Np!/™¢ and thus
p(xiy) - (an)oo has length > Np'/™d where the implied constant depends only on 7 and
I pm), O

It follows as an immediate corollary that
Joo(Np~77 (D" Xyay)0) = 0

for Np sufficiently large (independently of X), since f,, is compactly supported, as desired.
This leaves those X for which X is independent mod p. The following lemma is the
crux of our proof of Proposition 3.2.

Lemma 3.8. If X is independent mod p, then the number of v € M© such that the
vector

n—1 n—1
(38) (Zaixu,...72aixmi)“ S I(l) X X I(m)
i=1 i=1

represents any given coset of Iél,)l /1317(71,)1 X - X Ié@/p[r(:l) is exactly Npn—1—m,
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Proof. Observe that, since the rows of X are independent mod p, the map

n—1 n—1
(al, . ,an_l)tr — X(al, . ,an_l)tr = (Z AiT1gy -y Z aimmi)tr
i=1 i=1

n=l-m preimages.

is a surjective linear map from IFg_l to F)', so each image has Np
The proof will be complete if we identify the domain with R”~! and the codomain with
10, o1, - 1) o™

Indeed, restricting R modulo p we obtain every element of F,. Also, thanks to our
choice of R in the proof of Lemma 3.6, (na), is integral for any finite v and a € R, and

thus
n—1 n—1
(Z AiT1gy -y Z aixmi)“ S 17(71,)1 X X 17(7?111)
i=1 i=1

holds for any ay,...,a,—1 € R. Taking (3.8) mod p completes the proof. O

Lemma 3.8 implies that, as v runs over M) and (z10,. .., Zmo)" runs over IL If]i,)l,

the first column of X+ (see (3.7) above) hits each and every element of [], Iéi,)l exactly

Np»~1=™ times. Therefore, combined with the fact that only those X for which X is
independent mod p contribute, (3.6) can be rewritten as

anflfm 1 .
— > foo(Np™ 72 (D" Xay)oo).
wy (KpapK,y) xE(Emym >~ L
DT XET; I(i_)l x (1(1)yn—1
rkz)?=7n

Here rk, means the rank over F,. Since

an—l—m -
wy (KpapK,)  Npm

(1+0(1)),

there is no harm in considering

1 1
(3.9) Npm Z foo(Np nd (DtrXan)oo)
P Xe(Fnym
ptrxel]; 19| x1()yn-1
rky X=m

instead. We claim that, up to an error that vanishes as Np — oo, this is equal to

1 I
(3.10) N > Foo(Np~ 77 (D" X ap)oc)-
Xe(Fn)ym

DX €[], Ii}ill x (1(1)yn—1

Let us set aside the claim for now, and explain first how the right-hand side of (3.2)
comes about from (3.10). (3.10) can be computed by rewriting it in the classical language.
Applying Lemma 2.3 to the support S C AF™ of fe((D* Xa,)¢), the image under p of the
elements X € (F™)™ such that D" X € [], Iéi_)l x (I)»=1 forms a lattice L C (F ®@R)™™
of rank mnd and determinant

-1
|AF|mn/2 ( ff((D“Xan)f)da?m> )

mn
Af
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Accordingly we write (3.10) as

1 tr
W Z Joo((D Xan)OO)»

1
XeNp ndL

or more suggestively,

1 1
- det(Np~ 72 L) foo (D" X ay) 00)-
TR X N L) (D X))
XENp ndL
Note that det(Np_ﬁL) = Np~"det L. This is a Riemann sum, and f., is Riemann
integrable, so we are in a situation to appeal to the following well-known principle.

Proposition 3.9. Suppose A CR" is a (full-rank) lattice, and ¢ is a Riemann integrable

function on R™. Then
Z det(eA)p(z) — /godx
xz€el

as € — 0.

We conclude that (3.10) is equal to, in the Np limit,

|Ap|7m/? fe(D" Xay)e)dog™ foo (D" X ap)oo)dal"

o0
AT N

- / S X) ]|~ dacpm
(h3)™

= / F(D"X)da™,
(Ag)™

(recall ||n|| = 1) matching the claim of Proposition 3.2.

We return to showing the equivalence of (3.9) and (3.10) up to a small error. We start
by claiming that the condition rk, X = m in (3.9) can be replaced by tkX = m. Since
rk, X < rkX always, it suffices to consider the case rk, X < rkX = m. But by a similar
(shorter) argument as in the proof of Lemma 3.7, such X, and thus X too, has a row
whose image via p has length > Np'/™4 and thus X contributes zero to the sum for Np
sufficiently large.

Next we claim that the condition rkX = m may be discarded altogether. To this end,
consider those X such that X is dependent. Without loss of generality, we may assume
that the last row of X is dependent on the other rows. Then z,,, the last row of X, lies
in the rank < m submodule

N = (If]ﬁ? x (I<m>)"—1) N(Fer®Fr1®...® Fap_1)

of 17(171) x (I™)n=1 " swhere e; = (1,0,...,0) € F". The sum (3.9) restricted to all such
X is crudely bounded by
(3.11)

N%m > [T rOWp= 7 (Xay)e) > FE (N~ (2ma1)o0)-

Xe]‘[’” 1 I< i) L X(I@)n=1 i#Em acmEN

The inner sum counts the number of the vectors of the rank < md lattice Np~#a p(N) -
(@)oo inside a bounded set, and thus by an appropriate adaptation of Proposition 3.9, it
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is of size Oy,1,(Np™/™). Similarly, the outer sum is Oy s ,,(Np™ '), and thus (3.11) is of
size Oy 1., (Np™/™~1) = 0(1), as desired.

3.4. Proof of Proposition 3.2: error terms. To complete the proof of Proposition
3.2 and thus of Theorem 3.1, it remains to estimate the intended error terms

1 1
3.12 —_— Np nd DtrX
(3.12) wp (KpapKyp) Z, Z‘ foo (NP7 ( Yan)so)
~yeMU) XE(F™)™ indep.
DtrXeniffl’llx(I(i))n—l

for each 1 < j <n — 1. Here we will show that (3.12) vanishes as Np — oo. To this end,
it suffices to assume m = k, and work with the simpler

(313) =T NN DRF NG R CINE

yEMUU) Xe(mm

indep.

where J = I, -1 + Zle ID and goo(X) = |foo(X(ay)e0)], since this is no smaller than
(3.12), possibly up to a constant factor — recall that f., is bounded by assumption.
For v = y(jia1,...,an_j—1) € MY and

Tio T11 ... Tin-1
X = ,
Tmo Tml --- Tmn-—1
X7 is of the form
~ n—1
Zio - Z1,5—-1 T1Tp +Zi:j+1 Ai—5T15 L1541 e Tin—1
~ n—1
Tmo - Tm,j—1 TmjTyp + Zi:j+1 Ai—jTmi  Tmj+1 " Tm,n—1
This time we let
LT1,5+1 T1,n—1
X = :
xm,jJrl e Tm,n—1

We first consider the partial sum of (3.13) over those X for which rk, X = m. Then
we can repeat the same argument as in the previous section (specifically, Lemma 3.8 and
the paragraph following it) to prove that the restricted sum is equal to

1 1
e Np~7d Xo0);
- > gel s0);
Np] " Xe(J™)™ indep.
rkp X=m

the core fact is that X mod p induces a surjective map ]Fg_j o Fy". Dropping the rank
and independence conditions on X, this is a sum over a lattice in an mnd—dimensional

mnd

Euclidean space of determinant Oy j(Np~na ) = Oy s(Np~™™). Thus we see that, by
Proposition 3.9, it has size O, ;(Np~7). B )
It remains to consider those X for which rk, X = m’ < m. If m" = 0, then X €

(pJ)(=3=1™ and (3.13) restricted to all such X is equal to

1 _ 1
NpJ > Joo (NP7 77 Xoo).
XeJimx(pJ)(n=)m indep.
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As can be seen from the proof of Lemma 2.1, nonzero vectors of p(pJ) has length > ;
Np'/d. Hence, for Np sufficiently large, this sum is really taken over J7 scaled by
Np~1/nd_ By Proposition 3.9, it follows that it is of size O, _j(Np~7(1=m/m),

If m’ # 0, then we divide further into two cases. First suppose that j < m — m/.
Denoting by X the m x (n — j) matrix consisting of the last n — j columns of X, and by
4 the (n— j) x (n — j) second block of 4. Arguing similarly as in the proof of Lemma 3.7,
we can find A € SL(m, Op) such that precisely m —m’ rows of AX# have all their entries
in pJ. However, since rkp X = rkp X4 > m/ is forced, at least one of those rows must be
nonzero, and thus again as in the proof of Lemma 3.7, we may show that for some row z;
of X, p(z;7y) has length > ; Np'/™? Tt follows that such X does not contribute to (3.13).

It remains to consider the case 7 > m — m/, which is a bit more involved than the
previous cases. Without loss of generality, let us assume that it is the first m’ vectors of
X that are independent mod p. Also let us write

91:H9c@a92= H QC(Q»
i=1

i=m/+1

where g% (X) = F (Xay,). Then the restriction of (3.13) to all the X with tk,X = m’
is bounded by

= 2D DINED DI AC ST S B SRl 2 )

’YGM(j) ylE(JnZ'm’ indep. B y2€(J1L)'m,7'm.l7
rkp Y1 =m/ Y3 mod p€spany (Y1)

where )_7 denotes the matrix formed by the last n — j — 1 columns of V', and Yo modp €
span, (Y1) means that each row of Y5 taken mod p is contained in the Fy-subspace of
]Fg_j ~! spanned by the rows of Y;. Again using the fact that Y; induces a surjective
mapping F;L*J;l — ]F;”/ (note we must have n—j —1 > m/ indeed), and adapting Lemma
3.8 and its subsequent argument, this is equal to

1 _ _
(3.14) Npi+m’ § g1 (Np™77Y] o) § G2(Np™77Y3 o),
v1€(m)™’ indep. Yo Ji(m=—m’) x (Y7)
rkp V1 =m/

where we write
K(Y) = (pJ) D=7 4 (span(Y) N J(=9))m=m’)  (pn=i))(m=—m")
with ¥ being the matrix

n—1
Zizjﬂai—jiﬂli L1541 - T1,n—1

n—1
Zi:j—‘rl aifjwm/i xm/»j+1 e Tm/ n—1

and span(Y') the F-span of the rows of Y.

Similarly as in the m’ = 0 case, as Np grows, the sum over Y3 in (3.14) is really the
sum over a @p-module of F-rank (m —m’)j + (m —m/)rkp Y = (m —m/)(j +m’), scaled
by N(p)~/™?. Therefore, by (two applications of) Proposition 3.9, (3.14) is of the size

—j—m/4+m’+ L (m—m')(G+m’ -4
Oy (NpI 7 Fmam=m )=} < 0, 4 (Np~#),

which vanishes as Np — oc.
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4. EXTENSIONS OF THEOREM 3.1

4.1. Primitivity. For positive integers m < n and a finite place v of F', we say an m X n
matrix X, with entries in O, is primitive (at v) if X, can be completed to an element
of GL(n,0,). For X with entries in multiple places, such as F,Ag, or Ap, we say X
is primitive if it is primitive at each of those places. On the other hand, we say the
vectors x1, ..., &, € OF span a primitive lattice (in OF) if their O,-span coincides with
the intersection of O] and their F,-span; for vectors with entries in multiple places, we
extend the definition in the same manner as earlier. The two concepts can be easily seen
to coincide:

Lemma 4.1. Let m < n be positive integers, and v € f. X € Mat,,xn(0,) is primitive
at v if and only if its row vectors x1,. .., T, span a primitive lattice.

Proof. Suppose first that X is primitive. Let X € GL(n,0,) be its completion. Any
v € O} Nspang, (21,...,%m,) has an expression v = c121 + ... ¢y, for ¢; € F,. Notice
that vX ' = (¢1,...,¢m,0,...,0) € O7; this proves that the z;’s span a primitive lattice.

Suppose conversely that the x;’s span a primitive lattice. We can complete it to a
O,-basis of O} by adding n —m elementary vectors, that is, vectors of the form e; € O},
whose i-th entry is 1 and the rest are zero. Without loss of generality, we may assume we
can choose to add e,,41,...,e,. Accordingly, we claim that the matrix

— T —

- Cm+1

- e, -
has unit determinant. It suffices to demonstrate @ € Mat, x,(O,) such that QP = Id,,.
Thanks to the assumptions, for any 1 < i < n we can write e; = Zj<m Cij T +Ej>m Cij€;
for some ¢;; € O,; we take Q = (¢ij)1<i,j<n-

In case F' = Q for example, our notion of primitivity coincides with the usual notion
of primitivity for X € Mat,,«n(Z), which is that it can be completed to an element of
GL(n,Z). The direction (usual notion) = (our notion) is clear. For the other direction:
if X cannot be completed to an element of GL(n,Z), then rkp, X < m for some prime p,
and hence there cannot exist an element of GL(n,Z,) completing X,.

By the theory of the Smith normal form, each X € Mat,, «, (O, ) is of the form

X =« diag(nit,...,7om™) - P,

where v € GL(m, 0,), P € Mat,,«»(0,) is primitive, and 0 < a; < ... < a,, where the
a;’s are determined uniquely by X. We allow a; to be oo, interpreting 75° = 0. If any
a; = 00, then the row vectors of X are linearly dependent over F),, and the converse also
holds. On the other end of the spectrum, a; = ... = a,, = 0 if and only if X is primitive.
Moreover, we have the following lemma.

Lemma 4.2. Let X € Mat,,xn(O,). Then we can write
X =hP,

where P € Mat,xn(O,) is primitive, and h € K, diag(w%,..., 7% )K, for some 0 <
a1 < ... < ay,. Furthermore, the coset hKK, is uniquely determined by X.
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Proof. The existence of such P and h is clear from the preceding discussion. For the
uniqueness claim, suppose hP = b’ P’ for some primitive P, P’ and h, h' € K, diag(n2,...,7%)K,.
Since the rows of P and P’ have the same F,-span and therefore the same O,-span, we
can actually complete them into elements P, P’ of GL(n,®,) whose last n — m rows are
identical (cf. proof of Lemma 4.1 above).

Let h (resp. ') be the block matrix whose first m x m block is h (resp. h’), and the
next (and last) (n—m) x (n—m) block is the identity matrix. We have h, h’ € GL(n,0,),
and also

P =P,
from which it is immediate that h~1h’ € K, and thus hK, = V'K, O

In this section, we use the Hecke operators 7 to implement an inclusion-exclusion argu-
ment that expands the family of functions for which Theorem 3.1 applies. The propositions
below serve as the starting point.

Proposition 4.3. Chooses C f. Let fs be the characteristic function of HVES( mym - and

for,s be the characteristic function of the set of primitive m x n matrices in [, (O0)™

Then
X) = Z T(I)fpr,s(X
I

where I runs over all nonzero ideals generated by s.
Conversely, for 0 <i<m and v € f, let

TOW) =T, 10, ,0).
N—— —

m—1 %

fors(X) =11 (Z(—l)iN(V)i“‘”/QT“)(V)) fs(X).

ves

Then

ves \i=0

Proof. The former equality is an immediate consequence of Lemma 4.2. The latter follows
from [37, Theorem 3.21] — originally due to Tamagawa ([44]) — which states that

D (=1D)IN() DT W) and ZT

i=0
are inverse operators to one another. O

Proposition 4.4. Choose s C f. Let f = frfoo be a function (A%)™ — R such that fu
is an integrable function on (AL)™, and fy is the characteristic function of [, ;(O7)™.
Also, let for = for.sfoo, Where for s is the restriction of fr to those X such that X, is
primitive for v € s. Choose any g € GL(n,Ar). Then

Yo fxg = > ZT ) for(Xg),

Xe(Fm)m Xe(Fn)m
indep. indep.

where I runs over all nonzero integral ideals generated by s. Moreover,

Y - Y H(z YN DT, ))f(Xg)-

Xe(rm)m XE(F")"L ves \1=0
indep. indep

Proof. Both follow from Proposition 4.3 by summing over all Xg such that X € (F™)™
is linearly independent. ([l
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4.2. Rogers integral formula, primitive case. We now prove the main results of this
section.

Theorem 4.5. Let f = fffoo, where fo is Riemann integrable on (AZ)™ that is bounded
and compactly supported, and fr is the characteristic function of Hyef(Oﬁ)m. Also, let
h € GL(m,Ay) be such that h, has entries in O,, and h, = Id for all but finitely many

v e f Then
/ S s WmMﬂffwwmw

Xn xepnym AR)™
indep.

As a consequence, we have

| T = [ T

n
Xn Xe(Fn)ym (Ap)m
indep.

for any element T in the Hecke ring.

Proof. For each v € f, take the Smith normal form of h,; that is, h, = vy,a,0,, where
Y,0, € K, and a, is a diagonal matrix. Then (h~1Xg), € (O?)™ if and only if Xg €
Ya, (OF)™. Now use the strong approximation to find k& € SL(m, Op) such that kv, =
l,diag(n,,1,...,1) for n, = detvy, € Of and I, € SL(m,O,) sufficiently close to the
identity so that it fixes the set a, (O})™. Then, writing a = [], c¢a., we have

ST Xgy = Y fTR T Xg) = > fela ' Xg) foo (kT Xg).

Xe(Fn)ym Xe(Fn)ym Xe(Fn)m
indep. indep. indep.

Therefore Theorem 3.1 applies, and we conclude that it equals

/ fla™ 1 X)dalm :/ f(R 1 X)dav™
(Ag)m (AF)™
as desired. n

Theorem 4.6. Choose s C f. Let for = for,sfoo be a function (A%)™ — R, such that foo
is Riemann integrable, bounded and compactly supported, and fors is the characteristic
function of the set of m x n matrices over Ay primitive over all v € s. Then

/X Z fpr(Xg)dun—/(A” for(X H Cs(n —1) 1/ Foo(X)da™,

W xemrym nym (An)m
indep.

where

G(s) = [Ja - Nw)™).

ves

Proof. Write f = f¢foo, where f is the characteristic function of [, ¢(O})™. By Propo-
sition 4.4, we have

/ Y. fe(Xg)du= / > H(Z )'N ()i DRTE ()) f(Xg)dp.

Xn xe(rnym Xn xermym pes \i=0
indep. indep.
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For N > 0, let sy be the set of all finite primes v such that N(v) < N. Using the
dominated convergence theorem, the right-hand side can be rewritten as

M / > I (Z JN@) CDRTO W >> F(Xg)dp.

Xn xe(Fnym vesy \i=0
indep.

The product over v of the T’s here is finite, and is thus an element of the Hecke ring.
Hence Theorem 4.5 implies that the above is equal to

]\}gnoo/ n H <z 0 Z ( )Z(Z 1)/2T(Z( )> f(X)da?m

™ vesy

g [T (S ST

vesN

- / for(X)dor
(a3

It remains to compare the volumes of f and f,,. We have

X)dap™ = I) for(X)d
fy d00aE = [ ST (X

= M (NN(I)™ o (X)da
S QNI [ 0

where I runs over all nonzero ideals generated by s, and Q™ (I) = deg T (I). Proposition
4.7 below then completes the proof of the theorem.
O

Proposition 4.7. Write Q) (I) = deg T(I), and
G(s) =TI -Nw)™)~!

ves

as before. Then
2™ = GM)G(n = 1)+ G(n—m+ 1),

Proof. Tt suffices to prove the “local” version of the proposition, which goes as follows.
Fix v € f, and write ¢ = N(v), QU™ (k) = deg T(v*), and ¢, (k) = (1 — ¢=%)~!. Then we
want to prove

(4.1) D QU (kg = Gu(m)Gu(n = 1) G (n—m + 1),
k=0
Later we will prove that

m—1 k+i _
¢ =1
4.2 QU™ (k)
(4.2) 1;[1 pra

Let us assume this for now. We will prove (4.1) by induction on m. For m = 1, it is
trivially true. For the induction step, start by rewriting the left-hand side of (4.1) as

1 > qk+nl—1 -1

QUMY (k).

qkn
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By the induction hypothesis, this equals

— qm*% (q7rL—1<V(n - 1) . (:V(n -—m+1)— g,(n) .. Cy(n —m+ 2))
= qm,%CVOL - 1) ' Cu(n —m—+ 2) (qm_1CV(n —-—m+ 1) - Cu(n)) 3

but one can easily verify that

" G (n—m+1) -G (n)
qm—l _ 1

=(¢ ) (n—m+1),

proving (4.1), as desired.

Thus it remains to prove (4.2) above. We again argue by induction on m. There is
nothing to prove for the base case m = 1. For the general case, observe that each and
every coset appearing in 7 (v*) has a representative of the form

T *
ﬂ_gm Am—1

where 0 = ag < a1 < ... < a, = k, and each entry to the right of ot %1 g chosen
uniquely mod 7"~ “~*. Since

m—1

H q(m—i)(ai—aifl) — qa1-i---<+(lm717

i=1
it follows that

Ql(’m)(k/,) _ Z qa1+...+am,1,

0<a1<...<am-1<k

which in turn implies
k
QUI(k) = q"Q\" V(a)
a=0

(think a = a,,—1). By the summation by parts, we obtain

+1_1

QU (k) = QU (k) L

ko oo
— -2 (@@ - e a-).
a=1

The induction hypothesis implies

QU V(@) = QY V(a—1)
qa+1 -1 qa+m—2 -1 3 qa -1 qa+m—3 -1

1 pr 1 P

a(,m—2 _ 1
= Qi = HE e,
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Therefore
k+1 _ mf k
QW = QW = e

q9- a=1
k+1 _ m—1 _

L

(m-1) @ =1 (m) kA (m—1) "t —q
= QUM T~ (@) — Qi) T

From this, we obtain

R YN O B A Sl C U ') I YN
(1+ LT emm = (T + T o

m—1 m-+k—1

q 1 )y _ 4 —1om-1)

qm+k:—1 -1

My =24~ “om=1)(py.
= QU = QI
This completes the proof of (4.2). O

4.3. Rogers integral formula, the higher level case. As an application of Theorem
4.6, we prove the following result. As will be shown later in this paper, the full adelic
Rogers formula, Theorem 1.2, will follow as its corollary.

Theorem 4.8. Let 1 <m < n, and let f : (A})™ — R be of form f = fifeo such that foo
is a bounded and compactly supported Riemann integrable function on (AZ)™, and fr is
the characteristic function of v+n[],c(Op)™ C (A})™ for some v € (A})™ and n € Aj.

Then
/ > f(Xg)dpn =/ F(X)dap™.

Xn Xe(Fn)ym An)""
indep.

Proof. Let K, = GL(n,0,), and let K,(e,) be the kernel of the projection K, —
GL(n, O, /7 O,) for an integer e, > 1; we put K, (0) = K,. Also, for the sequence e =
(ev)ver where e, € Zxo, all but finitely many of which are 0, write K(e) := [, c¢ Kv(er).

Our idea for the proof is to choose an appropriate e such that f(X) = f(Xk) for
k € K(e), and consider

1
(4.3) m Z Z f(Xgk)

kEK/K(e) Xe(Fm)m
indep.

instead, noting that this and ) xe=nym f(Xg) yields the same value when integrated over
indep.
X, We will show that (4.3) is equal to

(4.4) "R > f(Xy),

Xe(Fn)ym

indep.
where f = fgfoo is a certain modification of f that will be described more carefully below.
The key point is that f¢ will be the characteristic function of a set “centered at” 0 € (A})™
to which Theorem 4.5 becomes applicable, yielding us Theorem 4.8.
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Let us fill in the details of the argument outlined above. The sequence e = (e, ) ¢t is
determined by the condition

e, =min{e, € Z>o : 77 v, € 1, (0))™}.

Indeed e, = 0 for almost all v. It can also be easily checked that fe(Xk) = fe(X) for
ke K(e).

f is defined as follows: fOO = foo, fu = f, for v with e, = 0, and for those v such that
e, >0, fl, is 0, times the characteristic function of S, := (v, + 1, O}™)K, C (F*)™, and
o, is the constant satisfying

O-Va;r/”n (SV) nm nm
(45) ‘KV . Ku(eu)l - au (UV + 771/01) )
We defer the proof of the equality of (4.3) and (4.4) to the next section, and contiue with
the proof of Theorem 4.8.
We need the following description of S,, in order to apply Theorem 4.5 later. Recall
that, by the theory of the Smith normal form, we can write

v, = - diag(npt, ..., 7o) - P

L %4
for some v € K, and P € Mat,,,«x,,(O,) primitive, and a; < ... < a,,. Suppose m’ is the
greatest index for which b := ord,”n, > a,,s. Then, with a := diag(72*,..., 7™ 72, ...,72),
we have

S, =v(aP 4+ n,0O""™"K,, = yaPy,,

where P,/ is the set of all elements in Mat,, x, (O, ) whose first m’ rows form a primitive
m’ X n matrix.
By Proposition 4.3, we have
LX) =01p,, (a7 X) =0, | S(-1)IN@)ED2TO0) | 1ogm (a1 X),
i=0

where 7' is T in dimension m’; more precisely,

1(0) 1 v
T f(X) B Wy,m/ (K’ 0/ K/ K!a! K, f (( Idm—m/> X> dwy’m ’
where K] = GL(m/,0,) and «, dlag( JLv,...,v) with m’ — ¢ 1’s and i v's.
Therefore we may apply Theorem 4.5 to (4. 4 and (4. 5) ensures that it has the desired
measure. 0

4.4. Equivalence of (4.3) and (4.4). We continue with the notations from the previous
section. From the definition of S, it is clear that

Y Xk =015, (X),
keK, /K, (ey,)
where o, is the order of the stabilizer of v, + 1, O™ in K,(e,)\K,. Since
v, + 0, 0™ = ya(P + diag(nl), ..., wm)O™™)

where i =b—ay,....lpy =b—ap,lpyy1 =... =1, =0and P € P, 0, is also the
order of the stabilizer of P + diag(r:,...,7lm)O™™. To show that (4.3) and (4.4) are
equal, all we need to show is that this o, satisfies (4.5). This will be done through a series
of lemmas below. We write ¢ = N (v) for brevity in what follows.
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Lemma 4.9. The order of the group GL(n, 0, /7.0,) is ¢~V (¢" = 1)(¢" —q) - -+ (¢" —

")

Proof. The case [ = 1 is well-known: |GL(n,0,/m,0,)| = (¢"—1)(¢"—q)--- (¢" —q" ).

For general [, consider the surjection GL(n, 0, /7,0,) — GL(n, 0, /r,0,) induced by

reduction modulo m,. This map has kernel Id + 7, Mat,, x,, (O, /7,0, ), which has order
(1-1)n? O

q .

Lemma 4.10. Let 1 <m/ <m <n, and let P € P,,,. Alsoletl =11 > 13> ...> Ly >
l41=...=1ly = 0. Then the order of the stabilizer of P+ diag(w's, ..., xlm)O"™ (mod
7l ) in GL(n, 0, /7L0,) is
g™ " mIIGL(n — m', 0, /7L 0)| [ [ 1.
i=2
Proof. Without loss of generality, we may assume that P is the matrix
1

1

whose (i,4)-entries are 1 for ¢ = 1,...,m, and the rest of the entries are zero. Then the
stabilizer consists of matrices of the form A + B, where A is of the form

Idm’Xm’
(Mat(nm/)xm,((’),,/ﬂf,(’)y) GL(n —m/, Oy/ﬂf,C’)l,)> ’

and B is an n X n matrix whose i-th row is an element of (75O, /7, 0,)" fori =2,...,m/,
and all the remaining entries are zero. It is clear that the set of such matrices has the
said order. (]

Lemma 4.11. Continue with the notations and assumptions above. Then we have
(4.6) |stab(P + diag(nl, ..., alm)Onm)|
|GL(n, 0, /7., 0,)|
Proof. By the previous two lemmas,
|stab(P + diag(wl, ... 7l )Onm)|
|GL(n, O, /7,0,)]
g O P gt g ) (g g
q=om* (gn = 1) -+ (¢ — q" 1)

’
m

! —m/ - n—m/ 21— n2 n —l4 —m/ n—m/ _nm/
— g D)= tn? T gt . g’ em)=nm ¢ ) (1 — ! + 1),
i=2
Thus the left-hand side of (4.6) equals

Cl/(n)_l T Cu(n —m' + 1)_1 = q_”(ll"'"-"‘lm’).

’
m
qlnbl(n—m’)-‘,—(l—l)(n—’rn')z—(l—l)n2 an(ll—li) . q—nLl(n—nLI)—nm’
=2
_ q—n(l1+...+lm/)qm/nl . qlm’(n—m’)+(l—1)(n—m’)2—(l—l)nz—m/(n—m/)—nm'
_ q—n(l1+...+lm/)qlm/(2n—m’)+(l—1)(—2nm’+m'2)—2nm’+m’2

_ —n(l ++l.ml
=q (h . )7
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as desired. O
Recalling that |K, : K, (e,)| = |GL(n, 0, /7%~ 0,)| and o™ (P,,)) = ¢, (n) "L -+ ((n—
m’ +1)71, Lemma 4.11 implies

oo™ (Sy) _ q—"(l1+---lm/) ap™ (Sy)
K, 0 Ky (e ap™(Pmr)

as desired.

—nmb nm nm
=4q =, (UV+7]VOV )7

4.5. Proof of Theorem 1.2. We will prove, for a Borel integrable f : (A%)k — R,

(17) [ X g [ oo

n Xe(Fn)k
indep.

by a series of reductions to smaller families of functions, until we reach those functions
covered by Theorem 4.8.

First of all, it is clear that we may assume f is nonnegative, since the general f is a
difference of nonnegative functions. It is also clear that we may assume f is compactly
supported and bounded: choose a countable sequence of compact measurable subsets S7 C
Sy C ... of (A%)¥ such that |y Sy = (A%)*, and define fy(X) = 1g, (X)-min(f(X), N).
Then by the monotone convergence theorem, if (4.7) holds for all fy, then it holds for f
too.

A compactly supported and bounded measurable function f can in turn be approx-
imated pointwise by compactly supported simple functions. Both are dominated by a
Riemann integrable function e.g. || f|loo times the characteristic function of any open set
containing supp f, hence the dominated convergence theorem applies, implying that (4.7)
holds for f if it holds for the simple functions. Such a simple function, in turn, can be
approximated pointwise by a finite linear combinations of the characteristic functions of
the sets of the form Sg x S, where Sg = v + nHVlfOl’}k C (AP)* and So C (A ) is a
bounded measurable set.

In summary, we reduced our task to showing (4.7) for the functions f of the form
f =1gs1g_. The only remaining obstruction to applying Theorem 4.8 to this f is that
1s.. may not be Riemann integrable. We choose a sequence of bounded, compactly
supported continuous — therefore Riemann integrable — functions f., y on A”F that
converges to 1g_ in the L'-norm. Accordingly we write fy = lg,fs n, Which of course
converges to f in the L'-norm. The pointwise limit of fx and f can disagree at most on
a null set, say Z. However, the set

{g€ G, : F"gNZ # ¢}

has p,-measure zero, and hence the convergence

> InXg) = Y f(Xg)

Xe(Fn)k Xe(Fn)k
o Zero rows O Zero rows

holds for p,-almost every g. Hence we can cite the dominated convergence theorem and
conclude that (4.7) holds for f. This completes the proof of the first formula claimed by
Theorem 1.2.

The other formula of Theorem 1.2 follows from the previous and the equality

k
Yoorx=>> > fD"x),

Xe(F”)k m=1 D Xe(Fn)m

no zero rows indep.
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where D runs over all m x k row-reduced echelon forms over F' of rank m. More precisely,
suppose f > 0 without loss of generality, and consider the sum

k
> HDRX),

m=1 Dy

where D runs over all m x k row-reduced echelon forms over F of rank m, each of whose
nonzero entries, say z, satisfies (i) |ord,z,| < N/N(v) (ii) |Log(z)]] < N. Then this
expression is a finite sum that is pointwise monotonically increasing in N. Of course, the
same can be said of

k
Y0 Y. [(DEXy).

m=1 Dy Xe(Fmn)m
indep.

Hence we can invoke the monotone convergence theorem — twice, for Ap and X, respec-
tively — to complete the proof.

5. SECOND MOMENT ESTIMATES

5.1. Proof of Theorem 1.3. We recall the setting: » > 3, and f : A% — R is a
nonnegative function of the form f = frf.,, where f¢ is the characteristic function of an
integrable set [, .¢ A, C A}, and f satisfies, for any v € F™* and a constant C, a bound
of the form

vef
A foo (@) foo (y)da, < Ca&(foo)min(l’gllg Iyl1ZH)™

A few lemmas are in order.

Lemma 5.1. For~y € F* and A CR, let
1
M(y,A) = — (# u € O} such that the largest coordinate of Log(vyu) is in A).
wr

Then, if A= (—o0,k] and (r + 1)k —log |[N~| > 0,

1 Vr+1
M(v,A) = — -

(77 ) RF r!
If (r + 1)k — log |[Nv| < 0 then M(~,A) = 0. In particular, for general A C R bounded
from above, M (~y, A) is finite.

((r + Dk = log [N7])" + O (((r + 1)k —log [Ny])"™).

Proof. M(v,A) is precisely the number of points of the unit lattice of F, translated by
Log ~, whose maximum coordinate is at most k. If (r + 1)k < log |N~|, then there exists
no such points. If (r + 1)k > log |N~|, this is the number of the points of the translate
of the unit lattice inside the simplex formed by connecting the vertices (k, ..., k, —rk +
log |[N|), (k, ..., k,—rk + log ||[Nv|, k), and so on, which is a regular r-simplex of side
length v/2((r 4+ 1)k — log |[N7|). The proof follows from the volume formula of a regular
simplex and a standard lattice-point counting estimate. ([

Lemma 5.2. Fiz v € F*. Then

S [ Fehfqunldat = Op((1 + |log N[ )Co ()

u€O0
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Proof. By assumption, for each u € O%, the integral inside the sum is bounded by the
smaller of

Cal(fo) or Ca"al,(foo),
where a = min, ||yul|; . If a > 1, or equivalently, if the largest coordinate of Log(yu) is at
most 0, we bound the integral by the former. For an integer k£ > 0, if a € [e’(k“), e %), or
equivalently, if the largest coordinate of Log(yu) is in (k, k + 1], we bound the integral by
Ce ™" (fs). Thus the left-hand side of the claimed equality is at most wrCa™ (fso)
times

M (7, (=00,0]) + > M(, (k,k + 1])e™"".
k=0
From Lemma 5.1 it follows that

My, (=00,0]) = Op(1 + |log |[N¥||"),

and also that
M(y, (z,z +1]) = Op((1 + |log [N~|[")z"1).
But then

o0
> ke = 0p(1),
k=0
which completes the proof. ([l

Now Theorem 1.2 implies that

J.

On the right-hand side, the former integral is simply ar(f)2. It remains to show that the
latter sum of integrals is Op(Cap(f)). Let us rewrite it as

2 Z n f(x) f(cx)da™.
N<(€c1):§*1

2
> fao) | du= [ St @)da @+ Y [ 1@ feda” @)

zeF\{0} ceF™*

Thanks to the exact sequence
0— Op — F* — Pringp — 0

where Pring denotes the set of all principal fractional ideals of F', we can rewrite the
above as
(5.1)

2085 S S [ pedslDudap | fulam) (D))o,

IePring 4O}, AL
N(I)<1

where v(I) € F* is a choice of a generator of I. Since two different choices of v(I) differ
by an element of O}, (5.1) is well-defined.

Any I € Pring has the unique factorization I = pg~", where p, ¢ are coprime integral
ideals of F of the same ideal class. Therefore, (5.1) is, up to a constant factor depending
on F only,

62 LY X [ enituaodor [ fulom)falOue)dor,

p ueOr

1
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where ¢ runs over all integral ideals of F', and p runs over the integral ideals coprime to
q and in the same ideal class as ¢, and Np < Ngq; v = v(pg~*) here.
To handle the integral over A}, we observe that, for any J, € F,

fo(z) fo(dpay)dal = al (A, N 6;114,,)
Fy
(5.3) < min(ay (Ay), |61, ") (A)).

Hence, (5.1) is bounded by a constant term times

S R

P weO}

We now apply Lemma 5.2 to bound this by
1
Z N Z Or (14 |log INY|[")Caf(f)) -
q P
It remains to show that
1
14 |log|N~v||") = Op(1).

By the Dedekind-Weber theorem, the left-hand side is bounded by a constant (depending
on F) times

Z W(l +1log" Nq) < Cr(n —3/2),

q

as desired, completing the proof of Theorem 1.3

5.2. The case of balls and annuli. In what follows, V,, denotes the volume of the unit
ball in R™. In accordance with the metric we assigned on A, the (closed) annulus at
origin of radii Ry < Ry in A7 is the set of x € A7 satisfying

Ri< ) lzo+2 ) Jao|* < B3,

o real o cplx

where | - | is the standard Euclidean metric on R™ or C", as appropriate. Ry = 0 is
permitted, in which case the annulus is in fact a ball of radius Ry. With respect to the
measure o', a ball of radius R has volume V,,4R™, same as the volume of the ball of
radius R in R™ with respect to the standard Euclidean metric.

The purpose of this section is to prove the following lemma, which shows that Theorem

1.3 is applicable when f,, is the characteristic function of an annulus at origin.

Lemma 5.3. Let n > 2, and let fo be the characteristic function of an annulus on A%
centered at origin. Then for v € F*,

n
(o)t < ol (o) min (1, demin 1)
Agc oo
Proof. The case d = 1 (i.e. F = Q) is trivial, so let us assume d > 2. Choose a place
o | 0o minimizing ||v]|; !, and write a = |||/, 1. We assume a < 1, since otherwise again
the lemma is trivial.
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Write B := supp foo, an annulus at origin of radii Ry < Rg. Let P, : (FQR)" — F
be the orthogonal projection onto the o-coordinate. Also, for z € F", write P (B, z) =

g

{y € [T F* : (y,2) € B} i.e. the “slice” of B at z. Then we have
I#o

(5.4) o) froa)del < [ [ Tdaj | daz.
AL, P, (v~'B) P} (B,2) )0

l#o

Assume first that o is real. Then P,(y~!B) is the ball in R™ at origin of radius aRs.
On the other hand, if z has length r,

/ H daj = Vn(d—l) ((Rg _ ,],.2)n(d—1)/2 — max(0, R% _ T2)n(d_1)/2> .
P3(B.2) )

I o
From the fact that

d

I(R2 _ TZ)n(d—l)/Q _ —T?’L(d _ 1)(R2 _ r2)n(d—1)/2—1 <0
’I"

for r € (0, R), one can deduce that

n d— d—
/ H daj’ < Vn(d—l)(R;( R )
P (B,2) 1|

I#o

Thus the right-hand side of (5.4) is bounded by

aRs 4 .
VnVn(d_l)/O (R;L( -1 R?( 71))7“"_1(17“

ViV ta
S (d 1)an(
n

anvn d—1) p n n
%a (de - Rld)

‘/nvn - n_.n
< D gl (foo).

n(d—1 n(d—1 n
RQ( )_ Rl( ))R2

nVnd

If o is complex, then P,(y~!B) is the ball in C* = R?" at origin of radius aRs.
Similarly as in the real case, we obtain the bound

‘/van(d—2) n._n
——————a"al,
2nVnd

(foo)

for both cases. By Stirling’s formula, one can compute that

VaVaa—1) VanVa(a—2)
max ,
nVnd QTLVnd

) < (de)™.
Collecting all our computations so far, we can bound (5.4) by

(ade)" ol (foo),
which is the desired bound. O
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5.3. Estimate for P"~!(F). In this section, we prove Theorem 1.4. Recall that, for
g € G, we defined Pg(g) to be the number of points on P*"~1(F) whose twisted height
with respect to g is at most B. We will construct the function f : A% — R such that

Psg)= . [f(Bx'zg).

z€F™\{0}

where

finite places infinite places

Due to the way the height is defined, it suffices to consider the case B = 1 only.

Let h = hr be the class number of F', and choose a set of prime ideals {1, ..., I} that
also serve as the set of the representatives of the ideal classes of F. For each 1 < i < h,
let a; be the norm 1 idele such that (a;), = 7or ) for v € £, and (a:)e = ||N(L;)4 ||, for
o | co. In addition, let

r1 r9
"= {(xu <o axr1+7’2) € RM*T2 Zmi + meJri N O} ’
i=1 i=1

and choose a fundamental domain D C H of the unit lattice of F', Pr: R™ "2 — H to be
the orthogonal projection onto H, and define Log" : A” — R "2 by

Log"(z) = (log |l , - .-, log [|z[ls,, ., )-
Then there exists a one-to-wg correspondence between

1<i<h,zeF"\{0},a,zg primitive,}

nt an =19 (4,z):
FT(F) and 5(g) {(’) (29)oe € (ProLog")~1(D)

To describe the correspondence, take z € P*~1(F) and let z = (z1,...,2,) € F" be any
representative of Z. Then there exists exactly one 1 < i < h such that a;zg is F-equivalent
to a primitive element of A%, that is, there exists an element ¢ € F™*, unique up to the
units, such that ca;zg is primitive. To elaborate, for each v € f let J, C F, be the
fractional ideal generated by the entries of (2g),, and take J = [] v°*4’»; now choose the
unique i so that I;.J is principal — in fact, I;J = (¢~!). Furthermore, by the definition of
D, there exists u € O%, unique up to the roots of unity of F', such that the infinite part
of uca;zg lies in (Pro Log") (D). We take x = ucz, up to the roots of unity.

Therefore, if ¢ = ¢epoo, where ¢¢ : Af — R is the characteristic function of the
primitive vectors, and ¢ : A% — R is the characteristic function of the set of xo €
(ProLog™)~1(D) with Hyo(200) < 1, then

0 otherwise.

h .
1 ifxe S(g) and H(xg) <1
S blaneg) - { (9) and H(zg)
i=1
Accordingly we let

h

1
5.9 T)=— a;x).
(55) )= 5 D olain
One may now apply this f to our formulas to study the statistics of the rational points on
P"~1. The formula below may be useful for such purposes; see Schanuel ([31]) or Thunder
([46]) for similar computations.
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Proposition 5.4. Let ¢ be as above. Then

r T2 r1+ro—lonr
_ VnVgantraignn gy

¢(z)da™ = 7
AT |Ar|2¢r(n)
Proof. From the previous sections (see e.g. the proof of Theorem 4.6), it is clear that
1
¢fda” S .
AP Cr(n)

It remains to concern ourselves with ¢,. On each F, for o | oo, take the polar coordinates
da? = r*~Ydr,df, if o is real, and da? = 2"r2"~1dr,df, if o is complex. Let e, = 1 if o
real and e, = 2 for o complex. Then

Pooda™ = (nVn)“(Zann)”/ H r"dr, H r2n=tongy,

o real o cplx

Az,
ST Ll B | R
o|oo

where the region of integration is the set of all (ry)s00 S (R>0)™ " such that

H ree <1, and | e, logr, — %7 log H Ty eD.
ploo

o|oo
o|oco

To simplify, let us take the change of coordinates x, = e, logr,. Then the above integral
becomes

Vyz"l‘/QTinrlqtranrg / H enzadm(ﬂ
o|oo

where the region of the integration is the set of all (2, )|« satisfying

Zmagm and CEU—%Z% eD.
ploo

o|oo
o|oo

We make one more change of coordinates, by putting

€o, ,
ylzzxavyizxai_ 291 fori=2,...,r +ra
o

or equivalently,

e €. .
Loy = %yl — Y2 — e = Yritroy Toy = Yi + g’yl fori=2,...,r1 +1ra.
One computes the Jacobian matrix to be
€o
S -1 ... -1
Eog 1
(&cgi) B d
- . . b
8yj 1<4,j<ri+r2 : .
e”r1d+7‘2 1

whose determinant is equal to 1. Therefore, we have

Gooda™ = V1V 2 1202 /e"yldyl e AYp g,
A,
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where the region of the integration is given by the conditions

Y1 < 07 (_y2 T T Yritrgs Y2, - - uyr1+7‘2) €D.
Therefore
i Pooda™ = V1V 2n 17271902 Ry,
This proves the proposition. (Il

Let us now estimate the second moment

/ | X | e

zeF\{0}
As in the previous section, this is equal to
/ fe(z1) fe(x2)da™ (z1)da™ (z2) Z x) fp(cx)da™(x),
ceF* An

and the first integral is simply
a(fp)?* = (CB")

V,:l ‘/27;% n’t +r2—12nr2 hFRF

|Ap|% Cr(n)wr
by Proposition 5.4. The second sum of integrals can again be handled as in the previous
section to be shown to be bounded by a constant times

ZZZ/ [B(x) fB(yux)do

p ueOy

(5:9) Y Y Y B stwmstapunacn

P u€O5 1<i ]<hp

with
C =

q
where p, q,7 = v(pq~!) are as in (5.2). Hence we are led to investigate
Z ¢ a;x)¢(ajyux)da™ Z Vo(aja; *yuz)da™
u€Oy, " u€Oy,

for each 1 < 4,5 < hp. Applying (5.3) to the Af part of the integral, we find that we may
bound this by

Z Qj)oo moo)gboo((aja;l'yux)oo)dago,

u€O0%

Pr with B; = min(1, ordy, (¢)). Moreover, we may bound

> dsollaja; yur)s) < 1,

ueOr,

whereq:q-lfﬁl.--l,;

since for each 7o, € A%, ¢oo((aja; 'yuz) ) is nonzero for at most one u € O}. Therefore

n
Z )p(aja; ' yur)da™ < 70[1(@ —.
ueOr, |AF| 2 (NQ)TL

We may now proceed as in the estimate of (5.2) to prove that (5.6) is of size Op(a%(fB)),
as desired.
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