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SEUNGKI KIM

Abstract. We formulate and prove the extension of the Rogers integral formula ([26])
to the adeles of number fields. We also prove the second moment formulas for a few

important cases, enabling a number of classical and recent applications of the formula
to extend immediately to any number field.

1. Introduction

1.1. History and motivation. The Rogers integral formula [26] (also see Theorem 1.1
below) is one of the main tools in the geometry of numbers, that allows one to study the
statistical properties of the points of a random lattice. It is the natural generalization of
the celebrated Siegel integral formula [38], which Siegel stated at the end of the paper
without proof.

Theorem 1.1 (Rogers [26], Siegel [38] for case k = 1). Let k < n be positive integers, and
f : (Rn)k ! R be a Borel integrable function. Let Xn = SL(n,Z)\SL(n,R) be the moduli
space of the lattices in Rn of covolume 1, and µ be the unique right SL(n,R)-invariant
probability measure on Xn. Then

(1.1)

Z

Xn

X

x1,...,xk2Zn

indep.

f(x1g, . . . , xkg)dµ(g) =

Z

(Rn)k
f(x1, . . . , xk)dx1 . . . dxk.

In addition, let us interpret (Rn)k = Matk⇥n(R), the set of all k ⇥ n matrices over R.
Then

Z

Xn

X

X2Matk⇥n(Z)
no zero rows

f(Xg)dµ(g)

=

Z

(Rn)k
f(X)dX +

k�1X

m=1

X

D

N(D)n
Z

(Rn)m
f(DtrX)dX,

where the sum over D is over all m ⇥ k row-reduced echelon forms over Q of rank m,
N(D) is the density of the vectors x 2 Zm such that xD 2 Zk.

Since their development in the mid-twentieth century, these formulas of Siegel and
Rogers — called themean value formulas in the literature — have been applied extensively
to the study of lattice problems, such as the packing and covering of Rn by spheres, and
they still stand as one of the most powerful tools for such problems. Indeed, Davenport-
Rogers [8] had provided the best known lower bound ⇡ 1.68n2�n for the sphere packing
density in dimension n, until Ball [5] improved it to ⇡ 2n2�n several decades later. After
a few more decades, Venkatesh [48] adopted the method of Rogers [25] to further improve
it to ⇡ 65963n2�n for all su�ciently large n, which is the current best record. Moreover,
Rogers [29] remains the best known bound on the covering density by a ball to this
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day, although for the covering by the general convex bodies, there is a recent substantial
improvement by Ordentlich-Regev-Weiss [23].

One also considers the distributional variants of these lattice problems, for instance,
questions such as “What is the µ-measure of lattices that yield at least this much packing
density?” Investigating problems of this kind relies heavily, if not entirely, on the Rogers
integral formula. The quoted problem above, in particular, had been intensively studied
in a series of works by Rogers (see e.g. [27], [28]) and Schmidt (e.g. [33], [34]; also see
the references in [34]). Recently, their ideas and methods have been further developed by
the author ([15], [16]), Södergren (e.g. [41], [42]) and Strömbergsson-Södergren [40], with
applications to the study of the Epstein zeta functions ([43], [39]).

Perhaps surprisingly, nowadays the mean value formulas have become a standard part
of arsenal for homogeneous dynamics as well. Since the late 1990’s to the present day, they
have been employed in countless works in the field for various purposes, including a number
of influential works, such as Eskin-Margulis-Mozes [10] on the quantitative Oppenheim
conjecture, Kleinbock-Margulis [19] and Athreya-Margulis [3] on one-parameter flows,
Marklöf-Strömbergsson [22] and Athreya-Margulis [4] on counting problems, and so on.
To quickly give one concrete application among many, the Rogers formula yields the upper
bound portion of a logarithm law for free, that is, a statement of the form

lim sup
t!1

�(⇤gt)

log t
= ↵,

where � is some function on Xn, ⇤ is a generic element of Xn, (gt)t2R is a one-parameter
subgroup of SL(n,R), and ↵ is a constant depending only on � and n — see [19], [3], [18]
for instance.

Naturally, there have been numerous e↵orts to extend the mean value formulas to a
variety of contexts. There are variants that impose various di↵erent conditions on the sum
on the left-hand side of (1.1), such as summing over the primitive elements of Zn — see
Section 1 of Schmidt [34] for examples. More recently, there are versions for the rational
points on Grassmannians [17], translation surfaces ([47], see also related [2]), and for cut-
and-project sets [30], the latter two proved by ergodic theoretic methods. There are also
extensions to S-unit lattices [14], to ASL(n,R) ([9], [1]), and to sums over translates of
Zn ([12], [1]), which require one to consider the quotient of SL(n,R) with respect to a
congruence subgroup.

1.2. The main theorem. The goal of the present paper is to prove the following theorem,
which extends the Rogers integral formula to the adele of a number field.

Theorem 1.2. Let F be a number field, and Xn be GL(n, F )\Gn, where

Gn = {A 2 GL(n,AF ) : k detAkAF
= 1}.

Also let 1  k < n. Then for a Borel integrable function f : (An
F )

k ! R, we have
Z

Xn

X

X2(Fn)k

rows indep.

f(Xg)dµ =

Z

(An
F )k

f(X)d↵nk
F ,

where µ is the unique right Gn-invariant probability measure on Xn, and ↵F is the Tam-
agawa measure on AF , the Haar measure on AF normalized so as to descend to the Haar
probability measure on AF /F .



ADELIC ROGERS INTEGRAL FORMULA 3

In addition, we have
Z

Xn

X

X2(Fn)k

no zero rows

f(Xg)dµ

=

Z

(An
F )k

f(X)d↵nk
F +

k�1X

m=1

X

D

Z

(An
F )m

f(DtrX)d↵nm
F ,

where the sum over D is over all m⇥ k row-reduced echelon forms over F of rank m.

We note that the case k = 1 has been proved by Thunder [46, Lemma 1], who applies
it to refine Siegel’s lemma. Also see Venkatesh [48, Theorem 1], where the case k = 1 and
of level 1 for the cyclotomic fields is proven in the classical language.

The main idea of our proof of Theorem 1.2 is inspired by the original proof by Rogers of
his formula [26], although his argument contains a gap. Rogers argues that the left-hand
side of (1.1) is equal to the limit of the integral of the sum

X

x1,...,xk2Zn

indep.

f(x1g, . . . , xkg)

along a certain family of unipotent orbits in SL(n,R), which in turn is equal to the
Lebesgue measure of f . We now know both claims to be true by hindsight, but in proving
the former he cites an incorrect statement about the fundamental domain of Xn ([26], p.
256, lines 2-8). We circumvent this problem by replacing the integration over unipotent
orbits by the estimates on certain Hecke operators. This idea first appeared in the author’s
previous work [17], in which it was implemented in the classical language.

By this method we obtain the so-called “level 1” case of the adelic Rogers formula
(Theorem 3.1 below). To extend it to all levels and thereby fully prove Theorem 1.2, it
turns out that we need the adelic version of the primitive analogue of Theorem 1.1, i.e.
the statement

Z

Xn

X

X2(Zn)k

completes to SL(n, Z)

f(Xg)dµ(g) =

0

@

nY

j=n�k+1

⇣�1(j)

1

A

Z

(Rn)k
f(X)dX,

a result due to Schmidt [32]. Such a statement (Theorems 4.5 and 4.6) is derived from the
level 1 case by an inclusion-exclusion argument, which again involves the Hecke operators.
The “higher level” version (Theorem 4.8) follows from this by a simple folding-unfolding
trick on the sum over (Fn)m, and subsequently an approximation argument yields Theo-
rem 1.2.

It is easy to translate Theorem 1.2 into the classical language, and unsurprisingly,
certain recently proved variants of the Rogers formula (e.g. [14], [1]) follow immediately
this way. Let us also demonstrate a quick example involving a number field other than Q:

Corollary. Let F be a number field of class number 1, and Xn(F ) = SL(n,OF )\SL(n, F⌦
R), equipped with the probability measure µ. Let � be the Lebesgue measure on F ⌦ R

normalized to assign covolume 1 to the lattice obtained by the natural embedding OF ,!
F ⌦ R. Then, for a Borel integrable f1 on Matk⇥n(F ⌦ R),

Z

Xn(F )

X

X2(On
F

)k

rows indep. /F

f1(Xg)dµ =

Z

(F⌦R)nk

f1(X)d�nk,
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and
Z

Xn(F )

X

X2(On
F

)k

no zero rows

f1(Xg)dµ

=

Z

(F⌦R)nk

f1(X)d�nk +

k�1X

m=1

X

D

N(D)n
Z

(F⌦R)nm

f1(DtrX)d�nm,

where the sum over D is over all m⇥ k row-reduced echelon forms over F of rank m, and
N(D) is the density of the vectors x 2 Om

F such that xD 2 Ok
F .

This follows from Theorem 1.2 simply by taking f = 1Onk
f

f1 and noting that

GL(n, F )\Gn/K ⇠= Xn(F ),

where Of =
Q

⌫-1 O⌫ and K =
Q

⌫-1 GL(n,O⌫) (see e.g. [11, Appendix A.3]). The class

number 1 condition can be dropped, by taking an appropriate adaptation of the proof
of Theorem 3.1; moreover, we can average over any rank n torsion-free OF -submodules
of (F ⌦ R)n of a given Steinitz class, and obtain the same formula. For general F ,
GL(n, F )\Gn/K has Cl(F ) connected components, each being a moduli space of the OF -
modules of each Steinitz class; our proof of Theorem 3.1 carries over if we restrict Xn to
any of these components.

Another point worth noting is that

N(D)n =

Z

Anm
f

1Onk
f

(DtrX)d↵nm
f

,

where Af is the finite part of AF and ↵f is the Haar measure on Af that assigns measure
1 to Of. By replacing 1Onk

f

with other suitable function, one can obtain the congruence

subgroup variant of the above corollary.

1.3. Second moment estimates. Even the simplest case k = 2 of the classical Rogers
integral formula alone has proved to be tremendously useful in the literature, through the
second moment estimate of the lattice-point counting functions that follows from it. We
present an adelic analogue of such, as an application of Theorem 1.2.

Theorem 1.3. Let n � 3, and suppose f : An
F ! R is a nonnegative function of the form

fff1, where ff is the characteristic function of
Q

⌫-1 A⌫ , where each A⌫ is an integrable

subset of Fn
⌫ , and f1 is a function on An

1 satisfying a bound of the form, for any � 2 F ⇤

and a constant C > 0,

(1.2)

Z

An
1

f1(x)f1(�x)d↵n
1  C↵n

1(f)min(1,min
�|1

k�k�1
� )n;

here ↵1 is the Haar measure on A1 compatible with ↵F in Theorem 1.2. Then

Z

Xn

0

@
X

x2Fn\{0}

f(xg)

1

A

2

dµ = (↵n
F (f))

2 +OF (C↵
n
F (f)).

The reason we require a condition such as (1.2) is that, when applying Theorem 1.2 to
f and k = 2, we confront an expression of the form

X

u2O⇤
F

Z

An
1

f1(x)f1(�ux)d↵n
1.
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Since O⇤
F is in general an infinite set, in order to show this sum is not too large, we need

some bound on the inner integral that approaches zero reasonably quickly as max�|1 kuk�
approaches infinity.

Examples of functions satisfying (1.2) are:

• any function of the form f1 =
Q

�|1 f�, where each f� : Fn
� ! R�0 is bounded

and integrable, with C =
Q

�|1 supx2Fn
�

f�(x)

• the characteristic function of a ball or an annulus in An
1 centered at origin (see

Section 2.2 or 5.2 for the metric on A1)

For the former, (1.2) follows quickly from the Hölder inequality; for the latter, it is
proved in Lemma 5.3 below. The interest in the functions of the latter kind arises from
the idea of Venkatesh [48], who interpreted rank-2 Z[⇣d]-modules, where ⇣d is a primitive
d-th root of unity, as lattices in R2'(d) with the rotational symmetry coming from the
multiplication by ⇣d, and then exploited this symmetry to finesse an improved lower
bound on the sphere packing density in certain dimensions.

The numerous known results that rely on the k = 1, 2 cases of the Rogers integral
formula — e.g. [35], [3], [4], [12] — may thus be extended almost immediately to the
adelic context, by simply plugging in the estimate of Theorem 1.3 and repeating the
argument verbatim. For instance, we have the following generalization of the famous
discrepancy bound of Schmidt [35, Theorem 1].

Corollary. Let n � 3. Let � = {SV }V >0 be an increasing (ordered by set containment)
family of Borel sets SV 2 (F ⌦ R)n of ↵n

1-measure V , whose characteristic functions
satisfy (1.2) with uniform C. Define, for a rank n torsion-free module M ✓ (F ⌦ R)n of
covolume 1,

D(M,V ) =
|M \ SV |� V

V

Choose any non-decreasing function  : R>0 ! R>0 such that
R1

0
 (s)�1ds converges.

Then for almost every M (in the sense of the Haar measure on GL(n, F )\Gn/K),

D(M,V ) = O(V �1/2 log V  1/2(log V )).

Remark. To obtain the second moment estimate in the case n = 2, one could either appeal
to the spectral theory of automorphic forms, as in [3, Section 4.2], or prove the Rogers
formula in case n = k = 2, as in [35, Section 8]. The latter, and the cases n = k in general,
could in fact be obtained using the method of the present paper, though the fact that
GL(n,AF ), while transitive on (AF \{0})

n�1, is not transitive on (AF \{0})
n necessitates

an additional ingredient in the argument.

We also prove the following estimate for the rational points on the projective spaces,
which may be seen as yet another analogue of the primitive lattice points in the classical
context.

Theorem 1.4. Let n � 3. For B > 0, let PB(g) be the number of the rational points
x 2 Pn�1(F ) such that the height of x twisted by g is less than or equal to B (see Section
2.4, especially the paragraph below (2.1), for the definition of the twisted height). Then
there exists a function fB : An

F ! R such that

PB(g) =
X

x2Fn\{0}

fB(xg).
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In addition, we have
Z

Xn

(PB(g))
2dµ = (↵n

F (fB))
2 +OF (↵

n
F (fB)),

and ↵n
F (fB) = CBn for an explicit constant C depending only on F and n.

The proof in Section 5.3 provides the explicit formulas for both fB and C.
The higher moments are substantially more challenging to compute, again due to the

infinitude of O⇤
F : for the k-th moment we encounter a sum of integrals over (k� 1)-tuples

of units. A remarkable progress in this direction is made in a recent work of Gargava,
Serban, and Viazovska [13].

1.4. Organization. Section 2 provides a summary of most of the number-theoretic back-
ground, notations and conventions that we use throughout the paper. In Section 3, the
“level 1” case of Theorem 1.2, Theorem 3.1, is proved. Theorem 3.1 is then further ex-
tended in Section 4, where we prove the primitive version (Theorem 4.6), the higher level
version (Theorem 4.8), and ultimately the main result Theorem 1.2. Section 5 is dedicated
to the second moments, proving Theorems 1.3 and 1.4 above.

Acknowledgment. This work was supported by NSF grant CNS-2034176. The author
thanks the referee for the numerous helpful comments and suggestions that led to a con-
siderable improvement over the original manuscript.

2. Preliminaries

In this section, we clarify the basic facts and conventions that we use throughout this
paper. It is by no means su�cient for an introduction or a guide to the subject matter.
The reader who seeks such resource may refer to any standard text on algebraic number
theory, e.g. Cassels-Fröhlich [7], Weil [49]. For the Tamagawa measure, see Thunder [46]
or Weil [50]. For the Hecke operators, see Shimura [37], Chapter 3; it is written in the
classical language, but all the results there extend to the adelic context in a straightforward
manner.

2.1. Number fields. A number field F is an algebraic field extension over Q of finite
degree d. We denote by OF the ring of integers of F . Throughout this paper, we fix F
once and for all, and work over this F only. For a prime ideal p of F (more precisely, of
OF ), we define the norm N(p) = |OF : p|, the index of p as an additive subgroup of OF .
We extend N(·) to all fractional ideals of F so that it becomes multiplicative on the group
of the fractional ideals of F . For an element x 2 F , we define N(x) = N((x)).

By a place of F , we mean an equivalence class of absolute value defined on F , where
two absolute values | · |1, | · |2 are said to be equivalent if and only if |x|1 < 1 , |x|2 < 1.
Let us write PF for the set of all places of F . Each and every finite place ⌫, or equivalently,
class of nonarchimedean absolute values, corresponds to a prime ideal of OF , say p⌫ , and
vice versa. We define k · k⌫ : F ! Q associated to p⌫ to be kxk⌫ = N(p⌫)

�ord⌫x, where
ord⌫x is the exponent of p⌫ in the unique factorization of the principal ideal (x). We will
write f for the set of all finite places of F .

On the other hand, every infinite place of F , i.e. equivalence class of archimedean
absolute values, arises from a field embedding F ! C. There are exactly d di↵erent field
embeddings �1, . . . ,�d, r1 of which have their images contained in R, thus called real
embeddings, and the rest of which consist of r2 conjugate pairs of complex embeddings,
so that d = r1 + 2r2. Following the common convention, we let �1, . . . ,�r1 be the real
embeddings, and �r1+j = �̄r1+r2+j for 1  j  r2 be the pairs of complex embeddings.
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Each embedding � yields an infinite place on F represented by the archimedean absolute
value x 7! |�(x)|. Note that a conjugate pair of complex embeddings define the same
place — hence there are r1+ r2 infinite places total. As in the finite case, we refer to each
infinite place by the associated embedding or the conjugate pair of embeddings of F . We
sometimes write � | 1 to indicate that � is an infinite place.

Due to the tight connection between places and primes, places are sometimes referred to
as primes, including the infinite ones. Also we shall use the notations for places and primes
interchangeably when we find it more expedient. For instance, k · kp means the absolute
value associated to the place ⌫ corresponding to p; and the letter ⌫, while typically used
to denote a place, can refer to the prime ideal associated to it.

For each place ⌫ of F , let F⌫ be the completion of F at ⌫. If in addition ⌫ 2 f, let O⌫

be the ring of integers of F⌫ , and we also choose its uniformizer ⇡⌫ 2 O⌫ , so that (⇡⌫) is
the unique maximal ideal of O⌫ .

There exists the canonical embedding ⇢ of F into Rr1 ⇥ C2r2 , defined by

⇢(x) = (�1(x), . . . ,�d(x)).

The image ⇢(F ) spans a vector space of dimension d over R, which we may identify with
F ⌦Q R. We endow an inner product on F ⌦Q R by simply restricting to it the standard
inner product on Rr1 ⇥ C2r2 , so that

h⇢(x), ⇢(y)i =
X

i

�i(x)�̄i(y),

and

k⇢(x)k2 = h⇢(x), ⇢(x)i =
X

i

|�i(x)|
2.

For any Z-basis {b1, . . . , bn} of OF , the discriminant of F is the quantity

�F = (det(�i(bj))1i,jn)
2
.

This definition is independent of the choice of the basis. It is known that |�F |
1/2 is the

covolume of the lattice ⇢(OF ) in F ⌦Q R with respect to the metric above.
There exists also the logarithm map Log : F ⇤ ! Rr1+r2 defined by

Log(x) = (log |�1(x)|, . . . , log |�r1(x)|, 2 log |�r1+1(x)|, . . . , 2 log |�r1+r2(x)|).

Its kernel is µF , the set of the roots of unity in OF ; we write |µF | = wF . Log takes O⇤
F

to a lattice in Rr1+r2 of rank r := r1 + r2 � 1, called the unit lattice. Its covolume, with
respect to the standard metric on Rr1+r2 , is called the regulator RF .

2.2. Adeles. The ring of finite adeles Af of F is the restricted direct product

Af =
Y

⌫2f

0F⌫

with respect to (O⌫)⌫2f, which is the set of all elements x = (x⌫)⌫2f such that all but
finitely many x⌫ 2 O⌫ .

We also define the ring of infinite adeles A1 to be

A1 =
Y

�|1

F�.

We identify A1 with F ⌦ R by their natural isomorphisms to Rr1 ⇥ Cr2 , and assign the
metric compatible with that of F ⌦ R under this identification.
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The adele ring AF of F is the restricted direct product of F⌫ over all places of F ,
namely

AF =
Y

⌫2PF

0
F⌫ = Af ⇥ A1.

For x an element of AF (or, more generally, of G(AF ) for an algebraic group G, such as
An

F or GL(n,AF )), let us write x⌫ for its coordinate at place ⌫. Similarly, for P ✓ PF ,

let us write xP =
Q0

⌫2P x⌫ . There is the natural diagonal embedding F ,! AF that is
the product of the embeddings F ,! F⌫ over all ⌫ 2 PF . We identify F with the image
of this embedding.

AF is equipped with the restricted product topology, whose base consists of all sets of
the form

Q

⌫2PF
O⌫ , where each O⌫ ✓ F⌫ is open, and for all but finitely many finite places

O⌫ = O⌫ . With this topology, AF is locally compact, separable, and regular Hausdor↵,
and thus much of the well-known results in functional analysis apply. In addition, F ✓ AF

becomes a discrete and cocompact (i.e. AF /F is compact) subgroup under this topology.
On each F⌫ we assign an “almost-norm” k · k⌫ as follows. If ⌫ is a finite prime lying

over a rational prime p, then kx⌫k⌫ is the absolute value associated to ⌫, as defined in the
previous section. If ⌫ is real, then kx⌫k⌫ is the standard absolute value on R, and if ⌫ is
complex, then kx⌫k⌫ is the square of the standard absolute value on C. For x 2 AF , we
let

kxkAF
=
Y

⌫

kx⌫k⌫ .

The product formula states that if x 2 F ⇤, then kxkAF
= 1.

Another important fact we will use frequently is the strong approximation ([20]; see also
[24, Theorem 2.3]), which states that, for any finite set of places S ✓ PF , and a connected
absolutely almost simple algebraic group G over F such that G is simply connected and
GS =

Q

⌫2S G(F⌫) is noncompact, G(F ) is dense in G(AS) =
Q0

⌫ 62S G(F⌫). In particular,

this applies for G = An (the a�ne n-space) and G = SLn, but not for G = GLn.

2.3. Tamagawa measure. For each place ⌫ of F , we define the measure ↵⌫ on F⌫ as
follows:

• If ⌫ is finite, ↵⌫ is the Haar measure on F⌫ normalized so that ↵⌫(O⌫) = 1.
• If ⌫ is real, ↵⌫ is the usual Lebesgue measure on R.
• If ⌫ is complex, ↵⌫ is twice the usual Lebesgue measure on C.

We also write
↵f =

Y

⌫2f

↵⌫ ,↵1 =
Y

�|1

↵�,

for the corresponding measures on Af and A1 respectively, and let

↵F = |�F |
� 1

2↵f↵1.

This is called the Tamagawa measure on AF . The choice of the constant factor ensures
that ↵F (AF /F ) = 1.

On each GL(n, F⌫), there is the invariant measure

!n,⌫(A) = | detA|�n
⌫

Y

1i,jn

↵⌫(aij),

where aij refers to the (i, j)-entry of A. On GL(n,AF ), we have the Tamagawa measure

!n =
Y

⌫|1

!n,⌫ ⇥
Y

⌫2f

(1� k⇡⌫k⌫)�1!n,⌫ .
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Define

Gn = {A 2 GL(n,AF ) : k detAkAF
= 1},�n = GL(n, F ).

Gn is equipped with a measure µn such that

!n = µn ⇥ �,

where � is the Haar measure on R>0 given by d�(x) = dx/x. Moreover, µn(�n\Gn)
is finite ([46, Section 3]). We write Xn = �n\Gn for short, and normalize µn so that
µn(Xn) = 1.

2.4. Height. We follow Thunder [45, Part I, Section 1] for the notion of height; see also
Schmidt [36, Section 1.1]. On each place ⌫, the height of X⌫ 2 Matm⇥n(F⌫) is defined as
follows. First suppose that m = 1, i.e. X⌫ = (a1, . . . , an) 2 Fn

⌫ . Then we let

H⌫(X⌫) =

8

><

>:

maxi kaik⌫ if ⌫ is finite
p

a21 + . . .+ a2n if ⌫ is real

|a1|
2 + . . .+ |an|

2 if ⌫ is complex.

This extends naturally to general m  n, where we write xi for the i-th row of X⌫ , and
define

H⌫(X⌫) = H⌫(x1 ^ · · · ^ xm).

Here recall that x1 ^ · · · ^ xm 2 F
(n
m)

⌫ .
For ⌫ infinite, it is sometimes helpful to note the following equivalent definition of

H⌫ . For a (not necessarily square) matrix X of real or complex entries, let us write

|det|X =
p
detXX̄tr. Then we have

H⌫(X⌫) = k |det|X⌫k⌫ .

For X 2 Matm⇥n(AF ) and X1 2 Matm⇥n(A1), we define respectively

(2.1) H(X) =
Y

⌫2PF

H⌫(X⌫), H1(X1) =
Y

�|1

H�(X�).

The product formula implies that H(X) is invariant under the multiplication by F ⇤.
This property allows us to define the height over the projective space Grn,m(F ) using
H. Let us recall the definition, although we only need the m = 1 case in this paper, for
which Grn,m(F ) = Pn�1(F ). For L 2 Grn,m(F ), and X 2 Matm⇥n(F ) any choice of a
representative of L, i.e. a matrix whose row vectors span L over F , we define the height
of L to be H(X). More generally, for g 2 GL(n,AF ), following Thunder [45] we define
the height of L twisted by g to be H(Xg).

Later we will need a few simple facts about H1; we state and prove them below.

Lemma 2.1. Let X be an m ⇥ n matrix with entries in A1. Denote by xi the i-th row
vector of X. Then

H1(X) 
mY

i=1

H1(xi).

Also, for n0 < n, if Y is an m ⇥ n0 matrix consisting of any choice of the n0 columns of
X, then

H1(Y )  H1(X).
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Proof. It su�ces to prove the corresponding inequalities in case X is a complex-valued
matrix, namely

|det|X 
mY

i=1

|det|xi, and |det|Y  |det|X.

The former follows from the well-known inequality

|det|X 
mY

i=1

kxik

which can be seen by observing that |det|X = kx1 ^ . . . ^ xmk, which is maximized for
fixed kx1k, . . . , kxmk when the xi’s are pairwise orthogonal. The latter is an immediate
consequence of the Cauchy-Binet formula. ⇤

Given a fractional ideal I of F , we can associate with it the lattice ⇢(I) in the Euclidean
space F ⌦Q R. Denote by �F the discriminant of F . It is known that ([36, Theorem 1],
also see [45, Theorem 1])

(2.2) det ⇢(I) = |�F |
1
2NF (I).

In general, given anOF -submoduleM of Fn, we can define ⇢(M) ✓ (F⌦QR)
n by naturally

extending ⇢ to Fn.

Lemma 2.2. For a lattice L in a Euclidean space, let �1(L) be the length of a shortest
nonzero vector of L. Then for any fractional ideal I of F

p
dN(I)

1
d  �1(⇢(I)).

Similarly, take nonzero x 2 Fn, and consider the rank one OF -submodule I · x ✓ Fn.
Then p

dN(I)
1
dH1(x)

1
d  �1(⇢(I · x)).

This lemma is well-known, and there is also a “reverse inequality”

�1(⇢(I)) 
q

d�
1
d

FN(I)
1
d ;

see e.g. [21, Lemma 2.9].

Proof. Take any nonzero a 2 I. Then

k⇢(a)k2 =
X

i

|�i(a)|
2 � d

 
Y

i

|�i(a)|
2

! 1
d

� dN(I)
2
d .

The middle inequality is the arithmetic-geometric mean inequality; the one on the right
follows from the fact that J ✓ I ) N(J) � N(I) for fractional ideals I, J . The second
inequality follows similarly. ⇤

The following is in a sense a generalization of (2.2).

Lemma 2.3. Let S ✓ An
f be an integrable set. Let M be the set of all elements x 2 Fn

such that xf 2 S. Then ratio of the natural density of ⇢(M), that is,

lim
V!1

vol(⇢(M) \BV )

vol(BV )

where BV ✓ (F ⌦ R)n is the ball of volume V , to that of ⇢(On
F ) is given by ↵n

f (S).
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As a corollary, if ⇢(Fn\S) forms a lattice in (F ⌦R)n, then its determinant(covolume)
is given by |�F |

n/2(↵n
f
(S))�1.

Proof. Choose an ideal I =
Q

⌫2f
pk⌫

⌫ ✓ OF , and let S0 =
Q

⌫2f
⇡k⌫

⌫ O⌫ be the associated
neighborhood of the identity of Af. For the lemma, it su�ces to consider the case S =
v+Sn

0 for some v 2 (F \Af)
n, since S in general can be approximated arbitrarily well by

taking unions and/or complements of finitely many sets of such form. But in this case,
the lemma is obvious because |OF : I|�n = ↵n

f
(S0) = ↵n

f
(S). ⇤

2.5. Hecke operators. This paper employs two distinct families of the Hecke operators,
each for di↵erent purposes. To describe the first family, let � : Xn ! C be a measurable
function. Choose a prime p of F , and write ap = diag(⇡p, 1, . . . , 1),Kp = GL(n,Op). Also
for r 2 R write

r1 = ( 1, . . . , 1
| {z }

finite places

, r, . . . , r
| {z }

infinite places

) 2 AF .

The Hecke operator Tp is defined as the integral

Tp�(g) =
1

!p(KpapKp)

Z

KpapKp

�(Np
1
nd
1 gh)d!p(h).

Here, inside the argument of �, h should be understood as an element of GL(n,AF ) whose
projection to GL(n, Fp) is h and the rest are the identity. It is clear that Tp� is also a
measurable function on Xn.

It is sometimes convenient to realize Tp as a sum rather than an integral. To this end,
let us choose a set of coset representatives h 2 GL(n, Fp) of KpapKp, so that

KpapKp = qhhKp.

Let Rp ✓ Op be a set of the coset representatives of Op/pOp. By the theory of the Hecke
operators (see e.g. [37, Chapter 3]; Shimura develops the theory over Z, but his argument
applies to any PID, the main tool being the theory of the Smith normal form), we can
choose the set of the representatives to be

L = {h(j; a1,p, . . . , an�j�1,p) : 0  j  n� 1, ai,p 2 Rp} .

where

h(j; a1,p, . . . , an�j�1,p) =

0

B
B
B
B
B
@

Idj
⇡p a1,p . . . an�j�1,p

1
. . .

1

1

C
C
C
C
C
A

The cardinality of L is 1 +Np + . . . +Npn�1, which is also equal to !p(KpapKp). Now
one may write

Tp�(g) =
1

!p(KpapKp)

X

h2L

�(Np
1
nd
1 gh).

The second family of the Hecke operators is denoted by the letter T , and is more of
a combinatorial device than an operator on the space of automorphic forms. This time,
choose m < n, and write K⌫ = GL(m,F⌫) for ⌫ 2 f. For a sequence ⌫a1 ◆ . . . ◆ ⌫am of
nonzero ideals in O⌫ and a measurable function f on Matm⇥n(AF ) invariant under K⌫

from the left, define the operator T (⌫a1 , . . . , ⌫am) by

T (⌫a1 , . . . , ⌫am)f(X) =

Z

K⌫ diag(⇡
a1
⌫ ,...,⇡am

⌫ )K⌫

f(��1X)d!⌫(�).
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Clearly the output is also a measurable function on K⌫\Matm⇥n(AF ). There is also the
invariant called degree, defined by

deg T (⌫a1 , . . . , ⌫am) = (# of cosets of K⌫ in K⌫ diag(⇡
a1
⌫ , . . . ,⇡am

⌫ )K⌫).

The operators of the form T (⌫a1 , . . . , ⌫am) together with R (which acts by the scalar
multiplication), under the usual addition and the composition operations, generate a
commutative ring with 1 called the Hecke ring. The map deg extends to a homomorphism
from the Hecke ring to Z.

In general, for a sequence I1 ◆ . . . ◆ Im of nonzero ideals in OF , define

T (I1, . . . , Im)f(X) =

 
Y

⌫2f

T (⌫ord⌫(I1), . . . , ⌫ord⌫(Im))

!

f(X),

and also, for an ideal I 6= 0 of OF , define

T (I)f(X) =
X

I1◆...◆Im
I1···Im=I

T (I1, . . . , Im)f(X).

Both are elements of the Hecke ring.

2.6. Miscellaneous. Throughout this paper, we adopt the following notation. We iden-
tify an element (x1, . . . , xk) 2 (An

F )
k with a k ⇥ n matrix

X :=

0

B
@

x11 . . . x1n

...
xk1 . . . xkn

1

C
A 2 Matk⇥n(AF )

whose i-th row is equal to xi. When we say X is linearly independent or etc., we mean
the row vectors of X has those properties. In particular, for f : (An

F )
k ! R and g 2

GL(n,AF ), we write f(Xg) for f(x1g, . . . , xkg).
We omit the subscripts when there exists no ambiguity as to what they should be,

e.g. dµ = dµn, d!⌫ = d!n,⌫ , and so on. Also, if f is a function defined on G(AF ) for
some algebraic group G over F and xS 2 GS for some finite set S ✓ PF , f(xS) is to be
understood as f evaluated at x⌫ for ⌫ 2 S and at IdG(F⌫) for ⌫ 62 S. We extend this
convention to other similar situations, e.g. if x 2 G(F ) then f(x) is f evaluated at the
diagonal embedding of x to G(AF ).

3. The “level 1” case

3.1. A reduction, and a word about the proof. Let S be the set of all functions
f : An

F ! R such that f = f1ff = f1 ·
Q

⌫2f
f⌫ , where f1 is a Riemann integrable

function on (F ⌦R)n that is bounded and compactly supported, and for ⌫ finite f⌫ is the
characteristic function of ⇡e⌫

⌫ On
⌫ for some e⌫ 2 Z, all but finitely many of which are 0.

Accordingly, let Sk be the set of all functions f : (An
F )

k ! R such that f(x1, . . . , xk) =
Qk

i=1 f
(i)(xi) for f (i) 2 S. Thus f

(i)
⌫ is the characteristic function of

Q

⌫2f
⇡
e(i)
⌫

⌫ On
⌫ for

some e
(i)
⌫ 2 Z, all but finitely many of which are 0. Write I(i) =

Q

⌫2f
p
e(i)
⌫

⌫ for the ideal

corresponding to the support of f
(i)
f

.
The goal of this section is to prove
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Theorem 3.1. Let 1  m  k < n be integers. Let D be an m ⇥ k row-reduced echelon
form over F of rank m, and f 2 Sk. Then

(3.1)

Z

Xn

X

X2(Fn)m

indep.

f(DtrXg)dµn(g) =

Z

(An
F )m

f(DtrX)d↵nm
F (X).

One might reasonably name this the level 1 subcase of Theorem 1.2, since for f 2 Sk

the sum inside the left-hand side of (3.1) is invariant under the right action of GL(n,O⌫)
for all ⌫ 2 f.

A few remarks are in order before we proceed:

(i) Without loss of generality, by reordering f (i)’s and the columns of D if necessary,
we may assume that the pivots of D are its first m columns, i.e. D is of the form

D =

0

B
@

1 ⇤ · · · ⇤
. . .

...
...

1 ⇤ · · · ⇤

1

C
A .

(ii) There is one small but important trick that seems to facilitate the computations to
come later. For g 2 Gn denote by g⇤ its inverse transpose. The map g 7! g⇤ then
induces a degree two automorphism on Xn, since it is compatible with the action of
�n. In particular, it holds that

Z

Xn

X

X2(Fn)m

indep.

f(DtrXg)dµn(g) =

Z

Xn

X

X2(Fn)m

indep.

f(DtrXg⇤)dµn(g),

and in the proof of Theorem 3.1 to follow, we work with the right-hand side.

The bulk of our e↵ort for proving Theorem 3.1 is devoted to the following asymptotic,
which one may take as a discrete analogue of [26, Theorem 2].

Proposition 3.2. There exists a sequence {pi}i2Z>0
of primes of F with limi!1 Npi = 1

such that, for each g 2 Gn,

(3.2) Tpi

0

B
@

X

X2(Fn)m

indep.

f(DtrXg⇤)

1

C
A!

Z

(An
F )m

f(DtrX)d↵nm
F (X)

as i ! 1.

The proof of this statement we provide later in this section may appear technical due to
the use of the adelic language, but the main idea is in fact quite simple: the left-hand side
of (3.2), when unraveled, reduces to a “lattice-point counting estimate.” We illustrate the
point by briefly explaining the simplest case, where F = Q, k = m = 1, D = (1), g = Id, in
the classical language. For � : Xn ! C and a rational prime p, Tp�(Id) is the average of

� over the sublattices of Zn of index p scaled by p�1/n. Denote those sublattices of Zn by
⇤1, . . . ,⇤p+1. Then, for �(g) =

P
x2Zn

x 6=0
f(xg), where f : Rn ! R is, say, the characteristic

function of a bounded open set B, Tp�(Id) equals

1

p+ 1

p+1
X

i=1

X

x2⇤i
x 6=0

f(p�1/nx).
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But upon inspecting the distribution of the points of ⇤1, . . . ,⇤p+1 — they are “equidis-
tributed mod p” in Zn, other than at the origin — one observes that this equals

1

p+ 1

X

x2Zn

f(p�1/nx) +
p

p+ 1

X

x2pZn

x 6=0

f(p�1/nx).

As p ! 1, the first sum converges to volB =
R
fdx, because B has ⇡ p · volB points

of p�1/nZn; the second sum vanishes (but, if we allow x = 0, converges to f(0)). Our
proof of the general case has more or less the same structure as this toy example; although
the setup is a bit more intricate and the error estimates are longer, the “equidistribution
mod p,” Lemma 3.8 below, lies at the heart of the argument, and everything else is built
around it.

The two lemmas below, combined with Proposition 3.2, yield Theorem 3.1. As with
Proposition 3.2, both of them have counterparts in the original argument by Rogers [26].

Lemma 3.3. Let � : Xn ! R be integrable. Then
Z

Xn

�dµ =

Z

Xn

Tp�dµ.

Proof. This is immediate from the right invariance of dµ. ⇤

This lemma is, in a sense, a “correction” of the error in [26] that we pointed out in the
introduction. The following lemma is an adaptation of [26, Theorem 1] to our context.

Lemma 3.4. Let {pi}i2Z>0
be a sequence of primes of F such that limi!1 Npi = 1.

Let � : Xn ! R be a measurable function such that, for almost every g 2 Xn, Tpi
�(g)

converges to a finite real number I as i ! 1. Then � is integrable, and
Z

Xn

�dµ = I.

Proof. For any real-valued function F and h 2 R, write [F ]h := min(F, h). For any h > I,
the dominated convergence theorem implies

Z

Xn

[Tpi
�]h dµ ! I

as i ! 1. Also by Lemma 3.3, we have
Z

Xn

[�]hdµ =

Z

Xn

Tpi [�]hdµ 
Z

Xn

[Tpi�]hdµ.

Taking i ! 1 and then h ! 1 here, by the monotone convergence theorem we obtain
the upper bound

Z

Xn

�dµ  I.

In particular, this shows that � is integrable.
On the other hand, Fatou’s lemma and Lemma 3.3 imply that

I =

Z

Xn

lim
i!1

Tpi�dµ  lim
i!1

Z

Xn

Tpi�dµ =

Z

Xn

�dµ,

which is the lower bound that we need. ⇤
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Proof of Theorem 3.1, assuming Proposition 3.2. By Proposition 3.2,

�(g) =
X

X2(Fn)m

indep.

f(DtrXg⇤)

satisfies the assumptions of Lemma 3.4. Thus
Z

Xn

�dµ =

Z

(An
F )m

f(DtrX)d↵nm
F (X).

But the left-hand side here is equal to the left-hand side of (3.1), as remarked in comment
(ii) under the statement of Theorem 3.1. ⇤

3.2. Proof of Proposition 3.2: preparation. First, let us determine the sequence
{pi}i2Z>0 . We choose it to be the sequence of the primes p, in the ascending order of the
norm, satisfying

(i) p = (⇡̃p) is principal. If necessary, we adjust ⇡p by a factor of O⇤
p, so that ⇡̃p maps

to ⇡p under the natural embedding OF ,! Op.

(ii) p is coprime to I(i) for any i.

By the Tchebotarev density theorem, there are infinitely many such p.
The next, lengthier, step is to write out the left-hand side of (3.2) to recast our problem

as that of “lattice-point counting,” loosely speaking. We first need some preparations.
Fix g 2 Gn from now on. Define ⌘ 2 A⇤

F by ⌘⌫ = det g⇤⌫ ; we have k⌘kAF
= 1. Also

write a⌘ = diag(⌘, 1, . . . , 1). Then g⇤a�1
⌘ is an element of SL(n,AF ), where the strong

approximation applies. Thus there exists k 2 SL(n, F ) such that

(3.3) (kg⇤)f = l · (a⌘)f

for some l 2Q⌫2f
SL(n,O⌫) arbitrarily close to the identity. Let us make l so close that,

for each ⌫ 2 f, l⌫ is equal to the identity matrix modulo a su�ciently large power of

⇡⌫ (depending only on g and f), so that l�1
⌫ fixes the set

⇣
Q

i ⇡
e(i)
⌫

⌫ On
⌫

⌘

· (a⌘)
�1
⌫ when

multiplied from the right.
In what follows, p is a prime that satisfies the two conditions (i),(ii) above, and has a

su�ciently large norm, so that it satisfies the additional condition

(iii) gp 2 Kp. This implies ⌘p 2 O⇤
p, so that (a⌘)p 2 Kp.

Our starting point is the following lemma, that simplifies the impact of g on our sub-
sequent computations.

Lemma 3.5. With all the notations and assumptions above, we have

Tp

0

B
@

X

X2(Fn)m

indep.

f(DtrXg⇤)

1

C
A =

1

!p(KpapKp)

Z

KpapKp

X

X2(Fn)m

indep.

f̃(Np
� 1

nd
1 DtrXh⇤a⌘)d!p(h)

for some f̃ 2 Sk such that ff = f̃f and ↵
mn
1 (f1 �Dtr) = ↵mn

1 (f̃1 �Dtr).

Proof. From the definition of Tp, we have

Tp

0

B
@

X

X2(Fn)m

indep.

f(DtrXg⇤)

1

C
A =

1

!p(KpapKp)

Z

KpapKp

X

X2(Fn)m

indep.

f(DtrX(Np
1
nd
1 gh)⇤)d!p(h).
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The set of independent m-tuples of Fn is invariant under the right multiplication by
GL(n, F ), so we can replace X by Xk above. Also, by (3.3),

k(Np
1
nd
1 gh)⇤ = Np

� 1
nd

1 kg⇤h⇤ = Np
� 1

nd
1 (kg⇤)1l(a⌘)fh

⇤.

Plugging this in, we obtain

1

!p(KpapKp)

Z

KpapKp

X

X2(Fn)m

indep.

f(Np
� 1

nd
1 DtrX(kg⇤)1l(a⌘)f h

⇤)d!p(h).

From our assumptions on l and a⌘, we see that this is equal to

1

!p(KpapKp)

Z

KpapKp

X

X2(Fn)m

indep.

f(Np
� 1

nd
1 DtrX(kg⇤)1h⇤l(a⌘)f)d!p(h)

=
1

!p(KpapKp)

Z

KpapKp

X

X2(Fn)m

indep.

f(Np
� 1

nd
1 DtrX(kg⇤)1h⇤(a⌘)f)d!p(h)

=
1

!p(KpapKp)

Z

KpapKp

X

X2(Fn)m

indep.

f(Np
� 1

nd
1 DtrXh⇤a⌘((kg

⇤)�1a⌘)
�1
1 )d!p(h).

To simplify, we introduce f̃(X) := ff(X)f1(X((kg⇤)�1a⌘)
�1
1 ). Since det((kg⇤)�1a⌘)� = 1

for all � | 1, f1 and f̃1 have the same volume, and by the same principle, so do f1 �Dtr

and f̃1 �Dtr. Therefore, the above is equal to

1

!p(KpapKp)

Z

KpapKp

X

X2(Fn)m

indep.

f̃(Np
� 1

nd
1 DtrXh⇤a⌘)d!p(h),

as desired. ⇤

In order not to overburden ourselves with notations, in what follows below, we abuse
the language slightly and continue writing f in place of f̃ . It does not make a di↵erence
in the end, since we are interested in volume computations, and f and f̃ have the same
volume. In summary, the quantity under question has become

1

!p(KpapKp)

Z

KpapKp

X

X2(Fn)m

indep.

f(Np
� 1

nd
1 DtrXh⇤a⌘)d!p(h).

As discussed in Section 2.5 above, we may express this integral as the sum

(3.4)
1

!p(KpapKp)

X

h2L

X

X2(Fn)m

indep.

f(Np
� 1

nd
1 DtrXh⇤a⌘).

We make one more modification before the main computation.

Lemma 3.6. For each h 2 L, there exists � 2 GL(n, F ) such that

(�h⇤)p 2 GL(n,Op), (�a⌘)⌫ 2 (a⌘)⌫ ·GL(n,O⌫) for all finite ⌫ 6= p.

More precisely, let I =
Tk

i=1 I
(i). Then there exists a subset R ✓ I that bijects to Rp by

reduction modulo p. For h = h(j; a1,p, . . . , an�j�1,p) 2 L, the corresponding � = �(h) will
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be

�(j; a1, . . . , an�j�1) =

0

B
B
B
B
B
@

Idj
⇡̃p
a1 1
...

. . .

an�j�1 1

1

C
C
C
C
C
A

,

where ai 7! ai,p under the said bijection.

Proof. Consider the OF -module map

◆ : I ,! I(i) ! Op,

where the first map is inclusion, and the second map is the restriction to the place p.
Because I is coprime to p, ◆ is a surjection. It also induces the OF -module isomorphisms

I/pI ⇠= I(i)/pI(i) ⇠= Op/pOp =: Fp.

Choose any R0 ✓ I so that R0 bijects to Rp under ◆. Next, choose � 2 OF such that

�p ⌘ 1(mod p), �⌫ , (�⌘)⌫ 2 p
�ord⌫I
⌫ \O⌫ for all finite ⌫ 6= p.

Let R := �R0. This step ensures that both a and ⌘a are integral at all finite places for
any a 2 R, a property we will need below.

For h = h(j; a1,p, . . . , an�j�1,p), we match � = �(j; a1, . . . , an�j�1,p), where ai is the
(unique) element ofR such that ◆(��1ai) = ◆(ai) = ai,p 2 Rp; in particular we have (ai)p�
ai,p 2 pOp. Our choice of R allows us to check by straightforward matrix multiplications
that (�h⇤)p 2 GL(n,Op) and that (�⌫a⌘)⌫ 2 (a⌘)⌫ · GL(n,O⌫) for finite ⌫ 6= p, as
desired. ⇤

Let M be the set corresponding to L by Lemma 3.6. It will be convenient to partition
M =

Sn�1
j=0 M(j), where

M(j) = {�(j; a1, . . . , an�j�1) : ai 2 R} .

By replacing X with X�(h), (3.4) can now be rewritten as

1

!p(KpapKp)

X

�2M

X

X2(Fn)m

indep.

ff(D
trX�h⇤a⌘)f1(N(p)�

1
nd (DtrX�a⌘)1)

=
1

!p(KpapKp)

X

�2M

X

X2(Fn)m indep.

DtrX2
Q

i I
(i)

⌘�1
⇥(I(i))n�1

f1(N(p)�
1
nd (DtrX�a⌘)1),(3.5)

where

I
(i)
⌘�1 = I(i) ·

Y

⌫2f

p
�ord⌫⌘
⌫ .

3.3. Proof of Proposition 3.2: the main term. It turns out that the main contribu-
tion to (3.5) comes from the partial sum

(3.6)
1

!p(KpapKp)

X

�2M(0)

X

X2(Fn)m indep.

DtrX2
Q

i I
(i)

⌘�1
⇥(I(i))n�1

f1(N(p)�
1
nd (DtrX�a⌘)1).

In this section we compute an asymptotic for (3.6).
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For X 2 (Fn)m, let X̄ be the m⇥ (n�1) matrix obtained by removing the first column
of X. Let us write explicitly

X =

0

B
@

x10 x11 . . . x1,n�1

...
...

...
xm0 xm1 . . . xm,n�1

1

C
A , X̄ :=

0

B
@

x11 . . . x1,n�1

...
...

xm1 . . . xm,n�1

1

C
A .

Thanks to our assumption about the shape of D (comment (i) after the statement of
Theorem 3.1), for 1  i  m we may assume that the i-th row of X is an element of

I
(i)
⌘�1 ⇥ (I(i))n�1, and similarly for X̄. For convenient reference, we also write out

(3.7) X� =

0

B
@

x10⇡̃p +
Pn�1

i=1 aix1i x11 . . . x1,n�1

...
...

...

xm0⇡̃p +
Pn�1

i=1 aixmi xm1 . . . xm,n�1

1

C
A ,

where � = �(0; a1, . . . , an�1) 2 M(0).
We first show that those X for which the corresponding X̄ is dependent mod p — more

precisely, its rows, reduced mod p, are linearly dependent over Fp — do not contribute at
all to (3.6), provided Np is su�ciently large.

Lemma 3.7. Take the notations above, and suppose X̄ is dependent mod p. Then at
least one row xi� of X� satisfies H1(xi�) � Np1/md, where the implied constant is only
dependent on ⌘ and I(1), . . . , I(m).

Proof. Using the surjectivity of the projection SL(m,OF ) ! SL(m,Fp) we can find A 2
SL(m,OF ) such that one row of AX̄ is a multiple of ⇡̃p, i.e. has entries in

P

i pI
(i). Then

the corresponding row of AX� also has entries in
P

i pI
(i), but it is guaranteed to be

nonzero, since the rows of AX� are independent. Hence, for the matrix Y 2 (
P

i I
(i))nm

obtained from AX� by dividing that row by ⇡̃p,

H1(X�) = H1(AX�) = N(p)H1(Y ) �I(1),...,I(m) N(p)

(the latter lower bound is a consequence of the reduction theory — see e.g. [6, Lemma
16.2]). Lemma 2.1 now implies that H1(xi�) � Np1/m for some i, where xi denotes
the i-th row of X. By Lemma 2.2, ⇢(xi�) 2 (F ⌦ R)n has length � Np1/md, and thus
⇢(xi�) · (a⌘)1 has length � Np1/md, where the implied constant depends only on ⌘ and

I(1), . . . , I(m). ⇤

It follows as an immediate corollary that

f1(Np
� 1

nd (DtrX�a⌘)1) = 0

forNp su�ciently large (independently ofX), since f1 is compactly supported, as desired.
This leaves those X for which X̄ is independent mod p. The following lemma is the

crux of our proof of Proposition 3.2.

Lemma 3.8. If X̄ is independent mod p, then the number of � 2 M(0) such that the
vector

(3.8) (

n�1X

i=1

aix1i, . . . ,

n�1X

i=1

aixmi)
tr 2 I(1) ⇥ · · ·⇥ I(m)

represents any given coset of I
(1)
⌘�1/pI

(1)
⌘�1 ⇥ · · ·⇥ I

(m)
⌘�1/pI

(m)
⌘�1 is exactly Npn�1�m.
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Proof. Observe that, since the rows of X̄ are independent mod p, the map

(a1, . . . , an�1)
tr 7! X̄(a1, . . . , an�1)

tr = (

n�1X

i=1

aix1i, . . . ,

n�1X

i=1

aixmi)
tr

is a surjective linear map from Fn�1
p to Fm

p , so each image has Npn�1�m preimages.

The proof will be complete if we identify the domain with Rn�1 and the codomain with

I
(1)
⌘�1/pI

(1)
⌘�1 ⇥ · · ·⇥ I

(m)
⌘�1/pI

(m)
⌘�1 .

Indeed, restricting R modulo p we obtain every element of Fp. Also, thanks to our
choice of R in the proof of Lemma 3.6, (⌘a)⌫ is integral for any finite ⌫ and a 2 R, and
thus

(

n�1X

i=1

aix1i, . . . ,

n�1X

i=1

aixmi)
tr 2 I

(1)
⌘�1 ⇥ · · ·⇥ I

(m)
⌘�1

holds for any a1, . . . , an�1 2 R. Taking (3.8) mod p completes the proof. ⇤

Lemma 3.8 implies that, as � runs over M(0), and (x10, . . . , xm0)
tr runs over

Q

i I
(i)
⌘�1 ,

the first column of X� (see (3.7) above) hits each and every element of
Q

i I
(i)
⌘�1 exactly

Npn�1�m times. Therefore, combined with the fact that only those X for which X̄ is
independent mod p contribute, (3.6) can be rewritten as

Npn�1�m

!⌫(KpapKp)

X

X2(Fn)m

DtrX2
Q

i I
(i)

⌘�1
⇥(I(i))n�1

rkpX̄=m

f1(Np
� 1

nd (DtrXa⌘)1).

Here rkp means the rank over Fp. Since

Npn�1�m

!⌫(KpapKp)
=

1

Npm
(1 + o(1)),

there is no harm in considering

(3.9)
1

Npm

X

X2(Fn)m

DtrX2
Q

i I
(i)

⌘�1
⇥(I(i))n�1

rkpX̄=m

f1(Np
� 1

nd (DtrXa⌘)1)

instead. We claim that, up to an error that vanishes as Np ! 1, this is equal to

(3.10)
1

Npm

X

X2(Fn)m

DtrX2
Q

i I
(i)

⌘�1
⇥(I(i))n�1

f1(Np
� 1

nd (DtrXa⌘)1).

Let us set aside the claim for now, and explain first how the right-hand side of (3.2)
comes about from (3.10). (3.10) can be computed by rewriting it in the classical language.
Applying Lemma 2.3 to the support S ✓ Anm

f
of ff((D

trXa⌘)f), the image under ⇢ of the

elements X 2 (Fn)m such that DtrX 2
Q

i I
(i)
⌘�1 ⇥ (I(i))n�1 forms a lattice L ✓ (F ⌦R)nm

of rank mnd and determinant

|�F |
mn/2

 
Z

Amn
f

ff((D
trXa⌘)f)d↵

mn
f

!�1

.
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Accordingly we write (3.10) as

1

Npm

X

X2Np
� 1

nd L

f1((DtrXa⌘)1),

or more suggestively,

1

Npm det(Np�
1
ndL)

X

X2Np
� 1

nd L

det(Np
� 1

ndL)f1((DtrXa⌘)1).

Note that det(Np�
1
ndL) = Np�m detL. This is a Riemann sum, and f1 is Riemann

integrable, so we are in a situation to appeal to the following well-known principle.

Proposition 3.9. Suppose ⇤ ✓ Rn is a (full-rank) lattice, and ' is a Riemann integrable
function on Rn. Then

X

x2"⇤

det("⇤)'(x) !
Z

'dx

as "! 0.

We conclude that (3.10) is equal to, in the Np limit,

|�F |
�mn/2

Z

Amn
f

ff((D
trXa⌘)f)d↵

mn
f

Z

Amn
1

f1((DtrXa⌘)1)d↵mn
1

=

Z

(An
F )m

f(DtrX)k⌘k�md↵mn
F

=

Z

(An
F )m

f(DtrX)d↵mn
F ,

(recall k⌘k = 1) matching the claim of Proposition 3.2.
We return to showing the equivalence of (3.9) and (3.10) up to a small error. We start

by claiming that the condition rkpX̄ = m in (3.9) can be replaced by rkX̄ = m. Since
rkpX̄  rkX̄ always, it su�ces to consider the case rkpX̄ < rkX̄ = m. But by a similar
(shorter) argument as in the proof of Lemma 3.7, such X̄, and thus X too, has a row
whose image via ⇢ has length � Np1/md, and thus X contributes zero to the sum for Np

su�ciently large.
Next we claim that the condition rkX̄ = m may be discarded altogether. To this end,

consider those X such that X̄ is dependent. Without loss of generality, we may assume
that the last row of X̄ is dependent on the other rows. Then xm, the last row of X, lies
in the rank  m submodule

N =
⇣

I
(m)
⌘�1 ⇥ (I(m))n�1

⌘

\ (Fe1 � Fx1 � . . .� Fxm�1)

of I
(m)
⌘�1 ⇥ (I(m))n�1, where e1 = (1, 0, . . . , 0) 2 Fn. The sum (3.9) restricted to all such

X is crudely bounded by
(3.11)

1

Npm

X

X̂2
Qm�1

i=1 I
(i)

⌘�1⇥(I(i))n�1

Y

i 6=m

f (i)
1 (Np

� 1
nd (X̂a⌘)1)

X

xm2N

f (m)
1 (Np

� 1
nd (xma⌘)1).

The inner sum counts the number of the vectors of the rank  md lattice Np�
1
nd ⇢(N) ·

(a⌘)1 inside a bounded set, and thus by an appropriate adaptation of Proposition 3.9, it
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is of size Of,I,⌘(Npm/n). Similarly, the outer sum is Of,I,⌘(Npm�1), and thus (3.11) is of

size Of,I,⌘(Npm/n�1) = o(1), as desired.

3.4. Proof of Proposition 3.2: error terms. To complete the proof of Proposition
3.2 and thus of Theorem 3.1, it remains to estimate the intended error terms

(3.12)
1

!p(KpapKp)

X

�2M(j)

X

X2(Fn)m indep.

DtrX2
Q

i I
(i)

⌘�1
⇥(I(i))n�1

f1(Np
� 1

nd (DtrX�a⌘)1)

for each 1  j  n� 1. Here we will show that (3.12) vanishes as Np ! 1. To this end,
it su�ces to assume m = k, and work with the simpler

(3.13)
1

Npn�1

X

�2M(j)

X

X2(Jn)m

indep.

g1(Np
� 1

nd (X�)1),

where J = I⌘�1 +
Pk

i=1 I
(i) and g1(X) = |f1(X(a⌘)1)|, since this is no smaller than

(3.12), possibly up to a constant factor — recall that f1 is bounded by assumption.
For � = �(j; a1, . . . , an�j�1) 2 M(j) and

X =

0

B
@

x10 x11 . . . x1,n�1

...
...

...
xm0 xm1 . . . xm,n�1

1

C
A ,

X� is of the form
0

B
@

x10 · · · x1,j�1 x1j ⇡̃p +
Pn�1

i=j+1 ai�jx1i x1,j+1 · · · x1,n�1

...
...

...
...

...

xm0 · · · xm,j�1 xmj ⇡̃p +
Pn�1

i=j+1 ai�jxmi xm,j+1 · · · xm,n�1

1

C
A .

This time we let

X̄ =

0

B
@

x1,j+1 · · · x1,n�1

...
...

xm,j+1 · · · xm,n�1

1

C
A .

We first consider the partial sum of (3.13) over those X for which rkpX̄ = m. Then
we can repeat the same argument as in the previous section (specifically, Lemma 3.8 and
the paragraph following it) to prove that the restricted sum is equal to

1

Npj+m

X

X2(Jn)m indep.

rkp X̄=m

g1(Np
� 1

ndX1);

the core fact is that X̄ mod p induces a surjective map F
n�j�1
p ! Fm

p . Dropping the rank
and independence conditions on X, this is a sum over a lattice in an mnd�dimensional

Euclidean space of determinant Og,J(Np�
mnd
nd ) = Og,J(Np�m). Thus we see that, by

Proposition 3.9, it has size Og,J(Np�j).
It remains to consider those X for which rkp X̄ = m0 < m. If m0 = 0, then X̄ 2

(pJ)(n�j�1)m, and (3.13) restricted to all such X is equal to

1

Npj

X

X2Jjm⇥(pJ)(n�j)m indep.

g1(Np
� 1

ndX1).
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As can be seen from the proof of Lemma 2.1, nonzero vectors of ⇢(pJ) has length �J

Np1/d. Hence, for Np su�ciently large, this sum is really taken over Jjm scaled by
Np�1/nd. By Proposition 3.9, it follows that it is of size Og,J(Np�j(1�m/n)).

If m0 6= 0, then we divide further into two cases. First suppose that j < m � m0.
Denoting by X̃ the m⇥ (n� j) matrix consisting of the last n� j columns of X, and by
�̃ the (n� j)⇥ (n� j) second block of �. Arguing similarly as in the proof of Lemma 3.7,

we can find A 2 SL(m,OF ) such that precisely m�m0 rows of AX̃ �̃ have all their entries

in pJ . However, since rkF X̃ = rkF X̃ �̃ > m0 is forced, at least one of those rows must be
nonzero, and thus again as in the proof of Lemma 3.7, we may show that for some row xi

of X, ⇢(xi�) has length �J Np1/md. It follows that such X does not contribute to (3.13).
It remains to consider the case j � m � m0, which is a bit more involved than the

previous cases. Without loss of generality, let us assume that it is the first m0 vectors of
X̄ that are independent mod p. Also let us write

g1 =

m0

Y

i=1

g(i)1 , g2 =

mY

i=m0+1

g(i)1 ,

where g
(i)
1 (X) = f

(i)
1 (Xa⌘). Then the restriction of (3.13) to all the X with rkpX̄ = m0

is bounded by

1

Npn�1

X

�2M(j)

X

Y12(Jn)m
0

indep.

rkpȲ1=m0

g1(Np
� 1

nd (Y1�)1)
X

Y22(Jn)m�m0

Ȳ2 mod p2spanp(Ȳ1)

g2(Np
� 1

nd (Y2�)1),

where Ȳ denotes the matrix formed by the last n � j � 1 columns of Y , and Ȳ2 mod p 2
spanp(Ȳ1) means that each row of Ȳ2 taken mod p is contained in the Fp-subspace of

F
n�j�1
p spanned by the rows of Ȳ1. Again using the fact that Ȳ1 induces a surjective

mapping F
n�j�1
p ! Fm0

p (note we must have n� j�1 � m0 indeed), and adapting Lemma
3.8 and its subsequent argument, this is equal to

(3.14)
1

Npj+m0

X

Y12(Jn)m
0

indep.

rkpȲ1=m0

g1(Np
� 1

ndY1,1)
X

Y22Jj(m�m0)⇥(Y1)

g2(Np
� 1

ndY2,1),

where we write

(Y ) = (pJ)(n�j)(m�m0) + (span(Ỹ ) \ J (n�j))(m�m0) ✓ (F (n�j))(m�m0),

with Ỹ being the matrix
0

B
@

Pn�1
i=j+1 ai�jx1i x1,j+1 · · · x1,n�1

...
...

...
Pn�1

i=j+1 ai�jxm0i xm0,j+1 · · · xm0,n�1

1

C
A ,

and span(Ỹ ) the F -span of the rows of Ỹ .
Similarly as in the m0 = 0 case, as Np grows, the sum over Y2 in (3.14) is really the

sum over a OF -module of F -rank (m�m0)j+(m�m0)rkF Ỹ = (m�m0)(j+m0), scaled
by N(p)�1/nd. Therefore, by (two applications of) Proposition 3.9, (3.14) is of the size

Og,j

⇣

Np
�j�m0+m0+ 1

n (m�m0)(j+m0)
⌘

 Og,J(Np
� j

n ),

which vanishes as Np ! 1.
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4. Extensions of Theorem 3.1

4.1. Primitivity. For positive integers m  n and a finite place ⌫ of F , we say an m⇥n
matrix X⌫ with entries in O⌫ is primitive (at ⌫) if X⌫ can be completed to an element
of GL(n,O⌫). For X with entries in multiple places, such as F,Af, or AF , we say X
is primitive if it is primitive at each of those places. On the other hand, we say the
vectors x1, . . . , xm 2 On

⌫ span a primitive lattice (in On
⌫ ) if their O⌫-span coincides with

the intersection of On
⌫ and their F⌫-span; for vectors with entries in multiple places, we

extend the definition in the same manner as earlier. The two concepts can be easily seen
to coincide:

Lemma 4.1. Let m  n be positive integers, and ⌫ 2 f. X 2 Matm⇥n(O⌫) is primitive
at ⌫ if and only if its row vectors x1, . . . , xm span a primitive lattice.

Proof. Suppose first that X is primitive. Let X̃ 2 GL(n,O⌫) be its completion. Any
v 2 On

⌫ \ spanF⌫
(x1, . . . , xm) has an expression v = c1x1 + . . . cmxm for ci 2 F⌫ . Notice

that vX̃�1 = (c1, . . . , cm, 0, . . . , 0) 2 On
⌫ ; this proves that the xi’s span a primitive lattice.

Suppose conversely that the xi’s span a primitive lattice. We can complete it to a
O⌫-basis of O

n
⌫ by adding n�m elementary vectors, that is, vectors of the form ei 2 On

⌫ ,
whose i-th entry is 1 and the rest are zero. Without loss of generality, we may assume we
can choose to add em+1, . . . , en. Accordingly, we claim that the matrix

P =

0

B
B
B
B
B
B
B
B
@

� x1 �
...

� xm �
� em+1 �

...
� en �

1

C
C
C
C
C
C
C
C
A

has unit determinant. It su�ces to demonstrate Q 2 Matn⇥n(O⌫) such that QP = Idn.
Thanks to the assumptions, for any 1  i  n we can write ei =

P

jm cijxj+
P

j>m cijej
for some cij 2 O⌫ ; we take Q = (cij)1i,jn. ⇤

In case F = Q for example, our notion of primitivity coincides with the usual notion
of primitivity for X 2 Matm⇥n(Z), which is that it can be completed to an element of
GL(n,Z). The direction (usual notion) ) (our notion) is clear. For the other direction:
if X cannot be completed to an element of GL(n,Z), then rkFpX < m for some prime p,
and hence there cannot exist an element of GL(n,Zp) completing Xp.

By the theory of the Smith normal form, each X 2 Matm⇥n(O⌫) is of the form

X = � · diag(⇡a1
⌫ , . . . ,⇡am

⌫ ) · P,

where � 2 GL(m,O⌫), P 2 Matm⇥n(O⌫) is primitive, and 0  a1  . . .  an, where the
ai’s are determined uniquely by X. We allow ai to be 1, interpreting ⇡1

⌫ = 0. If any
ai = 1, then the row vectors of X are linearly dependent over F⌫ , and the converse also
holds. On the other end of the spectrum, a1 = . . . = am = 0 if and only if X is primitive.
Moreover, we have the following lemma.

Lemma 4.2. Let X 2 Matm⇥n(O⌫). Then we can write

X = hP,

where P 2 Matm⇥n(O⌫) is primitive, and h 2 K⌫ diag(⇡
a1
⌫ , . . . ,⇡am

⌫ )K⌫ for some 0 
a1  . . .  am. Furthermore, the coset hK⌫ is uniquely determined by X.
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Proof. The existence of such P and h is clear from the preceding discussion. For the
uniqueness claim, suppose hP = h0P 0 for some primitive P, P 0 and h, h0 2 K⌫diag(⇡

a1
⌫ , . . . ,⇡am

⌫ )K⌫ .
Since the rows of P and P 0 have the same F⌫-span and therefore the same O⌫-span, we
can actually complete them into elements P̃ , P̃ 0 of GL(n,O⌫) whose last n�m rows are
identical (cf. proof of Lemma 4.1 above).

Let h̃ (resp. h̃0) be the block matrix whose first m ⇥m block is h (resp. h0), and the

next (and last) (n�m)⇥ (n�m) block is the identity matrix. We have h̃, h̃0 2 GL(n,O⌫),
and also

h̃P̃ = h̃0P̃ 0,

from which it is immediate that h�1h0 2 K⌫ and thus hK⌫ = h0K⌫ . ⇤

In this section, we use the Hecke operators T to implement an inclusion-exclusion argu-
ment that expands the family of functions for which Theorem 3.1 applies. The propositions
below serve as the starting point.

Proposition 4.3. Choose s ✓ f. Let fs be the characteristic function of
Q

⌫2s
(On

⌫ )
m, and

fpr,s be the characteristic function of the set of primitive m⇥ n matrices in
Q

⌫2s
(On

⌫ )
m.

Then
fs(X) =

X

I

T (I)fpr,s(X),

where I runs over all nonzero ideals generated by s.
Conversely, for 0  i  m and ⌫ 2 f, let

T (i)(⌫) = T (1, · · · , 1
| {z }

m�i

, ⌫, · · · , ⌫
| {z }

i

).

Then

fpr,s(X) =
Y

⌫2s

 
mX

i=0

(�1)iN(⌫)i(i�1)/2T (i)(⌫)

!

fs(X).

Proof. The former equality is an immediate consequence of Lemma 4.2. The latter follows
from [37, Theorem 3.21] — originally due to Tamagawa ([44]) — which states that

mX

i=0

(�1)iN(⌫)i(i�1)/2T (i)(⌫) and

1X

i=0

T (⌫i)

are inverse operators to one another. ⇤

Proposition 4.4. Choose s ✓ f. Let f = fff1 be a function (An
F )

m ! R such that f1
is an integrable function on (An

1)m, and ff is the characteristic function of
Q

⌫2f(O
n
⌫ )

m.
Also, let fpr = fpr,sf1, where fpr,s is the restriction of ff to those X such that X⌫ is
primitive for ⌫ 2 s. Choose any g 2 GL(n,AF ). Then

X

X2(Fn)m

indep.

f(Xg) =
X

X2(Fn)m

indep.

X

I

T (I)fpr(Xg),

where I runs over all nonzero integral ideals generated by s. Moreover,

X

X2(Fn)m

indep.

fpr(Xg) =
X

X2(Fn)m

indep.

Y

⌫2s

 
mX

i=0

(�1)iN(⌫)i(i�1)/2T (i)(⌫)

!

f(Xg).

Proof. Both follow from Proposition 4.3 by summing over all Xg such that X 2 (Fn)m

is linearly independent. ⇤
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4.2. Rogers integral formula, primitive case. We now prove the main results of this
section.

Theorem 4.5. Let f = fff1, where f1 is Riemann integrable on (An
1)m that is bounded

and compactly supported, and ff is the characteristic function of
Q

⌫2f(O
n
⌫ )

m. Also, let

h 2 GL(m,Af) be such that h⌫ has entries in O⌫ , and h⌫ = Id for all but finitely many
⌫ 2 f. Then

Z

Xn

X

X2(Fn)m

indep.

f(h�1Xg)dµn =

Z

(An
F )m

f(h�1X)d↵nm
F .

As a consequence, we have
Z

Xn

X

X2(Fn)m

indep.

T f(Xg)dµn =

Z

(An
F )m

T f(X)d↵nm
F

for any element T in the Hecke ring.

Proof. For each ⌫ 2 f, take the Smith normal form of h⌫ ; that is, h⌫ = �⌫a⌫�⌫ , where
�⌫ , �⌫ 2 K⌫ and a⌫ is a diagonal matrix. Then (h�1Xg)⌫ 2 (On

⌫ )
m if and only if Xg 2

�⌫a⌫(O
n
⌫ )

m. Now use the strong approximation to find k 2 SL(m,OF ) such that k⌫�⌫ =
l⌫diag(⌘⌫ , 1, . . . , 1) for ⌘⌫ = det �⌫ 2 O⇤

⌫ and l⌫ 2 SL(m,O⌫) su�ciently close to the
identity so that it fixes the set a⌫(O

n
⌫ )

m. Then, writing a =
Q

⌫2f
a⌫ , we have

X

X2(Fn)m

indep.

f(h�1Xg) =
X

X2(Fn)m

indep.

f(h�1k�1Xg) =
X

X2(Fn)m

indep.

ff(a
�1Xg)f1(k�1Xg).

Therefore Theorem 3.1 applies, and we conclude that it equals
Z

(An
F )m

f(a�1X)d↵nm
F =

Z

(An
F )m

f(h�1X)d↵nm
F

as desired. ⇤

Theorem 4.6. Choose s ✓ f. Let fpr = fpr,sf1 be a function (An
F )

m ! R, such that f1
is Riemann integrable, bounded and compactly supported, and fpr,s is the characteristic
function of the set of m⇥ n matrices over Af primitive over all ⌫ 2 s. Then

Z

Xn

X

X2(Fn)m

indep.

fpr(Xg)dµn =

Z

(An
F )m

fpr(X)d↵mn
F =

m�1Y

i=0

⇣s(n� i)�1

Z

(An
1)m

f1(X)d↵mn
1 ,

where

⇣s(s) =
Y

⌫2s

(1�N(⌫)�s)�1.

Proof. Write f = fff1, where ff is the characteristic function of
Q

⌫2f
(On

⌫ )
m. By Propo-

sition 4.4, we have

Z

Xn

X

X2(Fn)m

indep.

fpr(Xg)dµ =

Z

Xn

X

X2(Fn)m

indep.

Y

⌫2s

 
mX

i=0

(�1)iN(⌫)i(i�1)/2T (i)(⌫)

!

f(Xg)dµ.
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For N > 0, let sN be the set of all finite primes ⌫ such that N(⌫) < N . Using the
dominated convergence theorem, the right-hand side can be rewritten as

lim
N!1

Z

Xn

X

X2(Fn)m

indep.

Y

⌫2sN

 
mX

i=0

(�1)iN(⌫)i(i�1)/2T (i)(⌫)

!

f(Xg)dµ.

The product over ⌫ of the T ’s here is finite, and is thus an element of the Hecke ring.
Hence Theorem 4.5 implies that the above is equal to

lim
N!1

Z

(An
F )m

Y

⌫2sN

 
mX

i=0

(�1)iN(⌫)i(i�1)/2T (i)(⌫)

!

f(X)d↵nm
F

= lim
N!1

Z

(An
F )m

Y

⌫2sN

 
mX

i=0

(�1)iN(⌫)i(i�1)/2T (i)(⌫)

!
X

I

T (I)fpr(X)d↵nm
F

=

Z

(An
F )m

fpr(X)d↵nm
F .

It remains to compare the volumes of f and fpr. We have
Z

(An
F )m

f(X)d↵nm
F =

Z

(An
F )m

X

I

T (I)fpr(X)d↵nm
F

=
X

I

Q(m)(I)N(I)�n

Z

(An
F )m

fpr(X)d↵nm
F ,

where I runs over all nonzero ideals generated by s, and Q(m)(I) = deg T (I). Proposition
4.7 below then completes the proof of the theorem.

⇤

Proposition 4.7. Write Q(m)(I) = deg T (I), and

⇣s(s) =
Y

⌫2s

(1�N(⌫)�s)�1

as before. Then
X

I

Q(m)(I)N(I)�n = ⇣s(n)⇣s(n� 1) · · · ⇣s(n�m+ 1).

Proof. It su�ces to prove the “local” version of the proposition, which goes as follows.

Fix ⌫ 2 f, and write q = N(⌫), Q
(m)
⌫ (k) = deg T (⌫k), and ⇣⌫(k) = (1� q�k)�1. Then we

want to prove

(4.1)

1X

k=0

Q(m)
⌫ (k)q�kn = ⇣⌫(n)⇣⌫(n� 1) · · · ⇣⌫(n�m+ 1).

Later we will prove that

(4.2) Q(m)
⌫ (k) =

m�1Y

i=1

qk+i � 1

qi � 1
.

Let us assume this for now. We will prove (4.1) by induction on m. For m = 1, it is
trivially true. For the induction step, start by rewriting the left-hand side of (4.1) as

1

qm�1 � 1

1X

k=0

qk+m�1 � 1

qkn
·Q(m�1)

⌫ (k).
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By the induction hypothesis, this equals

=
1

qm�1 � 1

�
qm�1⇣⌫(n� 1) · · · ⇣⌫(n�m+ 1)� ⇣⌫(n) · · · ⇣⌫(n�m+ 2)

�

=
1

qm�1 � 1
⇣⌫(n� 1) · · · ⇣⌫(n�m+ 2)

�
qm�1⇣⌫(n�m+ 1)� ⇣⌫(n)

�
,

but one can easily verify that

qm�1⇣⌫(n�m+ 1)� ⇣⌫(n)

qm�1 � 1
= ⇣⌫(n)⇣⌫(n�m+ 1),

proving (4.1), as desired.
Thus it remains to prove (4.2) above. We again argue by induction on m. There is

nothing to prove for the base case m = 1. For the general case, observe that each and
every coset appearing in T (⌫k) has a representative of the form

0

B
B
B
B
B
@

⇡a1
⌫ ⇤ ⇤ · · · ⇤

⇡a2�a1
⌫ ⇤ ⇤

. . .
...

⇡
am�1�am�2
⌫ ⇤

⇡
am�am�1
⌫

1

C
C
C
C
C
A

,

where 0 = a0  a1  . . .  am = k, and each entry to the right of ⇡
ai�ai�1
⌫ is chosen

uniquely mod ⇡
ai�ai�1
⌫ . Since

m�1Y

i=1

q(m�i)(ai�ai�1) = qa1+...+am�1 ,

it follows that

Q(m)
⌫ (k) =

X

0a1...am�1k

qa1+...+am�1 ,

which in turn implies

Q(m)
⌫ (k) =

kX

a=0

qaQ(m�1)
⌫ (a)

(think a = am�1). By the summation by parts, we obtain

Q(m)
⌫ (k) = Q(m�1)

⌫ (k)
qk+1 � 1

q � 1
�

kX

a=1

qa � 1

q � 1

⇣

Q(m�1)
⌫ (a)�Q(m�1)

⌫ (a� 1)
⌘

.

The induction hypothesis implies

Q(m�1)
⌫ (a)�Q(m�1)

⌫ (a� 1)

=
qa+1 � 1

q � 1
· · ·

qa+m�2 � 1

qm�2 � 1
� qa � 1

q � 1
· · ·

qa+m�3 � 1

qm�2 � 1

= qaQ(m�2)
⌫ (a) =

qa(qm�2 � 1)

qa � 1
Q(m�1)

⌫ (a� 1).
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Therefore

Q(m)
⌫ (k) = Q(m�1)

⌫ (k)
qk+1 � 1

q � 1
� qm�2 � 1

q � 1

kX

a=1

qaQ(m�1)
⌫ (a� 1)

= Q(m�1)
⌫ (k)

qk+1 � 1

q � 1
�Q(m)

⌫ (k � 1)
qm�1 � q

q � 1

= Q(m�1)
⌫ (k)

qk+1 � 1

q � 1
�
⇣

Q(m)
⌫ (k)� qkQ(m�1)

⌫ (k)
⌘ qm�1 � q

q � 1
.

From this, we obtain
✓

1 +
qm�1 � q

q � 1

◆

Q(m)
⌫ (k) =

✓
qk+1 � 1

q � 1
+

qk(qm�1 � q)

q � 1

◆

Q(m�1)
⌫ (k)

) qm�1 � 1

q � 1
Q(m)

⌫ (k) =
qm+k�1 � 1

q � 1
Q(m�1)

⌫ (k)

) Q(m)
⌫ (k) =

qm+k�1 � 1

qm�1 � 1
Q(m�1)

⌫ (k).

This completes the proof of (4.2). ⇤

4.3. Rogers integral formula, the higher level case. As an application of Theorem
4.6, we prove the following result. As will be shown later in this paper, the full adelic
Rogers formula, Theorem 1.2, will follow as its corollary.

Theorem 4.8. Let 1  m < n, and let f : (An
F )

m ! R be of form f = fff1 such that f1
is a bounded and compactly supported Riemann integrable function on (An

1)m, and ff is
the characteristic function of v+⌘

Q

⌫2f(O
n
⌫ )

m ✓ (An
f )

m for some v 2 (An
f )

m and ⌘ 2 A⇤
f .

Then
Z

Xn

X

X2(Fn)m

indep.

f(Xg)dµn =

Z

(An
F )m

f(X)d↵nm
F .

Proof. Let K⌫ = GL(n,O⌫), and let K⌫(e⌫) be the kernel of the projection K⌫ !
GL(n,O⌫/⇡

e⌫
⌫ O⌫) for an integer e⌫ � 1; we put K⌫(0) = K⌫ . Also, for the sequence e =

(e⌫)⌫2f where e⌫ 2 Z�0, all but finitely many of which are 0, write K(e) :=
Q

⌫2f
K⌫(e⌫).

Our idea for the proof is to choose an appropriate e such that f(X) = f(Xk) for
k 2 K(e), and consider

(4.3)
1

|K : K(e)|

X

k2K/K(e)

X

X2(Fn)m

indep.

f(Xgk)

instead, noting that this and
P

X2(Fn)m

indep.
f(Xg) yields the same value when integrated over

Xn. We will show that (4.3) is equal to

(4.4)
1

|K : K(e)|

X

X2(Fn)m

indep.

f̃(Xg),

where f̃ = f̃ff̃1 is a certain modification of f that will be described more carefully below.
The key point is that f̃f will be the characteristic function of a set “centered at” 0 2 (An

f
)m,

to which Theorem 4.5 becomes applicable, yielding us Theorem 4.8.
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Let us fill in the details of the argument outlined above. The sequence e = (e⌫)⌫2f is
determined by the condition

e⌫ = min{e⌫ 2 Z�0 : ⇡e⌫
⌫ v⌫ 2 ⌘⌫(O

n
⌫ )

m}.

Indeed e⌫ = 0 for almost all ⌫. It can also be easily checked that ff(Xk) = ff(X) for
k 2 K(e).

f̃ is defined as follows: f̃1 = f1, f̃⌫ = f⌫ for ⌫ with e⌫ = 0, and for those ⌫ such that
e⌫ > 0, f̃⌫ is �⌫ times the characteristic function of S⌫ := (v⌫ + ⌘⌫O

nm
⌫ )K⌫ ✓ (Fn

⌫ )
m, and

�⌫ is the constant satisfying

(4.5)
�⌫↵

nm
⌫ (S⌫)

|K⌫ : K⌫(e⌫)|
= ↵nm

⌫ (v⌫ + ⌘⌫O
nm
⌫ ).

We defer the proof of the equality of (4.3) and (4.4) to the next section, and contiue with
the proof of Theorem 4.8.

We need the following description of S⌫ , in order to apply Theorem 4.5 later. Recall
that, by the theory of the Smith normal form, we can write

v⌫ = � · diag(⇡a1
⌫ , . . . ,⇡am

⌫ ) · P

for some � 2 K⌫ and P 2 Matm⇥n(O⌫) primitive, and a1  . . .  am. Suppose m0 is the
greatest index for which b := ord⌫⌘⌫ > am0 . Then, with a := diag(⇡a1

⌫ , . . . ,⇡
am0

⌫ ,⇡b
⌫ , . . . ,⇡

b
⌫),

we have

S⌫ = �(aP + ⌘⌫O
nm)K⌫ = �aPm0 ,

where Pm0 is the set of all elements in Matm⇥n(O⌫) whose first m0 rows form a primitive
m0 ⇥ n matrix.

By Proposition 4.3, we have

f̃⌫(X) = �⌫1Pm0 (a
�1��1X) = �⌫

0

@

m0

X

i=0

(�1)iN(⌫)i(i�1)/2T 0(i)(⌫)

1

A1Onm
⌫

(a�1��1X),

where T 0 is T in dimension m0; more precisely,

T 0(i)f(X) =
1

!⌫,m0(K 0
⌫↵

0
⌫K

0
⌫)

Z

K0
⌫
↵0

⌫
K0

⌫

f

✓✓
��1

Idm�m0

◆

X

◆

d!⌫,m0 ,

where K 0
⌫ = GL(m0,O⌫) and ↵0

⌫ = diag(1, . . . , 1, ⌫, . . . , ⌫) with m0 � i 1’s and i ⌫’s.
Therefore we may apply Theorem 4.5 to (4.4), and (4.5) ensures that it has the desired
measure. ⇤

4.4. Equivalence of (4.3) and (4.4). We continue with the notations from the previous
section. From the definition of S⌫ , it is clear that

X

k2K⌫/K⌫(e⌫)

f⌫(Xk) = �⌫1S⌫
(X),

where �⌫ is the order of the stabilizer of v⌫ + ⌘⌫O
nm
⌫ in K⌫(e⌫)\K⌫ . Since

v⌫ + ⌘⌫O
nm
⌫ = �a(P + diag(⇡l1

⌫ , . . . ,⇡lm
⌫ )Onm)

where l1 = b � a1, . . . , lm0 = b � am0 , lm0+1 = . . . = lm = 0 and P 2 Pm0 , �⌫ is also the
order of the stabilizer of P + diag(⇡l1

⌫ , . . . ,⇡lm
⌫ )Onm. To show that (4.3) and (4.4) are

equal, all we need to show is that this �⌫ satisfies (4.5). This will be done through a series
of lemmas below. We write q = N(⌫) for brevity in what follows.
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Lemma 4.9. The order of the group GL(n,O⌫/⇡
l
⌫O⌫) is q

(l�1)n2

(qn�1)(qn�q) · · · (qn�
qn�1).

Proof. The case l = 1 is well-known: |GL(n,O⌫/⇡⌫O⌫)| = (qn�1)(qn� q) · · · (qn� qn�1).
For general l, consider the surjection GL(n,O⌫/⇡

l
⌫O⌫) ⇣ GL(n,O⌫/⇡⌫O⌫) induced by

reduction modulo ⇡⌫ . This map has kernel Id + ⇡⌫Matn⇥n(O⌫/⇡
l
⌫O⌫), which has order

q(l�1)n2

. ⇤

Lemma 4.10. Let 1  m0  m < n, and let P 2 Pm0 . Also let l = l1 � l2 � . . . � lm0 >
lm0+1 = . . . = lm = 0. Then the order of the stabilizer of P +diag(⇡l1

⌫ , . . . ,⇡lm
⌫ )Onm

⌫ (mod
⇡l
⌫) in GL(n,O⌫/⇡

l
⌫O⌫) is

qlm
0(n�m0)|GL(n�m0,O⌫/⇡

l
⌫O⌫)|

m0

Y

i=2

qn(l1�li).

Proof. Without loss of generality, we may assume that P is the matrix
0

B
@

1
. . .

1

1

C
A

whose (i, i)-entries are 1 for i = 1, . . . ,m, and the rest of the entries are zero. Then the
stabilizer consists of matrices of the form A+B, where A is of the form

✓
Idm0⇥m0

Mat(n�m0)⇥m0(O⌫/⇡
l
⌫O⌫) GL(n�m0,O⌫/⇡

l
⌫O⌫)

◆

,

and B is an n⇥n matrix whose i-th row is an element of (⇡li
⌫ O⌫/⇡

l
⌫O⌫)

n for i = 2, . . . ,m0,
and all the remaining entries are zero. It is clear that the set of such matrices has the
said order. ⇤

Lemma 4.11. Continue with the notations and assumptions above. Then we have

(4.6)

�
�stab(P + diag(⇡l1

⌫ , . . . ,⇡lm
⌫ )Onm

⌫ )
�
�

|GL(n,O⌫/⇡l
⌫O⌫)|

⇣⌫(n)
�1 · · · ⇣⌫(n�m0 + 1)�1 = q�n(l1+...+lm0 ).

Proof. By the previous two lemmas,
�
�stab(P + diag(⇡l1

⌫ , . . . ,⇡lm
⌫ )Onm

⌫ )
�
�

|GL(n,O⌫/⇡l
⌫O⌫)|

=
qlm

0(n�m0)+(l�1)(n�m0)2
Qm0

i=2 q
n(l1�li)(qn�m0 � 1) · · · (qn�m0 � qn�m0�1)

q(l�1)n2(qn � 1) · · · (qn � qn�1)

= qlm
0(n�m0)+(l�1)(n�m0)2�(l�1)n2

m0

Y

i=2

qn(l1�li) · q�m0(n�m0)�nm0

⇣⌫(n) · · · ⇣⌫(n�m0 + 1).

Thus the left-hand side of (4.6) equals

qlm
0(n�m0)+(l�1)(n�m0)2�(l�1)n2

m0

Y

i=2

qn(l1�li) · q�m0(n�m0)�nm0

= q�n(l1+...+lm0 )qm
0nl · qlm

0(n�m0)+(l�1)(n�m0)2�(l�1)n2�m0(n�m0)�nm0

= q�n(l1+...+lm0 )qlm
0(2n�m0)+(l�1)(�2nm0+m02)�2nm0+m02

= q�n(l1+...+lm0 ),
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as desired. ⇤

Recalling that |K⌫ : K⌫(e⌫)| = |GL(n,O⌫/⇡
b�a1
⌫ O⌫)| and ↵

nm
⌫ (Pm0) = ⇣⌫(n)

�1 · · · ⇣⌫(n�
m0 + 1)�1, Lemma 4.11 implies

�⌫↵
nm
⌫ (S⌫)

|K⌫ : K⌫(e⌫)|
= q�n(l1+...lm0 ) ↵

nm
⌫ (S⌫)

↵nm
⌫ (Pm0)

= q�nmb = ↵nm
⌫ (v⌫ + ⌘⌫O

nm
⌫ ),

as desired.

4.5. Proof of Theorem 1.2. We will prove, for a Borel integrable f : (An
F )

k ! R,

(4.7)

Z

Xn

X

X2(Fn)k

indep.

f(Xg)dµ =

Z

(An
F )k

f(X)d↵nk
F

by a series of reductions to smaller families of functions, until we reach those functions
covered by Theorem 4.8.

First of all, it is clear that we may assume f is nonnegative, since the general f is a
di↵erence of nonnegative functions. It is also clear that we may assume f is compactly
supported and bounded: choose a countable sequence of compact measurable subsets S1 ✓
S2 ✓ . . . of (An

F )
k such that

S

N SN = (An
F )

k, and define fN (X) = 1SN
(X)·min(f(X), N).

Then by the monotone convergence theorem, if (4.7) holds for all fN , then it holds for f
too.

A compactly supported and bounded measurable function f can in turn be approx-
imated pointwise by compactly supported simple functions. Both are dominated by a
Riemann integrable function e.g. kfk1 times the characteristic function of any open set
containing supp f , hence the dominated convergence theorem applies, implying that (4.7)
holds for f if it holds for the simple functions. Such a simple function, in turn, can be
approximated pointwise by a finite linear combinations of the characteristic functions of
the sets of the form Sf ⇥ S1, where Sf = v + ⌘

Q

⌫|f O
nk
⌫ ✓ (An

f
)k and S1 ✓ (An

1)k is a

bounded measurable set.
In summary, we reduced our task to showing (4.7) for the functions f of the form

f = 1Sf
1S1

. The only remaining obstruction to applying Theorem 4.8 to this f is that
1S1

may not be Riemann integrable. We choose a sequence of bounded, compactly
supported continuous — therefore Riemann integrable — functions f1,N on Ank

1 that
converges to 1S1

in the L1-norm. Accordingly we write fN = 1Sf
f1,N , which of course

converges to f in the L1-norm. The pointwise limit of fN and f can disagree at most on
a null set, say Z. However, the set

{g 2 Gn : Fnmg \ Z 6= �}

has µn-measure zero, and hence the convergence
X

X2(Fn)k

no zero rows

fN (Xg) !
X

X2(Fn)k

no zero rows

f(Xg)

holds for µn-almost every g. Hence we can cite the dominated convergence theorem and
conclude that (4.7) holds for f . This completes the proof of the first formula claimed by
Theorem 1.2.

The other formula of Theorem 1.2 follows from the previous and the equality

X

X2(Fn)k

no zero rows

f(X) =
kX

m=1

X

D

X

X2(Fn)m

indep.

f(DtrX),
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where D runs over all m⇥k row-reduced echelon forms over F of rank m. More precisely,
suppose f � 0 without loss of generality, and consider the sum

kX

m=1

X

DN

f(Dtr
NX),

where DN runs over all m⇥k row-reduced echelon forms over F of rank m, each of whose
nonzero entries, say z, satisfies (i) |ord⌫z⌫ |  N/N(⌫) (ii) kLog(z)k  N . Then this
expression is a finite sum that is pointwise monotonically increasing in N . Of course, the
same can be said of

kX

m=1

X

DN

X

X2(Fn)m

indep.

f(Dtr
NXg).

Hence we can invoke the monotone convergence theorem — twice, for AF and Xn respec-
tively — to complete the proof.

5. Second moment estimates

5.1. Proof of Theorem 1.3. We recall the setting: n � 3, and f : An
F ! R is a

nonnegative function of the form f = fff1, where ff is the characteristic function of an
integrable set

Q

⌫2f
A⌫ ✓ An

f
, and f1 satisfies, for any � 2 F ⇤ and a constant C, a bound

of the form
Z

An
1

f1(x)f1(�x)d↵n
1  C↵n

1(f1)min(1,min
�|1

k�k�1
� )n.

A few lemmas are in order.

Lemma 5.1. For � 2 F ⇤ and A ✓ R, let

M(�, A) =
1

wF
(# u 2 O⇤

F such that the largest coordinate of Log(�u) is in A).

Then, if A = (�1, k] and (r + 1)k � log |N�| � 0,

M(�, A) =
1

RF
·

p
r + 1

r!
((r + 1)k � log |N�|)

r
+OF (((r + 1)k � log |N�|)

r�1
).

If (r + 1)k � log |N�| < 0 then M(�, A) = 0. In particular, for general A ✓ R bounded
from above, M(�, A) is finite.

Proof. M(�, A) is precisely the number of points of the unit lattice of F , translated by
Log �, whose maximum coordinate is at most k. If (r + 1)k < log |N�|, then there exists
no such points. If (r + 1)k � log |N�|, this is the number of the points of the translate
of the unit lattice inside the simplex formed by connecting the vertices (k, . . . , k,�rk +
log |N�|), (k, . . . , k,�rk + log |N�|, k), and so on, which is a regular r-simplex of side

length
p
2((r + 1)k � log |N�|). The proof follows from the volume formula of a regular

simplex and a standard lattice-point counting estimate. ⇤

Lemma 5.2. Fix � 2 F ⇤. Then

X

u2O⇤
F

Z

An
1

f1(x)f1(�ux)d↵n
1 = OF ((1 + | log |N�||r)C↵n

1(f1)).
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Proof. By assumption, for each u 2 O⇤
F , the integral inside the sum is bounded by the

smaller of

C↵n
1(f1) or Can↵n

1(f1),

where a = min� k�uk�1
� . If a � 1, or equivalently, if the largest coordinate of Log(�u) is at

most 0, we bound the integral by the former. For an integer k � 0, if a 2 [e�(k+1), e�k), or
equivalently, if the largest coordinate of Log(�u) is in (k, k+1], we bound the integral by
Ce�nk↵n

1(f1). Thus the left-hand side of the claimed equality is at most wFC↵
n
1(f1)

times

M(�, (�1, 0]) +

1X

k=0

M(�, (k, k + 1])e�nk.

From Lemma 5.1 it follows that

M(�, (�1, 0]) = OF (1 + | log |N�||r),

and also that

M(�, (x, x+ 1]) = OF ((1 + | log |N�||r)xr�1).

But then
1X

k=0

kr�1e�nk = OF (1),

which completes the proof. ⇤

Now Theorem 1.2 implies that

Z

Xn

0

@
X

x2Fn\{0}

f(xg)

1

A

2

dµ =

Z

A2n

f(x1)f(x2)d↵
n(x1)d↵

n(x2)+
X

c2F⇤

Z

An

f(x)f(cx)d↵n(x).

On the right-hand side, the former integral is simply ↵F (f)
2. It remains to show that the

latter sum of integrals is OF (C↵F (f)). Let us rewrite it as

2
X

c2F⇤

N(c)1

Z

An

f(x)f(cx)d↵n.

Thanks to the exact sequence

0 ! O⇤
F ! F ⇤ ! PrinF ! 0

where PrinF denotes the set of all principal fractional ideals of F , we can rewrite the
above as
(5.1)

2|�F |
�n

2

X

I2PrinF
N(I)1

X

u2O⇤
F

Z

An
f

ff(xf)ff((�(I)ux)f)d↵
n
f

Z

An
1

f1(x1)f1((�(I)ux)1)d↵n
1,

where �(I) 2 F ⇤ is a choice of a generator of I. Since two di↵erent choices of �(I) di↵er
by an element of O⇤

F , (5.1) is well-defined.
Any I 2 PrinF has the unique factorization I = pq�1, where p, q are coprime integral

ideals of F of the same ideal class. Therefore, (5.1) is, up to a constant factor depending
on F only,

(5.2)
X

q

X

p

X

u2O⇤
F

Z

An
f

ff(xf)ff((�ux)f)d↵
n
f

Z

An
1

f1(x1)f1((�ux)1)d↵n
1,
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where q runs over all integral ideals of F , and p runs over the integral ideals coprime to
q and in the same ideal class as q, and Np  Nq; � = �(pq�1) here.

To handle the integral over An
f
, we observe that, for any �⌫ 2 F ⇤

⌫ ,
Z

Fn
⌫

f⌫(x⌫)f⌫(�⌫x⌫)d↵
n
⌫ = ↵n

⌫ (A⌫ \ ��1
⌫ A⌫)

 min(↵n
⌫ (A⌫), k�⌫k�n

⌫ ↵n
⌫ (A⌫)).(5.3)

Hence, (5.1) is bounded by a constant term times

X

q

1

(Nq)n

X

p

X

u2O⇤
F

↵n
f
(ff)

Z

An
1

f1(x1)f1((�ux)1)d↵n
1,

We now apply Lemma 5.2 to bound this by

X

q

1

(Nq)n

X

p

OF ((1 + | log |N�||r)C↵n
F (f)) .

It remains to show that
X

q

1

(Nq)n

X

p

(1 + | log |N�||r) = OF (1).

By the Dedekind-Weber theorem, the left-hand side is bounded by a constant (depending
on F ) times

X

q

1

(Nq)n�1
(1 + logr Nq) ⌧ ⇣F (n� 3/2),

as desired, completing the proof of Theorem 1.3

5.2. The case of balls and annuli. In what follows, Vn denotes the volume of the unit
ball in Rn. In accordance with the metric we assigned on A1, the (closed) annulus at
origin of radii R1 < R2 in An

1 is the set of x 2 An
1 satisfying

R2
1 

X

� real

|x�|
2 + 2

X

� cplx

|x�|
2  R2

2,

where | · | is the standard Euclidean metric on Rn or Cn, as appropriate. R1 = 0 is
permitted, in which case the annulus is in fact a ball of radius R2. With respect to the
measure ↵n

1, a ball of radius R has volume VndR
nd, same as the volume of the ball of

radius R in Rnd with respect to the standard Euclidean metric.
The purpose of this section is to prove the following lemma, which shows that Theorem

1.3 is applicable when f1 is the characteristic function of an annulus at origin.

Lemma 5.3. Let n � 2, and let f1 be the characteristic function of an annulus on An
1

centered at origin. Then for � 2 F ⇤,
Z

An
1

f1(x)f1(�x)d↵n
1  ↵n

1(f1)min

✓

1, demin
�|1

k�k�1
�

◆n

.

Proof. The case d = 1 (i.e. F = Q) is trivial, so let us assume d � 2. Choose a place
� | 1 minimizing k�k�1

� , and write a = k�k�1
� . We assume a < 1, since otherwise again

the lemma is trivial.



ADELIC ROGERS INTEGRAL FORMULA 35

Write B := supp f1, an annulus at origin of radii R1 < R2. Let P� : (F ⌦ R)n ! Fn
�

be the orthogonal projection onto the �-coordinate. Also, for z 2 Fn
� , write P?

� (B, z) =
{y 2

Q
l|1
l 6=�

Fn
l : (y, z) 2 B} i.e. the “slice” of B at z. Then we have

(5.4)

Z

An
1

f1(x)f1(�x)d↵n
1 

Z

P�(��1B)

0

B
@

Z

P?
�
(B,z)

Y

l|1
l 6=�

d↵n
l

1

C
A d↵n

� .

Assume first that � is real. Then P�(�
�1B) is the ball in Rn at origin of radius aR2.

On the other hand, if z has length r,
Z

P?
�
(B,z)

Y

l|1
l 6=�

d↵n
l = Vn(d�1)

⇣

(R2
2 � r2)n(d�1)/2 �max(0, R2

1 � r2)n(d�1)/2
⌘

.

From the fact that

d

dr
(R2 � r2)n(d�1)/2 = �rn(d� 1)(R2 � r2)n(d�1)/2�1  0

for r 2 (0, R), one can deduce that
Z

P?
�
(B,z)

Y

l|1
l 6=�

d↵n
l  Vn(d�1)(R

n(d�1)
2 �R

n(d�1)
1 ).

Thus the right-hand side of (5.4) is bounded by

VnVn(d�1)

Z aR2

0

(R
n(d�1)
2 �R

n(d�1)
1 )rn�1dr

 VnVn(d�1)

n
an(R

n(d�1)
2 �R

n(d�1)
1 )Rn

2

 VnVn(d�1)

n
an(Rnd

2 �Rnd
1 )

 VnVn(d�1)

nVnd
an↵n

1(f1).

If � is complex, then P�(�
�1B) is the ball in Cn ⇠= R2n at origin of radius aR2.

Similarly as in the real case, we obtain the bound

V2nVn(d�2)

2nVnd
an↵n

1(f1)

for both cases. By Stirling’s formula, one can compute that

max

✓
VnVn(d�1)

nVnd
,
V2nVn(d�2)

2nVnd

◆

< (de)n.

Collecting all our computations so far, we can bound (5.4) by

(ade)n↵n
1(f1),

which is the desired bound. ⇤
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5.3. Estimate for Pn�1(F ). In this section, we prove Theorem 1.4. Recall that, for
g 2 Gn we defined PB(g) to be the number of points on Pn�1(F ) whose twisted height
with respect to g is at most B. We will construct the function f : An

F ! R such that

PB(g) =
X

x2Fn\{0}

f(B
� 1

d
1 xg).

where

B
� 1

d
1 = ( 1, . . . , 1

| {z }

finite places

, B� 1
d , . . . , B� 1

d

| {z }

infinite places

).

Due to the way the height is defined, it su�ces to consider the case B = 1 only.
Let h = hF be the class number of F , and choose a set of prime ideals {I1, . . . , Ih} that

also serve as the set of the representatives of the ideal classes of F . For each 1  i  h,

let ai be the norm 1 idele such that (ai)⌫ = ⇡
ord⌫(Ii)
⌫ for ⌫ 2 f, and (ai)� = kN(Ii)

1
d k� for

� | 1. In addition, let

H =

(

(x1, . . . , xr1+r2) 2 Rr1+r2 :

r1X

i=1

xi +

r2X

i=1

xr1+i = 0

)

,

and choose a fundamental domain D ✓ H of the unit lattice of F , Pr : Rr1+r2 ! H to be
the orthogonal projection onto H, and define Logn : An

1 ! Rr1+r2 by

Logn(x) = (log kxk�1
, . . . , log kxk�r1+r2

).

Then there exists a one-to-wF correspondence between

Pn�1(F ) and S(g) :=

⇢

(i, x) :
1  i  h, x 2 Fn\{0}, aixg primitive,

(xg)1 2 (Pr � Logn)�1(D)

�

.

To describe the correspondence, take z̄ 2 Pn�1(F ) and let z = (z1, . . . , zn) 2 Fn be any
representative of z̄. Then there exists exactly one 1  i  h such that aizg is F -equivalent
to a primitive element of An

F , that is, there exists an element c 2 F ⇤, unique up to the
units, such that caizg is primitive. To elaborate, for each ⌫ 2 f let J⌫ ✓ F⌫ be the
fractional ideal generated by the entries of (zg)⌫ , and take J =

Q
⌫ord⌫J⌫ ; now choose the

unique i so that IiJ is principal — in fact, IiJ = (c�1). Furthermore, by the definition of
D, there exists u 2 O⇤

F , unique up to the roots of unity of F , such that the infinite part
of ucaizg lies in (Pr � Logn)�1(D). We take x = ucz, up to the roots of unity.

Therefore, if � = �f�1, where �f : An
f

! R is the characteristic function of the
primitive vectors, and �1 : An

1 ! R is the characteristic function of the set of x1 2
(Pr � Logn)�1(D) with H1(x1)  1, then

hX

i=1

�(aixg) =

(

1 if x 2 S(g) and H(xg)  1

0 otherwise.

Accordingly we let

(5.5) f(x) =
1

wF

hX

i=1

�(aix).

One may now apply this f to our formulas to study the statistics of the rational points on
Pn�1. The formula below may be useful for such purposes; see Schanuel ([31]) or Thunder
([46]) for similar computations.
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Proposition 5.4. Let � be as above. Then
Z

An
F

�(x)d↵n =
V r1
n V r2

2nn
r1+r2�12nr2RF

|�F |
n
2 ⇣F (n)

.

Proof. From the previous sections (see e.g. the proof of Theorem 4.6), it is clear that
Z

An
f

�fd↵
n =

1

⇣F (n)
.

It remains to concern ourselves with �1. On each F� for � | 1, take the polar coordinates
d↵n

� = rn�1
� dr�d✓� if � is real, and d↵n

� = 2nr2n�1
� dr�d✓� if � is complex. Let e� = 1 if �

real and e� = 2 for � complex. Then
Z

An
1

�1d↵n = (nVn)
r1(2nV2n)

r2

Z
Y

� real

rn�1
� dr�

Y

� cplx

r2n�1
� 2ndr�

= V r1
n V r2

2nn
r1+r22nr2

Z
Y

�|1

re�n�1
� e�dr�,

where the region of integration is the set of all (r�)�|1 ✓ (R>0)
r1+r2 such that

Y

�|1

re��  1, and

0

@e� log r� � e�
d

log
Y

⇢|1

re⇢⇢

1

A

�|1

2 D.

To simplify, let us take the change of coordinates x� = e� log r�. Then the above integral
becomes

V r1
n V r2

2nn
r1+r22nr2

Z
Y

�|1

enx�dx�,

where the region of the integration is the set of all (x�)�|1 satisfying

X

�|1

x�  0, and

0

@x� � e�
d

X

⇢|1

x⇢

1

A

�|1

2 D.

We make one more change of coordinates, by putting

y1 =
X

�

x�, yi = x�i
� e�i

d
y1 for i = 2, . . . , r1 + r2,

or equivalently,

x�1 =
e�1

d
y1 � y2 � . . .� yr1+r2 , x�i = yi +

e�i

d
y1 for i = 2, . . . , r1 + r2.

One computes the Jacobian matrix to be

✓
@x�i

@yj

◆

1i,jr1+r2

=

0

B
B
B
@

e�1

d �1 · · · �1
e�2

d 1
...

. . .
e�r1+r2

d 1

1

C
C
C
A

,

whose determinant is equal to 1. Therefore, we have
Z

An
1

�1d↵n = V r1
n V r2

2nn
r1+r22nr2

Z

eny1dy1 . . . dyr1+r2 ,
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where the region of the integration is given by the conditions

y1  0, (�y2 � . . .� yr1+r2 , y2, . . . , yr1+r2) 2 D.

Therefore Z

An
1

�1d↵n = V r1
n V r2

2nn
r1+r2�12nr2RF .

This proves the proposition. ⇤

Let us now estimate the second moment

Z

Xn

0

@
X

x2Fn\{0}

fB(xg)

1

A

2

dµ.

As in the previous section, this is equal to
Z

A2n

fB(x1)fB(x2)d↵
n(x1)d↵

n(x2) +
X

c2F⇤

Z

An

fB(x)fB(cx)d↵
n(x),

and the first integral is simply
↵(fB)

2 = (CBn)2

with

C =
V r1
n V r2

2nn
r1+r2�12nr2hFRF

|�F |
n
2 ⇣F (n)wF

by Proposition 5.4. The second sum of integrals can again be handled as in the previous
section to be shown to be bounded by a constant times

X

q

X

p

X

u2O⇤
F

Z

An

fB(x)fB(�ux)d↵
n

=
X

q

X

p

X

u2O⇤
F

X

1i,jhF

Bn

w2
F

Z

An

�(aix)�(aj�ux)d↵
n,(5.6)

where p, q, � = �(pq�1) are as in (5.2). Hence we are led to investigate
X

u2O⇤
F

Z

An

�(aix)�(aj�ux)d↵
n =

X

u2O⇤
F

Z

An

�(x)�(aja
�1
i �ux)d↵n

for each 1  i, j  hF . Applying (5.3) to the Af part of the integral, we find that we may
bound this by

↵n
f
(�f)

|�F |
n
2 (Nq̃)n

X

u2O⇤
F

Z

An
1

�1(x1)�1((aja
�1
i �ux)1)d↵n

1,

where q̃ = q · I��1

1 · · · I��h

h with �i = min(1, ordIi(q)). Moreover, we may bound
X

u2O⇤
F

�1((aja
�1
i �ux)1)  1,

since for each x1 2 An
1, �1((aja

�1
i �ux)1) is nonzero for at most one u 2 O⇤

F . Therefore

X

u2O⇤
F

Z

An

�(x)�(aja
�1
i �ux)d↵n  ↵n(�)

|�F |
n
2 (Nq̃)n

.

We may now proceed as in the estimate of (5.2) to prove that (5.6) is of size OF (↵
n
F (fB)),

as desired.
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