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INTRODUCTION

Over the past few decades, the ambitious glorified image
of Earth connected through a web weaved from low Earth
orbit (LEO) satellites has taken the world by storm, prom-
ising high-resolution remote sensing images, space-based
optical mesh networks, and global, high-availability, high-
bandwidth, and low latency Internet [1]. While some early
LEO companies, such as Iridium, Intermediate Circular
Orbit, and Teledesic, made haste in securing their position
in this space race, they suffered financial setbacks, and the
reliability and viability of LEO constellations were scruti-
nized and experienced skepticism. However, the past few
years witnessed notable strides in small satellite technol-
ogy [2] and ground-breaking developments in launch
reduction costs [3]. With the demand for LEO satellites at
an all-time high, due to their potential for enabling new
communication technologies (e.g., 6G nonterrestrial net-
works and beyond) [4], revolutionizing passive sensing [5],
and refashioning positioning, navigation, and timing
(PNT) [6], the space race is back on. Major technology
giants, such as SpaceX, Amazon, and Boeing, as well
as government agencies are rushing to launch tens of
thousands of satellites for communication, Internet
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connectivity, and geographical sensing purposes [7]. With
the dawn of LEO megaconstellations, tracking these space
objects to a high degree of accuracy is evermore impor-
tant [8]. Aside from “classic” space situational awareness
purposes, improved LEO ephemerides enables the exploi-
tation of LEO satellite signals of opportunity for PNT
purposes [9].

Opportunistic PNT with “noncooperative” LEO satel-
lites [10] brings upon the following challenges of:

1) extracting navigation observables (pseudorange,
carrier phase, and/or Doppler) from the satellites’
partially known or unknown signals;

ii) compensating for the satellites’ unknown synchroni-
zation and timing errors;

iii) estimating the satellites’ unknown ephemerides.

To address the first challenge of signal exploitation,
several receivers have been proposed to extract navigation
observables from partially known signals [11], [12], [13],
[14]. For unknown LEO signals, the paradigm of cognitive
opportunistic navigation has shown tremendous promise
in blindly acquiring and tracking several “noncooperative”
LEO constellations: Starlink, OneWeb, Orbcomm, Irid-
ium, and National Oceanic and Atmospheric Administra-
tion [15], [16], [17], [18], [19]. Several recent studies
have offered solutions for dealing with the second chal-
lenge of synchronization [20], [21], [22]. This article
addresses the third challenge of ephemerides estimation.

The best publicly available estimate for a LEO satel-
lite’s ephemeris is given at the initial time provided by
two-line element (TLE) files published by North Ameri-
can Aerospace Defense (NORAD), which would then be
propagated through a propagator [e.g., simplified general
perturbations 4 (SGP4)]. However, the initial ephemeris
could be off by a few kilometers, and as the satellite’s
ephemeris gets propagated through time, the error contin-
ues to increase, only to be corrected when a new TLE file
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is published the next day. The daily update limits the use
of LEO signals of opportunity for PNT, since such large
ephemeris error translates to unacceptably large position-
ing error [9].

Several analytical and numerical satellite orbit deter-
mination algorithms have been developed to propagate
satellites’ states as well as associated uncertainty [23].
These propagators take into consideration, to various
extents, multiple sources of perturbing forces, e.g., Earth’s
nonuniform gravitational field, atmospheric drag, solar
radiation pressure, and third-body attraction (e.g., Sun and
Moon) [24]. The SGP4 [25] analytical propagator is used
to generate ephemerides from a set of mean orbital ele-
ments given at a reference epoch in TLE files, which are
published and updated periodically by the NORAD [26].
However, analytical orbit determination methods are
based on limited dynamical models and mean elements,
resulting in ephemerides that may not meet PNT accuracy
requirements [27], [28]. Space agencies usually employ
high-precision orbit propagators (HPOP), which are
numerical propagators used in conjunction with precise
force models. However, numerical propagators require
large amounts of data and significant computation time,
rendering them undesirable for real-time PNT purposes;
in addition to requiring specific knowledge about the satel-
lites (e.g., area, mass, etc.) and space environment, which
may not be publicly available.

Machine learning (ML) has shown tremendous poten-
tial in radar and communications [29], and its powerful
modeling capabilities have been recently studied to provide
a less parameter-reliant orbit propagation solution [30],
[31]. In [32] and [33], distribution regression was used for
orbit determination of objects in LEO. Propagating LEO
satellite orbits was studied in [34] and [35] via neural net-
works (NNs), support vector machines (SVMs), and Gauss-
ian processes (GPs). A simulation study developed in [36]
showed that NNs possess high regression capabilities com-
pared with SVMs and GPs. Several NN architectures, such
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as time-delay NN (TDNN) and long short-term memory
(LSTM) NNs, were studied in [37].

For orbit determination, an ML model would be given
the task of utilizing data relevant to a LEO satellite’s
ephemeris as inputs and using this information to predict
the satellite’s future ephemeris; hence, supervised learning.
Unlike deep learning models, where the feature extraction
step of the process is automated, enabling the use of large
datasets, classical ML requires researchers to determine the
set of features, which would allow a model to understand
the differences between structured data inputs. This article
focuses on a classical ML approach, since large amounts of
reliable and highly accurate LEO satellite ephemerides are
not available. Furthermore, a large and complex deep
learning model would take significantly increased time for
both training and inference, rendering it difficult to apply
in real-time applications. To achieve a computationally
feasible ML solution for orbit propagation, this article uti-
lizes the power of the widely used analytical propagator,
SGP4, and proceeds to correct its errors.

Applying NN for improving the LEO orbit prediction
with application to opportunistic navigation has been stud-
ied recently. In [38], a TDNN was trained on the LEO
satellite’s position, produced by a Global Navigation Sat-
ellite System (GNSS) receiver onboard the LEO satellite,
which is broadcast in the LEO satellite’s downlink signal.
Experimental results demonstrated the efficacy of the
TDNN by showing improved ground vehicle navigation
with two Orbcomm LEO satellites whose ephemerides are
predicted with the NN. In [39], TDNN and LSTM NN
architectures were compared, and it was concluded that
the TDNN’s accuracy was higher. The NN training uti-
lized HPOP [40], which was properly initialized using
Orbcomm LEO satellite’s position, produced by LEO’s
onboard GNSS receiver, and decoded from the first
received measurement epoch. It was demonstrated that the
NN was capable of estimating the position of the satellite
to meter-level accuracy over a short time period. In [41],
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Proposed framework. (i) LEO satellite first pass: A terrestrial receiver with knowledge of its position tracks the LEO satellite. The LEO satel-
lite’s states are initialized with SGP4-propagated TLE data, and are subsequently estimated via an EKF during the period of satellite visibil-
ity, utilizing the carrier phase measurements. (ii) LEO satellite not in view: an NN is trained on the estimated ephemeris and is used to
propagate the LEO satellite orbit for the period where the satellite is not in view. (iii) LEO satellite second pass: a terrestrial receiver with no
knowledge of its position uses the ML-predicted LEO ephemeris along with its carrier phase measurements from received LEO signals to

estimate its own position via an EKF.

two types of architectures were compared: (i) a TDNN
whose time delay aspect is the NN’s outputs being fed
back as delayed inputs, and (ii) a nonlinear autoregressive
with exogenous inputs (NARX), which takes SGP4-propa-
gated position states as exogenous inputs. It was con-
cluded that the NARX architecture offered the best
orbit propagation accuracy, which was demonstrated in
improved localization of a stationary receiver with signals
from a single LEO Orbcomm satellite with NN-predicted
ephemeris. It was also concluded that to obtain the
improved ephemeris, the NN would only need to output a
weighted version of a time-shifted SGP4-propagated
ephemeris. Therefore, one method for ephemeris propaga-
tion when given a sparse amount of data relating to a satel-
lite’s true position is to find a time shift that matches the
SGP4-propagated ephemeris with the satellite’s true
ephemeris and use that time-shifted ephemeris. This con-
clusion was corroborated analytically and numerically in a
“non-ML-based” fashion in [42].

This article builds on the promising results in [39] and
[41] by (i) alleviating the need to train the NN via HPOP,
initialized from the GNSS-produced LEO position
obtained from the first measurement epoch and (ii) demon-
strating the efficacy of a NARX NN in predicting LEO eph-
emerides by showing improved navigation accuracy of a
ground vehicle navigating for 4.05 km with two Orbcomm
LEO satellites to an unprecedented level of accuracy.

This article develops the following three-stage frame-
work, termed LEO-NNPON (LEO with NN prediction for
opportunistic navigation):

i) tracking during the LEO satellites’ first pass;

ii) NN-based prediction while the LEO satellites are
not in view;

iii) navigation during the LEO satellites’ second pass.

Experimental results of a ground vehicle equipped
with an industrial-grade inertial measurement unit (IMU)
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navigating for 4.05 km with signals from two Orbcomm
satellites are presented. Three vehicle navigation frame-
works are compared, all initialized with a GNSS-inertial
navigation system (INS) position and velocity solution:
(1) unaided INS, (ii) LEO-aided INS, which uses SGP4-
propagated LEO ephemerides, and (iii) LEO-aided
INS, which uses the NN-predicted LEO ephemerides.
The three-dimensional (3D) position root-mean-squared
error (RMSE) of the unaided INS was 1,865 m, whereas
of the LEO-aided INS with SGP4 was 175.5 m. In con-
trast, the LEO-aided INS with NN was 18.3 m, which is
indicative of improved LEO ephemerides.

The rest of this article is organized as follows. The
“Problem Description” section overviews the considered
problem, outlining the three stages of the proposed frame-
work. The “Model Description” section describes the dif-
ferent models involved in the framework: LEO satellite
dynamics, clock error dynamics, navigator kinematics,
and LEO measurement model. The “ LEO-NNPON
Framework: Tracking, Prediction, and Navigation” sec-
tion details the proposed framework stages: tracking,
prediction, and navigation. The “Experimental Results”
section gives the experimental results. Finally, the
“Conclusion” section concludes this article.

PROBLEM DESCRIPTION

This article considers the problem of enhancing LEO sat-
ellite orbit prediction via a closed-loop trained NN. The
accuracy of the NN predicted ephemeris is demonstrated
in the application of ground-based opportunistic naviga-
tion with LEO signals, whereby the trajectory of a
ground-based vehicle is estimated to a higher degree of
accuracy when utilizing the NN predicted ephemeris, as
compared to when utilizing SGP4-predicted ephemeris.
The considered problem, depicted in Figure 1, is com-
posed of the following three stages:
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1) First pass (tracking): A LEO satellite with poorly
known ephemeris (e.g., initialized from TLE files
and propagated via SGP4 until the time the satellite
is in view) flies overhead a ground-based tracker,
which has knowledge of its own position (e.g.,
from GNSS). While overhead, the tracker-mounted
receiver listens to the LEO satellite’s downlink sig-
nals, extracting measurements (pseudorange, carrier
phase, and/or Doppler). These measurements are
fused via a nonlinear filter [e.g., extended Kalman
filter (EKF)] to estimate the LEO satellite’s states
(position and velocity) along with the difference
between the LEO satellite’s and tracker’s clock
errors (bias and drift).

2) Satellite not in view (prediction): The estimated
ephemeris from the first pass is used to train an NN.
Once the satellite is no longer in view, the NN is
used to predict the satellite’s ephemeris.

3) Second pass (navigation): The satellite flies over
a ground-based navigator (e.g., vehicle), which
uses the LEO satellite’s downlink signals to nav-
igate as follows. The vehicle-mounted receiver
extracts navigation observables (pseudorange,
carrier phase, and/or Doppler) from the LEO sat-
ellite’s downlink signals. These observables are
used to aid the vehicle-mounted IMU in a tightly
coupled fashion (e.g., via an EKF). The LEO sat-
ellite states are obtained from the NN predicted
ephemeris.

MODEL DESCRIPTION

This section describes the models governing the proposed
LEO-NNPON framework: LEO satellite dynamics model,
clock error dynamics model, navigator kinematics model,
and LEO measurement model.

LED SATELLITE DYNAMICS MODEL

The LEO satellite dynamics will be modeled in the
Earth-centered inertial (ECI) reference frame, accord-
ing to the two-body model, including the most signifi-
cant nonzero mean perturbing acceleration, which
corresponds to J, effects [23], [43]. The two-body
model offers a tradeoff between accurate open-loop
prediction, while maintaining a simple analytical Jaco-
bian for estimation error covariance propagation [44],
and is given as

_ dUJz
B drlco

M

Fleo = Qgrav,, + Wieo, Agray.,

where 71e0 £ [X1eo,s Vieo, zleo]T is the 3D position vector
of the LEO satellite in the ECI frame, aguay,, is the
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acceleration due to Earth’s nonuniform gravity, includ-
ing J, effects, U;, is the nonuniform gravity potential
of Earth, including J, effects at the satellite, and wie,
is a process noise vector with power spectral density
(PSD) Q,.,, which attempts to capture the overall
acceleration perturbations, including the unmodeled
nonuniformity of Earth’s gravitational field, atmo-
spheric drag, solar radiation pressure, third-body gravi-
tational forces (e.g., gravity of the Sun and the Moon),
and general relativity [24].
The components of @grav,, = [Xgrav, Verav, 'z'grav]T are

- 5 5 _
- MXleo 3 Rr Zi
Foray = — 1+J2—(—> | 5 T
o H"leo“3 L 2 HrleoH H"leo”2 ]
- ) ) Z
. M) leo Rg Zleo
[— = (—) 1-5
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w

MZleo

H"leoH3 L

14+,
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Zgray =

where p is Earth’s standard gravitational parameter and
Rp is the mean radius of the Earth.

CLOCK ERROR DYNAMICS MODEL

The receiver’s and LEO satellites’ clock error state
dynamics are assumed to evolve according to the standard
two-state model (namely, a double integrator driven by
process noise) [45], whose discrete-time equivalent repre-
sentation is given by

Xeik,i(k + 1) = Fe Xk, (k) + weni (k) 3)

ooqT 1 T
Xelk,i 2 [C(Sfi, C‘Sti] , Fex = {O 1 }

where i = {r,leo}, 8t is the clock bias, 5t; is the clock
drift, ¢ is the speed of light, 7' is the constant sampling
interval, and wgy; is the process noise, which is modeled
as a discrete-time white noise sequence with covariance

73 yia
Sy T+ S“’s,,f 3 S%,,- T} )

1 _
Swét.i 2 SWSr,i T

2
Qi = ¢ {

The terms S‘;,M and S%_i are the clock bias and drift pro-
cess noise PSDs, respectively, of the continuous-time
counterpart model; which can be related to the power-law
coefficients {hai}ii:—z’ which have been shown through
laboratory experiments to characterize the PSD of the
fractional frequency deviation of an oscillator from nomi-
nal frequency according to Sﬂ’&, ~ % and S%i ~ 2n2h,2>i
[45]. The receiver’s and LEO satellites’ process noise
covariances Q. and Qg are calculated from (4) using
the PSDs associated with the receiver’s and LEO satel-
lites’ oscillator quality, respectively.
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The dynamics of the difference between the receiver’s
and LEO satellites’ clock error states is given by

Axo (kb + 1) = FogAxcic (k) + Awep (k) (5)
A-"fclk = [CA(Stlzlem CAS[r,leo} T
A8ty 10 20 [0ty — Stico),  CASty1e0 2 - [t — Stico)

where Awgy is the process noise vector, which has a
covariance Qacy given by Qacie = Qe + Qeie, -

NAVIGATOR KINEMATICS

The navigator’s orientation, position, and velocity are
modeled to evolve in time according to the standard strap-
down INS kinematic equations, driven by *w;, a 3D rota-
tion rate vector of the body frame {b} expressed in {b},
and %ay, a 3D acceleration vector of the body in the global
frame {g} [46]. The vehicle’s 3D orientation vector of
{b} with respect to {g}, denoted 8, and 3D position r;
expressed in {g} are related to the true 3D rotation rate
vector “w;, and 3D acceleration vector $a;, through the fol-
lowing kinematic differential equations:

05(1) ="y (1) (6)
Po(t) = 2ay(1). (7

The navigator-mounted IMU contains a triad-gyro-
scope and triad-accelerometer and produces angular rate
wim, and specific force ajy,, measurements, which are
modeled as

imu (k) ="y (k) + by (k) + ng(k) )
aimu (k) = RY(Kk)[fay (k) — 4g(k)]
+ba(k) +na(k), k=1,2,... (9

where Rg(k) is the rotation matrix from {g} to {b}; ¢g is
the acceleration due to gravity in {g}; b, and b, are the
gyroscope and accelerometer biases, respectively; and n,
and n, are measurement noise vectors, which are modeled
as white noise sequences with covariances Q,, and Q,,,
respectively.

The gyroscope and accelerometer biases are assumed
to evolve according to velocity random walk dynamics,
namely

o (k) + wig (k) (10)
a(k) + Wea (k) (11)

where wp, and wy, are bias instability process noise vec-
tors, which are modeled as a discrete-time white noise
sequences with covariances Q,, and Qy,, respectively.
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MEASUREMENT MODEL

A LEO receiver extracts continuous-time carrier phase
measurements from LEO satellites’ downlink signals by
integrating the Doppler measurement over time [47]. The
carrier phase measurement (expressed in meters) made by
the receiver on the LEO satellite at time-step &, which rep-
resents discrete-time instant ¢, = kT + fy for an initial
time 7y, can be modeled in discrete-time as [10]

¢(k) = [Ir(k) — rea (K|, + ¢[88:(k) — Btieo (K})] + AN

+ C8tiono (k) + Stopo (k) +v(k), k=1,2,...
12)
where &’ represents discrete-time at iy = kT + f) —
Sttor, with Stror being the true time-of-flight (TOF) of
the signal from the LEO satellite to the receiver; ¢ is
the speed-of-light; ., and r,, are the receiver’s and
LEO satellite’s 3D position vectors expressed in the
same reference frame; &¢, and df., are the receiver’s
and LEO satellite’s clock biases, respectively; A is the
wavelength of the carrier signal transmitted by the LEO
satellite; V is the initial carrier phase ambiguity associ-
ated with the LEO satellite carrier phase measurement;
8tiono and Styopo are the ionospheric and tropospheric
delays, respectively; and v is the measurement noise,
which is modeled as a zero-mean white Gaussian ran-

dom sequence with variance ai.

Assuming that no cycle slip occurs when the
receiver tracks the carrier phase (i.e., the carrier phase
ambiguity remains constant), the difference between the
receiver and LEO satellite clock biases and the carrier
phase ambiguity are lumped into a single term cA§#(k),
simplifying (12) to

z(k) & ||re (k) — r]eo(k’)quLcASt(k)
+ CBtiropo (k) + Stiono (k) + v(k)
ASH(K) 2[5, (K) — S0 (K')] + AN. (13)

In what follows, the effect of TOF on the LEO satellite’s
position will be considered negligible, i.e., rio(k') =
Fieo(k). In addition, the LEO satellite’s clock bias will
be assumed to be constant during the TOF duration, i.e.,
Stieo (k') & Stieo(k). With the latter assumption, the
dynamics of ¢Ad¢ can be readily deduced from (5).

LED-NNPON FRAMEWORK: TRACKING, PREDICTION,

AND NAVIGATION

This section describes the three stages of the proposed
LEO-NNPON framework for the problem discussed in the
“Problem Description” section:

i) First pass: EKF-based LEO satellite closed-loop
ephemeris tracking;
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Figure 2.
RNN with TDNN architecture.

ii) Satellite not in view: NN-based LEO satellite
ephemeris prediction;

iii) Second pass: tightly coupled LEO-IMU-based
navigation.

EKF-BASED LEQ SATELLITE TRACKING

During the LEO satellite’s first pass, an EKF is utilized to
estimate the LEO satellite’s ephemeris. The ground-based
tracker with knowledge of its own position 7, extracts carrier
phase measurements, modeled in (12), from the LEO satel-
lite’s downlink signals. The EKF state vector is given by

T
_ T T T
Xleo = | Vieor Tieos Ax&:lk} :

The EKF is initialized with LEO ephemeris that got
propagated via SGP4 up until the instant the tracker starts
producing carrier phase measurements from the LEO
downlink signals. The SGP4 propagator can be readily ini-
tialized with TLE files. The EKF time update and mea-
surement update can be readily achieved from (1) and (5)
and from (12), respectively.

ML-BASED ORBIT PREDICTION

After the LEO’s first pass, a refined (tracked) ephemeris is

Kassas et al.

from the previous stage is used as the target output. To
this end, the tracked ephemeris is preprocessed for use in
training the ML model as follows. The final LEO satellite
position and velocity state estimate obtained from the
EKEF is considered to be the best estimate. The short-term
accuracy of the two body with the J, model is utilized for
smoothing the tracked ephemeris [cf., (1)] by backpropa-
gating the final state estimate over the tracking period,
which yields a smoother training dataset and more training
data points. The features selected as input candidates for
the NN are the satellite’s 3D position 7|, and velocity
Fleo- The chosen coordinate reference frame is the ECI
frame since this eliminates the time-varying effect of
Earth’s rotation in the ECEF frame.

ARCHITECTURE

Predicting a satellite’s ephemeris can be seen as a time-
series prediction problem. The NARX architecture has
been shown to be highly capable of learning long-term
dependencies [48] and predicting time series [49], [50],
[51], even chaotic time series [52]. The NARX employs
a TDNN (depicted in Figure 2), which is based on a
multilayer perceptron feed-forward NN, which simply
propagates from input to output in one direction. The
time delay aspect is the NN’s outputs being fed back
as delayed inputs. The NARX takes TLE-initialized,
SGP4-propagated position states as inputs. It also has a
feedback loop where its output, the estimated ephemeris
state values, are fed back as an additional input, as
depicted in Figure 3.

UPTIMIZATION AND HYPERPARAMETER TUNING

Next, hyperparameters were chosen to best fit the learned
model. Choosing the dimensions of the NN, such as how
wide or how deep it is, will greatly affect its performance
and ability to generalize, not memorize. Furthermore,
since the dynamics of the error between SGP4-propagated
ephemeris (initialized from TLE) and true satellite ephem-
eris are unknown and appear to be nonlinear, multiple
activation functions must be investigated, including oscil-
latory functions (e.g., Snake function). To select the opti-
mal set of hyperparameters, tuners were employed to look
within a particular search space. Table 1 summarizes the
search space to which the NNs were tuned. These hyper-
parameters were tuned via Bayesian optimization and

obtained from the EKF. This ephemeris is used to train an E
NN, whose design is discussed next.
i(t) = SGPA(t
DATA PREPARATION SPAAw - TN = -
Since the target outputs (true satellite ephemeris) are not Figure 3.
available for training, the satellite’s tracked ephemeris NARX architecture.
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Table 1.
Hyperparameter Search Space
Parameter Value

Linear, ReLU, Tanh,
Sigmoid, Snake [53]

Number of layers [1,10]

Activation function

Nodes per layer [4,512]
[0.1,240] s

Adam [54], Adagrad [55],
SGD, Yogi [56]

Prediction length

Optimizer

compared with hyperparameters selected by a HyperBand
optimizer. In addition, the number of time-delayed inputs
was varied along with which states were fed into the NN.
Finally, optimization was performed to incrementally
decrease the learning rate as training loss decreases, and
early stopping was implemented to avoid overfitting.

RESULTS

The tuner’s conclusions were: two hidden recurrent
neural network (RNN) layers with two dense layers,
Yogi optimizer, and the number of nodes per layer was
10, with no noticeable improvement in performance
when using a higher number of nodes. The prediction
length was 400 time delays, where the time interval
between delays was 0.01 s. After tuning the NN and
comparing different possible combinations of hyper-
parameters, it was concluded that a wide NN is capable
of modeling TLE-SGP4 ephemeris error, and any added
layers in depth for introducing higher levels of abstrac-
tion are unnecessary. Moreover, increasing the number
of delayed inputs degrades the performance as the
dimensionality of the input increases without adding
much information to the model. An important observa-
tion to note is that increasing the number of estimated
states results in worse estimated ephemeris. This could
be attributed to the limited size of data trained and vali-
dated on as well as the incrementally increasing levels
of accuracy and abstraction required from the NN as
more states are added.

OPPORTUNISTIC NAVIGATION WITH CLOSED-LODP
TRAINED NN LED EPHEMERIS

During the LEO satellite’s second pass, a navigator uses
L € N LEO satellites to navigate. This is achieved by fus-
ing the navigation observables extracted from the LEO
downlink signals with IMU data in a tightly coupled
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fashion via an EKF. The LEO ephemerides is obtained
from the NN. The EKF state vector is given by

T
(6T T ST 2T T AT T
X = |:gq ) r1-7 rr7 bg? baVAxclk.l’ R ?Axclk.L
where /g 2 qu, gq]T is a 4D unit quaternion representing

the orientation of {b} fixed at the IMU with respect to
{g}, r: and #, are the 3D position and velocity of the navi-
gator expressed in {g}, and b, and b, are 3D biases of the
IMU’s gyroscopes and accelerometers, respectively,
expressed in {b}. Quaternions were chosen to represent
the orientation of the navigator with respect to {g}, since
they offer minimal attitude representation without suffer-
ing from the singularity of other mathematical attitude
representations (e.g., Euler angles). However, since the
4D quaternion is an overdetermined representation of atti-
tude, the estimation error covariance associated with
orientation is represented by a three-by-three matrix corre-
sponding to a three-axis error angle vector to prevent
degeneracy. The vector {Axclk_,},L:1 corresponds to clock
etror state vector between the receiver and /th LEO satel-
lite [cf., (5)].

The EKF prediction step produces an estimate
#(k|j) 2 E[x(k)|Z] of x(k), and an associated estimation
error covariance Py (kl|j), where E[-|-] denotes the condi-
tional expectation, Z/ 2 {z(i)},_, is the set of measure-
ments available up to and including time index j, and
k > j. The IMU measurements (8) and (9) are processed
through a vector-valued function of strapdown INS equa-
tions in {g} that discretize (6) and (7) to obtain [57], [58]

3k + 1)) = 19 [ (k) @i (K), @i ()]

where the gyroscope and accelerometer bias predictions
by(k+1]j) and b,(k+1|j) follow from (10) and (11),
respectively. The INS mechanization equations are per-
formed with the ECI frame as {g} since the LEO satel-
lites’ position and velocity states are also expressed in
ECI. This facilitates the EKF update step as the receiver’s
and LEO satellites” position and velocity states, and
the corresponding estimation error covariances are all
expressed in the same reference frame in this case. The
ECI strapdown mechanization equations and their lineari-
zation to propagate the estimation error covariance. The
prediction of the differenced clock states between the
receiver and the LEO satellite transmitter follow from (5).
The prediction of the LEO satellites’ position and velocity
is obtained from the NN.

The measurement vector z processed by the EKF
update step is defined by stacking all the extracted
LEO carrier phase measurements discussed in the
“Measurement Model” section. The EKF update step pro-
duces an estimate x(k|k) and an associated posterior esti-
mation error covariance P, (k|k).
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Figure 4.
Tightly coupled LEO-aided INS framework with NN-predicted
LEO ephemerides.

Figure 4 summarizes the tightly coupled LEO-aided
INS with LEO-NNPON framework with NN-predicted
LEO ephemerides. It is worth noting the analogy of this
framework to the well-known tightly coupled GNSS-aided
INS framework, except for the following: (i) the state is
initialized from via the GNSS receiver and IMU, and (ii)
the filter prediction stage uses the clock model (5) and the
NN-propagated LEO orbit (which was calculated offline
after the satellites’ first pass). The calculations in (ii) are
not deemed to be computationally intensive and can be
performed in real time.

EXPERIMENTAL RESULTS

This section presents experimental results validating the
efficacy of the LEO-NNPON framework developed in
the “LEO-NNPON Framework: Tracking, Prediction,
and Navigation” section. The experiments utilized two
Orbcomm LEO satellites, namely, Orbcomm FM114
and FM113, whose skyplot of the first and second

N0

@
=}
T

~
=)
T
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passes are shown in Figure 5(a). Figure 5(b) shows the
elevation history of the LEO satellites relative to the
ground-based receiver.

EXPERIMENTAL SETUP

During the first pass, the ground-based stationary tracker
utilized a very-high frequency (VHF) antenna, which was
connected to an Ettus E312 Universal Software Radio
Peripheral (USRP) to receive Orbcomm downlink signals
at 137-138 MHz and sample them at 2.4 MSps. The
USRP’s oscillator was driven by an external, freely run-
ning CD-2290 OctoClock. The Multichannel Adaptive
TRansceiver Information eXtractor (MATRIX) software-
defined receiver (SDR) [16] extracted carrier phase meas-
urements, which were used to track the Orbcomm LEO
satellites, as discussed in the “EKF-Based LEO Satellite
Tracking” section.

During the second pass, a ground vehicle was
equipped with the following:

i) a VectorNav VN-100 microelectro-mechanical sys-
tems (MEMS) industrial-grade IMU;

ii) a VHF antenna, connected to the Ettus E312 USRP,
which was driven by the freely running CDA-2990
OctoClock;

iii) a Septentrio AsteRx-i V integrated GNSS-INS sys-
tem and an altimeter, from which the vehicle’s
ground truth position and velocity were derived.

The collected data during the vehicle’s trajectory were
stored for offline processing via the MATRIX SDR, which
extracted carrier phase measurements from the Obrcomm
LEO satellites. These measurements were fused in the
tightly coupled LEO-aided INS EKF to estimate the
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(a) Skyplot and (b) elevation history of the two Orbcomm LEO satellites’ trajectories during their first (solid) and second (dashed) passes.

The thick lines indicate the tracking and navigation windows.
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Orbcomm
LEO

antenna

Figure 6.

Experimental hardware and software setup.

vehicle’s trajectory, as discussed in the “Opportunistic
Navigation with Closed-Loop Trained NN LEO Ephemer-
is” section.

The hardware and software setup used in the experi-
ment are illustrated in Figure 6.

LED TRACKING RESULTS

The ground-based stationary tracker’s position was
obtained from a GNSS receiver. The LEO satellites’ posi-
tion and velocity estimates were initialized from the
SGP4-propagated ephemerides of the most recent TLE
files available for Orbcomm FMI114 and FM113. The
associated initial position and velocity estimation error
covariances were set to be consistent with the SGP4-prop-
agated TLE ephemerides errors as

(010) = diag[P,, _ (0[0). P, (0]0)]

i .
"eo"leo €o

(0[0) = R, (0)Py,__ (0[0)[R}(0)]"
(00) = R} (0)Ps, (0]0)[R(0)]"

[/
Tleo

i leo "leo
where R} (0) is the initial rotation matrix from the LEO
satellite’s body frame {b} to the ECI frame {i}, and
Py, (0]0) = diag[107, 10*,10*) m®> and Py, (0]0) =
diag[102,107!,10] (m/s)* are the initial LEO satellite’s
position and velocity estimation error covariances in the
satellite’s body frame, respectively. The process noise
covariance of the satellite’s position and velocity states
was determined empirically by evaluating the propagation
errors of the adopted two body with J, dynamics model
with respect to an HPOP [40] in the satellite’s body frame,
and was rotated to the ECI frame at each time-step of the
EKF to propagate the estimation error covariance of the
satellite’s position and velocity state. The process noise
covariance of the clock states was set to be equivalent to a
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Septentrio AsteRx-i V

combination of a typical-quality temperature-compensated
crystal oscillator (TCXO) and high-quality oven-con-
trolled crystal oscillators (OCXO) pair, whose power-law
coefficients are given in Table 2. To find the carrier phase
measurement noise variances, the values were manually
tuned within a search space in accordance with the innova-
tions calculated for both LEO satellites. The variances
were found to be 4 and 10 m? for Orbcomm FM114 and
FM113, respectively.

Figure 7 shows the position and velocity EKF error
plots and associated +30 bounds as well as the open-
loop SGP4-propagated ephemeris errors in the satel-
lite’s body frame for Orbcomm FMI114, respectively.
Here, the satellite’s downlink signals, which include the
satellite’s true ephemeris generated by on-board GPS
receivers, were decoded for use as ground truth, from
which the errors were corrected. The ionospheric and
tropospheric delays were corrected in the carrier phase
measurements using standard models [47], [59]. Note
that closed-loop tracking mainly reduced the position
error in the along-track direction, which is typically
where most of the open-loop SGP4 propagated error is
concentrated [9], [60].

Figure 8 shows the position and velocity EKF error
plots and associated 30 bounds as well as the open-loop
SGP4-propagated ephemeris errors in the satellite’s body
frame for Orbcomm FMI113, respectively. Similar to

Table 2.

Experimental Oscillator Parameters

Quality Coefficients {1y, h_}

Typical-quality TCXO | {9.4 x 10-2°,3.8 x 102"}
High-quality OCXO {2.6 x 107%2,4.0 x 1025}
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Figure 7.

EKF-tracked position and velocity errors with associated £3¢ bounds versus open-loop SGP4 errors for Orbcomm FM114 satellite.
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Figure 8.

EKF-tracked position and velocity errors with associated £3¢ bounds versus open-loop SGP4 errors for Orbcomm FM113 satellite.

Figure 7, note that closed-loop tracking mainly reduced
the position error in the along-track direction.

Figure 9 shows the 3D position error magnitude for the
EKF-tracked and open-loop SGP4-propagated ephemeris
for the two LEO satellites. The position errors resulting
from SGP4 propagation of the most recently available
TLE files were over 1.8 and 5.9 km for FM114 and
FM113, respectively, which were reduced by closed-loop
EKF tracking to 199 and 279 m in 200 and 150 s, respec-
tively. The satellite tracking results are summarized in
Table 3.

The tracked ephemerides from this first pass is now
ready to be used to train the NN, as described in the “Data
Preparation” section. Next, the NN is used to predict the
satellites’ ephemerides. Note that this prediction is imple-
mented while the satellite is not in view, i.e., during the
LEO satellite’s orbital period in between the first and

JANUARY 2025
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second passes. As such, there is no additional processing
time required by the LEO-NNPON framework during the
vehicle navigation stage compared with the open-loop
SGP4 framework. Upon the LEO satellites’ return to view
in the second pass, the satellites’ signals are used to navi-
gate the ground vehicle, while using the NN-predicted eph-
emerides in the LEO-aided INS framework, as described in
the “Opportunistic Navigation with Closed-Loop Trained
NN LEO Ephemeris” section. The next section shows the
ground vehicle navigation results while using the NN-pre-
dicted ephemerides versus the SGP-predicted ephemerides.

GROUND VEHICLE NAVIGATION RESULTS

This section presents ground vehicle navigation results
during the second passing of the same two Orbcomm LEO
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Table 3.

Experimental Results: EKF-Tracked Position Error

Magnitude versus Open-loop SGP4 Errors for the
Orbcomm LED Satellites

FM114 FM113

SGP4 | Tracked | SGP4 | Tracked

Position 1,869 278 5,984 637
RMSE (m)

Final Error 1,837 199 5,982 279

(m)

satellites. The vehicle was driven on the CA-22 freeway
next to Irvine, California, USA, for 4.05 km in a duration
of 140 s, during which the following was collected:

1) GNSS-INS position and velocity navigation solu-
tion, produced by Septentrio AsteRx-i V, which is
used as the ground truth to compare against;

ii) data from the VectorNav VN-100 MEMS IMU;

iii) downlink signal samples from Orbcomm FM114
and FM113, which were processed offline via
the MATRIX SDR to produce carrier phase
measurements.

The carrier phase measurements were fused with the
IMU measurements in a tightly coupled fashion via the
EKF-based LEO-aided INS, which was initialized with
the GNSS-INS position and velocity solution.

Three vehicle navigation frameworks, all initialized
with the GNSS-INS position and velocity solution, are
compared: (i) unaided INS, (ii) LEO-aided INS, which

uses SGP4-propagated LEO ephemerides, and (iii) LEO-
aided INS with LEO-NNPON. Figures 10 and 11 show
the position and velocity EKF error plots and associated
430 bounds for each framework.

The clock error state estimates were initialized as fol-
lows. The clock bias term was initialized by subtracting
the initial estimated range from the initial carrier phase
measurement. The clock drift term was initialized by sub-
tracting the initial time rate of change of the estimated
range from the initial time rate of change of the carrier
phase measurement, such that

Adt,1001(0]0) = ¢,(0) — dy(0)

Bbteio (010) = 181(1) ~ 9,(0)] — - [d(1) ~ d(0)]

where ¢,(0) and ¢,(1) are the first two carrier phase meas-
urements from the /th LEO satellite, 7' is the sampling
period, and d;(j) = ||#(j) — Fieoa(j)|| for j =0, 1. Note
that in the above clock state initialization equations, the
satellite’s position vector is taken from the SGP4 and the
NN ephemeris sets, respectively, for each LEO-aided INS
navigation solution [i.e., frameworks (ii) and (iii)].

The process noise covariance of the clock error
states was set to be equivalent to a combination of a
typical-quality TCXO and high-quality OCXO pair,
whose power-law coefficients are given in Table 2. The
ground vehicle’s state estimation error covariance was
initialized as

P,(0/0) = diag[Pqr, 7 (0[0), Py,
Py (0]0)]
Pyr.s, (0]0) = [1072 x 343, 10 x Lixs, L)
Py (010) = [107* X I3,3,107* x I35
P.y.(0[0) = [10,107%], i=1,2

(0]0), Pex, (0]0),
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EKF-tracked position error magnitude versus open-loop SGP4 errors for Orbcomm FM114 and FM113.
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Figure 10.
EKF ground vehicle position errors and associated +30 bounds in the ENU frame for (i) unaided INS, (ii) LEO-aided INS with
SGP4-propagated ephemerides, and (iii) LEO-aided INS with NN-predicted ephemerides.
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Figure 11.
EKF ground vehicle velocity errors and associated +30 bounds in the ENU frame for (i) unaided INS, (ii) LEO-aided INS with
SGP4-propagated ephemerides, and (iii) LEO-aided INS with NN-predicted ephemerides.
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Figure 12.

Experimental results showing the ground vehicle’s ground truth trajectory (traveling right to left) and estimated trajectory with:
(i) unaided INS, (ii) LEO-aided INS with SGP4-propagated ephemerides, and (iii) LEO-aided INS with NN-predicted ephemerides.

where Py,.; (0]0) is the initial ground vehicle orientation,
position, and velocity covariance with units of [rad27
m?, (m/s)?] and Py, (0]0) is the initial IMU gyroscope
and accelerometer biases covariance with units of
[(rad/s)*, (m/s2)*]. To find the carrier phase measurement
noise variances, the values were manually tuned in a
search space in accordance with the innovations calculated
for both LEO satellites. The variances were found to be 1
and 2 m? for Orbcomm FM114 and FM113, respectively.

The following can be concluded from Figures 10
and 11. First, as expected, the EKF position and veloc-
ity error of the unaided INS immediately diverge (due
to the absence of GNSS aiding) in the East and North
direction, while the error and uncertainty remains
bounded in the up direction due to altimeter measure-
ments. Second, the £30 bounds of the vehicle’s posi-
tion and velocity states are equal whether SGP4 or the
NN ephemerides are used; however, the error diver-
gence with the NN is much lower than that with SGP4.
Hence, the NN predicted ephemerides is closer to the
LEO satellite’s true ephemerides than that of SGP4.
The vehicle’s navigation solution from each framework
are shown in Figure 12 and summarized in Table 4.

CONCLUSION

iii) navigating with LEO satellites by aiding the naviga-
tor-mounted IMU with navigation observables
extracted from downlink LEO satellites, while uti-
lizing the NN-predicted LEO ephemerides.

The efficacy of the improved LEO predicted ephemer-
ides was demonstrated experimentally by showing
improved ground vehicle navigation with signals from
two Orbcomm LEO satellites, while using the NN-pre-
dicted compared to the SGP4 propagator. It was shown
that over a 4.05 km, the LEO-aided INS with SGP4
achieved a 3D position RMSE of 175.5 m, whereas the
LEO-aided INS with NN achieved a position RMSE of
18.3 m. It is worth highlighting that while this article dem-
onstrated the application of the LEO-NNPON framework
on Orbcomm satellites, LEO-NNPON can be applied to
other LEO constellations (e.g., Starlink and OneWeb).
Future research could analyze the performance as a func-
tion of the tracking duration, leading to the minimum
duration required of the tracked pass.

Table 4

Experimental Results: Comparison of Different Naviga-

tion Frameworks

This article developed the LEO-NNPON framework. The Unlanged L[Es%-ilx]s LE[:\)I;::;IS
framework is composed of the following three stages:
i) tracking the LEO satellites during the first pass; ;K/Tgliio(r:n) 1.865 1755 18.3
ii) predicting the LEO satellites’ ephemerides when the Final error 2841 273.4 43.0
satellite is not in view, by utilizing the NN, which (m) ’ ' '
was trained on the tracked ephemerides;
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