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Abstract—The problem of position estimation using range
measurements from transmitters with inaccurately known po-
sitions is considered. The true position of each transmitter is
assumed to lie within a disk of a known radius, centered at the
inaccurate position. A robust estimation framework is proposed,
formulating a min-max optimization problem and presenting a
tractable solution approach. A sensitivity map is constructed
to quantify the positioning error in different regions due to
inaccuracies in the transmitters’ positions. Numerical simulations
are presented demonstrating the construction and application
of the sensitivity map for estimating the position of a mobile
receiver. It is shown that the sensitivity map yields invaluable
insights to the expected positioning error in various regions
within the environment. Experimental results are presented of
a vehicle navigating in a real-world GPS-jammed environment
using pseudorange measurements from 7 cellular transmitters
whose positions are inaccurately known. The vehicle’s positioning
error is justified utilizing the offline-generated sensitivity map.

Index Terms—Robust estimation, positioning, navigation, sig-
nals of opportunity, radio SLAM

I. INTRODUCTION

Autonomous navigation has witnessed major strides in the
past few years. Many automotive manufacturers have incorpo-
rated some form of autonomous driving capabilities, or they
have plans to do so. Alarmingly, there is a strong dependence
on global navigation satellite systems (GNSS) in producing
a position, velocity, and time (PVT) estimate of the vehicle
in a global frame [1]. Access to GNSS signals may not
be completely guaranteed, necessitating the development of
alternative positioning and navigation approaches for back up
or redundancy.

When GNSS signals are unusable or unreliable, other
signals in the environment can be exploited for navigation
[2]. Navigation with signals of opportunity (SOPs) has at-
tracted significant attention recently [3]–[7]. In this context,
the vehicle-mounted receiver makes range-type measurements

This work was supported in part by the National Science Foundation (NSF)
under Grant 2240512, in part by the Air Force Office of Scientific Research
(AFOSR) under Grant FA9550-22-1-0476, and in part by the U.S. Department
of Transportation under Grant 69A3552348327 for the CARMEN+ University
Transportation Center.

(e.g., pseudorange, carrier phase, or Doppler) to the transmit-
ters [8]–[11]. Navigation with SOPs has been demonstrated
indoors [12], [13]; on ground vehicles [14], [15]; on unmanned
aerial vehicles (UAVs) [16], [17]; high-altitude aircraft [18],
[19]; and in GNSS-jammed environments [20], [21].

One of the challenges of exploiting SOPs is that the
transmitters’ position may not be known a priori. Radio si-
multaneous localization and mapping (radio SLAM) [22]–[24]
offers a relief to this problem, whereby the receiver’s states
are simultaneously estimated with the transmitters’ states [25].
Even when radio SLAM is employed, it is inevitable to
experience periods during which the transmitters’ positions are
inaccurate. In addition, even when a map of the transmitters’
positions is available, such maps always suffer from some level
of error. As such, it is imperative to analyze the effect of
inaccurate transmitters’ positions on receiver positioning.

The recent literature has considered the effect of transmitter
states’ error and uncertainty on receiver positioning. In [26],
the unknown clock skew was studied in the context of time-
of-arrival (TOA) position estimation. In [27], measurement
uncertainty and outlier detection were addressed. In [28],
multipath component delay uncertainty was formulated as an
optimization problem and a nearest neighbor-based method to
estimate the receiver position was presented. In [29], clock
synchronization and transmitter’s location uncertainty in time-
difference-of-arrival (TDOA) was studied by considering the
transmitter’s location errors as Gaussian distributed. In [30],
trajectory estimation using phase measurements originating
from fixed antennas located within the environment was dis-
cussed, where a grid-search was proposed to mitigate the
effects of uncertainties. In [31], the transmitter position un-
certainty using received signal strength (RSS)–angle-of-arrival
(AOA) for static receiver position estimation was considered.

This paper considers the problem of receiver position es-
timation using range measurements from transmitters with
inaccurate positions. The true position of each transmitter is
assumed to lie within a disk of a known radius, centered
at the inaccurate position. A robust estimation framework
is proposed with a tractable solution, leading to evaluating



the sensitivities of various regions in the environment to the
transmitter position inaccuracy, given transmitter uncertainty
bounds. The robust estimation formulation, by its nature, is a
nonconvex-nonconcave min-max-type optimization problem,
to which no straightforward solution exists [32]. This paper
develops a tractable method based on convex relaxation and
smoothed gradient descent-ascent (GDA). This paper makes
the following contributions. First, a method for solving the
robust estimation problem is proposed, utilizing a smoothed-
GDA-based approach. Second, for a given map of inaccurate
transmitter positions and a known uncertainty bound within
which the true position lies, a so-called sensitivity map is con-
structed. The map quantifies the positioning error in different
regions due to inaccurate transmitters’ positions. Numerical
simulations are presented demonstrating the construction and
application of the sensitivity map for estimating the position
of a mobile receiver. It is shown that the sensitivity map
yields invaluable insights to the expected positioning error in
various regions within the environment. Experimental results
are presented for a vehicle navigating in a real-world GPS-
jammed environment using pseudorange measurements from
7 cellular transmitters whose positions are inaccurately known.
The vehicle’s positioning error is justified utilizing the offline-
generated sensitivity map.

This paper is organized as follows. Section II describes
the considered problem. Section III develops the proposed
robust estimation framework and sensitivity map generation.
Simulation and experimental results are given in Sections IV
and V, respectively. Section VI gives concluding remarks.

II. PROBLEM DESCRIPTION

For position estimation using range-type measurements,
precise transmitter locations are crucial for accurate receiver
positioning. While precise transmitter location may be readily
available for dedicated beacons, such information may not
be available for SOPs. As such, it is vital to understand the
impact of transmitter location inaccuracy on receiver position
estimation accuracy. For many SOPs of interest (e.g., cellular
transmitters), an approximate transmitter position could be
obtained, e.g., from online databases or from an offline map-
ping campaign [33]. As such, it is reasonable to assume some
uncertainty bound on these positions. Given these bounds, this
paper will identify regions to which receiver positioning is
sensitive to inaccuracies in transmitter position.

Fig. 1 illustrates the problem considered in this paper.
Imagine a vehicle navigating by making range-type measure-
ments to three transmitters. Assume that the vehicle has an
inaccurate knowledge of the transmitters’ positions, denoted
{

r′sm

}3

m=1
, and assume the true transmitters’ positions, de-

noted {rsm}3m=1, to be within a disk of radius ε. Should

the vehicle navigate in regions {Ri}
3
i=1, what is the expected

positioning error? This paper analyzes the position estimation
error sensitivity in different regions to inaccurate transmitter
position. To this end, a systematic approach for constructing
so-called “sensitivity map” of the environment is presented,
which quantifies the positioning error in different regions.
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Fig. 1. A vehicle navigates with range-type measurements from three trans-
mitters. The vehicle has an inaccurate knowledge of the transmitters’ positions,

denoted
{

r
′

sm

}3

m=1
. The true transmitters’ positions, denoted {rsm}3

m=1
,

are known to lie within a disk of radius ε, centered at
{

r
′

sm

}3

m=1
. What is

the expected positioning error in estimating the vehicle’s position {rri}
3

i=1
,

should the vehicle navigate in regions {Ri}
3

i=1
, respectively?

III. ROBUST ESTIMATION FRAMEWORK AND SENSITIVITY

ANALYSIS OF INACCURATE TRANSMITTER POSITION

This section formulates the problem of positioning us-
ing range measurements from transmitters with inaccurately
known positions via a robust estimation formalism, leading to
generation of the sensitivity maps.

A. Convex Relaxation for the Nominal Estimation

Consider range-based position estimation of the receiver’s
position rr ∈ R2 in a two-dimensional (2-D) plane. The
problem is considered in 2-D to simplify the analysis, with
extension to 3-D readily achievable. The mth transmitter
position is given by rsm and there are M such transmit-

ters. The receiver makes range measurements {zsm}Mm=1 to
each transmitter, corrupted by additive Gaussian noise, i.e.,
zsm = ‖rsm − rr‖ + vsm , with vsm ∼ N (0,σ2). For
simplicity, assume the measurement noise to be independent
and identically distributed.

When accurate transmitters’ positions are available, the
following “classic” optimization problem can be formulated

min
r̂r

M
∑

m=1

(zsm − ‖rsm − r̂r‖)
2, (1)

where r̂r is the position estimate of the receiver. Problem (1)
is in the form of least-squares, which is nonconvex. Consider
the following convex relaxation. First, the cost function can
be expanded and a new variable dm is introduced, leading to
the constrained optimization problem

min
r̂r

M
∑

m=1

[

(zsm)2 − 2zsmdm + (dm)2
]

s.t. dm = ‖rsm − r̂r‖, m = 1, . . . ,M.

(2)



By defining d = [d1, · · · , dM ]T and introducing the matrix
D ∈ RM×M , the cost function can be expressed as an affine
function, leading to

min
r̂r

M
∑

m=1

[

(zsm)2 − 2zsmdm +Dmm

]

s.t. Dmm −
[

(

rs1m − r̂r1
)2

+
(

rs2m − r̂r2
)2
]

= 0,

D = dd
T,

(3)

where Dmm is the mth diagonal element in D.

By expanding the quadratic terms in the first constraint,
and defining the matrix Y ∈ R2×2, the first constraint can be
expressed as an affine constraint, leading to

min
r̂r

M
∑

m=1

[

(zsm)2 − 2zsmdm +Dmm

]

s.t. Dmm −
2

∑

k=1

(

r2smk

− 2rsmk
r̂rk + Ykk

)

= 0,

Y = r̂r r̂
T
r ,

D = dd
T.

(4)

Finally, the last two constraints can be relaxed by introducing
the semi-definiteness constraints, leading to the following
convex relaxation

min
r̂r

M
∑

m=1

[

(zsm)2 − 2zsmdm +Dmm

]

s.t. Dmm −
2

∑

k=1

(

r2smk

− 2rsmk
r̂rk + Ykk

)

= 0,

[

D d

dT 1

]

% 0,

[

Y r̂r

r̂Tr 1

]

% 0,

(5)

where D, Y, and dm are introduced to have an affine ob-
jective function in which ‖rsm − r̂r‖ is substituted by dm.
Additionally, the matrix D is introduced to eliminate the
d2m term by first imposing the d2m = Dmm constraint and
later relaxing it to the matrix inequality given by the third
constraint. Problem (5) is convex, to which additional a priori

information about the the receiver’s position can be added as
a convex constraint. The solution to (5) can be obtained via
sequential quadratic programming (SQP). This formulation is
necessary to initialize the nonconvex-nonconcave optimization
problem to be introduced in the next section.

B. Robust Estimation as a min-max Problem

In this section, the receiver position estimation problem
is formulated as an optimization problem, in which precise
transmitter position rsm is unknown but the norm of the error
between rsm and the “assumed” transmitter position r′sm is
upper-bounded by ε in the form of ‖rsm − r′sm‖ ≤ ε. The
error vector is denoted by ξsm and is given by

r
′
sm

= rsm + ξsm . (6)

Since the norm of the error is bounded by a known value, the
following problem is introduced to incorporate this constraint,
which is called robust estimation problem throughout this
paper. The robust estimation problem can be stated as

min
r̂r

max
‖ξsm

‖≤ε

M
∑

m=1

(

zm − ‖r
′
sm − ξsm − r̂r‖

)2
. (7)

Problem (7) is a nonconvex-nonconcave min-max optimization
problem [34]. The next subsection presents a convex relaxation
method to facilitate the computation of r̂r.

C. Convex Relaxation for the Outer Optimization Problem

The min-max optimization problem in (7) is in the form

min
x∈X

max
y∈Y

f(x, y), (8)

where x ∈ X and y ∈ Y are the decision variables defined on
their convex sets X and Y , respectively. As for the objective
function, f(•, y) is not convex with respect to x and f(x, •) is
not concave with respect to y. This is more challenging than a
nonconvex optimization problem in that even convergence to a
local minima may not be achievable for a simple bilinear form
[32], [35]. To facilitate computing a solution for the stated
nonconvex-nonconcave min-max optimization problem in (7),
the following approximation is introduced

min
x∈X

max
i∈[1,N ]

f(x, yi), (9)

where the {yi}Ni=1 terms are sampled from the feasible region
associated with the variable. This problem can be relaxed as

min
x∈X

max
δ∈∆

∆={δ|δi≥0,
∑

i
δi=1}

N
∑

i=1

δif(x, yi), (10)

where the introduced variable δ is defined on ∆, which is an
N -dimensional probability simplex. This manipulation makes
it possible to approximate the problem as a nonconvex-concave
optimization, since the objective function is affine with respect
to δ for a fixed x. The obtained form allows for the use of
existing algorithms with convergence guarantees [36]–[38].

D. Smoothed GDA Algorithm

The nonconvex-concave min-max problem (8) can be solved
with smooth gradient descent-ascent (GDA) algorithm where
a proximal function is given by

K(x, z; y) = f(x, y) +
p

2
‖x− z‖22, (11)

where the proximal quadratic term (second term on the right-
hand side of (11)) contains the variable z, which can be
considered as the delayed version of x. The quadratic term
is added to the original objective function to eliminate the
oscillation behavior during the iteration, and p is a positive
constant. The smoothed GDA algorithm is given in Algorithm
1, where the operators PX and PY represent the projection
operations and since the defined sets X and Y are convex,
these operations can be expressed as a convex optimization
problem [39].



The proposed method to solve the robust estimation problem
in (7) is described in Algorithm 2, whereby the original
problem is first approximated by a nonconvex-concave min-
max optimization, which is solved by applying the smoothed-
GDA Algorithm after constructing the proximal function stated
in the second step of Algorithm 2.

Algorithm 1 Smoothed GDA

1: Initialization: Given x0, z0, y0 and 0 < β ≤ 1.
2: for t = 0, 1, 2, . . . do

3: xt+1 ← PX (xt − c∇xK(xt, zt; yt))
4: yt+1 ← PY(yt + α∇yK(xt+1, zt; yt))
5: zt+1 ← zt + β(xt+1 − zt)
6: end for

Algorithm 2 Robust Estimation Algorithm to Solve (7)

1: Initialization: Given {r′sm}Mm=1 and ε
2: Sample Ns {ξsm}Mm=1 s.t. they are bounded by ε

3: Assign
∑Ns

j=1 δ
(j)

∑M
m=1

(

zsm −
∥

∥

∥

[

r′sm − ξ
(j)
sm

]

− r̂r

∥

∥

∥

)2

to K(r̂r, r̂′r; δ)
4: Initialize r̂0r by solving (5).
5: Initialize r̂′0r ← r̂0r and, δ0 ∈∆

6: Initialize 0 < β ≤ 1, α > 0, c > 0
7: for t = 0, 1, 2, . . . do
8: r̂t+1

r ← PY (r̂tr − c∇r̂r
K(r̂tr, r̂

′t
r ; δ

t))
9: δt+1 ← P∆(δt + α∇δK(r̂t+1

r , r̂′tr ; δ
t))

10: r̂′t+1
r ← r̂′tr + β(r̂t+1

r − r̂′tr )
11: end for

E. Sensitivity Map Computation

The proposed algorithm to construct the sensitivity map
for receiver positioning with inaccurately known transmitters’
positions is given in Algorithm 3.

Algorithm 3 Sensitivity Map Construction

1: Initialization: Given {r′sm}Mm=1 and ε
2: Initialize 0 < β ≤ 1, α > 0, c > 0.
3: for each point rr in the environment do
4: sample N1 {rsm}Mm=1 s.t. they are bounded by ε
5: for each {rsm}Mm=1 set do
6: compute r̂r by Algorithm 2
7: end for

8: find a simplex that contains N such r̂r points
9: find the center of the simplex and assign it to r̂r

10: find the error ‖rr − r̂r‖
11: end for

IV. NUMERICAL SIMULATIONS

This section presents numerical simulation results demon-
strating the construction of the sensitivity map and robust
estimation formulation proposed in Section III. The numerical
simulations are inspired by the results achieved in [20], [21],
in which a ground vehicle navigated with pseudorange mea-
surements to SOP transmitters in a GPS-jammed environment.
In contrast to the formulation presented in [20], [21], in which

the SOP transmitter positions were known to the navigating
vehicle, this section relaxes this assumption and considers
inaccurate transmitter positions. To this end, the sensitivity
map is computed as described in Algorithm 3 to assess the
sensitivity levels of different regions in the environment to
transmitter position inaccuracies. Next, the positioning perfor-
mance for a set of trajectories are compared. First, for a given
set of inaccurate transmitter locations, the sensitivity maps
are created for a certain uncertainty bound. Fig. 2 shows the
sensitivity map for ε = 245 m, which corresponds to the 95%
uncertainty covariance of P = (104)I2×2 around the inac-
curate transmitter’s position [40]. The inaccurate transmitters’
positions were chosen randomly within a disk of radius ε from
the true transmitters’ positions. The sensitivity map essentially
quantifies the positioning error at each candidate receiver
position in the environment, making range measurements to
each inaccurate transmitter position.

Next, three receiver trajectories with different initial posi-
tions within the environment but the same initial velocities
ṙr(0) = [28.06,−2.34]T were generated. The receiver’s dy-
namics was assumed to evolve according to a nearly con-
stant velocity with acceleration process noise power spectral
densities q̃x = q̃y = 0.01 m2/s3 [20]. For each trajectory,
range measurements at a sampling period of T = 0.01 s
were generated to the transmitter’s true position, corrupted by
additive zero-mean Gaussian noise with variance σ2 = 10−3

m2. An extended Kalman filter (EKF) was used to fuse the
range measurements to estimate the receiver’s states x =
[

rT
r , ṙ

T
r

]T
. The EKF used the inaccurate transmitters’ positions

and was initialized as x̂(0|0) ∼ N [x(0),P(0|0)], where
P(0|0) = diag [10, 10, 1, 1]. Fig. 2 shows the three simulated
trajectories and Table I gives the receiver’s position root mean
squared errors (RMSEs). Among the three trajectories, the
position RMSE of Trajectory 3 was the lowest, since it is
located in a less sensitive region, while Trajectory 2 suffered
from the highest position RMSE.

10 km

Fig. 2. The sensitivity map for inaccurate SOP transmitter positions and the
three simulated trajectories (in red).

TABLE I
POSITION RMSE OF THE THREE RECEIVER TRAJECTORIES IN FIG. 2

Trajectory Position RMSE [m]
Trajectory 1 131.91
Trajectory 2 182.26
Trajectory 3 104.84
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True trajectory Estimated trajectory

Position 2-D RMSE: 194.79 m

Emulated trajectory Estimated trajectory

Emulated trajectory Estimated trajectory
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1

3
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Position 2-D RMSE: 156.48 m

Fig. 3. True, estimated, and emulated trajectories.

V. EXPERIMENTAL RESULTS

This section presents experimental results in a real-world
GPS-jammed environment. To this end, a ground vehicle, was
equipped with a National Instrument (NI) universal software
radio peripheral (USRP), two consumer-grade Laird cellular
antennas, laptop, and a Septentrio GNSS-INS, comprising a
multifrequency GNSS AsteRx-i V receiver, an industrial-grade
Vectornav VN-100 micro-electromechanical system (MEMS)
inertial measurement unit (IMU), and a dual-GNSS antenna
system. The vehicle-mounted GNSS-IMU was used to obtain
the vehicle’s ground truth trajectory, utilizing signals from
non-jammed GNSS constellations (Galileo and GLONASS).
The USRP utilized a GNSS-disciplined oscillator (GNSSDO)
and was tuned to listen to two carrier frequencies correspond-
ing to the U.S. cellular providers: Verizon Wireless and T-
Mobile. The receiver discussed in [21] was used to obtain
pseudorange measurements to 7 cellular SOPs. Since the
measurements were in the form of pseudoranges, the following
approach was adopted to convert them to ranges, which would
enable comparison against the simulation results presented in
Section IV. Given the vehicle’s ground truth trajectory and
the true transmitters’ positions, a forward-pass Kalman filter
was used to estimate the history of the clock error between
the receiver and each SOP transmitter along the vehicle’s
trajectory. These estimates were then subtracted from the
measured pseudoranges, to yield “range” measurements.

In contrast to the results in [21], which considered known
transmitters’ positions and a different part of the vehicle’s
trajectory, the results herein relax this assumption and show
results with inaccurate transmitter positions. The inaccurate 2-
D transmitters’ positions were randomly sampled from within
a disk of radius ε = 245 m, centered at the true transmitters’
positions, while the inaccuracy in the vertical direction was
made very small, due to poor vertical dilution of precision
considerations. Table II gives the position errors between the
SOP transmitters’ positions and the inaccurate ones.

Next, the range measurements were fused via the EKF
described in [20]. Since the vehicle was driven along Tra-
jectory 1 shown in Fig. 3, and in order to analyze the error
along other trajectories in the environment, two trajectories
(denoted by 2 and 3 in Fig. 3) were emulated as follows. Range

measurements were generated to the same inaccurate SOP
transmitter positions, corrupted by the same noise time history
from Trajectory 1 (obtained by subtracting the true range and
estimated clock errors from the pseudorange measurements).
It can be seen from Fig. 3 that the trajectory’s relative
position RMSEs are consistent with what was achieved in
the simulation results, namely Trajectory 3 yielded the least
position RMSE, while Trajectory 2 yielded the highest position
RMSE, which can be justified by the sensitivity map.

TABLE II
SOP TRANSMITTER POSITION ERRORS

Transmitter ID Position Error [m] Transmitter ID Position Error [m]
SOP 1 226.88 SOP 2 197.23

SOP 3 48.37 SOP 4 141.15

SOP 5 95.87 SOP 6 120.23

SOP 7 53.25

VI. CONCLUSION

This paper analyzed the problem of receiver positioning
with terrestrial transmitters whose positions are inaccurately
known. To this end, the problem was formulated as a robust
optimization problem, to which a tractable solution was pro-
posed, leading to generation of sensitivity maps. Numerical
results were presented demonstrating the application of the
formulation. Experimental results in a real-world GPS-jammed
environment were presented, rationalizing the achieved navi-
gation accuracy via the proposed sensitivity map.
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