
87

SPECIAL ISSUE ON SIGNAL PROCESSING FOR THE 
INTEGRATED SENSING AND COMMUNICATIONS 

REVOLUTION

IEEE SIGNAL PROCESSING MAGAZINE   |   September 2024   |1053-5888/24©2024IEEE

Zaher (Zak) M. Kassas , Mohammad Neinavaie , Joe Khalife ,  
Shaghayegh Shahcheraghi , and Joe Saroufim

Future technologies, from the massive Internet of Things to 
highly automated transportation systems, will require a fun-
damental shift in the design of future communication net-

works, toward integrating sensing, communication, and security 
[1]. A desired attribute in these networks, whether terrestrial or 
nonterrestrial, is the ability to localize the user equipment (UE) 
to a high degree of accuracy in an uninterruptible fashion [2]. 
Estimation of the time of arrival (TOA), direction of arrival 
(DOA), and/or frequency of arrival (FOA) of multiple UEs/tar-
gets are core enablers for joint sensing and communication in 
beyond 5G technologies [3].

Radio-frequency (RF) positioning, navigation, and tim-
ing (PNT) receivers typically rely on known reference sig-
nals (RSs) transmitted by the source to draw TOA, DOA, 
and FOA measurements. RSs are periodic signals transmit-
ted for synchronization purposes. RSs are designed based on 
their distinctive bandwidth and correlation properties and the 
physical channel [4].

RF PNT techniques in the literature can be classified into 
network-based (active) and UE-based (passive) approaches. 
Network-based approaches require the UE to transmit on the 
uplink channel. As such, they suffer from a number of draw-
backs: 1) the UE’s privacy is compromised since the UE’s 
location is revealed to the network, 2) localization services are 
limited only to paying subscribers and from a particular pro-
vider, and 3) additional bandwidth is required to accommo-
date uplink transmission. In contrast, UE-based approaches 
exploit passively broadcast downlink signals without the need 
to be a subscriber of the network. A well-known example of 
UE-based approaches is a global navigation satellite system 
(GNSS) (e.g., GPS), which is, essentially, a dedicated system 
for PNT purposes. 

Aside from dedicated systems, research over the past 
decade has shown that one can exploit so-called signals of 
opportunity (e.g., cellular, digital television, satellite com-
munication, etc.), which are signals not transmitted for PNT 
purposes [5]. Whether dedicated or opportunistic, UE-
based approaches are more attractive than network-based 
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 approaches, with  opportunistic approaches being particularly 
attractive since they 1) do not require additional overhead or 
bandwidth allocation, 2) preserve the UE’s privacy, 3) do not 
require paying a subscription to the network, and 4) enable 
the UE to exploit signals from multiple pro-
viders simultaneously, which improves the 
positioning accuracy. This article focuses 
on UE-based opportunistic approaches 
with terrestrial and nonterrestrial signals 
(see “A Generic Signal Model”).

Communication systems employ a syn-
chronization beacon for receiver timing and/or carrier recov-
ery. The beacon signals for public (e.g., cellular 3G, 4G, and 

5G) and private [e.g., broadband low-Earth orbit (LEO) satel-
lites] networks can be categorized into two classes (Figure 1):

 ■ Beacons with integer constraint (IC): The samples of 
the beacon with IC are drawn from a finite alphabet set, 

e.g., M-phase-shift keying modulation. 
An example of a beacon with IC is the 
pseudorandom noise (PRN) sequence in 
GPS [6]. This type of beacon is used in 
code-division multiple access (CDMA)-
based networks, such as cellular 3G [7] and 
Globalstar LEO satellites [8]. Orbcomm [9] 

and Iridium [10] LEO satellites also employ beacons 
with IC.

The channel between the ith source and the user equip-
ment (UE) is considered to have a single tap with the 
complex channel gain .ia  The received baseband signal 
samples can be modeled as

[ ] [ ] [ ] [ ] [ ]expr n c n d n j w ni
i

N

i r i r i n
1

a x x i x= + +
=

^ ^ ^ ^h hh h|  
 (S1)

where [ ]r n  is the received signal at the nth time instant; 
[ ]nia  is the complex channel gain between the UE and the 

ith source at the nth time instant; and [ ] [ ],n t nr n si_x x -  
where [ ]t nsi  is the code-delay corresponding to the UE and 
the ith source at the nth time instant, and nx  is the sample 
time expressed in the receiver time. Moreover, N is the 
number of unknown sources; [ ]c ni  represents the samples 
of the continuous-time waveform ( )c ti  of the periodic RS 
corresponding to the ith source with a period of L samples; 

[ ] ( )f d2i n D
0

0

n

i x r x x i= +
x#  is the beat carrier phase in 

radians, which includes the effect of the receiver and trans-
mitter clock errors, relativity, and atmospheric delays, with 
fD being the Doppler frequency, Ts n n1x x= -+  being  
the sampling time, and 0i  being the constant initial  
phase; [ ]d ni  represents the samples of some data transmit-
ted from the ith source; and [ ]w n  is a zero-mean  
independent and identically distributed noise with 

[ ] [ ] [ ]w m w n m nE *
w
2v d= -" , ,  where  [ ]nd  i s  t he 

Kronecker delta function, and [ ]w n)  denotes the complex 
conjugate of random variable [ ] .w n  

The received signals can be expressed in terms of the 
equivalent RS from the ith source, denoted by [ ],s ni  and 
the equivalent noise, denoted by ,weqi  which are defined as

 [ ] [ [ ]] [ ]exps n c t n ji i i n s i ni_a x i x- h^  (S2)

 [ ] [ [ ]] [ ] [ ] .expw n d t n j w ni n s i neqi i_ x i x- +^ h  (S3)

Hence, the baseband samples can be rewritten as

 [ ] [ ] [ ] .r n s n w ni
i

N

1
eqi= +

=

^ h|  (S4)

In this article, the Doppler frequency is modeled as a 
linear chirp, i.e., [ ] ,f n f T nD D i si i0 b= +  where fDi0  is the 
initial Doppler frequency, and ib  is the Doppler rate. 
The received signal at the nth time instant when the 
Doppler rate is wiped off can be expressed as 

[ ] ( ) [ ] .expr n j T n r n2 i s
2 2rb= -l  Due to the periodicity of 

( ), [ ]c s nn ix  has the following property:

 [ ] [ ]exps n mL s n j mL n L0 1i i i # #~+ = -^ h  (S5)

where f T2i D si0~ r=  is the normalized Doppler correspond-
ing to the ith transmitting source, and i# #r ~ r- . A 
vector of L observation samples corresponding to the  
m t h  pe r i od  o f  t h e  s i gna l  i s  f o rmed  a s 

[ [ ], [ ], , [( ) ]] .z r mL r mL r m L1 1 1 T
m f_ + + -l l l  The coher-

ent processing interval (CPI) is defined as the number of 
periods of an RS in a time interval during which the 
Doppler frequency ,fDi  Doppler rate ,ib  code delay [ ],t nsi  
and channel gain ia  are constant. The CPI vector is con-
structed by concatenating K aggregates of zm  vectors to 
form the KL 1#  vector:

 y H s wi
i

N

i
1

= +
=

|  (S6)

where [ [ ], , [ ]] ;s s L1s T
i i if=  the KL L#  Doppler matrix is 

defined as

 [ , , , ( ) ]exp expj L j M L1H I I I T
i L i L i Lf_ ~ ~ -^ ^h h

where IL  denotes an  L L#   identity matrix; and w  is the 
noise vector.

A Generic Signal Model

RSs are designed based on 
their distinctive bandwidth 
and correlation properties 
and the physical channel.
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 ■ Beacons with no IC (NIC): The samples of beacons with 
NIC can be any arbitrary number in the time domain. 
Examples of NIC beacons are the primary synchronization 
signal (PSS) and secondary synchronization signal (SSS) 
in orthogonal frequency-division multiplexing (OFDM)-
based systems, such as cellular 4G LTE and 5G New Radio 
(NR). While these signals are originally drawn from a 
finite alphabet at the transmitter, they are inputted to an 
inverse discrete Fourier transform. 
Therefore, in the time domain, the bea-
con’s elements are arbitrary complex 
numbers. Most modern communication 
systems, including 5G and Starlink LEO 
satellites, currently employ this type of 
beacon [11], [12].
In the navigation literature, navigation 

observables are ranges or angles deduced 
from the TOA, DOA, or phase differences, based on a com-
parison between received signals and receiver-generated 
beacons. Knowledge of the RSs transmitted by terrestrial 
sources (e.g., cellular 3G CDMA [13], 4G LTE [14], and 5G 
NR [15]) and nonterrestrial sources (e.g., Orbcomm [16] and 
Iridium [17] LEO satellites) enabled the design of so-called 
opportunistic navigation receivers, which could exploit the 
source’s downlink signal to produce TOA, DOA, and FOA 
measurements. Highly accurate navigation capabilities have 
been demonstrated exclusively with these measurements in 
the absence of GNSS signals [18]. Notably, it was shown that 
cellular TOA measurements could navigate unmanned aerial 
vehicles (UAVs) to submeter-level accuracy [19] and pedestri-
ans indoors [20], ground vehicles [21], and high-altitude air-
craft [22] to meter-level accuracy.

Generating a replica of the beacon by the UE is not straight-
forward in the following cases:
1) Private networks: For public networks, one can refer to 

publicly available protocols [e.g., 3rd Generation 
Partnership Project (3GPP)] to design a receiver capable of 
extracting navigation observables from received signals by 
acquiring and tracking the timing and phase of the beacons. 
However, in private networks (e.g., communication systems 

with closed protocols), there is little to no 
detail about their signal structure, which 
hinders the design of conventional oppor-
tunistic navigation receivers (i.e., those 
exploiting the known RSs in the downlink 
signals). This is particularly the case for 
broadband LEO satellite providers (e.g., 
Starlink, OneWeb, Kuiper, etc.), which 
are planning to aggregately launch, over 

this decade, tens of thousands of satellites (referred to as 
megaconstellations). In such a case, can one sense and 
exploit unknown signals for PNT?

2) Ultra-lean transmission: In previous cellular network 
generations, several beacon signals (e.g., cell-specific 
RSs) were broadcasted at regular and known time inter-
vals, regardless of the number of UEs in the environ-
ments. Ultra-lean design refers to minimizing these 
always-on transmissions. Modern communication sys-
tems, such as 5G NR, transmit some of the beacon signals 
only when necessary, or on demand [23]. Conventional 
opportunistic navigation receivers will either fail to oper-
ate or be unable to exploit the entire available bandwidth 
when the RSs are dynamic. For instance, while the RSs 
allocated to a single LTE channel have a predetermined 

Iridium

(a)

4G 5G

(b)

Orbcomm

GPS

Starlink

FIGURE 1. The communication signals that are cognitively sensed, tracked, and exploited for navigation via the COSON framework presented in this ar-
ticle. (a) Beacons with integer constraint (IC): GPS, Orbcomm, and Iridium satellites. (b) Beacons with no IC (NIC): cellular 4G and 5G and Starlink satel-
lites. (Sources: GPS: https://www.af.mil/News/Article-Display/Article/115915/first-gps-iif-satellite-on-station/; Orbcomm: https://www.orbcomm.com/en/ 
partners/connectivity/satellite; Iridium: https://www.iridium.com/company/; 4G: https://medium.com/@artiedarrell/lte-and-interferance-on-horizons 
-network-4bc530e7ef51; 5G: https://www.nbcnews.com/tech/tech-news/faa-clears-verizon-t-turn-5g-cell-towers-rcna14018; Starlink: https://www. 
dailymail.co.uk/sciencetech/article-11490151/How-Elon-Musks-Starlink-3-000-satellites-works.html.)

UE-based approaches 
exploit passively 
broadcast downlink 
signals without the need 
to be a subscriber of the 
network.
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bandwidth of up to 20 MHz, the allocated bandwidth for 
the RSs in a single 5G channel is dynamic; i.e., it adap-
tively changes based on the transmission mode and can 
go up to 100 and 400 MHz for frequency ranges 1 and 
2  frequency (FR1 and FR2), respectively [12]. On the 
other hand, Starlink LEO satellite downlink signals occu-
py 250 MHz of bandwidth of the Ku-band to provide 
high-rate broadband connectivity, but while some of the 
downlink RSs (PSS and SSS) have been reverse engi-
neered [24], the full allocated bandwidth RSs are 
unknown [11] and subject to change. In such a case, can a 
UE that is not subscribed to the network detect “on-
demand” beacons and exploit the entire bandwidth to 
generate navigation observables?
Cognitive sensing and opportunistic navigation (COSON) 

has been recently introduced to address these emerging  
challenges [25], [26], [27], [28]. A spectral approach to 
COSON focusing on LEO satellites was developed in [29]. In 
this article’s context, sensing is defined as the detection of the 
presence of a transmitting source, whether terrestrial or non-
terrestrial, in the environment, whose sig-
nals are unknown a priori. Upon detection, 
salient RS parameters are estimated.

COSON can be thought of as an instan-
tiation of integrated sensing and communi-
cation, but, instead of having the “luxury” 
to design signals with ISAC capabilities, 
COSON 1) senses arbitrary, unknown com-
munication signals and 2) exploits them 
for PNT purposes. In this article, COSON 
is defined as a system capable of sensing 
unknown signals in the environment, blindly learning their 
beacons, and exploiting them for PNT purposes. Endowed 
with COSON, a receiver may 1) localize unknown sources and/
or 2) exploit these sources to navigate. Essentially, this article 
argues that “the truth is out there” and that one can sense and 
exploit unknown signals, whether “legacy” non-ISAC signals 
or ISAC-devised.

This article gives a tutorial of COSON, which has been 
successfully applied to terrestrial and nonterrestrial signals. 
The article is organized as follows. The “COSON” section 
describes the COSON framework. The “Experimental Dem-
onstrations” section shows extensive experimental results 
demonstrating the successful application of COSON to exploit 
terrestrial and nonterrestrial signals with IC and NIC beacons 
(see Figure 1)—namely, cellular 4G and 5G, GPS, and Star-
link, Orbcomm, and Iridium LEO—to localize stationary 
antennas and navigate UAVs and a ground vehicle. The final 
section gives concluding remarks.

COGNITIVE SENSING AND OPPORTUNISTIC NAVIGATION
The COSON framework is composed of the following stages:
1) Blind signal acquisition: This step performs 1) spectrum 

sensing and signal activity detection, 2) blind beacon esti-
mation, 3) initial Doppler and Doppler rate estimation, and 
4) blind source enumeration.

2) Blind signal tracking and beacon refinement: The initial 
estimate of the Doppler frequency corresponding to each 
source is fed to tracking loops along with the estimated 
beacon. The delay and Doppler are tracked over time via 
the tracking loops, which could employ conventional 
phase-locked loops (PLLs) and delay-locked loops (DLLs) 
or be Kalman filter (KF)-based. The estimated beacon is 
also refined in this stage.

3) Interference and multipath classification: A blindly detect-
ed source in the acquisition stage can be either 1) a valid 
source (e.g., a cellular tower or an LEO satellite) or 2) a 
false alarm due to interfering signals and/or nonline-of-sight 
or multipath components. This step determines whether the 
detected source is a valid source or a false alarm.

4) Sensing and navigation: The final stage is to blindly localize 
the valid sources (sensing) and/or blindly navigate the UE 
by feeding the obtained navigation observables into a filter.
The COSON stages are discussed next. Figure 2 illustrates 

the first three stages, with examples from terrestrial and nonter-
restrial signals. The forthcoming discussion refers to this figure.

Signal acquisition
The detection of an unknown source in the 
presence of other interfering signals has 
been studied via the paradigm of matched 
subspace detectors in the detection theory 
literature [30]. Matched subspace detectors 
are used frequently in radar signal pro-
cessing [31], [32] and have been recently 
adopted for COSON [25], [26], [27], [28]. 
In what follows, the detection of beacons 

with IC and NIC is discussed as well as the estimation of the 
beacon period.

Detection of beacons with NIC (cellular 4G 
and 5G and Starlink LEO satellite signals)
NIC beacons can assume any arbitrary complex-valued num-
bers. The autocorrelation of a large enough time segment of 
the received signal will result in a train of an impulse-like 
 function whose shape depends on the autocorrelation prop-
erties of the synchronization signals. OFDM-based systems 
organize their signals in a frame whose length is equal to the 
period of the synchronization signals. In high-Doppler-dy-
namics scenarios (e.g., LEO satellites), a smaller frame length 
is selected to avoid Doppler spread [33]. The challenges of the 
detection of beacons with NIC are 1) the presence of multiple 
interfering unknown sources, 2) the effect of Doppler estima-
tion error on the detection performance, and 3) the selection 
of the detection threshold.

To address the aforementioned challenges, a general-
ized version of the matched subspace detector with suc-
cessive interference cancellation was developed in [25] 
and [28]. The signal subspace was defined by the Doppler 
frequencies of the unknown sources. Signal activity detec-
tion of unknown sources relies on the Doppler subspace. 
A hypothesis-testing problem was solved sequentially in 

Essentially, this article 
argues that “the truth is 
out there” and that one 
can sense and exploit 
unknown signals, whether 
“legacy” non-ISAC signals 
or ISAC-devised.
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multiple stages to detect the active sources in the environ-
ment (see “Hypothesis Testing”). At each stage, a test was 
performed to detect the most powerful source by compar-
ing a likelihood with a predetermined threshold, while the 

Doppler subspace of the previously detected sources were 
nulled. The so-called general linear detector [34] was mod-
ified based on the generic signal model and used at each 
stage of the sequential detection algorithm (see “Sequential 
Matched Subspace Detection”).

The estimated number of active sources is denoted by ;Nt  
in the first stage of the algorithm, the presence of a single 
source is tested. If the null hypothesis is accepted, ,N 0/t  
which means that no source is detected to be present in the 
environment. If the test rejects the null hypothesis, the algo-
rithm asserts the presence of at least one source and performs 
the test to detect the presence of other sources in the pres-
ence of the previously detected source. The unknown signal 
parameters of each detected source are estimated at each 
stage. If the null hypothesis at the ith stage of the algorithm is 
accepted, the algorithm terminates, and the estimated number 
of sources is .N i 1/ -t

At each stage, the likelihood is compared with a predeter-
mined threshold, selected based on the probability of a false 
alarm. A detector is referred to as a constant false alarm rate 
(CFAR) detector if the probability of a false alarm does not 
depend on the noise variance and/or other unknown param-
eters. The CFAR properties of the detector were investigated 
in [25] along with theoretical limits of the detection of mul-
tiple sources in the presence of Doppler estimation error. The 
choice of the optimal coherent processing interval (CPI) length 
was studied in [27]. Figure 2(a) shows the acquisition stages of 
two 5G base stations (also known as gNodeB, gNB) transmit-
ting on the same frequency, on a UAV: the likelihood function 
at each stage and detected and nulled sources.

Detection of beacons with IC (GPS and Orbcomm 
and Iridium LEO satellite signals)
For IC beacons, the IC of the beacon symbols in the matched 
subspace detector leads to a class of integer-least-square (ILS) 
problems [35]. One example of beacons with IC is the PRN 
sequence in CDMA-based communication systems. A low 
computational complexity approach to estimate the beacon 
symbols is symbol-by-symbol (SBS) estimation, which suffers 
from a poor performance in low-signal-to-noise-ratio (SNR) re-
gimes. In [36], SBS estimation was adopted to blindly estimate 
the symbols of the PRN sequences of Galileo and Compass 
satellites, utilizing a 1.8-m high-gain antenna to accumulate 
enough signal power. The optimal algorithm proposed in [35] 
can be used to solve the ILS problem with a polynomial com-
putational complexity.

A fundamental challenge of the detection methods with IC 
is the computational complexity of the ILS problem, which 
involves a search over a discrete space that depends on the 
modulation order and beacon length. The length of beacon 
sequences is typically very large. For instance, the length of 
the beacon for GPS PRNs is .2 110 -  A near-optimal beacon 
detector with linear computational complexity was developed 
in [26], which was shown to significantly outperform SBS 
estimation in a low-SNR regime. Another matched subspace-
based approach for the detection of signals with IC, such as 

The detection problem of the ith RS is defined as a bina-
ry hypothesis test:

 : .
: i

i
th source is absent
th source is presentH

H i

i
1

0(  (S7)

Under ,H i
1  the signal can be modeled as

 y H s B wi i i i1 1 eqii= + +- -  (S8)

where , , ,B H H Hi i1 1 2 1f_- -6 @  and [ , , , ]s s si i1 1 2 1f_i < < <<
- -  

store the chirp parameters and estimated RS in the previ-
ous steps, respectively. The decision criteria for the 
source detection are developed based on the general-
ized likelihood ratio (GLR). The likelihood of the GLR 
detector is [25]

 ( )y y P P P y
y P y

L H

H

i
B S B

S

i i i

i

1 1

= = = =
- -

 (S9)

where yH  denotes the Hermitian transpose of y, 
( )X X X XP H H1

X_ -  denotes the projection matrix to the 
column space of X, and P I PX X_ -=  denotes the projec-
tion matrix onto the space orthogonal to the column 
space of X. Also, S P Hi iBi 1_ =

-

Hypothesis Testing

The maximum likelihood (ML) estimate i~t  is obtained 
by maximizing the likelihood function (S9), which yields

 argmax H P yH
i i

2
Bi

i
1~ = =

~
-

t  (S10)

which is used to construct PBi 1-  and .H i  The algorithm’s 
sequential structure allows for single-variable estimation 
of the Doppler frequency at each stage, as denoted in 
(10). For example, during the first stage, a 1D search is 
performed to find the ML estimate of ,1~  denoted as 

.1~t  In the second stage, ,1~t  is used to form a projec-
tion matrix that eliminates the subspace of the first 
source. At each subsequent stage, the previously esti-
mated Doppler values are used to conduct a 1D search 
for ,i~t  which is then used to generate the correspond-
ing projection and Doppler matrices for that stage, rep-
resented by PBi 1-  and .H i  More details can be found  
in [25].

Sequential Matched Subspace Detection

Authorized licensed use limited to: The Ohio State University. Downloaded on December 06,2024 at 02:26:06 UTC from IEEE Xplore.  Restrictions apply. 



93IEEE SIGNAL PROCESSING MAGAZINE   |   September 2024   |

Iridium and Orbcomm, was proposed in [37]. In this frame-
work, to acquire the Doppler frequency of signals with IC, the 
samples of Orbcomm and Iridium were raised to the powers of 
two and four, respectively. Figure 2(d) shows the acquisition 
of one Iridium, one Starlink, and two Orbcomm LEO satel-
lites on a ground vehicle. Further details of this framework are 
discussed in [37].

Estimation of the period of the beacon
Beacon detection in COSON relies on knowledge of the bea-
con period. In public networks, the beacon period is typically 
specified in the protocol description. For 5G, depending on 
the network operator, the synchronization signals and physical 
broadcast channel (SS/PBCH) can have a periodicity of 5 ms, 
10 ms, 20 ms, 40 ms, 80 ms, or 160 ms.

However, the beacon period for private networks is unknown 
and subject to change. Period estimation has 
been studied in the literature [38].

A fundamental challenge that could arise 
in period estimation is the Doppler rate 
effect. A nonstationary transmitter and/or 
maneuvering UE could result in significant 
Doppler rate values. Unlike the Doppler 
effect, which does not change the magnitude 
of the autocorrelation function, the Doppler rate has a destruc-
tive effect on the autocorrelation function [27].

The autocorrelation of a large enough time segment of 
the received signal results in a train of an impulse-like func-
tion whose shape depends on the autocorrelation properties 
of the RSs. The distance between two consecutive impulses is 
equal to the beacon period. A Doppler rate wipe-off process 
was proposed in [39], which enabled the estimation of Star-
link’s OFDM period to be about 1.3333 ms. Figure 2(c) shows 
the autocorrelation of a 100-ms time segment of the Starlink 
downlink signal after Doppler rate wipe off. When this cog-
nitive beacon estimation process was applied to 5G signals, it 
estimated the 5G NR frame length from a terrestrial gNB to be 
10 ms, which corroborates the standard frame length of 5G NR 
downlink signals [27].

Blind signal tracking and refinement
Conventional tracking loops track the time variations of the 
code phase and carrier phase via DLL and PLL, respective-
ly, or a KF. DLL/PLL loops are composed of three constitu-
ent blocks: 1) a code/carrier phase discriminator, which is in 
charge of providing output measurements that, on average, are 
proportional to the code/carrier phase error to be compensat-
ed; 2) a loop filter, which acts as narrow low-pass filter that 
smooths the variability caused by thermal noise at the phase 
detector output; and 3) a numerically controlled oscillator for 
generating the local carrier replica based on the corrections 
imposed by the loop filter output [40].

In 5G and beyond networks, ultra-lean transmission allows 
the network to transmit some of the beacons only when it is 
necessary, and the transmitted beacons are subject to change. 
The COSON framework is able to update the estimated beacon 

dynamically in the tracking process. Some of the core blocks 
of the COSON tracking loop are similar to conventional code/
carrier phase tracking architectures. The difference between 
the COSON tracking loop and conventional loops is highlight-
ed in red in Figure 2. The main difference is the local RS gen-
erator with adaptive gains, which performs beacon sequence 
updates in the tracking process.

The RS in the tracking loop for the ith source is initial-
ized with the RS estimated in the acquisition stage sacqit  (i.e., 

) .s s0 acqi i/t t  Let t ,s ik
t  and f ,D ik

t  be the code phase and the Dop-
pler estimates of the ith source at time step k in the tracking 
loop, respectively. The estimated RS is updated by coherently 
accumulating the measurement at the kth step of the tracking 
loop when the delay and Doppler are wiped off. If the sub-
space spanned by the columns of S P Hi iBi 1= =

-  is viewed as 
the ith source’s signal subspace and the orthogonal subspace 

as the noise subspace, then the likelihood 
Li
)  can be interpreted as the ith source 

SNR estimate. Readers are referred to [30] 
for further interpretations of matched sub-
space detectors. 

The loop gain of the so-called RS-
locked loop (RSLL) is designed based 
on the acquisition performance. If the ith 

source estimated SNR Li
)  is large, the tracking loop relies 

more on the acquisition by diluting the contribution of new 
measurements in the estimation of the RS. Hence, the met-
ric Li

)  informs the tracking loops about the detection perfor-
mance of the ith source. When dealing with unknown signals, 
the transition from acquisition to tracking has a dramatic 
effect on the convergence and performance of the tracking 
loops [27]. Selecting the loop gain as such is necessary to 
converge when the RSs are very close in the Doppler space. 
Figure 2(b) shows a cognitively reconstructed 5G frame via 
the RSLL, showing successful estimation of both always-on 
and on-demand components. Figure  2(e) shows delay and 
Doppler tracking of two 5G gNBs on a ground vehicle, while 
Figure 2(f) shows Doppler tracking of one Starlink, and one 
Iridium, and two Orbcomm satellites on a ground vehicle. It 
is worth noting that KF-based tracking was adopted here. The 
tracking results are illustrated after normalizing the estimated 
Doppler frequency [37].

Interference and multipath classification
The detected sources in the acquisition stage can be either 
a valid source or a false alarm (e.g., interfering signals and/
or multipath components). Classifying detected signals falls 
into the paradigm of interference classification [41]. Due to 
the limited information about the unknown environment in 
which the UE is operating, interference classification should 
be performed in a blind fashion. The features considered in in-
terference classification algorithms in the literature are either 
specifically designed based on the signal model or require a 
training phase, which may not be possible in a blind scenario. 
A valid signal for the COSON framework is the line-of-sight 
(LOS) component of the transmitted signal. In the presence 

The COSON framework 
is able to update the 
estimated beacon 
dynamically in the  
tracking process.
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of an LOS component, the amplitude gain is often character-
ized by a Rician distribution. The carrier phase error in the 
tracking loops depends on the LOS signal power. The COSON 
approach uses the variance of the carrier phase error as the 
classification feature to distinguish a valid source from a false 
alarm [25]. Figure  2(g) shows blind detection of a Starlink 
satellite, where the acquisition stage returned two sources to 
be present: one corresponded to a Starlink satellite, while the 
other corresponded to a false alarm.

Sensing and navigation
The navigation observables produced by the tracking loops 
can be used to sense the environment, localizing transmitting 
sources, and/or navigating the UE. In [27], it was shown how a 
mobile ground vehicle with knowledge of its states could cog-
nitively localize an unknown 5G gNB transmitter to within a 
few meters. The following section presents extensive naviga-
tion results of multiple platforms with terrestrial and nonter-
restrial sources.

Experimental demonstrations
This section presents experimental demonstrations showing 
the broad applicability of the COSON framework to cogni-
tively sense and exploit various terrestrial and nonterrestrial 
signals for PNT. Table 1 summarizes the experimental demon-
strations presented herein.

Experiment 1: UAV navigation with 4G signals
This experiment was conducted with real cellular LTE signals 
received on a UAV to evaluate the performance of COSON in 
an environment in which some LTE base stations (also known 
as eNodeBs) were transmitting on the same carrier frequency. 
The UAV’s navigation solution obtained from the cognitively 
acquired and tracked LTE eNodeBs are compared with the 
navigation solution obtained from the receiver developed in 
[42], which was matched to the known LTE beacons (obtained 
from 3GPP).

A DJI Matrice 600 UAV was equipped with a National 
Instrument (NI) universal software radio peripheral (USRP) 
2955 and four consumer-grade cellular antennas. The USRP 
channels were tuned to 1955, 2145, 2125, and 739 MHz car-
rier frequencies, respectively, which are 4G LTE frequen-
cies allocated to the U.S. cellular providers AT&T, T-Mobile, 
and Verizon. The sampling rate for each channel was set to 
10 Msps and the sampled LTE signals were stored for post-
processing. To obtain the UAV’s ground truth trajectory, 
the UAV was also equipped with a Septentrio AsteRx-i V 
GNSS-aided inertial navigation system (INS), which is a 
dual-antenna, multifrequency GNSS receiver with real-time 
kinematics, coupled with a Vectornav VN-100 microelectro-
mechanical systems (MEMS) industrial-grade inertial mea-
surement unit (IMU).

The UAV traversed a trajectory of 609 m in 160 s in Aliso 
Viejo, CA, USA. The LTE samples were processed through 
COSON, and the conventional receiver was matched to 
the known beacons [42]. A total of 11 4G eNodeBs, whose 
positions were mapped prior to the experiment [43], were 
acquired by COSON. The mapped eNodeBs were validated 
via Google Maps, whose accuracy was considered to be the 
ground truth for the mapped positions. After manual data 
association, it was found that only six of them pertained to 
the ones detected by the conventional receiver, while the rest 
pertained to unknown eNodeBs in the environment that were 
not detected by the conventional receiver. For a fair naviga-
tion solution comparison, both receivers were used to track 
the six common eNodeBs to produce carrier phase measure-
ments, which were fused via two extended KFs (EKFs) to 
estimate the UAV’s trajectory. The 2D position root-mean-
square error (RMSE) of the COSON and conventional receiv-
ers were both calculated to be 2.1 m. The main sources of 
navigation error include the eNodeBs’ and receiver’s clock 
errors, the eNodeBs’ position error, and unmodeled effects 
(e.g., multipath). The experimental results are summarized in 
Figure 3. Additional details and analysis can be found in [25].

Table 1. Summary of experiments.

Signal 
Type

Frequency 
(MHz) Provider 

Receiver 
Type 

Signal 
 Specification

Measurement 
Model 

Number 
of Sources

Navigation 
Filter

Duration 
(s)

Distance 
 Traversed (m)

2D Position 
RMSE (m)

4G 739
1,955
2,125
2,145

AT&T, 
T-Mobile, 
and 
 Verizon

UAV OFDM (NIC) Carrier phase 6 EKF 175 609 2.1 

5G 632.55 T-Mobile UAV OFDM (NIC) Carrier phase 
and code 
phase

2 EKF 100 416 4.2 

GPS 1,575.42 U.S. Dept. 
of Defense 

Stationary CDMA (IC) Code phase 4 NLS 110 0 54.5 

Starlink 11,325 SpaceX Stationary OFDM (NIC) Doppler 6 WNLS 800 0 6.5 
Multi-LEO Ground 

vehicle
EKF 60 540 11.6 

Orbcomm 137 SD-QPSK (IC) Doppler 2 
Iridium 1,626.2708 DE-QPSK (IC) Doppler 1 
Starlink 11,325 OFDM (NIC) Doppler 1 

WNLS: weighted nonlinear least squares.
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Experiment 2: UAV navigation with 5G signals
This experiment was conducted with real cellular 5G signals 
received on a UAV to show the navigation solution with both 
always-on and on-demand components. The UAV’s navigation 
solution obtained from the cognitively acquired and tracked 
5G signals are compared with the navigation solution obtained 
from the receiver developed in [15], which was matched to the 
known 5G beacons (obtained from 3GPP).

An Autel X-Star Premium UAV was equipped with a sin-
gle-channel Ettus 312 USRP connected to a consumer-grade 
cellular antenna and a small consumer-grade GPS antenna to 
discipline the onboard oscillator. The 
USRP was tuned to the cellular carrier 
frequency 632.55 MHz, which is a 5G 
frequency allocated to the U.S. cellu-
lar provider T-Mobile. Samples of the 
received signals were stored for offline 
postprocessing.

The UAV traversed a trajectory of 
416 m in 100 s in Santa Ana, CA, USA. 
Two 5G gNBs, whose positions were 
mapped prior to the experiment [43], 
were detected using COSON and the 
conventional receiver. The mapped 
gNBs were validated via Google 
Maps, whose accuracy was considered 
to be the ground truth for the mapped 
positions. Both receivers tracked the 
carrier phase and code phase of the 
gNBs. EKFs were used to fuse the 
code phase observables to estimate 
the UAV’s trajectory. The 2D posi-

tion RMSEs of the COSON and conventional receivers were 
4.2 and 4.6 m, respectively. The reason COSON achieved a 
lower RSME is that the conventional receiver used only the 
always-on signals, while the COSON receiver exploited all 
of the available bandwidth of the received signal, which, in 
turn, resulted in a more accurate TOA estimation. The main 
sources of navigation error include the gNBs’ and receiv-
er’s clock errors, the gNBs’ position error, and unmodeled 
effects (e.g., multipath). The experimental results are sum-
marized in Figure 4. Additional details and analysis can be 
found in [26].

1 km

Aliso Viejo, CA, USA

1,955 MHz

2,125 MHz

2,145 MHz

739 MHz

Ground Truth

Cognitive

Known Beacon

(b)

(c)

(a)

FIGURE 3. The 4G experimental results: the (a) environment layout, (b) UAV, and (c) UAV trajectory: ground truth and estimated with the known beacon 
versus COSON.

Santa Ana, CA, USA

Ground Truth

Cognitive
Known Beacon

(a)

(b)

(c)

FIGURE 4. The 5G experimental results: the (a) environment layout, (b) UAV, and (c) UAV trajectory: 
ground truth and estimated with the known beacon versus COSON.
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Experiment 3: Stationary positioning with GPS signals
This experiment was conducted with real GPS L1 coarse 
acquisition signals (C/A) received on a stationary antenna 
to show successful deciphering of GPS PRN sequences. A 
GPS antenna was mounted on the roof of the Winston Chung 
Hall at the University of California, Riverside, CA, USA. 
The GPS signals were downmixed and sampled via an NI 
USRP-2955, tuned to the GPS L1 frequency 1,575.42 MHz, 
and driven by a GPS-disciplined oscillator. Samples of the 
received signals were stored for offline postprocessing.

GPS satellite signals were blindly detected, and, with suf-
ficiently long CPI, the Doppler was estimated and tracked. 
Next, the residual carrier was wiped off from the received 
signal, Doppler-compensated, and coherently accumulated. 
The navigation message bits were wiped off by two successive 
frames to determine whether a transition occurred or not. The 
GPS beacon of four GPS PRNs were decoded (PRN 20, 21, 

25, and 29). The percentage of correctly decoded PRN chips 
ranged between 91% and 99.9%.

The decoded PRNs were then used to produce pseudor-
ange observables from the received GPS signals. The initial 
Doppler and code phase estimates were used to initialize a 
software-defined receiver’s tracking loops, which employed 
a third-order PLL with a carrier-aided DLL with the dot 
product discriminator. Figure  5(a) shows the blind acqui-
sition of PRN 21, and Figure 5(b) shows the in-phase and 
quadrature components of the tracked prompt correlation 
of PRN 21.

The produced pseudorange measurements for the four 
GPS satellites at all time steps were stacked into a mea-
surement vector, and a batch nonlinear least-squares (NLS) 
estimator was implemented to estimate the antenna’s posi-
tion and bias terms capturing the unknown bias between 
the receiver’s and each of the satellite’s clocks. The GPS 

satellites’ positions were obtained by 
decoding the GPS satellites’ naviga-
tion message. The receiver’s position 
in the NLS was initialized around 
150 km from the true receiver’s posi-
tion. The estimated receiver’s 2D 
position converged to within 54.5 m 
from the true receiver’s position. The 
main sources of positioning error 
include incorrectly decoded PRN 
chips, atmospheric delays, satellites’ 
ephemerides errors, the receiver’s 
clock errors, and unmodeled effects 
(e.g., multipath). Figure  5(c) shows 
the true and estimated positions. 
Additional details and analysis can 
be found in [44].

Experiment 4: Stationary positioning 
with Starlink LEO satellite signals
This experiment was conducted with 
real Starlink LEO signals received 
on a stationary antenna to show suc-
cessful acquisition, Doppler tracking, 
and positioning. An NI USRP-2945R 
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FIGURE 5. GPS experimental results: the (a) blind acquisition of GPS PRN 21, (b) in-phase and quadrature components of PRN 21 from the tracked 
signal, and (c) environment layout showing the true antenna position and estimated position.
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Irvine, Califo rnia, USA
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179 km
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FIGURE 6. Starlink LEO experimental results: (a) Starlink satellite trajectories, (b) the hardware setup, 
(c) the initial estimate relative to the true position, and (d) the positioning results with six Starlink 
space vehicles (SVs).
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was equipped with a consumer-grade Ku antenna and a 
low-noise block (LNB) downconverter to receive Star-
link signals in the Ku-band. The sampling rate was set to  
2.5 MHz, and the carrier frequency was set to 11.325 GHz to 
record Ku signals over a period of 800 s.

The COSON receiver detected six Starlink LEO satellites. 
While all six satellites broadcasted pure tones, the COSON 
receiver concluded that three of them also transmitted 
OFDM-like signals. The receiver’s position was estimated 
via a weighted NLS from Doppler measurements extracted 
from the three satellites with pure tones and the three satel-
lites with pure tones and OFDM-like signals. The receiver’s 
position estimate was initialized as the centroid of all satel-
lite positions, projected onto the surface of Earth, yielding 
an initial position error of 179 km. The satellites’ positions 
were obtained from two-line element 
(TLE) files and simplified perturbations 
(SGP4) software. The simplified models 
of perturbing forces—which include non-
uniform Earth gravitational field, atmo-
spheric drag, solar radiation pressure, 
third-body gravitational forces (e.g., the 
gravity of the moon and sun), and general 
relativity—cause kilometer-level errors in 
a propagated satellite orbit, with most of 
the error being concentrated in the satel-
lite’s direction of motion [45]. To account 
for the ephemeris errors, the TLE epoch 
time was adjusted for each satellite [46]. 
This was achieved by minimizing the pseudorange rate resid-
uals for each satellite. The final 2D position error with the 
six satellites’ pure tones was 10 m. When Doppler measure-
ments from the three satellites transmitting OFDM-like sig-
nals were incorporated, the error reduced to 6.5 m. It is worth 
highlighting that it was later discovered that, upon applying 
the COSON framework developed in [29], all six Starlink 
LEO satellites were actually transmitting OFDM signals, and 
the full Starlink OFDM beacon, spanning the whole time-
frequency resource grid, was reconstructed [47].

The main sources of positioning error in this experiment 
include incorrectly estimated RSs, the impact of the highly 
dynamic channel on tracking, satellites’ ephemerides errors, 
atmospheric delays, satellites’ and the receiver’s clock errors, 
and unmodeled effects (e.g., multipath). Figure 6 summarizes 
the experimental results. Additional details and analysis can 
be found in [39].

Experiment 5: Ground vehicle navigation with 
multiconstellation LEO satellite signals
This experiment was conducted with real signals from three 
LEO constellations (Starlink, Orbcomm, and Iridium), 
received on a ground vehicle. The vehicle was equipped 
with an NI USRP-2955, USRP-312, and USRP-2974 and 
three different types of antennas (GPS survey antenna, a 
very-high-frequency quadrifilar helix antenna, and LNBs). 
The USRPs were tuned to the carrier frequencies 137; 

1,626.2708; and 11,325 MHz, which correspond to the 
downlink of Orbcomm, Iridium, and Starlink LEO satel-
lites. The objective of the experiment is to show the vehicle 
navigating without GNSS signals by cognitively exploiting 
downlink LEO signals. The ground vehicle traversed a tra-
jectory of 540 m in 60 s in Columbus, OH, USA. Access 
to GNSS signals was cut off for the last 492 m, traversed 
in 40 s. 

COSON acquired one Starlink, one Iridium, and two Orb-
comm satellites and tracked their Doppler. The produced Dop-
pler was fused with each vehicle’s IMU measurements via the 
simultaneous tracking and navigation (STAN) framework. 
STAN estimates the vehicle’s states simultaneously with the 
states of the LEO satellites while aiding the INS in a tightly 
coupled fashion via an EKF [48]. The satellites’ states in STAN 

are initialized by propagating TLE data via 
SGP4 software in an open-loop fashion until 
the time of the LEO satellites’ visibility. All 
three USRPs were time stamped by the same 
computer, synced to the Internet, and used to 
log the recorded data. The recorded time rep-
resents the receiver’s time, which is common 
to all extracted observables. However, each 
TLE suffers from some timing error; hence, 
the TLE + SGP4 time of each satellite was 
then synchronized with the receiver’s time 
in postprocessing. The synchronization was 
achieved by adjusting each TLE epoch time 
to minimize the Doppler residuals until the 

start of the navigation window, after which the LEO satellites’ 
states were estimated in a closed-loop fashion via STAN.

The 2D position RMSE of the LEO-aided INS was 11.6 m. 
In contrast, cutting off the GNSS signals from the vehicle’s 
GNSS-aided INS system ballooned the RMSE to 87.7 m. The 
main sources of navigation error include the impact of the 
highly dynamic channel on tracking, satellites’ ephemerides 
errors, atmospheric delays, satellites’ and the receiver’s clock 
errors, IMU errors, and unmodeled effects (e.g., multipath). 
Figure  7 summarizes the experimental results. Additional 
details and analysis can be found in [37].

Conclusion
This article presented a promising paradigm termed COSON.  
It can be thought of as an instantiation of ISAC, but, instead 
of having the “luxury” of designing signals with ISAC capa-
bilities, COSON senses arbitrary, unknown terrestrial and 
nonterrestrial communication signals and exploits them for 
PNT purposes. The article overviewed COSON’s four stages: 
1) blind signal acquisition, 2) blind signal tracking and bea-
con refinement, 3) interference and multipath classification, 
and 4) sensing and navigation. Extensive experimental results 
were presented showcasing the broad applicability of COSON 
in sensing and exploiting terrestrial (cellular 4G and 5G) and 
nonterrestrial (GPS and Starlink, Orbcomm, and Iridium 
LEO) signals without assuming prior knowledge of the signals, 
achieving meter-level accuracy without GNSS signals.

Instead of having the 
“luxury” of designing 
signals with ISAC 
capabilities, COSON 
senses arbitrary, 
unknown terrestrial 
and nonterrestrial 
communication signals 
and exploits them for  
PNT purposes.
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