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INTRODUCTION

Over the past few decades, the ambitious glorified image

of Earth connected through a web weaved from low Earth

orbit (LEO) satellites has taken the world by storm, prom-

ising high-resolution remote sensing images, space-based

optical mesh networks, and global, high-availability, high-

bandwidth, and low latency Internet [1]. While some early

LEO companies, such as Iridium, Intermediate Circular

Orbit, and Teledesic, made haste in securing their position

in this space race, they suffered financial setbacks, and the

reliability and viability of LEO constellations were scruti-

nized and experienced skepticism. However, the past few

years witnessed notable strides in small satellite technol-

ogy [2] and ground-breaking developments in launch

reduction costs [3]. With the demand for LEO satellites at

an all-time high, due to their potential for enabling new

communication technologies (e.g., 6G nonterrestrial net-

works and beyond) [4], revolutionizing passive sensing [5],

and refashioning positioning, navigation, and timing

(PNT) [6], the space race is back on. Major technology

giants, such as SpaceX, Amazon, and Boeing, as well

as government agencies are rushing to launch tens of

thousands of satellites for communication, Internet

connectivity, and geographical sensing purposes [7]. With

the dawn of LEO megaconstellations, tracking these space

objects to a high degree of accuracy is evermore impor-

tant [8]. Aside from “classic” space situational awareness

purposes, improved LEO ephemerides enables the exploi-

tation of LEO satellite signals of opportunity for PNT

purposes [9].

Opportunistic PNT with “noncooperative” LEO satel-

lites [10] brings upon the following challenges of:

i) extracting navigation observables (pseudorange,

carrier phase, and/or Doppler) from the satellites’

partially known or unknown signals;

ii) compensating for the satellites’ unknown synchroni-

zation and timing errors;

iii) estimating the satellites’ unknown ephemerides.

To address the first challenge of signal exploitation,

several receivers have been proposed to extract navigation

observables from partially known signals [11], [12], [13],

[14]. For unknown LEO signals, the paradigm of cognitive

opportunistic navigation has shown tremendous promise

in blindly acquiring and tracking several “noncooperative”

LEO constellations: Starlink, OneWeb, Orbcomm, Irid-

ium, and National Oceanic and Atmospheric Administra-

tion [15], [16], [17], [18], [19]. Several recent studies

have offered solutions for dealing with the second chal-

lenge of synchronization [20], [21], [22]. This article

addresses the third challenge of ephemerides estimation.

The best publicly available estimate for a LEO satel-

lite’s ephemeris is given at the initial time provided by

two-line element (TLE) files published by North Ameri-

can Aerospace Defense (NORAD), which would then be

propagated through a propagator [e.g., simplified general

perturbations 4 (SGP4)]. However, the initial ephemeris

could be off by a few kilometers, and as the satellite’s

ephemeris gets propagated through time, the error contin-

ues to increase, only to be corrected when a new TLE file
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is published the next day. The daily update limits the use

of LEO signals of opportunity for PNT, since such large

ephemeris error translates to unacceptably large position-

ing error [9].

Several analytical and numerical satellite orbit deter-

mination algorithms have been developed to propagate

satellites’ states as well as associated uncertainty [23].

These propagators take into consideration, to various

extents, multiple sources of perturbing forces, e.g., Earth’s

nonuniform gravitational field, atmospheric drag, solar

radiation pressure, and third-body attraction (e.g., Sun and

Moon) [24]. The SGP4 [25] analytical propagator is used

to generate ephemerides from a set of mean orbital ele-

ments given at a reference epoch in TLE files, which are

published and updated periodically by the NORAD [26].

However, analytical orbit determination methods are

based on limited dynamical models and mean elements,

resulting in ephemerides that may not meet PNT accuracy

requirements [27], [28]. Space agencies usually employ

high-precision orbit propagators (HPOP), which are

numerical propagators used in conjunction with precise

force models. However, numerical propagators require

large amounts of data and significant computation time,

rendering them undesirable for real-time PNT purposes;

in addition to requiring specific knowledge about the satel-

lites (e.g., area, mass, etc.) and space environment, which

may not be publicly available.

Machine learning (ML) has shown tremendous poten-

tial in radar and communications [29], and its powerful

modeling capabilities have been recently studied to provide

a less parameter-reliant orbit propagation solution [30],

[31]. In [32] and [33], distribution regression was used for

orbit determination of objects in LEO. Propagating LEO

satellite orbits was studied in [34] and [35] via neural net-

works (NNs), support vector machines (SVMs), and Gauss-

ian processes (GPs). A simulation study developed in [36]

showed that NNs possess high regression capabilities com-

pared with SVMs and GPs. Several NN architectures, such

as time-delay NN (TDNN) and long short-term memory

(LSTM) NNs, were studied in [37].

For orbit determination, an ML model would be given

the task of utilizing data relevant to a LEO satellite’s

ephemeris as inputs and using this information to predict

the satellite’s future ephemeris; hence, supervised learning.

Unlike deep learning models, where the feature extraction

step of the process is automated, enabling the use of large

datasets, classical ML requires researchers to determine the

set of features, which would allow a model to understand

the differences between structured data inputs. This article

focuses on a classical ML approach, since large amounts of

reliable and highly accurate LEO satellite ephemerides are

not available. Furthermore, a large and complex deep

learning model would take significantly increased time for

both training and inference, rendering it difficult to apply

in real-time applications. To achieve a computationally

feasible ML solution for orbit propagation, this article uti-

lizes the power of the widely used analytical propagator,

SGP4, and proceeds to correct its errors.

Applying NN for improving the LEO orbit prediction

with application to opportunistic navigation has been stud-

ied recently. In [38], a TDNN was trained on the LEO

satellite’s position, produced by a Global Navigation Sat-

ellite System (GNSS) receiver onboard the LEO satellite,

which is broadcast in the LEO satellite’s downlink signal.

Experimental results demonstrated the efficacy of the

TDNN by showing improved ground vehicle navigation

with two Orbcomm LEO satellites whose ephemerides are

predicted with the NN. In [39], TDNN and LSTM NN

architectures were compared, and it was concluded that

the TDNN’s accuracy was higher. The NN training uti-

lized HPOP [40], which was properly initialized using

Orbcomm LEO satellite’s position, produced by LEO’s

onboard GNSS receiver, and decoded from the first

received measurement epoch. It was demonstrated that the

NN was capable of estimating the position of the satellite

to meter-level accuracy over a short time period. In [41],
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two types of architectures were compared: (i) a TDNN

whose time delay aspect is the NN’s outputs being fed

back as delayed inputs, and (ii) a nonlinear autoregressive

with exogenous inputs (NARX), which takes SGP4-propa-

gated position states as exogenous inputs. It was con-

cluded that the NARX architecture offered the best

orbit propagation accuracy, which was demonstrated in

improved localization of a stationary receiver with signals

from a single LEO Orbcomm satellite with NN-predicted

ephemeris. It was also concluded that to obtain the

improved ephemeris, the NN would only need to output a

weighted version of a time-shifted SGP4-propagated

ephemeris. Therefore, one method for ephemeris propaga-

tion when given a sparse amount of data relating to a satel-

lite’s true position is to find a time shift that matches the

SGP4-propagated ephemeris with the satellite’s true

ephemeris and use that time-shifted ephemeris. This con-

clusion was corroborated analytically and numerically in a

“non-ML-based” fashion in [42].

This article builds on the promising results in [39] and

[41] by (i) alleviating the need to train the NN via HPOP,

initialized from the GNSS-produced LEO position

obtained from the first measurement epoch and (ii) demon-

strating the efficacy of a NARXNN in predicting LEO eph-

emerides by showing improved navigation accuracy of a

ground vehicle navigating for 4.05 km with two Orbcomm

LEO satellites to an unprecedented level of accuracy.

This article develops the following three-stage frame-

work, termed LEO-NNPON (LEO with NN prediction for

opportunistic navigation):

i) tracking during the LEO satellites’ first pass;

ii) NN-based prediction while the LEO satellites are

not in view;

iii) navigation during the LEO satellites’ second pass.

Experimental results of a ground vehicle equipped

with an industrial-grade inertial measurement unit (IMU)

navigating for 4.05 km with signals from two Orbcomm

satellites are presented. Three vehicle navigation frame-

works are compared, all initialized with a GNSS-inertial

navigation system (INS) position and velocity solution:

(i) unaided INS, (ii) LEO-aided INS, which uses SGP4-

propagated LEO ephemerides, and (iii) LEO-aided

INS, which uses the NN-predicted LEO ephemerides.

The three-dimensional (3D) position root-mean-squared

error (RMSE) of the unaided INS was 1,865 m, whereas

of the LEO-aided INS with SGP4 was 175.5 m. In con-

trast, the LEO-aided INS with NN was 18.3 m, which is

indicative of improved LEO ephemerides.

The rest of this article is organized as follows. The

“Problem Description” section overviews the considered

problem, outlining the three stages of the proposed frame-

work. The “Model Description” section describes the dif-

ferent models involved in the framework: LEO satellite

dynamics, clock error dynamics, navigator kinematics,

and LEO measurement model. The “ LEO-NNPON

Framework: Tracking, Prediction, and Navigation” sec-

tion details the proposed framework stages: tracking,

prediction, and navigation. The “Experimental Results”

section gives the experimental results. Finally, the

“Conclusion” section concludes this article.

PROBLEM DESCRIPTION

This article considers the problem of enhancing LEO sat-

ellite orbit prediction via a closed-loop trained NN. The

accuracy of the NN predicted ephemeris is demonstrated

in the application of ground-based opportunistic naviga-

tion with LEO signals, whereby the trajectory of a

ground-based vehicle is estimated to a higher degree of

accuracy when utilizing the NN predicted ephemeris, as

compared to when utilizing SGP4-predicted ephemeris.

The considered problem, depicted in Figure 1, is com-

posed of the following three stages:

Figure 1.
Proposed framework. (i) LEO satellite first pass: A terrestrial receiver with knowledge of its position tracks the LEO satellite. The LEO satel-
lite’s states are initialized with SGP4-propagated TLE data, and are subsequently estimated via an EKF during the period of satellite visibil-
ity, utilizing the carrier phase measurements. (ii) LEO satellite not in view: an NN is trained on the estimated ephemeris and is used to
propagate the LEO satellite orbit for the period where the satellite is not in view. (iii) LEO satellite second pass: a terrestrial receiver with no
knowledge of its position uses the ML-predicted LEO ephemeris along with its carrier phase measurements from received LEO signals to
estimate its own position via an EKF.
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1) First pass (tracking): A LEO satellite with poorly

known ephemeris (e.g., initialized from TLE files

and propagated via SGP4 until the time the satellite

is in view) flies overhead a ground-based tracker,

which has knowledge of its own position (e.g.,

from GNSS). While overhead, the tracker-mounted

receiver listens to the LEO satellite’s downlink sig-

nals, extracting measurements (pseudorange, carrier

phase, and/or Doppler). These measurements are

fused via a nonlinear filter [e.g., extended Kalman

filter (EKF)] to estimate the LEO satellite’s states

(position and velocity) along with the difference

between the LEO satellite’s and tracker’s clock

errors (bias and drift).

2) Satellite not in view (prediction): The estimated

ephemeris from the first pass is used to train an NN.

Once the satellite is no longer in view, the NN is

used to predict the satellite’s ephemeris.

3) Second pass (navigation): The satellite flies over

a ground-based navigator (e.g., vehicle), which

uses the LEO satellite’s downlink signals to nav-

igate as follows. The vehicle-mounted receiver

extracts navigation observables (pseudorange,

carrier phase, and/or Doppler) from the LEO sat-

ellite’s downlink signals. These observables are

used to aid the vehicle-mounted IMU in a tightly

coupled fashion (e.g., via an EKF). The LEO sat-

ellite states are obtained from the NN predicted

ephemeris.

MODEL DESCRIPTION

This section describes the models governing the proposed

LEO-NNPON framework: LEO satellite dynamics model,

clock error dynamics model, navigator kinematics model,

and LEO measurement model.

LEO SATELLITE DYNAMICS MODEL

The LEO satellite dynamics will be modeled in the

Earth-centered inertial (ECI) reference frame, accord-

ing to the two-body model, including the most signifi-

cant nonzero mean perturbing acceleration, which

corresponds to J2 effects [23], [43]. The two-body

model offers a tradeoff between accurate open-loop

prediction, while maintaining a simple analytical Jaco-

bian for estimation error covariance propagation [44],

and is given as

€rrrrrrrleo ¼ aaaaaaagrav;J2 þ ~wwwwwwwleo; aaaaaaagrav;J2 ¼
dUJ2

drrrrrrrleo
(1)

where rrrrrrrleo , ½xleo; yleo; zleo$T is the 3D position vector

of the LEO satellite in the ECI frame, aaaaaaagrav;J2 is the

acceleration due to Earth’s nonuniform gravity, includ-

ing J2 effects, UJ2 is the nonuniform gravity potential

of Earth, including J2 effects at the satellite, and ~wwwwwwwleo

is a process noise vector with power spectral density

(PSD) ~Qleo, which attempts to capture the overall

acceleration perturbations, including the unmodeled

nonuniformity of Earth’s gravitational field, atmo-

spheric drag, solar radiation pressure, third-body gravi-

tational forces (e.g., gravity of the Sun and the Moon),

and general relativity [24].

The components of aaaaaaagrav;J2 ¼ ½€xgrav; €ygrav; €zgrav$T are

€xgrav ¼ % mxleo

krrrrrrrleok3
1þ J2
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(2)

where m is Earth’s standard gravitational parameter and

RE is the mean radius of the Earth.

CLOCK ERROR DYNAMICS MODEL

The receiver’s and LEO satellites’ clock error state

dynamics are assumed to evolve according to the standard

two-state model (namely, a double integrator driven by

process noise) [45], whose discrete-time equivalent repre-

sentation is given by

xxxxxxxclk;i k þ 1ð Þ ¼ Fclk xxxxxxxclk;iðkÞ þ wwwwwwwclk;iðkÞ (3)

xxxxxxxclk;i , cdti; c_dti
# $T

; Fclk ¼
1 T
0 1

% &

where i ¼ fr; leog, dti is the clock bias, _dti is the clock

drift, c is the speed of light, T is the constant sampling

interval, and wwwwwwwclk;i is the process noise, which is modeled

as a discrete-time white noise sequence with covariance

Qclk;i ¼ c2 (
S~wdt;i T þ S~w_dt;i

T3

3 S~w_dt;i

T2

2

S~w_dt;i

T2

2 S~w_dt;i
T

" #

(4)

The terms S ~wdt;i and S~w_dt;i
are the clock bias and drift pro-

cess noise PSDs, respectively, of the continuous-time

counterpart model; which can be related to the power-law

coefficients fhaig
2
ai¼%2, which have been shown through

laboratory experiments to characterize the PSD of the

fractional frequency deviation of an oscillator from nomi-

nal frequency according to S~wdti
) h0;i

2 and S ~w_dti
) 2p2h%2;i

[45]. The receiver’s and LEO satellites’ process noise

covariances Qclkr and Qclkleo
are calculated from (4) using

the PSDs associated with the receiver’s and LEO satel-

lites’ oscillator quality, respectively.
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The dynamics of the difference between the receiver’s

and LEO satellites’ clock error states is given by

DxDxDxDxDxDxDxclkðk þ 1Þ ¼ FclkDxDxDxDxDxDxDxclkðkÞ þ DDDDDDDwwwwwwwclkðkÞ (5)

DxDxDxDxDxDxDxclk , cDdtr;leo; cD_dtr;leo
# $T

cDdtr;leo , c ( dtr % dtleo½ $; cD_dtr;leo , c ( _dtr % _dtleo
# $

where DDDDDDDwwwwwwwclk is the process noise vector, which has a

covariance QDDDDDDDclk given by QDDDDDDDclk ¼ Qclkr þQclkleo
.

NAVIGATOR KINEMATICS

The navigator’s orientation, position, and velocity are

modeled to evolve in time according to the standard strap-

down INS kinematic equations, driven by bvvvvvvvb, a 3D rota-

tion rate vector of the body frame fbg expressed in fbg,
and gaaaaaaab, a 3D acceleration vector of the body in the global

frame fgg [46]. The vehicle’s 3D orientation vector of

fbg with respect to fgg, denoted uuuuuuub, and 3D position rrrrrrrb
expressed in fgg are related to the true 3D rotation rate

vector bvvvvvvvb and 3D acceleration vector gaaaaaaab through the fol-

lowing kinematic differential equations:

_uuuuuuubðtÞ ¼ bvvvvvvvbðtÞ (6Þ
€rrrrrrrbðtÞ ¼ gaaaaaaabðtÞ: (7)

The navigator-mounted IMU contains a triad-gyro-

scope and triad-accelerometer and produces angular rate

vvvvvvvimu and specific force aaaaaaaimu measurements, which are

modeled as

vvvvvvvimuðkÞ ¼bvvvvvvvbðkÞ þ bbbbbbbgðkÞ þ nnnnnnngðkÞ (8Þ
aaaaaaaimuðkÞ ¼ Rb

gðkÞ
gaaaaaaabðkÞ % ggggggggðkÞ½ $

þ bbbbbbbaðkÞ þ nnnnnnnaðkÞ; k ¼ 1; 2; . . . (9)

where Rb
gðkÞ is the rotation matrix from fgg to fbg; gggggggg is

the acceleration due to gravity in fgg; bbbbbbbg and bbbbbbba are the

gyroscope and accelerometer biases, respectively; and nnnnnnng
and nnnnnnna are measurement noise vectors, which are modeled

as white noise sequences with covariances Qng and Qna,

respectively.

The gyroscope and accelerometer biases are assumed

to evolve according to velocity random walk dynamics,

namely

bbbbbbbgðk þ 1Þ ¼ bbbbbbbgðkÞ þ wwwwwwwbgðkÞ (10Þ
bbbbbbbaðk þ 1Þ ¼ bbbbbbbaðkÞ þ wwwwwwwbaðkÞ (11)

where wwwwwwwbg and wwwwwwwba are bias instability process noise vec-

tors, which are modeled as a discrete-time white noise

sequences with covariances Qbg and Qba, respectively.

MEASUREMENT MODEL

A LEO receiver extracts continuous-time carrier phase

measurements from LEO satellites’ downlink signals by

integrating the Doppler measurement over time [47]. The

carrier phase measurement (expressed in meters) made by

the receiver on the LEO satellite at time-step k, which rep-

resents discrete-time instant tk ¼ kT þ t0 for an initial

time t0, can be modeled in discrete-time as [10]

fðkÞ ¼ rrrrrrrrðkÞ % rrrrrrrleoðk0Þk k
2
þ c dtrðkÞ % dtleoðk0lÞ

# $
þ !N

þ cdtionoðkÞ þ cdttropoðkÞ þ vðkÞ; k ¼ 1; 2; . . .

(12)

where k0 represents discrete-time at tk0 ¼ kT þ t0 %
dtTOF, with dtTOF being the true time-of-flight (TOF) of

the signal from the LEO satellite to the receiver; c is

the speed-of-light; rrrrrrrr and rrrrrrrleo are the receiver’s and

LEO satellite’s 3D position vectors expressed in the

same reference frame; dtr and dtleo are the receiver’s

and LEO satellite’s clock biases, respectively; ! is the

wavelength of the carrier signal transmitted by the LEO

satellite; N is the initial carrier phase ambiguity associ-

ated with the LEO satellite carrier phase measurement;

dtiono and dttropo are the ionospheric and tropospheric

delays, respectively; and v is the measurement noise,

which is modeled as a zero-mean white Gaussian ran-

dom sequence with variance s2
f.

Assuming that no cycle slip occurs when the

receiver tracks the carrier phase (i.e., the carrier phase

ambiguity remains constant), the difference between the

receiver and LEO satellite clock biases and the carrier

phase ambiguity are lumped into a single term cDdtðkÞ,
simplifying (12) to

zðkÞ , rrrrrrrrðkÞ % rrrrrrrleoðk0Þk k
2
þcDdtðkÞ

þ cdttropoðkÞ þ cdtionoðkÞ þ vðkÞ
cDdtðkÞ , c dtrðkÞ % dtleoðk0Þ½ $ þ !N : (13)

In what follows, the effect of TOF on the LEO satellite’s

position will be considered negligible, i.e., rrrrrrrleoðk0Þ )
rrrrrrrleoðkÞ. In addition, the LEO satellite’s clock bias will

be assumed to be constant during the TOF duration, i.e.,

dtleoðk0Þ ) dtleoðkÞ. With the latter assumption, the

dynamics of cDdt can be readily deduced from (5).

LEO-NNPON FRAMEWORK: TRACKING, PREDICTION,

AND NAVIGATION

This section describes the three stages of the proposed

LEO-NNPON framework for the problem discussed in the

“Problem Description” section:

i) First pass: EKF-based LEO satellite closed-loop

ephemeris tracking;
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ii) Satellite not in view: NN-based LEO satellite

ephemeris prediction;

iii) Second pass: tightly coupled LEO-IMU-based

navigation.

EKF-BASED LEO SATELLITE TRACKING

During the LEO satellite’s first pass, an EKF is utilized to

estimate the LEO satellite’s ephemeris. The ground-based

tracker with knowledge of its own position rrrrrrrr extracts carrier

phase measurements, modeled in (12), from the LEO satel-

lite’s downlink signals. The EKF state vector is given by

xxxxxxxleo ¼ rrrrrrrTleo; _rrrrrrr
T
leo;DxDxDxDxDxDxDx

T
clk

h iT
:

The EKF is initialized with LEO ephemeris that got

propagated via SGP4 up until the instant the tracker starts

producing carrier phase measurements from the LEO

downlink signals. The SGP4 propagator can be readily ini-

tialized with TLE files. The EKF time update and mea-

surement update can be readily achieved from (1) and (5)

and from (12), respectively.

ML-BASED ORBIT PREDICTION

After the LEO’s first pass, a refined (tracked) ephemeris is

obtained from the EKF. This ephemeris is used to train an

NN, whose design is discussed next.

DATA PREPARATION

Since the target outputs (true satellite ephemeris) are not

available for training, the satellite’s tracked ephemeris

from the previous stage is used as the target output. To

this end, the tracked ephemeris is preprocessed for use in

training the ML model as follows. The final LEO satellite

position and velocity state estimate obtained from the

EKF is considered to be the best estimate. The short-term

accuracy of the two body with the J2 model is utilized for

smoothing the tracked ephemeris [cf., (1)] by backpropa-

gating the final state estimate over the tracking period,

which yields a smoother training dataset and more training

data points. The features selected as input candidates for

the NN are the satellite’s 3D position rrrrrrrleo and velocity

_rrrrrrrleo. The chosen coordinate reference frame is the ECI

frame since this eliminates the time-varying effect of

Earth’s rotation in the ECEF frame.

ARCHITECTURE

Predicting a satellite’s ephemeris can be seen as a time-

series prediction problem. The NARX architecture has

been shown to be highly capable of learning long-term

dependencies [48] and predicting time series [49], [50],

[51], even chaotic time series [52]. The NARX employs

a TDNN (depicted in Figure 2), which is based on a

multilayer perceptron feed-forward NN, which simply

propagates from input to output in one direction. The

time delay aspect is the NN’s outputs being fed back

as delayed inputs. The NARX takes TLE-initialized,

SGP4-propagated position states as inputs. It also has a

feedback loop where its output, the estimated ephemeris

state values, are fed back as an additional input, as

depicted in Figure 3.

OPTIMIZATION AND HYPERPARAMETER TUNING

Next, hyperparameters were chosen to best fit the learned

model. Choosing the dimensions of the NN, such as how

wide or how deep it is, will greatly affect its performance

and ability to generalize, not memorize. Furthermore,

since the dynamics of the error between SGP4-propagated

ephemeris (initialized from TLE) and true satellite ephem-

eris are unknown and appear to be nonlinear, multiple

activation functions must be investigated, including oscil-

latory functions (e.g., Snake function). To select the opti-

mal set of hyperparameters, tuners were employed to look

within a particular search space. Table 1 summarizes the

search space to which the NNs were tuned. These hyper-

parameters were tuned via Bayesian optimization and

Figure 2.
RNN with TDNN architecture.

Figure 3.
NARX architecture.
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compared with hyperparameters selected by a HyperBand

optimizer. In addition, the number of time-delayed inputs

was varied along with which states were fed into the NN.

Finally, optimization was performed to incrementally

decrease the learning rate as training loss decreases, and

early stopping was implemented to avoid overfitting.

RESULTS

The tuner’s conclusions were: two hidden recurrent

neural network (RNN) layers with two dense layers,

Yogi optimizer, and the number of nodes per layer was

10, with no noticeable improvement in performance

when using a higher number of nodes. The prediction

length was 400 time delays, where the time interval

between delays was 0.01 s. After tuning the NN and

comparing different possible combinations of hyper-

parameters, it was concluded that a wide NN is capable

of modeling TLE-SGP4 ephemeris error, and any added

layers in depth for introducing higher levels of abstrac-

tion are unnecessary. Moreover, increasing the number

of delayed inputs degrades the performance as the

dimensionality of the input increases without adding

much information to the model. An important observa-

tion to note is that increasing the number of estimated

states results in worse estimated ephemeris. This could

be attributed to the limited size of data trained and vali-

dated on as well as the incrementally increasing levels

of accuracy and abstraction required from the NN as

more states are added.

OPPORTUNISTIC NAVIGATION WITH CLOSED-LOOP

TRAINED NN LEO EPHEMERIS

During the LEO satellite’s second pass, a navigator uses

L 2 N LEO satellites to navigate. This is achieved by fus-

ing the navigation observables extracted from the LEO

downlink signals with IMU data in a tightly coupled

fashion via an EKF. The LEO ephemerides is obtained

from the NN. The EKF state vector is given by

xxxxxxx ¼ b
g"qqqqqqq

T; rrrrrrrTr ; _rrrrrrr
T
r ; bbbbbbb

T
g ; bbbbbbb

T
a ;DxDxDxDxDxDxDx

T
clk;1; . . . ;DxDxDxDxDxDxDx

T
clk;L

h iT

where b
g"qqqqqqq , ½bgqqqqqqqT; b

gq$
T is a 4D unit quaternion representing

the orientation of fbg fixed at the IMU with respect to

fgg, rrrrrrrr and _rrrrrrrr are the 3D position and velocity of the navi-

gator expressed in fgg, and bbbbbbbg and bbbbbbba are 3D biases of the

IMU’s gyroscopes and accelerometers, respectively,

expressed in fbg. Quaternions were chosen to represent

the orientation of the navigator with respect to fgg, since
they offer minimal attitude representation without suffer-

ing from the singularity of other mathematical attitude

representations (e.g., Euler angles). However, since the

4D quaternion is an overdetermined representation of atti-

tude, the estimation error covariance associated with

orientation is represented by a three-by-three matrix corre-

sponding to a three-axis error angle vector to prevent

degeneracy. The vector fDxDxDxDxDxDxDxclk;lgLl¼1 corresponds to clock

error state vector between the receiver and lth LEO satel-

lite [cf., (5)].

The EKF prediction step produces an estimate

x̂xxxxxxðkjjÞ , E½xxxxxxxðkÞjZZZZZZZj$ of xxxxxxxðkÞ, and an associated estimation

error covariance PxxxxxxxðkjjÞ, where E½(j($ denotes the condi-

tional expectation, ZZZZZZZj , fzzzzzzzðiÞgji¼1 is the set of measure-

ments available up to and including time index j, and

k > j. The IMU measurements (8) and (9) are processed

through a vector-valued function of strapdown INS equa-

tions in fgg that discretize (6) and (7) to obtain [57], [58]

x̂xxxxxxrðk þ 1jjÞ ¼ fffffff fggins x̂xxxxxxrðkjjÞ;vvvvvvvimuðkÞ; aaaaaaaimuðkÞ½ $;

where the gyroscope and accelerometer bias predictions

b̂bbbbbbgðkþ1jjÞ and b̂bbbbbbaðkþ1jjÞ follow from (10) and (11),

respectively. The INS mechanization equations are per-

formed with the ECI frame as fgg since the LEO satel-

lites’ position and velocity states are also expressed in

ECI. This facilitates the EKF update step as the receiver’s

and LEO satellites’ position and velocity states, and

the corresponding estimation error covariances are all

expressed in the same reference frame in this case. The

ECI strapdown mechanization equations and their lineari-

zation to propagate the estimation error covariance. The

prediction of the differenced clock states between the

receiver and the LEO satellite transmitter follow from (5).

The prediction of the LEO satellites’ position and velocity

is obtained from the NN.

The measurement vector zzzzzzz processed by the EKF

update step is defined by stacking all the extracted

LEO carrier phase measurements discussed in the

“Measurement Model” section. The EKF update step pro-

duces an estimate x̂xxxxxxðkjkÞ and an associated posterior esti-

mation error covariance PxxxxxxxðkjkÞ.

Table 1.

Hyperparameter Search Space

Parameter Value

Activation function Linear, ReLU, Tanh,
Sigmoid, Snake [53]

Number of layers [1, 10]

Nodes per layer [4,512]

Prediction length [0.1, 240] s

Optimizer Adam [54], Adagrad [55],
SGD, Yogi [56]
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Figure 4 summarizes the tightly coupled LEO-aided

INS with LEO-NNPON framework with NN-predicted

LEO ephemerides. It is worth noting the analogy of this

framework to the well-known tightly coupled GNSS-aided

INS framework, except for the following: (i) the state is

initialized from via the GNSS receiver and IMU, and (ii)

the filter prediction stage uses the clock model (5) and the

NN-propagated LEO orbit (which was calculated offline

after the satellites’ first pass). The calculations in (ii) are

not deemed to be computationally intensive and can be

performed in real time.

EXPERIMENTAL RESULTS

This section presents experimental results validating the

efficacy of the LEO-NNPON framework developed in

the “LEO-NNPON Framework: Tracking, Prediction,

and Navigation” section. The experiments utilized two

Orbcomm LEO satellites, namely, Orbcomm FM114

and FM113, whose skyplot of the first and second

passes are shown in Figure 5(a). Figure 5(b) shows the

elevation history of the LEO satellites relative to the

ground-based receiver.

EXPERIMENTAL SETUP

During the first pass, the ground-based stationary tracker

utilized a very-high frequency (VHF) antenna, which was

connected to an Ettus E312 Universal Software Radio

Peripheral (USRP) to receive Orbcomm downlink signals

at 137–138 MHz and sample them at 2.4 MSps. The

USRP’s oscillator was driven by an external, freely run-

ning CD-2290 OctoClock. The Multichannel Adaptive

TRansceiver Information eXtractor (MATRIX) software-

defined receiver (SDR) [16] extracted carrier phase meas-

urements, which were used to track the Orbcomm LEO

satellites, as discussed in the “EKF-Based LEO Satellite

Tracking” section.

During the second pass, a ground vehicle was

equipped with the following:

i) a VectorNav VN-100 microelectro-mechanical sys-

tems (MEMS) industrial-grade IMU;

ii) a VHF antenna, connected to the Ettus E312 USRP,

which was driven by the freely running CDA-2990

OctoClock;

iii) a Septentrio AsteRx-i V integrated GNSS-INS sys-

tem and an altimeter, from which the vehicle’s

ground truth position and velocity were derived.

The collected data during the vehicle’s trajectory were

stored for offline processing via the MATRIX SDR, which

extracted carrier phase measurements from the Obrcomm

LEO satellites. These measurements were fused in the

tightly coupled LEO-aided INS EKF to estimate the

Figure 4.
Tightly coupled LEO-aided INS framework with NN-predicted
LEO ephemerides.

Figure 5.
(a) Skyplot and (b) elevation history of the two Orbcomm LEO satellites’ trajectories during their first (solid) and second (dashed) passes.
The thick lines indicate the tracking and navigation windows.
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vehicle’s trajectory, as discussed in the “Opportunistic

Navigation with Closed-Loop Trained NN LEO Ephemer-

is” section.

The hardware and software setup used in the experi-

ment are illustrated in Figure 6.

LEO TRACKING RESULTS

The ground-based stationary tracker’s position was

obtained from a GNSS receiver. The LEO satellites’ posi-

tion and velocity estimates were initialized from the

SGP4-propagated ephemerides of the most recent TLE

files available for Orbcomm FM114 and FM113. The

associated initial position and velocity estimation error

covariances were set to be consistent with the SGP4-prop-

agated TLE ephemerides errors as

Pirleo _rrleo _rrleo _rrleo _rrleo _rrleo _rrleo _rleo
ð0j0Þ ¼ diag½Pirrrrrrrleo

ð0j0Þ;Pi _r_r_r_r_r_r_rleo
ð0j0Þ$

Pirrrrrrrleo
ð0j0Þ ¼ Ri

bð0ÞPbrrrrrrrleo
ð0j0Þ½Ri

bð0Þ$
T

Pi _r_r_r_r_r_r_rleo
ð0j0Þ ¼ Ri

bð0ÞPb _r_r_r_r_r_r_rleo
ð0j0Þ½Ri

bð0Þ$
T

where Ri
bð0Þ is the initial rotation matrix from the LEO

satellite’s body frame {b} to the ECI frame {i}, and

Pbrrrrrrrleo
ð0j0Þ ¼ diag½107; 104; 104$ m2 and Pb _rrrrrrrleo

ð0j0Þ ¼
diag½10%2; 10%1; 10$ ðm/sÞ2 are the initial LEO satellite’s

position and velocity estimation error covariances in the

satellite’s body frame, respectively. The process noise

covariance of the satellite’s position and velocity states

was determined empirically by evaluating the propagation

errors of the adopted two body with J2 dynamics model

with respect to an HPOP [40] in the satellite’s body frame,

and was rotated to the ECI frame at each time-step of the

EKF to propagate the estimation error covariance of the

satellite’s position and velocity state. The process noise

covariance of the clock states was set to be equivalent to a

combination of a typical-quality temperature-compensated

crystal oscillator (TCXO) and high-quality oven-con-

trolled crystal oscillators (OCXO) pair, whose power-law

coefficients are given in Table 2. To find the carrier phase

measurement noise variances, the values were manually

tuned within a search space in accordance with the innova-

tions calculated for both LEO satellites. The variances

were found to be 4 and 10 m2 for Orbcomm FM114 and

FM113, respectively.

Figure 7 shows the position and velocity EKF error

plots and associated *3s bounds as well as the open-

loop SGP4-propagated ephemeris errors in the satel-

lite’s body frame for Orbcomm FM114, respectively.

Here, the satellite’s downlink signals, which include the

satellite’s true ephemeris generated by on-board GPS

receivers, were decoded for use as ground truth, from

which the errors were corrected. The ionospheric and

tropospheric delays were corrected in the carrier phase

measurements using standard models [47], [59]. Note

that closed-loop tracking mainly reduced the position

error in the along-track direction, which is typically

where most of the open-loop SGP4 propagated error is

concentrated [9], [60].

Figure 8 shows the position and velocity EKF error

plots and associated *3s bounds as well as the open-loop

SGP4-propagated ephemeris errors in the satellite’s body

frame for Orbcomm FM113, respectively. Similar to

Figure 6.
Experimental hardware and software setup.

Table 2.

Experimental Oscillator Parameters

Quality Coefficients {h0; h%2}

Typical-quality TCXO {9:4+ 10%20; 3:8+ 10%21}

High-quality OCXO {2:6+ 10%22; 4:0+ 10%26}
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Figure 7, note that closed-loop tracking mainly reduced

the position error in the along-track direction.

Figure 9 shows the 3D position error magnitude for the

EKF-tracked and open-loop SGP4-propagated ephemeris

for the two LEO satellites. The position errors resulting

from SGP4 propagation of the most recently available

TLE files were over 1.8 and 5.9 km for FM114 and

FM113, respectively, which were reduced by closed-loop

EKF tracking to 199 and 279 m in 200 and 150 s, respec-

tively. The satellite tracking results are summarized in

Table 3.

The tracked ephemerides from this first pass is now

ready to be used to train the NN, as described in the “Data

Preparation” section. Next, the NN is used to predict the

satellites’ ephemerides. Note that this prediction is imple-

mented while the satellite is not in view, i.e., during the

LEO satellite’s orbital period in between the first and

second passes. As such, there is no additional processing

time required by the LEO-NNPON framework during the

vehicle navigation stage compared with the open-loop

SGP4 framework. Upon the LEO satellites’ return to view

in the second pass, the satellites’ signals are used to navi-

gate the ground vehicle, while using the NN-predicted eph-

emerides in the LEO-aided INS framework, as described in

the “Opportunistic Navigation with Closed-Loop Trained

NN LEO Ephemeris” section. The next section shows the

ground vehicle navigation results while using the NN-pre-

dicted ephemerides versus the SGP-predicted ephemerides.

GROUND VEHICLE NAVIGATION RESULTS

This section presents ground vehicle navigation results

during the second passing of the same two Orbcomm LEO

Figure 7.
EKF-tracked position and velocity errors with associated *3s bounds versus open-loop SGP4 errors for Orbcomm FM114 satellite.

Figure 8.
EKF-tracked position and velocity errors with associated *3s bounds versus open-loop SGP4 errors for Orbcomm FM113 satellite.
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satellites. The vehicle was driven on the CA-22 freeway

next to Irvine, California, USA, for 4.05 km in a duration

of 140 s, during which the following was collected:

i) GNSS-INS position and velocity navigation solu-

tion, produced by Septentrio AsteRx-i V, which is

used as the ground truth to compare against;

ii) data from the VectorNav VN-100 MEMS IMU;

iii) downlink signal samples from Orbcomm FM114

and FM113, which were processed offline via

the MATRIX SDR to produce carrier phase

measurements.

The carrier phase measurements were fused with the

IMU measurements in a tightly coupled fashion via the

EKF-based LEO-aided INS, which was initialized with

the GNSS-INS position and velocity solution.

Three vehicle navigation frameworks, all initialized

with the GNSS-INS position and velocity solution, are

compared: (i) unaided INS, (ii) LEO-aided INS, which

uses SGP4-propagated LEO ephemerides, and (iii) LEO-

aided INS with LEO-NNPON. Figures 10 and 11 show

the position and velocity EKF error plots and associated

*3s bounds for each framework.

The clock error state estimates were initialized as fol-

lows. The clock bias term was initialized by subtracting

the initial estimated range from the initial carrier phase

measurement. The clock drift term was initialized by sub-

tracting the initial time rate of change of the estimated

range from the initial time rate of change of the carrier

phase measurement, such that

Dd̂tr;leo;lð0j0Þ ¼ flð0Þ % d̂lð0Þ

D _̂dtr;leo;lð0j0Þ ¼
1

T
flð1Þ % flð0Þ½ $ % 1

T
d̂lð1Þ % d̂lð0Þ
h i

where flð0Þ and flð1Þ are the first two carrier phase meas-

urements from the lth LEO satellite, T is the sampling

period, and d̂lðjÞ ¼ kr̂rrrrrrrðjÞ % rrrrrrrleo,lðjÞk for j ¼ 0; 1. Note

that in the above clock state initialization equations, the

satellite’s position vector is taken from the SGP4 and the

NN ephemeris sets, respectively, for each LEO-aided INS

navigation solution [i.e., frameworks (ii) and (iii)].

The process noise covariance of the clock error

states was set to be equivalent to a combination of a

typical-quality TCXO and high-quality OCXO pair,

whose power-law coefficients are given in Table 2. The

ground vehicle’s state estimation error covariance was

initialized as

Pxxxxxxxð0j0Þ ¼ diag½Pqqqqqqqrrrrrrrr _r_r_r_r_r_r_rrð0j0Þ;Pbbbbbbbimu
ð0j0Þ;Pclk;1ð0j0Þ;

Pclk;2ð0j0Þ$
Pqqqqqqqrrrrrrrr _r_r_r_r_r_r_rr ð0j0Þ ¼ ½10%2 + I3+3; 10+ I3+3; I3+3$
Pbbbbbbbimu

ð0j0Þ ¼ ½10%4 + I3+3; 10
%4 + I3+3$

Pclk;ið0j0Þ ¼ ½10; 10%2$; i ¼ 1; 2

Table 3.

Experimental Results: EKF-Tracked Position Error

Magnitude versus Open-Loop SGP4 Errors for the

Orbcomm LEO Satellites

FM114 FM113

SGP4 Tracked SGP4 Tracked

Position
RMSE (m)

1,869 278 5,984 637

Final Error
(m)

1,837 199 5,982 279

Figure 9.
EKF-tracked position error magnitude versus open-loop SGP4 errors for Orbcomm FM114 and FM113.
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Figure 10.
EKF ground vehicle position errors and associated *3s bounds in the ENU frame for (i) unaided INS, (ii) LEO-aided INS with
SGP4-propagated ephemerides, and (iii) LEO-aided INS with NN-predicted ephemerides.

Figure 11.
EKF ground vehicle velocity errors and associated *3s bounds in the ENU frame for (i) unaided INS, (ii) LEO-aided INS with
SGP4-propagated ephemerides, and (iii) LEO-aided INS with NN-predicted ephemerides.
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where Pqqqqqqqrrrrrrrr _r_r_r_r_r_r_rrð0j0Þ is the initial ground vehicle orientation,

position, and velocity covariance with units of ½rad2;
m2; ðm/sÞ2$ and Pbbbbbbbimu

ð0j0Þ is the initial IMU gyroscope

and accelerometer biases covariance with units of

½ðrad/sÞ2; ðm/s2Þ2$. To find the carrier phase measurement

noise variances, the values were manually tuned in a

search space in accordance with the innovations calculated

for both LEO satellites. The variances were found to be 1

and 2 m2 for Orbcomm FM114 and FM113, respectively.

The following can be concluded from Figures 10

and 11. First, as expected, the EKF position and veloc-

ity error of the unaided INS immediately diverge (due

to the absence of GNSS aiding) in the East and North

direction, while the error and uncertainty remains

bounded in the up direction due to altimeter measure-

ments. Second, the *3s bounds of the vehicle’s posi-

tion and velocity states are equal whether SGP4 or the

NN ephemerides are used; however, the error diver-

gence with the NN is much lower than that with SGP4.

Hence, the NN predicted ephemerides is closer to the

LEO satellite’s true ephemerides than that of SGP4.

The vehicle’s navigation solution from each framework

are shown in Figure 12 and summarized in Table 4.

CONCLUSION

This article developed the LEO-NNPON framework. The

framework is composed of the following three stages:

i) tracking the LEO satellites during the first pass;

ii) predicting the LEO satellites’ ephemerides when the

satellite is not in view, by utilizing the NN, which

was trained on the tracked ephemerides;

iii) navigating with LEO satellites by aiding the naviga-

tor-mounted IMU with navigation observables

extracted from downlink LEO satellites, while uti-

lizing the NN-predicted LEO ephemerides.

The efficacy of the improved LEO predicted ephemer-

ides was demonstrated experimentally by showing

improved ground vehicle navigation with signals from

two Orbcomm LEO satellites, while using the NN-pre-

dicted compared to the SGP4 propagator. It was shown

that over a 4.05 km, the LEO-aided INS with SGP4

achieved a 3D position RMSE of 175.5 m, whereas the

LEO-aided INS with NN achieved a position RMSE of

18.3 m. It is worth highlighting that while this article dem-

onstrated the application of the LEO-NNPON framework

on Orbcomm satellites, LEO-NNPON can be applied to

other LEO constellations (e.g., Starlink and OneWeb).

Future research could analyze the performance as a func-

tion of the tracking duration, leading to the minimum

duration required of the tracked pass.

Figure 12.
Experimental results showing the ground vehicle’s ground truth trajectory (traveling right to left) and estimated trajectory with:
(i) unaided INS, (ii) LEO-aided INS with SGP4-propagated ephemerides, and (iii) LEO-aided INS with NN-predicted ephemerides.

Table 4

Experimental Results: Comparison of Different Naviga-

tion Frameworks

Unaided
INS

LEO-INS
[SGP4]

LEO-INS
[NN]

Position
RMSE (m)

1,865 175.5 18.3

Final error
(m)

2,841 273.4 43.0
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