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Abstract—Sea ice type classification is essential for climate
change research and maritime safety. Traditionally, this process
relies on manual ice charting, which is time-consuming, expen-
sive, and requires expert knowledge, making it difficult to scale
up for current demands. Automating sea ice type classification is
essential to keep pace with rapidly changing sea ice conditions.
However, two main challenges limit the development of effective
automated classifiers. First, while ice charts provide valuable
labeled data, they only offer large-area (polygon) annotations
rather than pixel-level labels, leading to a lack of precise
training data. Second, although there are additional datasets with
useful sea ice information, effectively combining these different
data sources remains difficult. To tackle the first challenge, we
employed co-training and label propagation, two semi-supervised
learning methods, to learn from a small amount of labeled
data and a large pool of unlabeled data, thereby improving
the accuracy of sea ice classifiers despite limited labeled data.
To address the second challenge, we leveraged co-training’s
built-in ability to integrate multiple data sources during the
training process for the small labeled data. Additionally, we
further enhanced data integration by using an ensemble of these
co-trained models after training. Our approach demonstrates
significant improvements over traditional supervised methods,
showcasing the potential of semi-supervised learning methods in
addressing two major challenges in developing automated sea
ice classification solutions. Our study shows that semi-supervised
learning improved F1 scores by 17% for SAR data and 33% for
AMSR2 with limited labels, compared to supervised methods,
while ensembling further boosted accuracy by 33%.

Index Terms—Sea Ice Classification, Semi-Supervised Learn-
ing, Co-training, Label Propagation, Data Integration

I. INTRODUCTION

Classification of sea ice types critical in understanding the

climate change and ensuring safe maritime navigation. Sea ice

serves as a indicator of environmental shifts, reflecting changes

in temperature, ocean currents, and atmospheric conditions [1].

In this context, ice charts play a crucial role. These charts are

comprehensive maps that display the distribution, concentra-

tion, and types of sea ice in a given area. Traditionally, ice

charts are created by interpreting satellite imagery, particularly

synthetic aperture radar (SAR) imagery, and manually labeling

areas, typically in the form of polygons [2], [3]. However,

manual creation of ice charts presents several challenges. It

is a time-consuming process that requires extensive expert

knowledge, limiting the frequency and coverage of updates.

Furthermore, the manually created ice charts provide labels

at the polygon level rather than at the pixel level. While

polygon labels offer valuable information about different ice

conditions over larger areas, they lack the fine-grained detail

that pixel-level labels provide. Pixel-level labels enable more

precise ice type classification, capturing variations within each

polygon. However, acquiring pixel-level labels is significantly

more challenging than creating polygon-level ice charts. It

demands not only expert knowledge but also considerable

time and resources, making it impractical to obtain pixel-

level labels for large areas or frequent updates. The limited

availability of pixel-level labeled data presents a significant

challenge for developing and training accurate automated sea

ice classification, particularly those based on machine learning

approaches that typically require large amounts of labeled data.

This limited pixel-level labeled data motivates the need for

methods that can effectively utilize the limited available pixel-

level labels while leveraging the more abundant unlabeled data

to improve the accuracy. Due to the difficulty in acquiring

pixel-level labels, many researchers attempting to automate

sea ice classification have resorted to using the polygon-level

labels from ice charts to create pseudo-labels for pixels. This

approach involves assigning the dominant ice type within each

polygon to all pixels within that polygon, effectively creating

pseudo pixel-level labels from the coarser polygon-level in-

formation. Supervised machine learning algorithms trained on

pseudo labeled sea ice imagery have shown promising results

in identifying ice types [4], [5]; however, naturally they fall

short of their potential highest accuracy due to in accuracy of

the pseudo-labeled data.

In addition to addressing the challenge of limited true pixel-
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level labeled data, sea ice classification can benefit signifi-

cantly from the integration of complementary data sources.

Synthetic Aperture Radar (SAR) data, primarily from Sentinel-

1 instrument, plays a vital role in sea ice monitoring due to

its all-weather, day-and-night capabilities and high resolution

[6], [7]. Complementing SAR, passive microwave sensors like

the Advanced Microwave Scanning Radiometer-2 (AMSR-2)

provide valuable information on ice concentration and extent.

While previous studies have achieved notable accuracy using

these sources individually, they fall short by not integrating

these complementary data sources [8], [9]. This paper ad-

dresses these gaps by integrating data during training and post-

training, especially with limited labeled data. Combining SAR

and AMSR2 data can significantly enhance classification ac-

curacy, especially in distinguishing visually similar ice types.

SAR offers high-resolution surface patterns, while AMSR2

provides data on ice thickness and concentration. Integrating

these complementary sources is a promising approach for

improving automated sea ice classification, particularly with

limited labeled data.

This paper makes two main contributions to sea ice clas-

sification. First, we address limited labeled data using semi-

supervised methods: label propagation, which spreads labels

across similar data points using graph-based techniques, and

co-training, where two models trained on different data views

iteratively improve by leveraging each other’s confident pre-

diction [10], [11]. Our co-training approach trains separate

models on different data views, allowing them to reinforce

each other’s learning. Label propagation further spreads the

sparse labeled data influence across the dataset.Notably, our

semi-supervised strategies boost F1 scores by 17% for SAR

and 33% for AMSR2 with 48 or fewer labeled samples. We

evaluated our approach across different geographical locations

to assess its spatial generalizability in various limited-data

scenarios. Additionally, we conducted a parameter sensitivity

analysis to fine-tune our models for optimal performance

under varying conditions of limited pixel-level labeled data

availability.

Second, we enable data integration by introducing a two

stage process. We propose a two-stage data integration process

specifically designed to maximize the utility of limited pixel-

level labeled data with the two stages of during training (DT

stage) and after training (AT stage). In the DT stage, we use

co-training to develop models on different data views, such

as SAR and AMSR2, enabling them to learn complementary

features. With AT stage, we enhance classification accuracy

by ensembling the co-trained models, which result in a 33%

improvement in the F1 score. This approach allows us to

exploit the underlying structure and relationships within the

data to iteratively improve model performance.

By combining semi-supervised learning techniques with

data integration strategies for limited labeled data, our ap-

proach significantly improves sea ice classification perfor-

mance while minimizing the need for extensive manual pixel-

level labels.

The remainder of this paper is organized as follows. Section

II reviews the related work. In Section III, we detail the

methodologies employed in our study. Section IV presents

our experimental evaluation, including a thorough parame-

ter sensitivity analysis and model performance assessment,

highlighting key factors that influence the results. Finally,

Section V concludes the paper with a summary of our findings

and discusses potential directions for future research in this

domain.

II. RELATED WORK

This section reviews three relevant areas for sea ice classi-

fication: deep learning methods, which enhance sea ice clas-

sification accuracy but require extensive labeled data; semi-

supervised methods, which leverage both labeled and unla-

beled data; and data integration techniques, which combine

sources to enhance classification accuracy and robustness.

A. Deep learning Methods for Sea Ice Classification

Advancements in machine learning, particularly deep learn-

ing, have significantly improved sea ice classification. Con-

volutional neural networks (CNNs) have become a powerful

tool, capturing spatial and textural information from SAR and

passive microwave imagery, leading to highly accurate sea ice

type classification.

A sea ice classification method using Sentinel-1 SAR data

was proposed, employing a CNN trained on expert-labeled

ice charts to achieve computational efficiency and noise ro-

bustness [12]. The Sea Ice Residual Convolutional Network

(SI-ResNet) with ensemble learning was developed to classify

ice types from SAR imagery, surpassing traditional methods

[13]. A hierarchical CNN pipeline was introduced for SAR-

based sea ice mapping, improving boundary delineation and

classification accuracy with limited training data [5]. CNN

performance on Gaofen-3 images was enhanced by training

with larger patch assemblies [14]. While these methods show

impressive results, they rely on polygon-level labels from ice

charts, using them as pseudo-labels for pixel-level classifica-

tion, which introduces uncertainty due to labeling inaccuracies.

Our approach uses a semi-supervised framework to reduce

dependence on limited pixel-level labels, better leveraging

both labeled and unlabeled data, and improving generalization.

While many sea ice classification approaches exist, our focus is

on addressing the challenge of limited labeled data. To evaluate

our method, we compare it with a representative CNN-based

classifier [12].

B. Semi-Supervised Learning Methods for Sea Ice Classifica-

tion

Semi-supervised learning (SSL) has proven effective for

sea ice classification, where pixel-level labeling is costly and

scarce. SSL leverages limited labeled data with abundant

unlabeled data, bridging supervised and unsupervised methods

[15]. Though SSL is popular in various fields, its use in sea ice

classification is limited. The Teacher-Student Label Propaga-

tion (TSLP) method was proposed for binary sea ice classifica-

tion, combining teacher-student models with label propagation
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to enhance accuracy [16]. The CFATSVM framework was

introduced, integrating active learning and semi-supervised

learning (SSL) for hyperspectral sea ice classification [17].

Semi-supervised GANs were also utilized to classify icebergs,

ocean waves, and sea ice [18]. In [19], self-training IRGS (ST-

IRGS) is introduced, a method that merges iterative region

growing using semantics (IRGS) algorithm [20] with SSL for

SAR-based ice-water classification, improving accuracy with

minimal labeled data.

However, the existing approaches in semi-supervised work

often focus on specific limitations: some use only SAR data,

others tackle binary classification such as ice-water classifica-

tion, or involve human experts in the labeling process. Our

approach targets multi-class sea ice classification involving

various ice types. We integrate multiple semi-supervised learn-

ing techniques, including co-training and label propagation,

specifically designed for multi-class sea ice classification uti-

lizing both SAR and AMSR2 data.

C. Data Integration for Sea Ice Classification

Data integration is frequently used in remote sensing to

combine complementary information from multiple sensors

in order to improve data quality and interpretation. This can

occur at pixel-level (combining data per pixel), feature-level

(merging extracted features), or decision-level (integrating sep-

arate analyses) [21]. For example, [22] used early (pixel-level),

deep (feature-level), and late (decision-level) integration of

Sentinel-1 SAR and AMSR-2 data for sea ice classification. In

[23], SAR and optical data were fused using multi-scale SAR

features and optical features via Improved Spatial Pyramid

Pooling (ISPP) and Path Aggregation Network (PANet). In

[24], feature-level integration was applied by first processing

SAR data with a CNN and then incorporating AMSR2 data

at a deeper layer to enhance accuracy. Previous work on

data integration has focused mainly on raw data integration

during training, often struggling with limited labeled data. We

enhance the robustness and accuracy of classification by inte-

grating data both during and after training, while addressing

the lack of labeled data.

III. METHODS

This section addresses challenges in sea ice classification,

focusing on multi-class classification of open water and five ice

types. We use semi-supervised methods, like co-training and

label propagation, to leverage both labeled and unlabeled data,

and integrate data during and after training to boost model

accuracy and robustness.

A. Addressing Lack of Pixel-Level Labeled Data

One of the primary challenges in sea ice classification

is the shortage of pixel-level labeled data, which is essen-

tial for training robust machine learning models. To address

this, we utilized two semi-supervised learning techniques: co-

training and label propagation. Co-training exploits multiple

data views, while label propagation utilizes data point similar-

ities, making them complementary techniques for enhancing

classification performance in this domain.

Fig. 1. CNN Architecture Layers and Filters

1) Co-training: Co-training initially proposed by Blum

and Mitchell, has been widely studied and applied in vari-

ous domains, including and image recognition [10]. Our co-

training method involves training two separate CNN models on

different views of the data: one model on dual-polarized SAR

images and the other on AMSR2 data. We adopted a CNN

architecture inspired by [12], consisting of Conv2D layers with

Batch Normalization, followed by MaxPooling2D operations.

The extracted features are processed through fully connected

layers with Dropout regularization, as shown in Fig. 1. The co-

training process is as follows: a) Initialization: Two classifiers

are trained on separate views, SAR and AMSR2, using a

small labeled set. b) Self-Labeling: Each classifier generates

pseudo-labels for unlabeled data. c) Confidence-based Selec-

tion: Samples with high prediction confidence are added to the

other classifier’s labeled set. d) Peer Learning: The classifiers

are re-trained with the expanded sets, boosting accuracy. e)

Iteration: Steps (a) to (d) repeat until a stopping criterion,

like a set iteration count or performance convergence, is met.

As an extension of co-training, we set a high confidence

threshold to select unlabeled samples for incorporation into

the training dataset. If no samples meet this threshold in an

iteration, it is gradually lowered to include more samples

in subsequent cycles. This approach allows each model to

iteratively incorporate highly confident unlabeled samples,

enhancing the training process over multiple iterations. This

co-training approach enables the CNN models to benefit from

each other’s predictions, effectively utilizing and integrating

the diverse information from SAR and AMSR2 data during

model training to enhance classification accuracy.

2) Label Propagation: Label propagation, originally in-

troduced in [11], is a powerful yet straightforward iterative

algorithm designed for semi-supervised learning, aiming to

propagate labels through datasets along high-density areas

defined by unlabeled data. The methodology assumes similar

data points have similar labels. he algorithm constructs a

graph G with nodes as data points and edges weighted by

W , a similarity metric (e.g., Euclidean distance) [15]. Label

propagation infers labels for unlabeled samples by leveraging

data structure, using a K-nearest neighbor (KNN) kernel to

find the closest neighbors and propagate their labels. This

approach uses a sparse matrix to efficiently capture key

relationships, minimizing memory and computation. We fine-

tuned the neighborhood size parameter K for label propaga-
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tion, optimizing it separately for SAR and AMSR2 datasets

to account for their distinct characteristics. Data were also

flattened to ensure compatibility with the label propagation

algorithm.

B. Data Integration

The second challenge is effective data integration. Sea ice

classification benefits from combining diverse sources, like

SAR and AMSR2, which capture different ice characteristics.

We integrated data in two stages: during training (DT) and

after training (AT).

1) Data Integration During Training (DT Stage): The data

integration process during the co-training phase involves train-

ing separate models on SAR and AMSR2 datasets simultane-

ously within a shared learning framework. Each model pro-

cesses its respective dataset, learning distinct features specific

to SAR and AMSR2. Through the co-training mechanism,

these models exchange valuable insights and update their

learning strategies based on the feedback from each other.

This method allows each model to benefit from the unique

strengths of the other dataset, leading to a more comprehensive

and robust learning outcome as they integrate the diverse

characteristics of both SAR and AMSR2 data throughout the

training process.

2) Data Integration After Training (AT Stage): For after

training integration, we utilize a stacking ensemble technique

[25], which also functions as a method of data integration.

When a single CNN is trained on concatenated SAR and

AMSR2 data, it often struggles to effectively learn and in-

tegrate the distinct features from both data types. The in-

creased complexity of the task can prevent the model from

fully exploiting the unique characteristics of each dataset.

Conversely, by training separate CNNs on SAR and AMSR2

data, each model can specialize in learning features specific

to its respective dataset. The SAR-specific CNN focuses on

high-resolution spatial features, while the AMSR2-specific

CNN interprets the physical properties captured by microwave

radiation. After the co-training phase (i.e., DT stage), we inte-

grate the predictions from these models through ensembling.

Specifically, we take the predicted probabilities from both the

SAR-trained and AMSR2-trained models and combine them as

input features for a logistic regression model, which is trained

on a validation set. This stacking approach allows the logistic

regression model to learn how best to combine the information

from the two co-trained models, effectively integrating the

diverse insights captured by each data source. The trained

logistic regression model is then used to generate ensemble

predictions on the test set by combining the predicted proba-

bilities from the SAR and AMSR2 models. This final ensemble

prediction reflects a more comprehensive understanding of the

data, as it integrates the strengths of both SAR and AMSR2

models.

IV. EXPERIMENTAL EVALUATION

This section evaluates our sea ice classification methods,

emphasizing semi-supervised approaches and data integration.

Fig. 2. Comparison of AMSR2 and SAR Data Representations of File
20180122T205424

We compare our method with supervised models through

extensive experiments, detailing our methodology and results.

A. Experimental Methodology

1) Dataset: In our study, we utilize the AI4Arctic Sea Ice

Challenge dataset, the largest and most comprehensive dataset

available for this sea ice classification, which covers a wide

geographical area and includes diverse data sources [26]. Each

file in the dataset comprises two key modalities: Sentinel-1

SAR data and corresponding AMSR2 passive microwave data,

supplemented by detailed ice charts based on that Sentinel-1

image, which provide polygon-level labels for sea ice types.

SAR and AMSR-2 are both microwave-based remote sensing

technologies, but they differ in function. SAR, an active

sensor, emits its own signals and measures the reflections,

enabling high-resolution imaging of surface features regardless

of weather or light conditions. The dataset includes dual-

polarized (HH and HV) Sentinel-1 Extra Wide Swath (EW)

images, which cover areas of 400 × 400 square kilometers

with a pixel spacing of 40 × 40 meters. These images have

been noise-corrected using the NERSC algorithm [27], capture

essential details about sea ice surface features. Complementing

the SAR data, AMSR2 is a passive microwave radiometer

aboard the JAXA GCOM-W satellite that detects naturally

emitted microwave radiation. This sensor provides broad, low-

resolution data, useful for monitoring environmental parame-

ters such as sea ice concentration and soil moisture. AMSR2

records brightness temperatures at various frequencies in both

horizontal and vertical polarizations, enriching the dataset.

Fig. 2 shows SAR and AMSR2 data features side by side.

The ready-to-train (RTT) version of the AI4Arctic dataset

preprocessed for deep learning. Compared to the raw data,

this RTT dataset includes downsampling of SAR and ice

chart data from 40-meter ( 10, 000 × 10, 000 pixels) to 80-

meter resolution (5, 000 × 5, 000 pixels). Downsampling was

achieved with a 2×2 averaging kernel for SAR and a 2×2 max

kernel for ice charts, aligning masks (nan-values) accordingly.

Data was then standardized using the mean and standard

deviation from the training set. The AI4Arctic dataset spans

diverse locations and periods. For our study, we used an RTT
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subset of 11 files from winter seasons between 2018 and 2021,

with dual-polarized SAR (HH, HV) and AMSR2 data at 18.7

GHz, incorporating both horizontal and vertical polarizations.

SAR and AMSR2 swaths were matched within a seven-hour

window, and AMSR2 data was resampled to SAR coordinates

using Gaussian weighted interpolation [26].

For label preparation, the ice chart data was used to prepare

labels for the curated 2-modal SAR-AMSR2 dataset described

above. The dataset comprises six ice type classes/labels used

in ice charts: open water (0), new ice (1), young ice (2), thin

first-year ice (3), thick first-year ice (4), and old ice which is

more than 1 year old (5). These types derive from ice chart

data where each polygon on the chart denotes a specific sea

ice type along with its partial ice concentration. Partial ice

concentration within a polygon refers to the proportion of the

polygon’s area that is covered by a specific type of ice. This

is crucial as it impacts the dominant ice type designation for

the polygon. For instance, if a specific ice type’s concentration

exceeds 65% of the polygon’s area, it becomes the dominant

type and assigns the polygon-level label.

Finally, based on curated and labeled polygon-level data

described above, we generate 2-modal pixel-level labeled data

to be used for our experimentation. During the rasterization

of these polygon-level labels to a pixel-based label, each pixel

within the bounds of a polygon adopts the polygon’s dominant

label as an approximation. It is important to note that while

we have access to abundant polygon-level labels, true pixel-

level labels are absent. As an alternative, instead we use

pseudo labeled pixels that are labeled based on the dominant

ice type within the polygon that contains them. To reduce

approximation errors, we use polygons where the dominant

ice type covers over 65% of the area and limit our experiments

to a subset of these pseudo-labeled pixels, simulating limited

true pixel labeled data. Despite these limitations, our approach

shows promising results for sea ice classification

For each file in the dataset containing SAR and AMSR2

data, we generated 32 × 32 patches with a stride of 32,

focusing on patches within polygons representing a single ice

type or open water, yielding approximately 98,605 patches.

These were split into training (80%), validation (10%), and

test (10%) sets, resulting in around 79,869, 8,874, and 9,860

samples, respectively. The training set was further divided

into labeled and unlabeled subsets, with a minimal number

of labeled samples per class selected randomly to ensure

representation, while the remainder was used as unlabeled data

to simulate limited labeling

Additionally, for cross-location co-training experiment, We

focus on two regions, SouthEast and Qaanaaq, selected for

their comprehensive coverage of all six sea ice classes. The

dataset is location-tagged within each filename. For data

preparation, we utilized only the HH channel of the SAR

imagery to generate data patches, following the procedure

previously described. Data patches are generated at a size of

32 × 32 pixels to maintain uniformity across analyses. The

data include 60,665 samples from SouthEast and 106,885 from

Qaanaaq. The combined test set from both locations includes

about 15,080 samples.

2) Evaluation Metric: The F1 score, a commonly used

metric, was employed to assess models performance. F1

score considers both precision, which measures the ratio of

correctly predicted positive observations to the total predicted

positives, and recall, which calculates the ratio of correctly

predicted positive observations to all actual positives. F1 score

is computed using the formula:

F1 = 2×
precision× recall

precision+ recall
(1)

3) Configuration of the Models: To evaluate our co-training

approach, two CNN models were trained separately on SAR

and AMSR2 datasets. Fig. 1 shows the architecture and layer

specifications. Key parameters included a batch size of 16,

30 epochs, the Adam optimizer (learning rate 0.001), and

categorical cross-entropy loss, ensuring effective training and

validation.

Additionally, A 95% confidence threshold was initially set

to select pseudo-labeled samples for training, decreasing by

0.05 if no samples met it in an iteration. Up to 100 highly

confident pseudo-labeled samples per model were added each

cycle, repeating for up to 30 cycles. Training stopped if

accuracy did not improve over three iterations. Performance

was assessed using the F1 score, comparing co-trained models

with a supervised CNN.

In experiments on co-training across various locations, we

used uniform CNN model parameters (Fig. 1) consistent

with the co-training framework. Each location’s CNN model

was trained using this co-training setup. For comparison,

we trained identical CNN models in a supervised manner,

enabling us to assess whether co-training across locations im-

proves performance over location-specific supervised models.

The label propagation approach used a k-nearest neighbor

kernel with K=6, optimized for both datasets after testing

values from 1 to 10. The model ran for a maximum of 100

iterations, refining label assignments to improve classification.

Results, evaluated with the F1 score, were compared to a

supervised CNN.

In the after-training (AT) stage, we used the same pa-

rameters as in co-training, employing a stacking ensemble

with logistic regression to combine predictions from both

models. The logistic regression model used L2 regularization

(C =1.0) and the ’lbfgs’ solver, with up to 100 iterations for

convergence. This stacked model’s performance was compared

on test data with a supervised CNN using early integration,

where SAR and AMSR2 data were concatenated.

Each model was run five times, and the F1 score values rep-

resent the average of these runs. The models were developed

using TensorFlow and Keras, with computations performed on

a single NVIDIA RTX A6000 GPU.

B. Experimental Results

Our experiments evaluated our proposed SSL methods and

data integration techniques for sea ice classification outper-

formed traditional supervised methods, effectively addressing
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Fig. 3. Comparison of Average F1-Score (%) on Test Set Between Semi-
Supervised and Supervised Models

the lack of pixel-level labels. Co-training, label propagation,

and data integration significantly improved classification ac-

curacy and robustness, proving effective even with limited

labeled data.

For comparison, we used supervised CNN models on SAR

and AMSR2 data as baselines, trained for 30 epochs with

a batch size of 16, Adam optimizer, and categorical cross-

entropy loss. We compared these baselines to individual co-

trained and label propagation models, each trained on SAR or

AMSR2 data. To assess data integration, we also compared

two-stage integration methods against a CNN trained with

concatenated SAR and AMSR2 data, allowing a thorough

evaluation of SSL approaches and data integration against

supervised models.

a) Comparative Analysis of Semi-Supervised vs. Super-

vised Approaches: Fig. 3 shows the performance of various

approaches across different quantities of pixel-level labeled

data. Under conditions of limited labeled data, the SSL

approach proves particularly advantageous, transforming the

challenge of sparse supervision into a strength by adeptly

leveraging unlabeled data to substantially enhance classifica-

tion performance. Particularly, the individual co-trained model

trained on AMSR2 data exhibits significant improvement when

incorporating information from the SAR model, surpassing the

performance of its corresponding supervised counterpart by

approximately 30% with fewer than 16 labeled data instances.

Similarly, for experiments where the individual co-trained

model focuses on SAR data, with labeled data fewer than

16 instances, the mean improvement over the corresponding

supervised model is approximately 13%. This improvement

underscores the efficacy of leveraging complementary infor-

mation from the AMSR2 data under small data regime.

b) Comparative Analysis of AT Integration vs. Data

Concatenation: Fig. 4 compares the results of a supervised

CNN trained on the concatenation of SAR and AMSR2 data

with after training integration (AT stage) of co-trained models.

The results demonstrate significant improvements in accuracy

for the AT stage integration of co-trained CNNs compared to

the single CNN trained on concatenated data, across various

numbers of pixel-level labeled data points. For instance, with

Fig. 4. Average F1-Score (%) on Test Set: CNN with SAR+AMSR2
Concatenation vs. Data Integration at AT Stage

Fig. 5. Average F1-score (%) on Test Set for Cross-Location Co-training and
Supervised Models

six pixel-level labeled data points, the supervised CNN on

concatenation of SAR and AMSR2 achieved an accuracy of

25.56%, while the AT stage of co-trained models reached

70.88%. This trend of superior performance for the AT stage

method continues as the number of labeled data points in-

creases.

c) Comparative Analysis of Cross-Location Co-Training

vs. Supervised Learning: Fig. 5, which includes curves that are

titled Co-trained on SouthEast, Co-trained on Qaanaaq, Super-

vised CNN on SouthEast, and Supervised CNN on Qaanaaq.

These titles correspond to the respective models and locations

where their data are used to train the models. Note that in this

experiment, when the x-axis shows 6 labeled data points, it

means that each co-trained model is trained with 6 pixel-level

labeled samples. In contrast, the supervised models specific to

each location are trained with 12 labeled samples from that

location. This ensures fairness of the comparison while the co-

trained models benefit from the diverse information provided

by both locations. We tested with labeled sample sizes of 6,

9, 12, and 24 for each co-trained model. The results show

that in the Southeast location, the co-trained models perform

as well as or better than the supervised models, especially

with 24 labeled samples. In Qaanaaq, the co-trained models

outperform the supervised models at 6 and 9 labeled samples,
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Fig. 6. Average F1-score (%) on test set: Comparison of different approaches
for different number of labeled data.

but as the number of labeled samples increases, the supervised

models begin to perform better as expected.

1) Parameter Sensitivity Analysis: Next, We conducted

a sensitivity analysis to examine how varying the number

of pixel-level labels (from 6 to full dataset) and amounts

of unlabeled data (from 1 to nearly 6000) impact model

performance. This analysis helps optimize the balance between

labeled and unlabeled data, fine-tuning the SSL process for

best performance under different data conditions.

a) Influence of Labeled Data Ratio on Supervised and

Semi-Supervised Learning Performance: Fig. 6 shows the

average F1 score on test set for each of the SSL and full super-

vised models across different numbers of pixel-level labeled

data points. The plot shows that as the number of labeled data

points increases, the performance of the supervised approach

becomes more competitive. Specifically, for SAR data, the

co-trained models maintain superior performance until the

number of labeled data points reaches 160, with co-training

improving performance by an average of 17%. Also, for

AMSR2 data, the co-trained model outperforms the supervised

CNN until the number of labeled samples exceeds 640, with

co-training showing on average 31% improvement. Label

propagation approach consistently demonstrates competitive

performance, even with limited labeled data, highlighting its

efficacy in leveraging unlabeled data. For SAR data, the label

propagation approach outperforms the supervised CNN until

the number of labeled instances reaches 48, improving per-

formance by an average of 15%. Similarly, for AMSR2 data,

label propagation maintains its advantage until there are 640

labeled instances, showing on average 27% improvement. As

a result of these findings, it becomes evident how labeled data

size differ between label propagation approach and supervised

CNN. Despite this, label propagation remains a strong option,

especially in small data scenarios, effectively leveraging both

labeled and unlabeled data.

b) Influence of Labeled Data Ratios on Data Integration:

Fig. 7 illustrates the impact of varying the number of labeled

data samples on performance of both CNN models with data

concatenation and model with after-training data integration.

The figure demonstrates the consistent performance gains

Fig. 7. Average F1-Score (%) on Test Set: CNN with SAR+AMSR2
Concatenation vs. Data Integration at AT Stage Across Different Numbers
of Labeled Data

achieved by the after-training (AT) data integration approach.

The model traning by AT stage integration consistently out-

performs the CNN model trained on concatenated SAR and

AMSR2 data, particularly excelling with fewer labeled sam-

ples. Notably, until the number of labeled data points reaches

160, the AT integration shows an average improvement of 29%

over the supervised model. This approach effectively combines

the strengths of co-trained SAR and AMSR2 models, yielding

more accurate and robust classifications. Even with more

labeled samples, the AT integration maintains its advantage,

underscoring the importance of data integration during and

after training. In conclusion, integrating co-trained CNNs

on SAR and AMSR2 data outperforms a single CNN on

concatenated data, achieving higher accuracy and robustness

by leveraging each dataset’s unique characteristics.

c) Evaluating SSL Performance with Varying Unlabeled

Data Ratios: Fig. 8 illustrates how the amount of unlabeled

data, with a fixed count of 16 pixel-level labeled data points,

influences the average F1 score for both label propagation

models and co-trained CNNs using SAR and AMSR2 data.

The data show a clear trend: as the volume of unlabeled

data increases, there is a corresponding improvement in the

F1 score. This pattern highlights the value of incorporating

unlabeled data to capitalize on the inherent data distribution,

which in turn boosts model performance through iterative

refinements. The results for the co-training approach reveal

significant performance enhancements across individual co-

trained models trained on SAR and AMSR2 data with varying

quantities of unlabeled data. As the number of unlabeled data

points increases, F1 scores consistently improve, highlighting

the value of unlabeled data in enhancing model accuracy

within an SSL framework, especially when labeled data is

limited.

V. CONCLUSION

In conclusion, this study addresses the challenges of sea ice

classification with limited pixel-labeled data by investigating

SSL techniques, including co-training, label propagation, and

data integration through two starge of during and after training.
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Fig. 8. Average F1-score (%) on test set for label propagation and co-trained
CNNs: varying unlabeled data with fixed labeled data (16)

By leveraging SAR and AMSR2 data, we demonstrated that

these approaches significantly enhance classification accuracy,

particularly in scenarios with limited pixel-level labeled data.

The integration of data through ensemble methods further im-

proves model performance, effectively combining the strengths

of different data sources both during and after training. Our

findings establish the superiority of SSL methods over super-

vised CNN models, especially when labeled data is scarce,

while also highlighting the continued relevance of supervised

models as labeled data increases.

For future work, several promising directions emerge.

Firstly, exploring advanced co-training strategies, such as

incorporating additional modalities, holds potential for further

improving classification accuracy. Additionally, extending our

study to incorporate temporal and spatial information could

enhance the robustness of the classification system, especially

in dynamic sea ice environments.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of the

U.S. National Science Foundation under Grants No. 2026962

and 2026865, and the Center for Computational Mathematics

at the University of Colorado Denver, including access to the

Alderaan cluster, funded by NSF award OAC-2019089, for

providing computational resources.

REFERENCES

[1] L. P. Bobylev and M. W. Miles, “Sea ice in the arctic paleoenviron-
ments,” in Sea Ice in the Arctic: Past, Present and Future, 1st ed.
London, U.K.: Springer, 2020, vol. 1, pp. 9–56.

[2] U.S. National Ice Center, “Arctic Sea Ice Charts and Climatologies in
Gridded Format, 1972–2007, Version 1,” Data set, Boulder, Colorado,
USA, 2006, compiled by F. Fetterer and C. Fowler. [Online]. Available:
https://doi.org/10.7265/N5X34VDB.

[3] N. Zakhvatkina, V. Smirnov, and I. Bychkova, “Satellite sar data-based
sea ice classification: An overview,” Geosciences, vol. 9, no. 4, p. 152,
2019.

[4] S. Khaleghian, H. Ullah, T. Kræmer, N. Hughes, T. Eltoft, and A. Mari-
noni, “Sea ice classification of sar imagery based on convolution neural
networks,” Remote Sensing, vol. 13, no. 9, p. 1734, 2021.

[5] X. Chen, K. A. Scott, M. Jiang, Y. Fang, L. Xu, and D. A. Clausi,
“Sea ice classification with dual-polarized sar imagery: A hierarchical
pipeline,” in Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, 2023, pp. 224–232.

[6] C. R. Jackson and J. R. Apel, Synthetic Aperture Radar: Marine User’s

Manual. Washington, DC, USA: NOAA, 2004.
[7] J. W. Park, A. A. Korosov, M. Babiker, J. S. Won, M. W. Hansen,

and H. C. Kim, “Classification of sea ice types in sentinel-1 synthetic
aperture radar images,” The Cryosphere, vol. 14, no. 8, pp. 2629–2645,
2020.

[8] H. Lyu, W. Huang, and M. Mahdianpari, “Eastern arctic sea ice sensing:
First results from the radarsat constellation mission data,” Remote

Sensing, vol. 14, no. 5, p. 1165, 2022.
[9] Y. R. Wang and X. M. Li, “Arctic sea ice cover data from spaceborne

synthetic aperture radar by deep learning,” Earth System Science Data,
vol. 13, no. 6, pp. 2723–2742, 2021.

[10] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the 11th Annual Conference on

Computational Learning Theory, 1998, pp. 92–100.
[11] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data

with label propagation,” Carnegie Mellon University, Tech. Rep., 2002.
[12] H. Boulze, A. Korosov, and J. Brajard, “Classification of sea ice types

in sentinel-1 sar data using convolutional neural networks,” Remote

Sensing, vol. 12, no. 13, p. 2165, 2020.
[13] W. Song, M. Li, Q. He, D. Huang, C. Perra, and A. Liotta, “A residual

convolution neural network for sea ice classification with sentinel-1
sar imagery,” in 2018 IEEE International Conference on Data Mining

Workshops (ICDMW), 2018, pp. 795–802.
[14] J. Li, C. Wang, S. Wang, H. Zhang, Q. Fu, and Y. Wang, “Gaofen-

3 sea ice detection based on deep learning,” in 2017 Progress in

Electromagnetics Research Symposium - Fall (PIERS - FALL), 2017,
pp. 933–939.

[15] X. J. Zhu, “Semi-supervised learning literature survey,” University of
Wisconsin-Madison, Tech. Rep., 2005.

[16] S. Khaleghian, H. Ullah, T. Kræmer, T. Eltoft, and A. Marinoni, “Deep
semisupervised teacher–student model based on label propagation for
sea ice classification,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 14, pp. 10 761–10 772, 2021.
[17] Y. Han, Y. Zhao, Y. Zhang, J. Wang, S. Yang, Z. Hong, and S. Cao,

“A cooperative framework based on active and semi-supervised learning
for sea ice classification using eo-1 hyperion data,” Transactions of the

Japan Society for Aeronautical and Space Sciences, vol. 62, no. 6, pp.
318–330, 2019.

[18] F. Staccone, “Deep learning for sea-ice classification on synthetic
aperture radar (sar) images in earth observation: Classification using
semi-supervised generative adversarial networks on partially labeled
data,” Master’s thesis, M.S. thesis, 2019.

[19] F. Li, D. A. Clausi, L. Wang, and L. Xu, “A semi-supervised approach
for ice-water classification using dual-polarization sar satellite imagery,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), 2015, pp. 28–35.
[20] Q. Yu and D. A. Clausi, “Sar sea-ice image analysis based on iterative

region growing using semantics,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 45, no. 12, pp. 3919–3931, 2007.
[21] C. Pohl and J. L. V. Genderen, “Review article: Multisensor image fusion

in remote sensing: Concepts, methods and applications,” International

Journal of Remote Sensing, vol. 19, no. 5, pp. 823–854, 1998.
[22] L. Zhao, T. Xie, W. Perrie, and J. Yang, “Deep-learning-based sea ice

classification with sentinel-1 and amsr-2 data,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp.
5514–5525, 2023.

[23] Y. Han, Y. Liu, Z. Hong, Y. Zhang, S. Yang, and J. Wang, “Sea ice image
classification based on heterogeneous data fusion and deep learning,”
Remote Sensing, vol. 13, no. 4, p. 592, 2021.

[24] D. Malmgren-Hansen, L. T. Pedersen, A. A. Nielsen, M. B. Kreiner,
R. Saldo, H. Skriver, and K. H. Krane, “A convolutional neural network
architecture for sentinel-1 and amsr2 data fusion,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 59, no. 3, pp. 1890–1902, 2020.
[25] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2,

pp. 241–259, 1992.
[26] J. Buus-Hinkler, T. Wulf, A. R. Stokholm, A. Korosov, R. Saldo, L. T.

Pedersen, and et al., “Ai4arctic sea ice challenge dataset,” Technical
University of Denmark, 2022, [Online]. Available: https://doi.org/10.
11583/DTU.c.6244065.v2.

[27] A. Korosov, D. Demchev, N. Miranda, N. Franceschi, and J.-W. Park,
“Thermal denoising of cross-polarized sentinel-1 data in interferometric
and extra wide swath modes,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 60, pp. 1–11, 2021.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on December 11,2025 at 05:24:18 UTC from IEEE Xplore.  Restrictions apply. 


