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Abstract—A localization upper-bound with range measure-
ments to transmitters whose positions are uncertain is derived.
The transmitters’ positions uncertainty is known to be bounded
by a disk with a known radius e. First, assuming that only
one of the transmitters’ positions is uncertain (while the rest
are perfectly known), an analytic solution is derived for the
inaccurate transmitter position within the uncertainty disk,
which maximizes the ranging error. This leads to establishing a
localization error upper-bound. To demonstrate the applicability
of the upper-bound to the case of multiple uncertain transmitter
positions, numerical simulations are presented demonstrating
that the derived upper-bound still holds. Experimental results
are presented of a vehicle navigating in GPS-denied environment,
making pseudorange measurements to 7 cellular transmitters,
whose positions are uncertain. The experimental results demon-
strate the applicability of the upper-bound in predicting the
worst-case vehicle localization performance.

Index Terms—Localization, positioning, navigation,
upper-bound, uncertain maps
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I. INTRODUCTION

In recent years, various methods have been explored to
enhance positioning accuracy, especially in scenarios where
the reliability of global navigation satellite systems (GNSS)
is compromised [1]-[5]. Relying solely on GNSS for deter-
mining essential motion variables is not always feasible due
to potential signal loss, degradation, or cyberattacks. A more
robust strategy involves leveraging diverse transmitting sources
for positioning to ensure redundancy and backup [6], [7].

One promising source that has gained considerable attention
is the use of terrestrial signals [8], [9], whether dedicated [10]
or non-dedicated (e.g., cellular [11], [12], digital television
[13], [14], and FM radio [15], [16]). Here, the receiver
produces range-type measurements from received signals (e.g.,
pseudorange, carrier phase, or Doppler).

An important consideration when using terrestrial sources
for localization is knowledge of the transmitters’ positions
[17]. While radio simultaneous localization and mapping (ra-
dio SLAM) offers a relief [18], as the transmitters’ positions
are continuously refined, receiver localization may not be suffi-
ciently accurate during the initial (transient) stages, especially
if the transmitters’ uncertainty is large [19]. Even in the case
when the transmitters’ positions are mapped a priori [20],
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mapping errors on the order of a few meters could exist, raising
the following particularly important question for safety-critical
systems (e.g., self-driving cars and unmanned aerial systems):
given a map of uncertain transmitter positions to which the
receiver makes range measurements, what is the upper-bound
on receiver localization error?

The recent literature considered the problem of position
estimation with uncertain source parameters [21]. In [22] a
semi-definite program was derived to deal with non-convexity
of source localization from signal time-of-arrival (TOA) mea-
surements with unknown start transmission time and sensor
position uncertainties. In [23], source localization based on
superimposed received signal strength as a sparse signal re-
covery problem was proposed to deal with uncertain sensor
positions. In [24], cellular signals were used for localization
in which multipath component delays were estimated and the
localization was formulated as a data association problem. In
[25], measurement error was studied for a time-difference-
of-arrival (TDOA) problem and a nonlinear constraint was
proposed to be imposed on the nonlinear least-squares-based
optimization algorithm. In [26], passive localization of a
moving source in the presence of random sensor location
errors was considered by utilizing TDOA and frequency dif-
ference of arrival measurements. In [27], an improved robust
TOA-based source localization method was developed in the
presence of sensor location uncertainty. In [28], a localization
problem was considered using TDOA between the direct
and scattered signals, where the position of the scatterer is
erroneous. In [29], spatiotemporal uncertainties arising from
asynchronous signals and limited, inaccurate source location
information was addressed by formulating a clock parameter
vector elimination-based semidefinite program. In [30], the
localization error sensitivity to transmitter position error was
analyzed via a robust estimation formalism.

This paper focuses on the impact of using uncertain trans-
mitter positions for receiver localization. When the transmitter
positions are accurately known, standard methods can effec-
tively estimate the receiver’s position. However, when the
positions are erroneous, it becomes essential to establish a
bound on the localization error. This bound is also useful
in situations where radio SLAM is adopted. The upper-
bound is derived by formulating the problem as a min-max
optimization problem [31], [32]. First, assuming that only



one of the transmitters’ positions is uncertain (while the rest
are perfectly known), an analytic solution is derived for the
inaccurate transmitter position within the uncertainty disk,
which maximizes the ranging error. This leads to establishing
a localization error upper-bound. Due to the mathematical
complexity of generalizing the derivation to the case where all
transmitters are uncertain, numerical simulations are presented
demonstrating that the derived upper-bound holds for the case
where all transmitter positions are uncertain. Experimental
results are presented of a vehicle navigating in GPS-denied
environment, making pseudorange measurements to 7 cellular
transmitters, whose positions are uncertain. The experimental
results demonstrate the applicability of the upper-bound in
predicting the worst-case vehicle localization performance.
This paper is organized as follows. Section II describes
the problem. Section III derives the upper-bound. Numerical
and experimental results are presented in Sections IV and V,
respectively. Concluding remarks are given in Section VL.

II. PROBLEM DESCRIPTION

Consider the problem of localizing a receiver, whose posi-
tion is denoted by y, using range measurements to multiple
randomly distributed transmitters. It is assumed that the re-
ceiver has an uncertain map of the transmitters’ positions,
whereby the true transmitter’s position, denoted by x;, is
within a disk of radius e, centered around the inaccurate
position, denoted &;, reported in the map. Using the inac-
curate transmitters’ positions results in an erroneous receiver
estimate, due to the model mismatch between the assumed
range and the true range (see Fig. 1). What is the localization
error upper-bound due to using the inaccurate tower positions?
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Fig. 1. A receiver localizes itself with range measurements from three
transmitters. The receiver has an inaccurate knowledge of the transmitters’ po-
sitions, denoted {&; }>_, . The true transmitters’ positions, denoted {aci}f:l,
are known to lie within a disk of radius . The true and the erroneous estimated
receiver trajectories are given in red and blue, respectively.
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III. UPPER-BOUND DERIVATION

For the nominal case, whereby the transmitters’ positions
are accurately known, the localization problem is stated as

M

g =argminy_ [z — yll - lz — 911>, D
Y i=1

where y € R? denotes the true receiver position, § € R? de-
notes the receiver’s position estimate, and x; € R? represents
the position of the i" transmitter.

Now, consider the case where the transmitters’ positions are
erroneous, denoted by x; € R2, and assume that the error in
their positions is within an uncertainty set, defined by

Si:{ﬁ:i:H:Ei—wiHSel}, Vi=1,...,M. 2)

In what follows, an upper-bound will be derived on the
localization error induced by using inaccurate transmitter
positions. This problem can be cast as

M
max [ly — [argmin Y ([la; —yll = |Z: —g))°)l. 3
Z;€S; g P

Using (2), (3) can be expressed as
M
max ||y —[argmin Y (@ —y| - |[(zi+&)—3])°]], @
lI€:ll<ex f/—
where &; € R? represents the error in the i tower position
that induces the estimation error. It is worth noting that neither
the maximization nor the minimization part has a readily
available structure that can be directly exploited like convexity
or concavity, but the following subproblem is useful to reveal
some structure. First, by constraining the error terms to only
one term (i.e., only one of the transmitters has an inaccurate
position), then by considering the problem of finding the
maximum error, the main problem can be expressed as the
following bilevel optimization problem

max ||y — Je, |, (&)
e 1y = g |

where ¢, is explicitly given by
M 2
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where instead of {£;}£,, only the error for the first transmitter
is considered. The term §1; takes the value 1 for ¢ = 1 and 0
otherwise. Note that the term ¢, is a function of &; for a given
x; and vy, i.e., how the error affects the estimation depends on
the geometry of the problem. In an environment containing 2
or more transmitters, where only the first transmitter’s position
is erroneous, it is reasonable to expect the error-maximizing
error term to be on the line that contains x; and y, since
that would correspond to the error term that maximizes the
predicted range error. This line will be denoted LoS-line (line-
of-sight), and it extends to infinity in both directions. However,
that error is not the exact solution to the problem since the
given two optimization problems are not equivalent to each
other, namely

argmin
Ug, = (6)
S.t.

M
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which is due to §¢, being a function of the error, which is
neglected by the latter optimization problem.

Nevertheless, numerical simulations suggested that although
the exact solution may not lie on the LoS-line, it would be a
good initial point for a search algorithm, as often the optimal
error is close to one of the two points given by the LoS-line
intersecting the boundary of the uncertainty set, parameterized
by e;. That leads to the question: under what condition is
the estimation error-maximizing error term on the LoS-line or
sufficiently close?

Theorem 1. The solution to the optimization problem

M
s ly — argmmz s =yl — [I(2i +&101:) — 91,
1 I
=1

denoted &7, satisfies
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where Ruyin is defined by
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min
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and {a1, a2} denote the points defined by

ay =, W) o)
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Proof. The optimization problem
M
argmin > (|lz; — yl| — s + €101 — §1)°
Y ooi=1

can be solved by nonlinear least-squares, for a given initial
estimate that is sufficiently close to y, as
J(&1 )(’f"rl) — g(k) + He, 7.5 (g( ))
,g(kJrl) _ y(k) + /H,,a( )

He, = [(HgTHE)_lﬂgT} ,H = [(HTH)’IHT} ,

where Hg, and H correspond to the perturbed and the
nominal cases, respectively. The residual terms are given by

lz1 =yl = (1 + &) — 5P|
Fe, (§M) = ;
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where Q(k) denotes the current estimate at the iteration step k
and H denotes the Jacobian of the cost function with respect
to the decision variable ¢ for the case where the error term
is constrained to be equal to zero. The H¢, term represents
the same parameter without zero magnitude constraint on
the error; therefore, this quantity is a function of &;. The

terms Q(’”l) and ﬁ({l)(k“) denote the next estimates of the
position for the nominal and perturbed problems, respectively.
For both of the problems, if the same estimates Q(k ) are used,
in the next iteration, the error is given by

9(60) ™Y =gV = ||He e, (50) - (G D)|

As shown in Appendix A, the following can be stated
[He, — M| =0. (®)

lim
R
-

Although the limit in (8) means that the transmitter is lo-
cated infinitely away from the receiver, which is unrealistic,
numerical simulations suggested that for transmitters that are
sufficiently faraway, ||[#H¢, — H| is negligible compared to
|#]|. As such, the following simplification can be made

9(60) ™ g™V = || {Fe (3 - 7@ ™) }

By the Cauchy-Schwarz inequality
§(60) " = 90| < 3¢ e, (09 - 7@ ™)

which leads to an upper-bound on the norm of the error term,
leading to the following problem

g(gl)(m—l) _ Q(kH)H . )
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By using y as the initial estimate, (9) can be approximated by

1 —yll = (21 + &) — vl

argmax ,
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which amounts to finding the error term that maximizes the
norm of the difference between the true and estimated range.
Using the structure of the problem, the following equivalent
problem can be written

argmax’”a:l —yll = l(z1 + &) —yll|.

l€1ll<er
Arranging the terms and approximating the second expression
by its Taylor approximation around the nominal case, yields

T 1Y

&1 — yl| + [€1]
[y —yl°
The problem can be simplified to
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Theorem 1 essentially states that the maximizer error is
on the intersection between the LoS-line and the boundary
of the uncertainty set. The generalization of this theorem to
the case where all transmitters have an inaccurate position is
mathematically involved. The next section will demonstrate
via numerical simulations that the upper-bound derived via
Theorem 1 to multiple transmitters essentially holds. The
mathematical proof; however, is deferred for future work.

ler -yl + &l =

argmax
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For the case where multiple transmitters are sufficiently
faraway from the receiver, the utility of Theorem 1 is that the
error-maximizer error term can be computed by exhaustively
searching from the set

&1
igu

c H£2A4 Ei _
i =yl

Se = : (10)
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Algorithm 1 outlines the upper-bound computation steps.

Algorithm 1 Upper-bound computation

1: Initialization: For a given receiver trajectory {y(k)}_,,
transmitter positions {x;},, and uncertainty disk radius
€1

2. for k=1,...,N do

3: Generate all possible {x;'}; terms s.t.

i — 2’|l € {lzs — 2| < ealllzs —y(k)| £er}
Vi=1,...,M, ¥Vj=1,...,2M
4 forj=1,...,2M do

5: Compute ¢y from

M
~ . ~1112
g, = argrrgnz s — y(k)|| — llz:’ — 9]
i=1
: end for
7: Find {5137,/}; s.t.
j=arg _max  [ly(k) - g]

8: end for

IV. NUMERICAL SIMULATIONS

This section presents numerical simulations demonstrating
the upper-bound computed via Algorithm 1 to solve the opti-
mization problem in (3). The simulations considered a receiver
moving along a trajectory in an environment comprising 3
transmitters as shown in Fig. 2. For each transmitter, a grid
of erroneous transmitter positions was generated within an
uncertainty disk with radius € = 20, centered around the true
transmitter position.

To demonstrate that the computed localization error upper-
bound holds, the following was performed. First, at each
time step along the receiver’s trajectory, the position of the
receiver was estimated using erroneous transmitter positions
from the generated grid of inaccurate transmitter positions. The
resulting localization error is shown as the blue point cloud in
Fig. 3. Next, the position of the receiver was estimated by
first, computing the error-maximizing erroneous transmitter
positions as described by Algorithm 1, and then using that
inaccurate transmitter to estimate the receiver’s position. The
resulting localization error is shown in red in Fig. 3, which
demonstrates that the upper-bound is valid for exhaustively
sampled erroneous transmitter position within the uncertainty
region.
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Fig. 2. Simulated environment showing the receiver trajectory, transmitter
positions, and grid of erroneous transmitter positions within the uncertainty
region (indicated by blue-crosses).
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Fig. 3. Localization error along the receiver’s trajectory for (1) exhaustively
sampled erroneous transmitter positions (blue) and (2) upper-bound (red).

V. EXPERIMENTAL RESULTS

This section presents experimental results demonstrating the
utility of the upper-bound for a vehicle navigating in a GPS-
denied environment with pseudorange measurements from 7
cellular transmitters with inaccurately known positions.

A. Experimental Setting

A vehicle was driven in a GPS-denied environment at
Edwards Air Force Base, California, USA during live GPS
jamming. The vehicle was equipped with a software-defined
radio (SDR) capable of producing psuedorange measurements
to cellular transmitters in the environment. The experimental
setup and relevant models are described in [33], [34]. Since the
developed upper-bound assumed range measurements, while
the SDR produced pseudorange measurements, the pseudo-
ranges were converted to range measurements as follows.
A Kalman Filter was implemented using the vehicle’s true
trajectory and the true transmitter positions to estimate the
clock errors along the vehicle’s trajectory. The estimated clock
errors were then subtracted from the pseudoranges.

B. Experimental Results

To demonstrate the upper-bound, two cases were consid-
ered:

1) Estimation with inaccurate transmitter positions:
First, for each transmitter, 300 erroneous positions were
uniformly sampled from an uncertainty disk, centered
around the true transmitter position with a radius of
€ = 20 m. The receiver’s position was estimated using
the range measurements in (1). The resulting localization
error is plotted as the point cloud in blue in Fig. 4.
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Fig. 4. Experimental localization error along the vehcile’s trajectory for (1)
sampled erroneous transmitter positions (blue) and (2) upper-bound (red).

2) Estimation with an error-maximizing inaccurate
transmitter position: At each time-step, using Al-
gorithm 1, the error-maximizing erroneous transmitter
positions were computed. Next, the receiver’s position
was estimated using range measurements by solving
the optimization problem, resulting in the localization
error upper-bound. The resulting upper-bound is plotted
in red in Fig. 4. It can be seen that the upper-bound
holds throughout the trajectory. It is worth noting that
the upper bound is looser than the simulation results in
Section IV, since in the simulations, the samples were
generated finely, while here, due to the heavy compu-
tational burden to exhaustively sample the uncertainty
region, a smaller number of samples were generated.

Fig. 5 shows the vehicle-mounted receiver’s true trajectory,
estimated trajectories using the inaccurate sampled transmit-
ter positions, and the estimated trajectories with the error-
maximizing erroneous transmitter positions.

VI. CONCLUSION

Thus paper derived a localization error upper-bound for a
receiver utilizing range measurements to uncertain transmitter
positions. The derivation assumed the inaccuracy to corre-
spond to a single transmitter (other transmitter positions are
known), leading to identifying the inaccurate tower positions
yielding the largest localization error, from which the upper-
bound is established. To demonstrate the applicability of the
upper-bound to the case of multiple uncertain transmitter posi-
tions, numerical simulations are presented demonstrating that
the derived upper-bound still holds. Experimental results were
presented of a vehicle navigating in GPS-denied environment,
making pseudorange measurements to 7 cellular transmitters,
from which range measurements were computed. The exper-
imental results demonstrated the applicability of the upper-
bound in predicting the worst-case localization performance.

APPENDIX A
PROOF OF (8)

Proof. The following

lim
(Rmin )—}OO
€1

e — H[| =0, (11)

implies that the matrices get closer to each other in any defined
norm as the minimum distance term between the transmitter
and the receiver increases. Without loss of generality, consider
a planar environment in which the receiver is at the origin and
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Fig. 5. Experimental results: (i) true transmitters’ positions (shown as red
triangles), (ii) uncertainty disk and samples of the inaccurate transmitter
positions for each transmitter (50 of the 300 samples are shown for ease
of visualization), and (iii) vehicle’s true trajectory, estimated trajectory due
to sampled inaccurate transmitter positions, and estimated trajectory due to
error-maximizing erroneous transmitter positions.

the transmitters are randomly distributed around the receiver.
Denote the distance between i transmitter and the receiver by
R;, while a; represents the corresponding angle. Now, assume
that the map of transmitter positions is erroneous and that for
all transmitters, the distance between the erroneous position
and the true one is ;. Denote the angle between the true
tower location and the erroneous one by 6;. Therefore, H
can be expressed as

[z22+€180, ] —Y2

Z21 + €1Co, Ly
T22 + €180,

[z11+€1Coy |—1

Z11 + €1Co, Ly
Z12 + €186,

: , (12)
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-y
T2 + €189y,
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where Cp, and Sy, denote cos(6;) and sin(6;), respectively. To
analyze the relationship between R.,;, and the error between
He and H, R; is replaced by BR;, where 8 > 1. The
corresponding H¢ can be expressed as

r [BR1Ca; +€1Co, ]
BR1Cq, +€1Co,
BR1Sa, + €180,

[BR1Sqa, €180, ] ]

BR1Cq, + €100,
BR1Sqa, + €150,

_[BRMSa ) +€180,,]
BRMCay, + €1Co,,
_BRIWSOLJM + 5136M_

_ [BRMCay, +E1Coy,] _
BRACo,y, +€1C0,,
|BRAMSay + €150, |

Using (13), it can be shown that

lim || H — H| =0,
B—o0

which can be written for a general setting as
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