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Abstract— A radio simultaneous localization and mapping
(radio SLAM) framework enabling aircraft navigation with
terrestrial signals of opportunity (SOPs) is presented and exper-
imentally validated. The framework does not assume availability
of global navigation satellite system (GNSS) signals. Instead,
it assumes the aircraft to have an initial estimate of its own states,
after which it navigates by exploiting pseudorange measurements
extracted from terrestrial SOPs, while estimating the states of
the aircraft simultaneously with the SOPs’ states. Two radio
SLAM frameworks are presented: (i) tightly-coupled SOP-aided
inertial navigation system (INS) and (ii) utilizing a Wiener
process acceleration (WPA) dynamical model for the aircraft’s
dynamics instead of the INS. Results from four flight runs on a
US Air Force C-12 aircraft, equipped with an altimeter and an
industrial-grade inertial measurement unit (IMU), are presented.
The flight runs took place over semi-urban (SU), urban (U), and
rural (R) regions in California, USA; while exercising different
aircraft maneuvers: holding (H), descending (D), and grid (G).
Different a priori conditions of the SOPs’ positions were studied:
from all unknown, to some known, to all known. In all cases,
the SOPs’ clock error states (bias and drift) were unknown and
estimated alongside the aircraft’s states. The results consistently
demonstrated the promise of real-world aircraft navigation via
radio SLAM, yielding bounded errors along trajectories of tens
of kilometers. The three-dimensional (3–D) position root-mean
squared errors (RMSEs) are summarized next, where N denotes
the number of SOPs exploited along the trajectory: (1) SU, H,
INS-SOP, N = 6, 56.7 km in 8.5 minutes, maximum altitude
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of 5,577 ft: 43.27 m with all unknown and 10.14 m with all
known; (2) U, H, INS-SOP, N = 6, 72.7 km in 12.9 minutes,
maximum altitude of 5,906 ft: 89.82 m with all unknown and
16.97 m with all known; (3) SU, D, WPA-SOP, N = 18, 111.9 km
in 20.0 minutes, maximum altitude of 6,234 ft: 36.42 m with all
unknown and 18.62 m with all known; and (4) R, G, WPA-SOP,
N = 32, 78.4 km in 13.8 minutes, maximum altitude of 7,546 ft:
67.01 m with all unknown and 25.65 m with all known.

Index Terms— Aircraft, aerial vehicle, navigation, SLAM,
radio SLAM, signals of opportunity, INS.

I. INTRODUCTION

COMMUNICATIONS, navigation, and surveillance
(CNS) technologies for civilian aviation as well as

military operations are critically dependent on positioning,
navigation, and timing (PNT) from global navigation satellite
system (GNSS) [1]. Loss of GNSS jeopardizes safety-of-life
applications, from precision approach and landing, to air
traffic control (ATC), to collision avoidance [2], [3]. Such
concerns are compounded as human are taken “out-of-the-
loop” in applications such as beyond visual line of sight
(BVLOS) unmanned aerial vehicle (UAV) [4] and urban air
mobility (UAM) [5].

GNSS interference, whether intentional or unintentional, has
been reported at an alarming rate over the past few years [6].
In 2021, according to the Global Aviation Data Manage-
ment (GADM) of the International Air Transport Association
(IATA), 586 GNSS jamming or suspected interference were
reported in the Middle East and North Africa [7]. Globally,
based on in-flight monitoring of aircraft GNSS receivers,
the International Telecommunication Union (ITU) reported
that more than 10,000 radio frequency interference (RFI)
events were detected [8]. EUROCONTROL, a pan-European,
civil-military organization dedicated to supporting European
aviation, concluded that 38.5% of European en-route flight
traffic operates through regions intermittently but regularly
affected by GNSS RFI [9]. Two major RFI incidents were
reported in the US in 2022. The first, lasting 33 hours,
in which ATC warned pilots that GPS was unreliable within a
50-nautical-mile radius of the Denver International Airport,
with RFI likely to be experienced by aircraft on the ground
and as high as 40,000 feet above sea level [10]. The second,
lasting 44 hours, which shut down a runway at Dallas-Fort
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Worth International Airport after aviation authorities said GPS
signals there aren’t reliable, forcing approaching and departing
aircraft to take cumbersome routes [11].

Several national and international regulatory bodies have put
forth calls to find GNSS alternatives. In 2021, the National
Institute of Standards and Technology (NIST) issued a report
on “Foundational PNT Profile: Applying the Cybersecurity
Framework for the Responsible Use of PNT Services,” where
it identified signals of opportunity (SOPs) and terrestrial radio
frequency (RF) sources as a mitigation category that apply to
the PNT profile [12]. In 2023, IATA invited the International
Civil Aviation Organization (ICAO), in coordination with
manufacturers and airspace user communities, to develop a
global strategy on Alternative PNT to ensure continuity of
flight and air traffic management (ATM) operations during
interruptions of GNSS. IATA added that “on-board availability
of alternative navigation capability using inertial navigation
system (INS) / inertial reference unit (IRU) or other conven-
tional radio navigation aids can be helpful” [13].

A. Navigation With SOPs

SOPs refer to ambient RF signals not intended as PNT
sources [14], [15], e.g., AM/FM [16], [17], [18], digital
television [19], [20], [21], cellular [22], [23], [24], and satellite
communication signals [25], [26], [27]. Among terrestrial
SOPs, cellular have shown tremendous promise as an alter-
native PNT source in GPS-jammed environments [28].

SOPs, particularly cellular, possess attractive attributes for
aircraft navigation. First, in contrast to dead-reckoning-type
sensors, absolute position information could be extracted from
SOPs. Second, they are abundant in most locales of interest
and their received carrier-to-noise ratio (C/N0) is 20�30 dBs
higher than that of GNSS [29]. Third, they are cost-effective:
the infrastructure is already deployed and retrofitting aircraft
with SOP receivers is not as cumbersome as adding other
sensors (e.g., cameras, lidar, radar, etc.). Fourth, radars and
lidars are “proximity” sensors and are not particularly helpful
at high altitudes due to lack of features and nearby objects.
On the other hand, navigation with camera images coupled
with feature and elevation maps would require additional
terrain knowledge that might not be readily available onboard
the aircraft. Plus, clouds below the aircraft would prevent
cameras from getting any usable images from the ground.
Finally, many SOPs are practically unaffected by dense smoke,
fog, rain, snow, and other poor weather conditions.

Previous studies have shown that cellular SOPs could yield
meter-level accuracy on ground vehicles [30], [31], [32] and
sub-meter-level accuracy on low-altitude UAVs [33], [34],
[35], [36]. All the aforementioned studies assumed that the
cellular transmitters’ positions are known.

When the SOP transmitters’ positions are unknown, radio
simultaneous localization and mapping (radio SLAM) was
proposed. While there are several conceptualizations of radio
SLAM [37], [38], [39], [40], [41], it is defined herein as the
process whereby a navigating receiver (e.g., vehicle-mounted)
estimates its own states (position, velocity, clock error, and
potentially INS errors) simultaneously with the states of

terrestrial SOPs (position and clock error) [42]. Radio SLAM
observability was studied in [43], [44], and [45], motion
planning for improved information gathering in [46] and [47],
collaborative information fusion in [48] and [49], and
demonstration of ground vehicle navigation in a GPS-jammed
environment with a single SOP in [50].

B. Aircraft Navigation With SOPs
The potential of utilizing terrestrial SOPs for high-altitude

aircraft navigation has been largely unstudied [51], [52], with
most studies focusing on low-altitude UAVs [53], [54], [55],
[56], [57]. To the authors’ knowledge, the first comprehen-
sive study assessing the potential of terrestrial cellular SOPs
appeared in [58], [59], and [60]. The results therein were
achieved from a collaboration between the United States
Air Force (USAF) and the Autonomous Systems Perception,
Intelligence, and Navigation (ASPIN) Laboratory through
a week-long flight campaign called “SNIFFER: Signals of
opportunity for Navigation In Frequency-Forbidden EnviRon-
ments.” ASPIN Laboratory’s cellular SOP software-defined
receivers (SDR) were flown on a Beechcraft C-12 Huron,
a fixed-wing USAF aircraft, to collect ambient cellular sig-
nals for flight runs over three regions in California, USA:
(i) Region A (rural): Edwards Air Force Base (AFB),
(ii) Region B (semi-urban): Palmdale, and (iii) Region C:
Riverside. The aircraft was equipped with an altimeter and an
industrial-grade inertial measurement unit (IMU). The flights
spanned different altitudes and a multitude of trajectories,
including straight segments, banking turns, benign and aggres-
sive maneuvers, and ascending/descending teardrops with a
descent rate ranging between 0 to 1,500 ft/min. The flights
were performed by members of the USAF Test Pilot School.
The SDRs produced pseudorange measurements to cellular
3G code-division multiple-access (CDMA) and 4G long-term
evolution (LTE) transmitters whose positions were mapped.

To showcase the viability of utilizing cellular SOP signals
for aircraft navigation, the pseudoranges were fused via an
extended Kalman filter (EKF), which utilized simple dynami-
cal models to describe the aircraft’s dynamics, namely a nearly
constant velocity model and a Wiener process acceleration
(WPA) model. Meter-level navigation accuracy was achieved
on three flight runs [59], [60].

C. Summary of Contributions
This paper builds on the promising results presented in [59]

and [60] by significantly extending these studies as follows:
• The assumption of known SOP transmitter position is

relaxed, and a radio SLAM approach is adopted to
evaluate the degradation in performance due to having to
map the SOP positions simultaneously with navigating
the aircraft. Different a priori conditions of the SOPs’
positions are studied: from all unknown, to some known,
to all known.

• Two radio SLAM frameworks are presented: (i) tightly-
coupled SOP-aided INS and (ii) utilizing a WPA
dynamical model for the aircraft’s dynamics instead of the
INS. The estimation performance was compared between
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these two frameworks on the flight runs having IMU
measurements.

• Intermittent pseudorange measurements along much
longer (nearly double the length) trajectories are studied.
This intermittent behavior of the measurements requires
a re-initialization of the estimated clock error states in
the radio SLAM framework.

• In contrast to previous radio SLAM studies in which
GNSS signals were initially available [42], during which
the EKF begins to map the SOP states before GNSS
signals were cut off, this paper considers the more
challenging scenarios of no GNSS conditions from the
beginning. The only assumption is that the aircraft has
an initial estimate of its own states.

• Theoretical and practical observations stemming from
this unprecedented campaign are discussed along with
considerations for the use of terrestrial SOPs in a radio
SLAM fashion for high-altitude aircraft navigation.

Th paper presents results from four flight runs that took
place over the rural (R), semi-urban (SU), and urban (U)
regions, while exercising different aircraft maneuvers: holding
(H), descending (D), and grid (G). In all cases, the SOPs’
clock error states (bias and drift) were unknown and esti-
mated alongside the aircraft’s states. The results consistently
demonstrated the promise of real-world aircraft navigation
via radio SLAM, yielding bounded errors along trajectories
of tens of kilometers. The three-dimensional (3-D) position
root-mean squared errors (RMSEs) are summarized next,
where N denotes the number of SOPs exploited along the
trajectory: (1) SU, H, INS-SOP (WPA-SOP), N = 6, 56.7 km
in 8.5 minutes, maximum altitude of 5,577 ft: 43.27 (47.39) m
with all unknown and 10.14 (10.17) m with all known; (2) U,
H, INS-SOP (WPA-SOP), N = 6, 72.7 km in 12.9 minutes,
maximum altitude of 5,906 ft: 89.82 (79.44) m with all
unknown and 16.97 (14.20) m with all known; (3) SU, D,
WPA-SOP, N = 18, 111.9 km in 20.0 minutes, maximum
altitude of 6,234 ft: 36.42 m with all unknown and 18.62 m
with all known; and (4) R, G, WPA-SOP, N = 32, 78.4 km
in 13.8 minutes, maximum altitude of 7,546 ft: 67.01 m with
all unknown and 25.65 m with all known.

The rest of the paper is organized as follows. Section II
describes the aircraft’s kinematics and IMU measurement
model, clock error dynamics, and pseudorange measurement
model. Section III discusses the radio SLAM framework.
Section IV overviews the aircraft hardware and software
setup as well as the flight regions and aircraft maneuvers.
Section V presents the experimental results of the four flight
runs. Section VI gives concluding remarks.

II. MODEL DESCRIPTION

This sections presents the aircraft’s kinematics and IMU
measurements model, clock error states dynamics, and pseu-
dorange measurement model.

A. Aircraft Kinematics
The aircraft’s orientation, position, and velocity evolve in

time according to the standard strapdown INS kinematic

equations, driven by b!b, a 3–D rotation rate vector of the
body frame {b} expressed in {b}, and g ab, a 3–D acceleration
vector of the body expressed in a global frame {g} [61]. The
3–D orientation vector of {b} with respect to {g}, denoted ✓b,
and 3–D position rb expressed in {g} are related to b!b and
g ab through the kinematic differential equations [61], [62]

✓̇b(t) =
b!b(t) (1)

r̈b(t) =
g ab(t). (2)

The aircraft-mounted IMU contains a triad-gyroscope and
triad-accelerometer and produces angular rate !imu and spe-
cific force aimu measurements, which are modeled as [62]

!imu(k) =
b!b(k) + bg(k) + ng(k), k = 1, 2, . . . , (3)

aimu(k) = Rb
g(k)

⇥g ab(k) �
g g(k)

⇤
+ ba(k) + na(k), (4)

where Rb
g(k) is the rotation matrix from {g} to {b}; g g is the

acceleration due to gravity in {g}; bg and ba are the gyroscope
and accelerometer biases, respectively; and ng and na are
measurement noise vectors, which are modeled as white noise
sequences with covariances Qng and Qna, respectively.

The gyroscope and accelerometer biases are assumed to
evolve according to velocity random walk dynamics, namely

bg(k + 1) = bg(k) + wbg(k) (5)
ba(k + 1) = ba(k) + wba(k), (6)

where wbg and wba are bias instability process noise vectors,
which are modeled as a discrete-time white noise sequences
with covariances Qbg and Qba, respectively.

B. Aircraft Dynamics Model

If IMU measurements are not available or untrustworthy
(e.g. due to a faulty gyroscope or accelerometer), a dynam-
ics model can be used to model the aircraft’s motion. The
simple yet effective continuous Wiener process acceleration
(WPA) model is chosen as its versatility allows for reliable
propagation of the aircraft’s states in different flight regimes
(straight segments, coordinated maneuvers, etc.) [63]. Upon
discretization at a constant sampling interval T , the aircraft’s
dynamics model is given by

xpva (k + 1) = Fpva xr (k) + wpva(k), k = 0, 1, 2, . . . , (7)

Fpva =

2

4
I3⇥3 T I3⇥3

T 2

2 I3⇥3
03⇥3 I3⇥3 T I3⇥3
03⇥3 03⇥3 I3⇥3

3

5 ,

where xpva ,
h

rT
r , ṙT

r , r̈T
r

iT
, rr ,

⇥
xr , yr , zr

⇤T is the 3–D
position of the aircraft expressed in a North-East-Down (NED)
frame, and wpva is a discrete-time zero-mean white noise
sequence with covariance Qpva given by

Qpva =

2

664

T 5

20
T 4

8
T 3

6
T 4

8
T 3

3
T 2

2
T 3

6
T 2

2 T

3

775 ⌦ S̃NED,
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where ⌦ denotes the Kronecker product, and S̃NED ,
diag

⇥
q̃N , q̃E , q̃D

⇤
, where q̃N , q̃E , and q̃D are the NED jerk

continuous-time noise power spectra, respectively. Of course,
alternative more complicated dynamic models can be adopted
to describe the aircraft’s dynamics (e.g., Singer accelera-
tion, mean-adaptive acceleration, circular motion, curvilinear
motion, coordinated turn, among others [63]).

C. SOP Dynamics Model
The SOPs considered herein are stationary, therefore

rsopl (k + 1) = rsopl (k), l = 1, . . . , L , (8)

where rsopl is the l-th SOP’s 3–D position vector and L is the
total number of SOPs used to perform radio SLAM.

D. Clock Dynamics Model
The receiver’s and SOPs’ clock error state dynamics are

assumed evolve according to the standard double integrator,
driven by process noise, namely [64].

xclk,i (k + 1) = Fclk xclk,i (k) + wclk,i (k), (9)

xclk,i ,
⇥

c�ti , c�̇ti
⇤T

, Fclk =


1 T
0 1

�
,

where i = {r, sop}, �ti is the clock bias, �̇ti is the clock drift,
c is the speed of light, T is the constant sampling interval, and
wclk,i is the process noise, which is modeled as a discrete-time
white noise sequence with covariance

Qclk,i = c2
·

2

4 Sw̃�ti
T + Sw̃�̇ti

T 3

3 Sw̃�̇ti

T 2

2

Sw̃�̇ti

T 2

2 Sw̃�̇ti
T

3

5 , (10)

The terms Sw̃�ti
and Sw̃�̇ti

are the clock bias and drift process
noise power spectral densities (PSDs), respectively, which can
be related to the power-law coefficients,

�
h↵i

 2
↵i =�2, which

have been shown through laboratory experiments to charac-
terize the power spectral density of the fractional frequency
deviation of an oscillator from nominal frequency according
to Sw̃�ti

t h0,i
2 and Sw̃�̇ti

t 2⇡2h�2,i [65]. The receiver’s
and SOPs’ process noise covariances Qclkr and Qclksop are
calculated from (10) using the PSDs associated with the
receiver’s and SOPs’ oscillator quality, respectively.

The dynamics of the difference between the receiver’s and
SOPs’ clock error states is given by

1xclk(k + 1) =F1clk1xclk(k) + 1wclk(k),

1xclk ,
⇥
c1�tsop1 , c1�̇tsop1 , . . . , c1�tsopL , c1�̇tsopL

⇤T
,

c1�tsopl ,c ·
⇥
�tr � �tsopl

⇤
, c1�̇tsopl , c ·

⇥
�̇tr � �̇tsopl

⇤
,

(11)

F1clk = IL⇥L ⌦Fclk, with ⌦ denoting the Kronecker product,
and 1wclk is the process noise which has a covariance Q1clk
that encapsulates the correlation between entries of 1xclk
resulting from the common process noise of the receiver
clock states. Assuming the SOP towers to be equipped with
oscillators of identical quality, Q1clk simplifies to

Q1clk = L⇥L ⌦ Qclkr + IL⇥L ⌦ Qclksop ,

Fig. 1. Overview of a tightly-coupled radio SLAM framework. The radio
front-end collects signals, which are processed in the navigation receivers.
The EKF is initialized with GNSS receiver estimates. The EKF time update
is performed based on the toggling switch: (i) using a dynamical model that
describes the navigator’s dynamics or (ii) using an INS, when available. The
EKF measurement update is performed using navigation observables from
received SOP signals and altimeter measurements.

where L⇥L is the L ⇥L matrix with all entries equal to 1 and
IL⇥L is the L ⇥ L identity matrix.

E. Pseudorange Measurement Model

The aircraft-mounted SOP receiver extracts pseudorange
measurements ⇢ from the received signals by estimating
the time-of-arrival. The pseudorange ⇢l from the l-th SOP
transmitter at time-step k is modeled as [43]

⇢l(k) =
��r r(k) � rsopl (k)

��
2

+ c ·
⇥
�tr(k) � �tsopl (k)

⇤
+ v⇢l (k), (12)

where r r and rsopl are the receiver’s and l-th SOP’s 3–D
position vectors expressed in the same reference frame,
respectively; �tr and �tsopl are the receiver’s and l-th SOP
transmitter’s clock biases, respectively; and v⇢l is the pseu-
dorange measurement noise, which is modeled as a white
Gaussian random sequence with variance � 2

⇢l
(k). The reader is

referred to [59], which assessed the pseudoranges from terres-
trial cellular SOPs, showing that they are nearly multipath-free
when received by high-altitude aircraft.

III. RADIO SLAM FRAMEWORK

The radio SLAM framework aims at exploiting ambient
SOPs whenever GNSS signals become unavailable or untrust-
worthy. Even though the SOP transmitter locations may not
be known precisely, radio SLAM allows for GNSS-less nav-
igation by simultaneously estimating the SOPs’ position and
clock error states in addition to the vehicle’s states. The block
diagram of the radio SLAM framework is shown in Fig. 1. The
remainder of this section formulates the radio SLAM frame-
work that fuses pseudorange measurements z , [⇢1, . . . , ⇢L ]T

extracted from SOPs in a tightly-coupled fashion with INS
(if IMU measurements are available) or with an assumed
navigator dynamical model. The two radio SLAM frameworks,
with INS or with WPA dynamical model, are identical except
for the mechanization used in the EKF propagation step. It is
worth emphasizing that while an EKF is chosen in this paper,
other nonlinear filters can be adopted in the block diagram
of Fig. 1.

Authorized licensed use limited to: The Ohio State University. Downloaded on January 02,2025 at 18:24:20 UTC from IEEE Xplore.  Restrictions apply. 



14168 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024

A. EKF State Vector
If IMU rotation rate and specific force measurements are

available, the EKF state vector propagated via INS equations
is given by

xins =

h
xT

r,ins, xT
sop1

, . . . , xT
sopL

iT

xr,ins =

h
b
g q̄T, rT

r , ṙT
r , bT

g , bT
a

iT

xsopl =

h
rT

sopl
, c1�tsopl , c1�̇tsopl

iT
,

where xr,ins is the vehicle’s state vector, composed of b
g q̄ ,

h
b
gqT, b

gq
iT

, which is a 4–D unit quaternion representing
the orientation of {b} fixed at the IMU with respect to
{g}, r r and ṙ r are the 3–D position and velocity of the
vehicle expressed in {g}, and bg and ba are 3–D biases
of the IMU’s gyroscopes and accelerometers, respectively,
expressed in {b}. Quaternions were chosen to represent the
orientation of the vehicle with respect to {g}, since they
offer minimal attitude representation without suffering from
the singularity of other mathematical attitude representations
(e.g., Euler angles). However, since the 4–D quaternion is
an overdetermined representation of attitude, the estimation
error covariance associated with orientation is represented by
a 3 ⇥ 3 matrix corresponding to a three-axis error angle
vector to prevent degeneracy. The vector xsopl is the l-th
SOP transmitter state vector, composed of the SOP tower’s
3–D position rsopl vector expressed in {g}, and the difference
between the receiver’s and l-th SOP transmitter’s clock bias
c1�tsopl and drift c1�̇tsopl .

When IMU measurements are unavailable or untrustworthy,
the WPA dynamics model is adopted, leading to the EKF state

xpva =

h
xT

r,pva, xT
sop1

, . . . , xT
sopL

iT

xr,pva =

h
rT

r , ṙT
r , r̈T

r

iT
.

B. EKF Time Update
The EKF time update step produces an estimate x̂(k| j) ,

E[x(k)|Z j
] of x(k), and an associated estimation error covari-

ance Px(k| j), where E[·|·] denotes the conditional expectation,
Z j , {z(i)} j

i=1 is the set of measurements available up to and
including time index j , and k > j .

For INS propagation, the IMU measurements (3) and (4)
are processed through a vector-valued function of strapdown
INS equations in {g} that discretize (1) and (2) to obtain

x̂r,ins(k + 1| j) = f {g}

ins
⇥
x̂r,ins(k| j), !imu(k), aimu(k)

⇤
,

where the gyroscope and accelerometer bias time update
b̂g(k + 1| j) and b̂a(k + 1| j) follow from (5) and (6),
respectively [42], [62]. The INS mechanization equations are
performed with the Earth-centered Earth-fixed (ECEF) frame
(denoted {e}) as {g}, since any information about the SOP
transmitters’ positions would be available in the ECEF global
frame. The ECEF INS strapdown mechanization equations
are given in Appendix A and their linearization to propagate
the estimation error covariance are detailed in Appendix B.

The time update of the differenced clock states between the
receiver and the SOP transmitters follow from (11).

If INS data is not available, the WPA dynamics model in (7)
is used for EKF time update to yield x̂r,pva(k + 1| j).

The EKF time update of the SOP states
�

xsopl

 L
l=1 can be

readily computed from (8) and (11).

C. EKF Update
The aircraft-mounted receiver makes pseudorange measure-

ments z, modeled as (12), which are ingested in the EKF
update step to correct the prior state estimate x̂(k| j), produc-
ing an updated estimate x̂(k|k) and an associated posterior
estimation error covariance Px(k|k). Details on the INS EKF
update equations to remedy the discrepancy between the 4–D
estimated quaternion and the associated 3⇥3 covariance matrix
are given in Appendix C. The standard EKF update equations
are implemented when propagating the states using the WPA
dynamics model (7).

IV. SNIFFER: HARDWARE SETUP AND FLIGHT REGIONS

This section overviews the hardware setup used for data
collection and processing in the SNIFFER flight campaign.
It also describes the flight regions and aircraft maneuvers.

A. Hardware and Software Setup
The hardware was assembled on a rack, which was mounted

on the C-12 aircraft. The rack was equipped with
• A quad-channel universal software radio peripheral

(USRP)-2955.
• A desktop computer equipped with solid-state drive for

data storage.
• A laptop computer running real-time cellular SOP acqui-

sition, which was operated during the flight by a flight
engineer to determine when, where, and what cellular
LTE channels were available to tune the USRP-2955
accordingly. The USRP-2955 was connected to the laptop
via a peripheral component interconnect express (PCIe)
cable.

• A GPS antenna to (i) feed GPS measurements to the
aircraft navigation system and (ii) discipline the USRP’s
on-board GPS-disciplined oscillator (GPSDO).

Three consumer-grade 800/1900 MHz Laird cellular antennas
were mounted to the bottom of the C-12 and were connected
to the USRP-2955. The USPR was tuned to listen to car-
rier frequencies corresponding to the U.S. cellular providers:
T-Mobile, AT&T, and Verizon. The sampling rate of each
cellular channel was 10 mega samples per second (Msps).
The receivers described in [66] and [67] were used to produce
pseudorange measurements to cellular 3G CDMA and 4G LTE
SOPs, respectively. Fig. 2 shows the C-12 aircraft, known as
Ms. Mabel, along with ASPIN researchers and USAF pilots.
Fig. 3 shows the hardware setup with which the C-12 aircraft
was equipped.

The C-12 flew at various altitudes and performed three types
of maneuvers, illustrated in Fig. 5: holding pattern, climbing/
descending teardrop-like pattern, and grid-like pattern.
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Fig. 2. USAF Pilots and ASPIN researchers with the C-12 aircraft. Left to
right: Hulsey, Tay, Abdallah, Quirarte, Kassas, Khalife, Hoeffner, and Wachtel.

Fig. 3. Hardware setup with which the C-12 aircraft was equipped.

Fig. 4. The three regions over which the flight campaign took place. The
yellow pins represent cellular towers. The flight trajectories are shown in red.

B. Flight Regions and Aircraft Maneuvers
A flight campaign over four consecutive days was con-

ducted during which samples of cellular SOPs were stored
for post-processing. The flights took place over three regions
in California, USA, shown in Fig. 4: (i) Region A (rural):
Edwards AFB, (ii) Region B (semi-urban): Palmdale, and
(iii) Region C (urban): Riverside.

V. EXPERIMENTAL RESULTS

This section presents extensive experimental radio SLAM
results for the 4 different flight runs summarized in Table I.
In the first 2 runs, IMU measurements were available. As such,

Fig. 5. Maneuvers performed by the C-12 aircraft: (a) holding, (b) teardrop
ascending/descending, and (c) grid.

TABLE I
EXPERIMENTAL FLIGHT RUNS

the SOP-INS radio SLAM framework was implemented to
navigate the aircraft. Pseudorange measurements from cellular
3G SOPs were used in these runs, which were continuously
available throughout the flight trajectory. In the last 2 runs,
IMU measurements were not available. Consequently, the
WPA model was adopted in the radio SLAM framework.
Pseudorange measurements from cellular 4G LTE SOPs were
used in these runs, which were intermittently available along
the flight trajectory. It is worth noting that Table I lists the
number of SOPs used by the radio SLAM filter in each flight
run. It is not representative of the total number of SOPs avail-
able in each region. Additionally, a different implementation
of the opportunistic receiver that extracts the pseudorange
measurements was used to process 3G and 4G signals. The
different settings in each receiver implementation explains
the fact that there are more 4G SOPs than 3G ones, but at
the expense of measurement continuity.

It is worth mentioning that in this experimental proof of
concept, the radio SLAM navigation algorithms were applied
in a post-processing fashion. The pseudorange measurements,
time-stamped by the receiver opportunistically extracting
them, were aligned and used in conjunction with the
time-stamped specific force and angular rate measurements
produced by the IMU in the radio SLAM filter. The resulting
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radio SLAM navigation solution was compared to the
time-stamped ground truth solution provided by the US Air
Force’s on-board Honeywell H764-ACE EGI INS/GPS. The
next subsection summarizes the navigation filter initialization
and settings. Next experimental results for each flight run are
presented along with accompanying analysis and discussion.

A. Filter Initialization and Settings
The aircraft’s orientation, position, velocity, and accelera-

tion state estimates were initialized in ECEF by corrupting the
aerial vehicle’s true initial states (obtained from the aircraft’s
on-board Honeywell H764-ACE EGI INS/GPS system) with a
random sample x̃r(0|0) drawn from a zero-mean multivariate
Gaussian distribution with covariance Pxr(0|0). For radio
SLAM with an INS, the orientation, position, and velocity
states were initialized as

x̃qr ṙ,ins(0|0) ⇠ N
⇥
09⇥1, Pqr ṙ,ins(0|0)

⇤

Pqr ṙ,ins(0|0) =

h
(10�2) · I3⇥3, (10) · I3⇥3, I3⇥3

i
, (13)

where Pqr ṙ,ins(0|0) is the initial covariance of the aircraft’s
orientation, position, and velocity with units of [rad2, m2,
(m/s)2]. The IMU gyroscope and accelerometer biases; bg
and ba, respectively; were initialized to bg = ba = 0 with
covariance Pbimu(0|0) =

⇥
(10�3) · I3⇥3, (10�2) · I3⇥3

⇤
with

units of [(rad/s)2, (m/s2)2].
The first three components of x̃qr ṙ,ins(0|0), which corre-

spond to the vector of angle errors, were used to corrupt
the true initial Euler angles of the aircraft. The corrupted
initial Euler angles were then converted to a unit quaternion to
initialize the EKF’s orientation states. The remaining position
and velocity elements of the initial aircraft’s state estimates
were corrupted by adding the corresponding initial error terms
to the true initial states.

For radio SLAM with the WPA dynamics model, the
initialization scheme for the aircraft’s position, velocity, and
acceleration states is given by

x̃ r ṙ r̈,pva(0|0) ⇠ N
⇥
09⇥1, Pr ṙ r̈,pva(0|0)

⇤

Pr ṙ r̈,pva(0|0) =

h
(10) · I3⇥3, I3⇥3, (10�2) · I3⇥3

i
, (14)

where Pr ṙ r̈,pva(0|0) is the initial aerial vehicle position, veloc-
ity, and acceleration covariance with units of [m2, (m/s)2,
(m/s2)2].

The l-th cellular SOP’s position state estimate r̂sop,l(0|0)

was initialized in the ECEF frame as

r̂sop,l(0|0) ⇠ N
⇥
rsop,l , Prsop(0|0)

⇤

Prsop(0|0) = Re
n Pn

rsop
(0|0)

⇥
Re

n
⇤T

,

where rsop,l is the l-th cellular SOP tower’s true position
in ECEF and Prsop(0|0) is the associated initial covariance;
Pn

rsop
(0|0) is the initial cellular SOP tower’s position covari-

ance in a local North-East-Down (NED) frame denoted {n};
and Re

n is the fixed rotation matrix from local NED frame to
the global ECEF frame.

The filter clock error states 1xclk consisted of the difference
between the receiver and each cellular SOP’s clock error states.

TABLE II
AIRCRAFT’S INDUSTRIAL-GRADE IMU NOISE PARAMETERS

TABLE III
OSCILLATOR PARAMETERS

The filter’s clock bias state estimates were initialized by sub-
tracting the estimated range from the measured pseudorange
while the filter’s clock drift state estimates were initialized
to 0. The initial filter’s clock states’ covariance was set to
P1xclk = IL⇥L ⌦

⇥
104, 1

⇤
with units of [m2, (m/s)2] for the

differenced clock bias and drift, respectively.
The gyroscope and accelerometer bias instability process

noise covariances are expressed as Qbg = � 2
bgI3⇥3 and Qba =

� 2
baI3⇥3, where � 2

bg and � 2
ba are computed by squaring the bias

instability parameters of Table II, expressed in rad/s and m/s2,
respectively. The gyroscope and accelerometer measurement
noise covariances are expressed as Qng = � 2

ngI3⇥3 and Qna =

� 2
naI3⇥3, where � 2

ng and � 2
na are computed by first multiplying

the noise density parameters of Table II by the square root
of the IMU sampling rate and then squaring the resulting
quantities expressed in rad/s and m/s2, respectively. These
noise parameters correspond to an industrial-grade IMU and
are used to compute the INS process noise covariance matrix
as detailed in Appendix B.

For the WPA dynamics model, the jerk process noise spectra
were chosen to be q̃N = q̃E = 10 m2/s5 and q̃D = 1 m2/s5 in
the local NED frame. This process noise covariance was
rotated to the global ECEF frame, in which the aircraft states
are estimated, before being fed to the EKF time update step.

The clocks process noise covariances were set to correspond
to a typical-quality temperature-compensated crystal oscillator
(TCXO) for the receiver and a typical-quality oven-controlled
crystal oscillator (OCXO) for the SOPs. The power-law coef-
ficients of these oscillators are given in Table III.

Altimeter updates were performed throughout the flight by
fusing the altimeter measurements from the aircraft’s on-board
navigation system into the radio SLAM EKF. The altimeter
measurements noise variance was set to � 2

alt = 3 m2.
The time-varying cellular SOP pseudoranges measurement

noise variances � 2
⇢l

(k) were set to be inversely proportional
to the C/N0, expressed in linear units, as estimated by the
receivers in [66] and [67]. The range of values taken by
the measurement noise variances are stated for each run in
the subsequent subsections.

The initial cellular SOP tower’s position covariances in the
local NED frame Pn

rsop
(0|0) was set to

⇥
105, 105, 102⇤ m2

for flight runs 1 and 2 and to
⇥
104, 104, 102⇤ m2 for flight

runs 3 and 4, which correspond to an initial 2–D 95%
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Fig. 6. Left: Flight Run 1 aircraft’s true (cyan) and estimated trajectories: (i) SOP-INS radio SLAM with all 6 SOPs unknown (magenta) and (ii) altimeter-aided
INS (red). Right: The initial SOP position estimate (green pin) has a 2–D error of 263.65 m (in the North-East plane) with respect to the true SOP position
(yellow pin) while the final SOP position estimate (blue pin) converged to within 19.38 m from the actual tower after performing radio SLAM for SOP 2.
Map data: Google Earth.

uncertainty circle of radius 774 and 245 m, respectively, in the
North-East plane.

It is worth noting that each flight run was processed
with radio SLAM EKFs having various levels of a priori
knowledge of the cellular SOP towers’ positions. To ensure a
fair comparison between the different filters, all the uncertain
states common to both filters (including aircraft and SOP
states) were initialized with the same error. In the following,
n will refer to the number of SOPs with known positions
and m will refer to the number of SOPs with unknown
positions, where n +m = L , with L being the total number of
SOPs. Additionally, “known” SOPs means that the filter has
knowledge of the tower position only, as there was no way of
knowing the tower clock states, which had to be estimated in
all cases.

B. Radio SLAM With INS
An EKF was implemented to perform radio SLAM, while

aiding the aircraft’s INS with pseudorange measurements
extracted from ambient cellular SOPs. The IMU measure-
ments were taken to be trustworthy in this proof of concept
and were integrated at a rate of 100 Hz during propaga-
tions using the mechanization equations of Appendix A.
A more mature implementation of this framework would have
redundancy in the sensors (i.e., multiple IMUs on-board the
aircraft) and advanced fault detection and exclusion algorithms
to detect untrustworthy IMU measurements considering the
safety-criticality of this application. If a defect is detected
in the gyroscopes or accelerometers, the on-board logic can
fall back to the WPA dynamical model. The fusion of the
opportunistically extracted pseudoranges was performed at a
rate of 5 Hz during the EKF’s update step. The experimental
navigation results for flight runs 1 and 2 are presented next.

1) Flight Run 1: The flight trajectory for Run 1 consisted
of a holding pattern with the following segments: (i) a 70�

banking turn over 5 km, (ii) an 8-km straight segment, (iii) a
90� banking turn over 7 km, (iv) a 21-km straight segment,
(v) a 180� banking turn over 8 km, and (vi) an 18-km straight
segment. The aircraft flew a 56.7-km trajectory in 8.5 minutes
at an average altitude of 5,577 ft above ground level (AGL)

TABLE IV
FLIGHT RUN 1 EXPERIMENTAL RESULTS

and an average speed of 401.7 km/h over a semi-urban region
as summarized in Table I. The receiver on-board the aircraft
extracted pseudorange measurements from 6 cellular 3G SOPs
for the entire duration of the flight run. The minimum and
maximum distances from the aircraft to any SOP tower over
the trajectory were 4.19 and 72.62 km, respectively, and
the average distance from the aircraft to the SOP towers
ranged from 12.73 to 60.42 km for the closest and furthest
towers, respectively. The 3G pseudorange measurement noise
variances � 2

⇢ for flight Run 1 varied between 0.0004 m2 and
0.66 m2.

Table IV summarizes flight Run 1’s navigation performance
of the altimeter-INS filter, the SOP-INS, and WPA (in paren-
theses) radio SLAM frameworks with varying levels of a priori
knowledge on the SOP towers’ true positions.

Fig. 6 shows the aircraft’s true trajectory, altimeter-INS
trajectory, and SOP-INS radio SLAM (with n = 0 known
towers and m = 6 unknown towers) trajectory for flight Run 1.
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Fig. 7. EKF plots of the time history of the aircraft’s states estimation errors and associated ±3� bounds for a filter implementing the INS radio SLAM
framework on flight Run 1 with n = 6 known towers and m = 0 unknown towers (blue) and n = 2 known towers and m = 4 unknown towers (orange) as
well as the ±3� bounds for an altimeter-INS filter (red). The first row corresponds to the orientation states of the aircraft’s body frame with respect to the
NED frame represented using Euler angles. The second and third rows correspond to the aircraft’s position and velocity states in the NED frame, respectively.

Fig. 8. Flight Run 1 EKF plots of the time history of the horizontal position
estimation errors in the North-East plane and associated ±3� bounds for SOP
1 for the INS radio SLAM filter with n = 2 known towers and m = 4 unknown
towers. Pseudoranges were extracted from SOP 1’s 3G signals by the on-board
receiver for the entirety of flight Run 1.

Fig. 6 also shows the 6 cellular 3G SOP towers’ true positions
as well as the SOP-INS radio SLAM filter’s initial and final
estimates of the towers’ positions along with the associated
horizontal covariances depicted in the form of 95% uncertainty
2–D ellipses in the North-East plane.

Fig. 7 shows the SOP-INS radio SLAM EKF plots for the
aircraft’s states for two SOP-INS radio SLAM filters: (i) an
EKF with knowledge of all the towers’ positions (n = 6,
m = 0) and (ii) an EKF with 2 known SOP positions while
estimating the positions of the remaining 4 SOPs (n = 2,
m = 4). The altimeter-INS filter errors are not plotted for
clarity but the associated ±3� bounds are representative of
the performance. It is worth noting that the roll angle errors
slightly fall outside the ±3� bounds for the majority of
the flight run. This is suspected to be caused by a subpar
estimation of the gyroscope biases. Figs. 8-9 show the EKF
plots for SOP 1’s horizontal position and differenced clock

Fig. 9. Flight Run 1 EKF plots of the time history of the differenced
clock error states estimates and associated ±3� bounds for SOP 1 for the
INS radio SLAM filter with n = 2 known towers and m = 4 unknown
towers. Pseudoranges were extracted from SOP 1’s 3G signals by the on-board
receiver for the entirety of flight Run 1.

error states estimated by the SOP-INS radio SLAM filter with
a priori knowledge of the positions of 2 SOP towers.

2) Flight Run 2: The flight trajectory for Run 2 consisted
of a holding pattern comprising almost 3 complete loops
having 2 7-km straight segments connected by two 180�

banking turns over 6 km. The aircraft flew a 72.7-km trajectory
in 12.9 minutes at an average AGL altitude of 5,906 ft and
an average speed of 337.4 km/h over an urban region as
summarized in Table I. The receiver on-board the aircraft
extracted pseudorange measurements from 6 cellular 3G SOPs,
3 of which were available for the entirety of the flight while the
remaining 3 SOPs were exploited for 2, 4.3, and 5.5 minutes
only. The minimum and maximum distances from the aircarft
to any cellular SOP tower over the trajectory were 2.16 and
26.37 km, respectively, and the average distance from the
aircraft to the towers ranged from 4.97 to 22.59 km for the
closest and furthest towers, respectively. The 3G pseudorange
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Fig. 10. Left: Flight Run 2 aircraft’s true (cyan) and estimated trajectories: (i) SOP-INS radio SLAM with all 6 SOPs unknown (magenta) and (ii)
altimeter-aided INS (red). Right: The initial SOP position estimate (green pin) has a 2–D error of 298.98 m (in the North-Eath plane) with respect to the true
SOP position (yellow pin) while the final SOP position estimate (blue pin) converged to within 29.54 m from the actual tower after performing radio SLAM
for SOP 6. Map data: Google Earth.

TABLE V
FLIGHT RUN 2 EXPERIMENTAL RESULTS

measurement noise variances � 2
⇢ for flight Run 2 varied

between 0.003 m2 and 0.87 m2.
Table V summarizes flight Run 2’s navigation performance

of the altimeter-INS filter and the SOP-INS, and WPA (in
parentheses) radio SLAM frameworks with varying levels of
a priori knowledge on the SOP towers’ true positions.

Fig. 10 shows the aircraft’s true trajectory, altimeter-INS
trajectory, and SOP-INS radio SLAM (with n = 0 known
towers and m = 6 unknown towers) trajectory for flight Run 2.
Fig. 10 also shows the 6 3G SOP towers’ true positions as
well as the SOP-INS radio SLAM filter’s initial and final
estimates of the towers’ positions along with the associated

horizontal covariances depicted in the form of 95% uncertainty
2–D ellipses in the North-East plane.

Fig. 11 shows the SOP-INS radio SLAM EKF plots for
the aircraft’s states for two SOP-INS radio SLAM filters: (i)
an EKF with knowledge of all the towers’ positions (n = 6,
m = 0) and (ii) an EKF with 2 SOP positions known while
estimating the positions of the remaining 4 SOPs (n = 2,
m = 4). The altimeter-INS filter errors are not plotted for
clarity but the associated ±3� bounds are representative of
the performance. Figs. 12-13 show the EKF plots for SOP 4’s
horizontal position and differenced clock error states estimated
by the SOP-INS radio SLAM filter with a priori knowledge
of the positions of 2 SOP towers.

C. Radio SLAM With Dynamics Model

An EKF was implemented to perform radio SLAM by
fusing pseudorange measurements extracted from ambient
cellular SOPs in tandem with a WPA dynamics model for
EKF time update. The sampling interval T was set to 0.1 s
and the updates were also performed at a rate of 10 Hz. The
experimental navigation results for flight runs 3 and 4 are
presented next.

1) Flight Run 3: The flight trajectory for Run 3 consisted
of a descending teardrop maneuver comprising 5 “teardrop”
shapes of 20 km each, on average. The teardrop tips passed
over the same point in the North-East plane but at different
altitudes, with 3 teardrops on one side of the point of interest
and 2 on the other side. The aircraft flew a 111.9-km trajectory
in 20 minutes at an altitude going from 3,709 to 6,234 ft
AGL and an average speed of 335.5 km/h over a semi-urban
region as summarized in Table I. The receiver on-board the
aircraft intermittently extracted pseudorange measurements
from 18 LTE SOP towers. The minimum and maximum
distances from the aircraft to any actively used SOP tower
over the trajectory were 0.54 and 22.74 km, respectively, and
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Fig. 11. EKF plots of the time history of the aircraft’s states estimation errors and associated ±3� bounds for a filter implementing the INS radio SLAM
framework on flight run 2 with n = 6 known towers and m = 0 unknown towers (blue) and n = 2 known towers and m=4 unknown towers (orange) as well
as the ±3� bounds for an altimeter-INS filter (red). The first row corresponds to the orientation states of the aircraft’s body frame with respect to the NED
frame represented using Euler angles. The second and third rows correspond to the aircraft’s position and velocity states in the NED frame, respectively.

Fig. 12. Flight Run 2 EKF plots of the time history of the horizontal
position estimation errors in the North-East plane and associated ±3� bounds
for SOP 4 for the INS radio SLAM filter with n = 2 known towers and
m = 4 unknown towers. Pseudoranges were extracted from SOP 4’s 3G
signals by the on-board receiver for the entirety of flight Run 2.

the average distance from the aircraft to the tower ranged from
4.71 to 20.25 km for the closest and furthest towers, respec-
tively. The LTE pseudorange measurement noise variances � 2

⇢

for flight run 3 varied between 0.006 m2 and 16.81 m2.
Table VI summarizes flight Run 3’s navigation performance

of the acceleration random walk radio SLAM framework with
varying levels of a priori knowledge on the SOP towers’ true
positions.

Fig. 14 shows the aircraft’s true trajectory and radio SLAM
(with n = 0 known towers and m = 18 unknown towers)
trajectory for flight Run 3. Fig. 14 also shows the 18 LTE
towers’ true positions as well as the radio SLAM filter’s initial
and final estimates of the 18 towers’ positions along with the
associated horizontal covariances depicted in the form of 95%
uncertainty 2–D ellipses in the North-East plane.

Fig. 15 shows the radio SLAM EKF plots for the aircraft’s
states for two filters: (i) an EKF with knowledge of all

Fig. 13. Flight Run 2 EKF plots of the time history of the differenced
clock error states estimates and associated ±3� bounds for SOP 4 for the
INS radio SLAM filter with n = 2 known towers and m = 4 unknown
towers. Pseudoranges were extracted from SOP 4’s 3G signals by the on-board
receiver for the entirety of flight Run 2.

TABLE VI
FLIGHT RUN 3 EXPERIMENTAL RESULTS

the towers’ positions (n = 18, m = 0) and (ii) an EKF
with 2 SOP positions known while estimating the positions
of the remaining 16 SOPs (n = 2, m = 16). Figs. 16-17 show
the EKF plots for SOP 15’s horizontal position and differenced
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Fig. 14. Flight run 3 aircraft’s true (cyan) and estimated WPA radio SLAM trajectory with all 18 SOPs unknown (magenta). The initial SOP position
estimates (green pins) have a 134.57 and 71.14 m 2–D error (in the North-Eath plane) with respect to the true SOP positions (yellow pins) while the final
SOP position estimates (blue pins) converged to 31.02 and 17.59 m in 2–D error from the actual towers after performing radio SLAM for SOP 1 (bottom)
and SOP 11 (top), respectively. Map data: Google Earth.

Fig. 15. EKF plots of the time history of the aircraft’s states estimation errors and associated ±3� bounds for a filter implementing the acceleration randow
walk radio SLAM framework on flight run 3 with n=18 known towers and m=0 unknown towers (blue) and n=2 known towers and m=16 unknown towers
(orange). The first and second rows correspond to the aircraft’s position and velocity states in the NED frame, respectively.

clock error states estimated by the radio SLAM filter with
a priori knowledge of the positions of 2 SOP towers.

2) Flight Run 4: The flight trajectory for Run 4 consisted
of part of a grid maneuver comprising: (i) a 180� banking turn
over 10 km, (ii) a 25-km straight segment, (iii) a 270� banking
turn over 13 km, (iv) a 23-km straight segment, and (v) a 90�

banking turn over 7 km. The aircraft flew a 78.4-km trajectory
in 13.8 minutes at an altitude going from 6,234 to 7,546 ft
AGL and average speed of 340.1 km/h over a rural region as
summarized in Table I. The receiver on-board the aircraft inter-
mittently extracted pseudorange measurements from 32 LTE
SOP towers. The minimum and maximum distances from the
aircraft to any actively used SOP tower over the trajectory were
4.49 and 108.91 km, respectively, and the average distance
from the aircraft to the towers ranged from 12.98 to 98.26 km
for the closest and furthest towers, respectively. The LTE
pseudorange measurement noise variances � 2

⇢ for flight run 4
varied between 0.023 m2 and 20.06 m2.

TABLE VII
FLIGHT RUN 4 EXPERIMENTAL RESULTS

Table VII summarizes flight Run 4’s navigation performance
of the acceleration random walk radio SLAM framework with
varying levels of a priori knowledge on the SOP towers’ true
positions.
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Fig. 16. Flight Run 3 EKF plots of the time history of the horizontal position
estimation errors in the North-East plane and associated ±3� bounds for SOP
15 for the radio SLAM filter with n = 2 known towers and m = 16 unknown
towers. Pseudoranges were intermittently extracted from SOP 15’s LTE signals
by the on-board receiver for 547 seconds out of the 1201 seconds.

Fig. 17. Flight Run 3 EKF plots of the time history of the differenced
clock error states estimates and associated ±3� bounds for SOP 15 for the
radio SLAM filter with n = 2 known towers and m = 16 unknown towers.
Pseudoranges were intermittently extracted from SOP 15’s LTE signals by the
on-board receiver for 547 seconds out of the 1201 seconds.

Fig. 18 shows the aircraft’s true trajectory and radio SLAM
(with n = 0 known towers and m = 32 unknown towers)
trajectory for flight Run 4. Fig. 18 also shows the 32 LTE SOP
towers’ true positions as well as the radio SLAM filter’s initial
and final estimates of the towers’ positions along with the
associated horizontal covariances depicted in the form of 95%
uncertainty 2–D ellipses in the North-East plane.

Fig. 19 shows the radio SLAM EKF plots for the aircraft’s
states for two radio SLAM filters: (i) an EKF with knowledge
of all the towers positions (n = 32, m = 0) and (ii) an EKF
with 2 SOP positions known while estimating the positions of
the remaining 30 SOPs (n = 2, m = 30). Figs. 20-21 show the
EKF plots for SOP 27’s horizontal position and differenced
clock error states estimated by the radio SLAM filter with
a priori knowledge of the positions of 2 SOP towers.

D. Discussion
The following observations and conclusions can be drawn

from previous results.
• As can be seen in Figs. 7-11 and 15-19, the aircraft’s

states EKF plots are similar and offer the same patterns
for different levels of SOP position knowledge across the
4 different flight runs. This is on one hand explained by

the fact that the estimated states are initialized with the
same error for all EKF radio SLAM filters processing
each run. On the other hand, there is no significant
differences in the geometry between the SOP towers and
the aircraft over the course of the flight runs: the unit
line-of-sight (LOS) vector pointing from the SOPs to
the aircraft is very similar between filters with different
a priori SOP position knowledge as the initial tower posi-
tion uncertainty is negligible compared to the distances
between the aircraft and the SOPs. The covariances are,
however, always bigger for filters with less a priori SOP
position knowledge as more information yields tighter
±3� bounds in the aircraft’s states EKF plots.

• The orientation states errors and associated uncertainties
are observed to be very similar between different radio
SLAM filters with varying a priori information, suggest-
ing that SOP position information does not significantly
affect orientation estimation.

• It is interesting to note the spikes in heading error in
Figs. 7-11, with one occurring for flight run 1 and three
occurring for flight run 2. These spikes are actually
resulting from singularities in the ground truth orientation
reported in Euler angles. The formulation of the INS
radio SLAM EKF filter with quaternion states to estimate
the aircraft’s orientation was chosen to circumvent this
specific issue as detailed in Subection III-A.

• It is important to note that a filter not exploiting ambi-
ent cellular SOPs opportunistically and aiding the INS
with altimeter measurements only diverges as shown in
Figs. 6-10. This is also revealed in the aircraft’s EKF
plots in Figs. 7-11 with diverging bounds in the North
and East position and velocity states, looser bounds on
orientation (heading in particular) as compared to a radio
SLAM filter while the altimeter measurements prevent
the Down states from diverging.

• It is worth noting that the intermittency of LTE pseu-
doranges in flight runs 3 and 4, as can be seen in the
various measurement availability periods in Figs. 16-17
and 20-21, requires clock error states reinitialization when
the measurements are available from an SOP after a
period of unavailability. This reinitialization is revealed
by the jump in clock errors states estimates as well
as spike in the associated covariance preceding every
period of measurement availability in Figs. 17-21. This
reinitialization of clock error states, essential to acco-
modate intermittent measurements, hampers the radio
SLAM EKF performance and explains the lower initial
uncertainty around SOP positions in flight runs 3 and 4
as compared to runs 1 and 2 where measurements are
continuous.

• The differenced clock error states get updated even before
the first period of availability of measurements as can be
seen in SOP 15’s clock states EKF plots in Fig. 17. This
is expected as these differenced states contain the receiver
clock error states, which are also present in all other
SOPs’ clock differenced states. These common terms
result in correlations between the SOPs’ clock error states
that in turn yield updates for SOP clock states even when
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Fig. 18. Flight run 4 aircraft’s true (cyan) and WPA radio SLAM trajectory with all (32) SOPs unknown (magenta). The initial SOP position estimates
(green pins) have a 139.29 and 74.80 m 2–D error (in the North-Eath plane) with respect to the true SOP positions (yellow pins) while the final SOP position
estimates (blue pins) converged to 75.19 and 50.40 m in 2–D error from the actual towers after performing radio SLAM for SOP 23 (right) and SOP 27 (left),
respectively. Map data: Google Earth.

Fig. 19. EKF plots of the time history of the aircraft’s states estimation errors and associated ±3� bounds for a filter implementing the acceleration randow
walk radio SLAM framework on flight run 4 with n=32 known towers and m=0 unknown towers (blue) and n=2 known towers and m=30 unknown towers
(orange). The first and second rows correspond to the aircraft’s position and velocity states in the NED frame, respectively.

measurements from the SOP associated to these clock
states are not available (provided measurements from at
least one other SOP are available at that time).

• SOP 15’s position states do not get updated before the
first period of measurement availability as expected and
as can be seen in Fig. 16. However, after the first interval
of measurement availability for SOP 15, it is interesting
to note that the positions states of this SOP get updated
even when no measurements are available for SOP 15.
This is explained by the fact that cross-correlations are
built in the estimation error covariance matrix during the
EKF update step between states of active SOPs. These
cross-correlations then result in updates to SOP position
states even when no measurements are available from the
SOP associated with these states.

• The estimation performance degrades as the navigating
receiver’s a priori knowledge of the SOP towers posi-
tions decreases (i.e., as the number of unknown SOPs
increases). This is observed across all 4 flight runs and
with both INS and WPA radio SLAM frameworks as
summarized in Tables IV-VII. Additionally, no noticeable
or significant differences were observed in the mea-
surement quality and/or estimation performance across
the various environments (rural, semi-urban, and urban).
The readers are referred [59] for a detailed analysis of the
cellular SOP signals extracted opportunistically at aircraft
altitudes across the different environments.

• The direct comparison of both radio SLAM frameworks,
with the INS and with the WPA model as the tools
used in the EKF propagation step, was performed for
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Fig. 20. Flight Run 4 EKF plots of the time history of the horizontal
position estimation errors in the North-East plane and associated ±3� bounds
for SOP 27 for the radio SLAM filter with n = 2 known towers and
m = 30 unknown towers. Pseudoranges were intermittently extracted from
SOP 27’s LTE signals by the on-board receiver for 490 seconds out of the
830 seconds.

Fig. 21. Flight Run 4 EKF plots of the time history of the differenced clock
error states estimates and associated ±3� bounds for SOP 27 for the radio
SLAM filter on flight run 4 with n = 2 known towers and m = 30 unknown
towers. Pseudoranges were intermittently extracted from SOP 27’s LTE signals
by the on-board receiver for 490 seconds out of the 830 seconds.

flight runs 1 and 2 where IMU measurements were
available as shown in Tables IV-V. It can be observed
that the position estimation performance is comparable
between both frameworks as the WPA model is able to
capture the dynamics of the maneuvers in the position
state estimates. The velocity estimation performance is,
however, worse for the WPA model than for the INS. This
can also be seen from the high-frequency fluctuations
in the velocity errors in the aircraft EKF plots in flight
runs 3 and 4 (processed with the WPA dynamical model)
in Figs. 15-19.

• The nonlinearity of the pseudorange measurements results
in local observability of the radio SLAM framework [43].
As a result, initializing the SOP with “too large” uncer-
tainty will lead the EKF to converge to a local minimum,
in which the SOP position state estimate converges to an
erroneous position. In such a case, the aircraft’s naviga-
tion solution also converges to an erroneous one as the
EKF fits the measurements to the erroneously converged
tower positions. The initial SOP position uncertainty was
selected empirically to be towards the upper limit of the
“allowable” initial uncertainty before the local nonlinear
observability issues kick in. Also, note that it is smaller
for 4G SOPs than for 3G ones since the 4G pseudoranges
are intermittent (and require re-initialization of the clock
error states) while the 3G ones are continuous. Deter-
mining when the SOP position initialization uncertainty
becomes “too large” is an interesting research question
and is left as future work.

• Multiple-source (SOP-GNSS-IMU) integrity monitoring
should be implemented, considering the safety-critical
nature of radio SLAM applied to high-altitude air-
craft navigation. Recent studies considered integrity
monitoring of SOP-GNSS on UAVs [68], [69] and
SOP-GNSS-IMU on ground vehicles [70], but the SOP
positions were assumed to be known. A follow-up study
for radio SLAM with unknown positions is beyond the
scope of this paper and is deferred to future work.

VI. CONCLUSION

This paper presented an extensive evaluation of radio
SLAM to enable aircraft navigation without GNSS signals,
by exploiting pseudorange measurements from unknown ter-
restrial SOPs. Starting with an initial estimate of the aircraft’s
states, radio SLAM estimates the states of the aircraft simulta-
neously with the SOPs’ states. Two radio SLAM frameworks
were studied: (i) tightly-coupled SOP-aided INS and (ii) utiliz-
ing a WPA dynamical model for the aircraft’s dynamics instead
of the INS. Results from four flight runs on a USAF C-12
aircraft, equipped with an altimeter and an industrial-grade
IMU, were presented. Different a priori conditions of the
SOPs’ positions were studied. The results consistently demon-
strated the promise of real-world aircraft navigation via radio
SLAM, yielding bounded errors along trajectories of tens of
kilometers, with potentially meter-level navigation accuracy.
Future work should study the achievable performance and
its repeatability to satisfy minimum operational performance
standards (MOPS).

APPENDIX A
EKF TIME UPDATE OF xr,ins

The time update of xr,ins is performed using strapdown INS
mechanization equations in the ECEF frame {e} when IMU
measurements are available [61], [62].

A. Orientation Time Update

The orientation time update is given by

b
e ˆ̄q(k + 1| j) =

bk+1
bk

ˆ̄q ⇤
b
e ˆ̄q(k| j), (15)

where bk+1
bk

ˆ̄q represents an estimate of the rotation quaternion
between the IMU’s body frame at time k and k + 1 and ⇤

denotes the quaternion product. The quaternion bk+1
bk

ˆ̄q is com-
puted by integrating gyroscope rotation rate data !imu(k) and
!imu(k + 1) using a fourth-order Runge-Kutta according to

bk+1
bk

ˆ̄q = q̄0 +
T
6

(d1 + 2d2 + 2d3 + d4) ,
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where � [ · ] 2 R4⇥4 is given by

� [a] ,


�ba⇥c a
�aT 0

�
, a , [a1, a2, a3]T ,

ba⇥c 2 R3⇥3 is the skew-symmetric matrix form of a and is
found by

ba⇥c ,

2

4
0 �a3 a2
a3 0 �a1

�a2 a1 0

3

5 ,

b!̂(k) is the bias-compensated rotation rate measurement,
which is computed according to

b!̂(k) = !imu(k) � b̂gyr(k| j), (16)

and e
i ! ,

⇥
0, 0, e

i !
⇤T is the rotation rate of Earth, i.e., the

rotation rate of the ECEF frame {e} with respect to the ECI
frame {i}. The value of e

i ! is 7.292115⇥10�5 rad/s according
to the latest version of the World Geodetic System (WGS84).

B. Velocity and Position Time Update
IMU specific force measurements are integrated using trape-

zoidal integration to perform a time update of the position
and velocity in the ECEF coordinate frame while accounting
for the Coriolis effect introduced by the rotation rate of
Earth e

i ! [62]. Assuming that the variation of the Coriolis
force is negligible over the integration interval, the velocity
time update is performed as

e ˆ̇rb(k + 1| j) =
e ˆ̇rb(k| j) +

T
2
⇥e â(k) +

e â(k + 1)
⇤

+
e g(e rb(k))T � 2T b

e
i !⇥c

e ˆ̇rb(k| j), (17)

where e â and b â are the transformed bias-compensated spe-
cific force and untransformed bias-compensated specific force,
respectively, which are given by

e â(k) , R̂T(k)b â(k), (18)
b â(k) = âimu(k) � b̂acc(k| j), (19)

and R̂(k) , R
h

b
e ˆ̄q(k| j)

i
is the rotation matrix from frame {e}

to frame {b} associated with the quaternion b
e ˆ̄q(k| j).

The position time update is performed according to

e r̂b(k + 1| j) =
e r̂b(k| j) +

T
2

h
e ˆ̇rb(k| j) +

e ˆ̇r(k + 1| j)
i

� T 2
b

e
i !⇥c

e ˆ̇rb(k| j). (20)

APPENDIX B
INS STATE TRANSITION AND PROCESS NOISE

COVARIANCE MATRICES

The calculation of the discrete-time linearized INS state
transition matrix 8ins and process noise covariance Qins
are performed using strapdown INS equations as described
in [61] and [62]. The discrete-time linearized INS state tran-
sition matrix 8ins is given by

8ins =

2

66664

8qq 03⇥3 03⇥3 8qbgyr 03⇥3
8rq I3⇥3 T I3⇥3 8rbgyr 8rbacc

8ṙq 03⇥3 8ṙ ṙ 8ṙ bgyr 8ṙ bacc
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77775
,

where
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8ṙ bgyr = �
T
2
⌅e â(k)⇥
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The discrete-time linearized INS process noise covariance Qins
is given by

Qins =
T
2

⇣
8insNc8

T
ins + Nc

⌘
,

where

Nc = diag
⇥
Sng, 03⇥3, Sna, Sbg, Sba

⇤
,

with Sng = T Qng and Sna = T Qna are the PSD matrices of the
gyroscope’s and accelerometer’s random noise, respectively,
and Sbg = Qbg/T and Sba = Qba/T are the PSD matrices
of the gyroscope’s and accelerometer’s bias instability,
respectively.

APPENDIX C
EKF MEASUREMENT UPDATE OF xr,ins

The standard EKF equations are modified to deal with
the 3–D orientation error correction, which contains one
less dimension than the 4–D orientation quaternion estimate,
as described in Subsection III-A. To this end, the state estimate

is separated into two parts according to x̂ins ,
h

b
e ˆ̄qT

, ŷT
iT

,

where b
e ˆ̄q 2 R4 is the orientation quaternion estimate and

ŷ 2 R12+5M is a vector containing the remaining estimates of
xins. Next, the EKF correction vector x̆ins(k+1), which is to be
applied to x̂ins(k+1| j) to produce the EKF state measurement
update x̂ins(k+1|k+1), is computed and partitioned according
to

x̆ins(k + 1) = K(k + 1)⌫(k + 1| j) ,


✓̆(k + 1)

y̆(k + 1)

�
,

where K(k+1) is the standard Kalman gain, ⌫(k+1| j) , z(k+

1)� ẑ(k + 1| j) is the measurement innovations, ✓̆ 2 R3 is the
orientation correction, and y̆ 2 R12+5M is a vector containing
the remaining corrections. Finally, the EKF state measurement
update x̂ins(k + 1|k + 1) is computed by applying ✓̆(k + 1) to
b
e ˆ̄q(k + 1| j) and y̆(k + 1) to ŷ(k + 1| j) as follows

x̂ins(k + 1|k + 1)
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