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Abstract—Sea ice type classification is essential for climate
change research and maritime safety. Traditionally, this process
relies on manual ice charting, which is time-consuming, expen-
sive, and requires expert knowledge, making it difficult to scale
up for current demands. Automating sea ice type classification is
essential to keep pace with rapidly changing sea ice conditions.
However, two main challenges limit the development of effective
automated classifiers. First, while ice charts provide valuable
labeled data, they only offer large-area (polygon) annotations
rather than pixel-level labels, leading to a lack of precise
training data. Second, although there are additional datasets with
useful sea ice information, effectively combining these different
data sources remains difficult. To tackle the first challenge, we
employed co-training and label propagation, two semi-supervised
learning methods, to learn from a small amount of labeled
data and a large pool of unlabeled data, thereby improving
the accuracy of sea ice classifiers despite limited labeled data.
To address the second challenge, we leveraged co-training’s
built-in ability to integrate multiple data sources during the
training process for the small labeled data. Additionally, we
further enhanced data integration by using an ensemble of these
co-trained models after training. Our approach demonstrates
significant improvements over traditional supervised methods,
showcasing the potential of semi-supervised learning methods in
addressing two major challenges in developing automated sea
ice classification solutions. Our study shows that semi-supervised
learning improved F1 scores by 17% for SAR data and 33% for
AMSR2 with limited labels, compared to supervised methods,
while ensembling further boosted accuracy by 33%.

Index Terms—Sea Ice Classification, Semi-Supervised Learn-
ing, Co-training, Label Propagation, Data Integration

I. INTRODUCTION

Classification of sea ice types critical in understanding the
climate change and ensuring safe maritime navigation. Sea ice
serves as a indicator of environmental shifts, reflecting changes
in temperature, ocean currents, and atmospheric conditions [1].
In this context, ice charts play a crucial role. These charts are
comprehensive maps that display the distribution, concentra-
tion, and types of sea ice in a given area. Traditionally, ice
charts are created by interpreting satellite imagery, particularly
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synthetic aperture radar (SAR) imagery, and manually labeling
areas, typically in the form of polygons [2], [3]. However,
manual creation of ice charts presents several challenges. It
is a time-consuming process that requires extensive expert
knowledge, limiting the frequency and coverage of updates.

Furthermore, the manually created ice charts provide labels
at the polygon level rather than at the pixel level. While
polygon labels offer valuable information about different ice
conditions over larger areas, they lack the fine-grained detail
that pixel-level labels provide. Pixel-level labels enable more
precise ice type classification, capturing variations within each
polygon. However, acquiring pixel-level labels is significantly
more challenging than creating polygon-level ice charts. It
demands not only expert knowledge but also considerable
time and resources, making it impractical to obtain pixel-
level labels for large areas or frequent updates. The limited
availability of pixel-level labeled data presents a significant
challenge for developing and training accurate automated sea
ice classification, particularly those based on machine learning
approaches that typically require large amounts of labeled data.
This limited pixel-level labeled data motivates the need for
methods that can effectively utilize the limited available pixel-
level labels while leveraging the more abundant unlabeled data
to improve the accuracy. Due to the difficulty in acquiring
pixel-level labels, many researchers attempting to automate
sea ice classification have resorted to using the polygon-level
labels from ice charts to create pseudo-labels for pixels. This
approach involves assigning the dominant ice type within each
polygon to all pixels within that polygon, effectively creating
pseudo pixel-level labels from the coarser polygon-level in-
formation. Supervised machine learning algorithms trained on
pseudo labeled sea ice imagery have shown promising results
in identifying ice types [4], [5]; however, naturally they fall
short of their potential highest accuracy due to in accuracy of
the pseudo-labeled data.

In addition to addressing the challenge of limited true pixel-
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level labeled data, sea ice classification can benefit signifi-
cantly from the integration of complementary data sources.
Synthetic Aperture Radar (SAR) data, primarily from Sentinel-
1 instrument, plays a vital role in sea ice monitoring due to
its all-weather, day-and-night capabilities and high resolution
[6], [7]. Complementing SAR, passive microwave sensors like
the Advanced Microwave Scanning Radiometer-2 (AMSR-2)
provide valuable information on ice concentration and extent.
While previous studies have achieved notable accuracy using
these sources individually, they fall short by not integrating
these complementary data sources [8], [9]. This paper ad-
dresses these gaps by integrating data during training and post-
training, especially with limited labeled data. Combining SAR
and AMSR?2 data can significantly enhance classification ac-
curacy, especially in distinguishing visually similar ice types.
SAR offers high-resolution surface patterns, while AMSR2
provides data on ice thickness and concentration. Integrating
these complementary sources is a promising approach for
improving automated sea ice classification, particularly with
limited labeled data.

This paper makes two main contributions to sea ice clas-
sification. First, we address limited labeled data using semi-
supervised methods: label propagation, which spreads labels
across similar data points using graph-based techniques, and
co-training, where two models trained on different data views
iteratively improve by leveraging each other’s confident pre-
diction [10], [11]. Our co-training approach trains separate
models on different data views, allowing them to reinforce
each other’s learning. Label propagation further spreads the
sparse labeled data influence across the dataset.Notably, our
semi-supervised strategies boost F1 scores by 17% for SAR
and 33% for AMSR2 with 48 or fewer labeled samples. We
evaluated our approach across different geographical locations
to assess its spatial generalizability in various limited-data
scenarios. Additionally, we conducted a parameter sensitivity
analysis to fine-tune our models for optimal performance
under varying conditions of limited pixel-level labeled data
availability.

Second, we enable data integration by introducing a two
stage process. We propose a two-stage data integration process
specifically designed to maximize the utility of limited pixel-
level labeled data with the two stages of during training (DT
stage) and after training (AT stage). In the DT stage, we use
co-training to develop models on different data views, such
as SAR and AMSR?2, enabling them to learn complementary
features. With AT stage, we enhance classification accuracy
by ensembling the co-trained models, which result in a 33%
improvement in the F1 score. This approach allows us to
exploit the underlying structure and relationships within the
data to iteratively improve model performance.

By combining semi-supervised learning techniques with
data integration strategies for limited labeled data, our ap-
proach significantly improves sea ice classification perfor-
mance while minimizing the need for extensive manual pixel-
level labels.

The remainder of this paper is organized as follows. Section
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II reviews the related work. In Section III, we detail the
methodologies employed in our study. Section IV presents
our experimental evaluation, including a thorough parame-
ter sensitivity analysis and model performance assessment,
highlighting key factors that influence the results. Finally,
Section V concludes the paper with a summary of our findings
and discusses potential directions for future research in this
domain.

II. RELATED WORK

This section reviews three relevant areas for sea ice classi-
fication: deep learning methods, which enhance sea ice clas-
sification accuracy but require extensive labeled data; semi-
supervised methods, which leverage both labeled and unla-
beled data; and data integration techniques, which combine
sources to enhance classification accuracy and robustness.

A. Deep learning Methods for Sea Ice Classification

Advancements in machine learning, particularly deep learn-
ing, have significantly improved sea ice classification. Con-
volutional neural networks (CNNs) have become a powerful
tool, capturing spatial and textural information from SAR and
passive microwave imagery, leading to highly accurate sea ice
type classification.

A sea ice classification method using Sentinel-1 SAR data
was proposed, employing a CNN trained on expert-labeled
ice charts to achieve computational efficiency and noise ro-
bustness [12]. The Sea Ice Residual Convolutional Network
(SI-ResNet) with ensemble learning was developed to classify
ice types from SAR imagery, surpassing traditional methods
[13]. A hierarchical CNN pipeline was introduced for SAR-
based sea ice mapping, improving boundary delineation and
classification accuracy with limited training data [5]. CNN
performance on Gaofen-3 images was enhanced by training
with larger patch assemblies [14]. While these methods show
impressive results, they rely on polygon-level labels from ice
charts, using them as pseudo-labels for pixel-level classifica-
tion, which introduces uncertainty due to labeling inaccuracies.
Our approach uses a semi-supervised framework to reduce
dependence on limited pixel-level labels, better leveraging
both labeled and unlabeled data, and improving generalization.
While many sea ice classification approaches exist, our focus is
on addressing the challenge of limited labeled data. To evaluate
our method, we compare it with a representative CNN-based
classifier [12].

B. Semi-Supervised Learning Methods for Sea Ice Classifica-
tion

Semi-supervised learning (SSL) has proven effective for
sea ice classification, where pixel-level labeling is costly and
scarce. SSL leverages limited labeled data with abundant
unlabeled data, bridging supervised and unsupervised methods
[15]. Though SSL is popular in various fields, its use in sea ice
classification is limited. The Teacher-Student Label Propaga-
tion (TSLP) method was proposed for binary sea ice classifica-
tion, combining teacher-student models with label propagation
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to enhance accuracy [16]. The CFATSVM framework was
introduced, integrating active learning and semi-supervised
learning (SSL) for hyperspectral sea ice classification [17].
Semi-supervised GANs were also utilized to classify icebergs,
ocean waves, and sea ice [18]. In [19], self-training IRGS (ST-
IRGS) is introduced, a method that merges iterative region
growing using semantics (IRGS) algorithm [20] with SSL for
SAR-based ice-water classification, improving accuracy with
minimal labeled data.

However, the existing approaches in semi-supervised work
often focus on specific limitations: some use only SAR data,
others tackle binary classification such as ice-water classifica-
tion, or involve human experts in the labeling process. Our
approach targets multi-class sea ice classification involving
various ice types. We integrate multiple semi-supervised learn-
ing techniques, including co-training and label propagation,
specifically designed for multi-class sea ice classification uti-
lizing both SAR and AMSR?2 data.

C. Data Integration for Sea Ice Classification

Data integration is frequently used in remote sensing to
combine complementary information from multiple sensors
in order to improve data quality and interpretation. This can
occur at pixel-level (combining data per pixel), feature-level
(merging extracted features), or decision-level (integrating sep-
arate analyses) [21]. For example, [22] used early (pixel-level),
deep (feature-level), and late (decision-level) integration of
Sentinel-1 SAR and AMSR-2 data for sea ice classification. In
[23], SAR and optical data were fused using multi-scale SAR
features and optical features via Improved Spatial Pyramid
Pooling (ISPP) and Path Aggregation Network (PANet). In
[24], feature-level integration was applied by first processing
SAR data with a CNN and then incorporating AMSR?2 data
at a deeper layer to enhance accuracy. Previous work on
data integration has focused mainly on raw data integration
during training, often struggling with limited labeled data. We
enhance the robustness and accuracy of classification by inte-
grating data both during and after training, while addressing
the lack of labeled data.

III. METHODS

This section addresses challenges in sea ice classification,
focusing on multi-class classification of open water and five ice
types. We use semi-supervised methods, like co-training and
label propagation, to leverage both labeled and unlabeled data,
and integrate data during and after training to boost model
accuracy and robustness.

A. Addressing Lack of Pixel-Level Labeled Data

One of the primary challenges in sea ice classification
is the shortage of pixel-level labeled data, which is essen-
tial for training robust machine learning models. To address
this, we utilized two semi-supervised learning techniques: co-
training and label propagation. Co-training exploits multiple
data views, while label propagation utilizes data point similar-
ities, making them complementary techniques for enhancing
classification performance in this domain.
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1) Co-training: Co-training initially proposed by Blum
and Mitchell, has been widely studied and applied in vari-
ous domains, including and image recognition [10]. Our co-
training method involves training two separate CNN models on
different views of the data: one model on dual-polarized SAR
images and the other on AMSR2 data. We adopted a CNN
architecture inspired by [12], consisting of Conv2D layers with
Batch Normalization, followed by MaxPooling2D operations.
The extracted features are processed through fully connected
layers with Dropout regularization, as shown in Fig. 1. The co-
training process is as follows: a) Initialization: Two classifiers
are trained on separate views, SAR and AMSR2, using a
small labeled set. b) Self-Labeling: Each classifier generates
pseudo-labels for unlabeled data. ¢) Confidence-based Selec-
tion: Samples with high prediction confidence are added to the
other classifier’s labeled set. d) Peer Learning: The classifiers
are re-trained with the expanded sets, boosting accuracy. e)
Iteration: Steps (a) to (d) repeat until a stopping criterion,
like a set iteration count or performance convergence, is met.
As an extension of co-training, we set a high confidence
threshold to select unlabeled samples for incorporation into
the training dataset. If no samples meet this threshold in an
iteration, it is gradually lowered to include more samples
in subsequent cycles. This approach allows each model to
iteratively incorporate highly confident unlabeled samples,
enhancing the training process over multiple iterations. This
co-training approach enables the CNN models to benefit from
each other’s predictions, effectively utilizing and integrating
the diverse information from SAR and AMSR2 data during
model training to enhance classification accuracy.

2) Label Propagation: Label propagation, originally in-
troduced in [11], is a powerful yet straightforward iterative
algorithm designed for semi-supervised learning, aiming to
propagate labels through datasets along high-density areas
defined by unlabeled data. The methodology assumes similar
data points have similar labels. he algorithm constructs a
graph G with nodes as data points and edges weighted by
W, a similarity metric (e.g., Euclidean distance) [15]. Label
propagation infers labels for unlabeled samples by leveraging
data structure, using a K-nearest neighbor (KNN) kernel to
find the closest neighbors and propagate their labels. This
approach uses a sparse matrix to efficiently capture key
relationships, minimizing memory and computation. We fine-
tuned the neighborhood size parameter K for label propaga-
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tion, optimizing it separately for SAR and AMSR?2 datasets
to account for their distinct characteristics. Data were also
flattened to ensure compatibility with the label propagation
algorithm.

B. Data Integration

The second challenge is effective data integration. Sea ice
classification benefits from combining diverse sources, like
SAR and AMSR2, which capture different ice characteristics.
We integrated data in two stages: during training (DT) and
after training (AT).

1) Data Integration During Training (DT Stage): The data
integration process during the co-training phase involves train-
ing separate models on SAR and AMSR?2 datasets simultane-
ously within a shared learning framework. Each model pro-
cesses its respective dataset, learning distinct features specific
to SAR and AMSR2. Through the co-training mechanism,
these models exchange valuable insights and update their
learning strategies based on the feedback from each other.
This method allows each model to benefit from the unique
strengths of the other dataset, leading to a more comprehensive
and robust learning outcome as they integrate the diverse
characteristics of both SAR and AMSR?2 data throughout the
training process.

2) Data Integration After Training (AT Stage): For after
training integration, we utilize a stacking ensemble technique
[25], which also functions as a method of data integration.
When a single CNN is trained on concatenated SAR and
AMSR?2 data, it often struggles to effectively learn and in-
tegrate the distinct features from both data types. The in-
creased complexity of the task can prevent the model from
fully exploiting the unique characteristics of each dataset.
Conversely, by training separate CNNs on SAR and AMSR2
data, each model can specialize in learning features specific
to its respective dataset. The SAR-specific CNN focuses on
high-resolution spatial features, while the AMSR2-specific
CNN interprets the physical properties captured by microwave
radiation. After the co-training phase (i.e., DT stage), we inte-
grate the predictions from these models through ensembling.
Specifically, we take the predicted probabilities from both the
SAR-trained and AMSR2-trained models and combine them as
input features for a logistic regression model, which is trained
on a validation set. This stacking approach allows the logistic
regression model to learn how best to combine the information
from the two co-trained models, effectively integrating the
diverse insights captured by each data source. The trained
logistic regression model is then used to generate ensemble
predictions on the test set by combining the predicted proba-
bilities from the SAR and AMSR2 models. This final ensemble
prediction reflects a more comprehensive understanding of the
data, as it integrates the strengths of both SAR and AMSR2
models.

IV. EXPERIMENTAL EVALUATION

This section evaluates our sea ice classification methods,
emphasizing semi-supervised approaches and data integration.
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We compare our method with supervised models through
extensive experiments, detailing our methodology and results.

A. Experimental Methodology

1) Dataset: In our study, we utilize the Al4Arctic Sea Ice
Challenge dataset, the largest and most comprehensive dataset
available for this sea ice classification, which covers a wide
geographical area and includes diverse data sources [26]. Each
file in the dataset comprises two key modalities: Sentinel-1
SAR data and corresponding AMSR2 passive microwave data,
supplemented by detailed ice charts based on that Sentinel-1
image, which provide polygon-level labels for sea ice types.
SAR and AMSR-2 are both microwave-based remote sensing
technologies, but they differ in function. SAR, an active
sensor, emits its own signals and measures the reflections,
enabling high-resolution imaging of surface features regardless
of weather or light conditions. The dataset includes dual-
polarized (HH and HV) Sentinel-1 Extra Wide Swath (EW)
images, which cover areas of 400 x 400 square kilometers
with a pixel spacing of 40 x 40 meters. These images have
been noise-corrected using the NERSC algorithm [27], capture
essential details about sea ice surface features. Complementing
the SAR data, AMSR2 is a passive microwave radiometer
aboard the JAXA GCOM-W satellite that detects naturally
emitted microwave radiation. This sensor provides broad, low-
resolution data, useful for monitoring environmental parame-
ters such as sea ice concentration and soil moisture. AMSR2
records brightness temperatures at various frequencies in both
horizontal and vertical polarizations, enriching the dataset.
Fig. 2 shows SAR and AMSR2 data features side by side.

The ready-to-train (RTT) version of the Al4Arctic dataset
preprocessed for deep learning. Compared to the raw data,
this RTT dataset includes downsampling of SAR and ice
chart data from 40-meter ( 10,000 x 10,000 pixels) to 80-
meter resolution (5,000 x 5,000 pixels). Downsampling was
achieved with a 2 x 2 averaging kernel for SAR and a 2x2 max
kernel for ice charts, aligning masks (nan-values) accordingly.
Data was then standardized using the mean and standard
deviation from the training set. The Al4Arctic dataset spans
diverse locations and periods. For our study, we used an RTT
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subset of 11 files from winter seasons between 2018 and 2021,
with dual-polarized SAR (HH, HV) and AMSR?2 data at 18.7
GHz, incorporating both horizontal and vertical polarizations.
SAR and AMSR2 swaths were matched within a seven-hour
window, and AMSR2 data was resampled to SAR coordinates
using Gaussian weighted interpolation [26].

For label preparation, the ice chart data was used to prepare
labels for the curated 2-modal SAR-AMSR?2 dataset described
above. The dataset comprises six ice type classes/labels used
in ice charts: open water (0), new ice (1), young ice (2), thin
first-year ice (3), thick first-year ice (4), and old ice which is
more than 1 year old (5). These types derive from ice chart
data where each polygon on the chart denotes a specific sea
ice type along with its partial ice concentration. Partial ice
concentration within a polygon refers to the proportion of the
polygon’s area that is covered by a specific type of ice. This
is crucial as it impacts the dominant ice type designation for
the polygon. For instance, if a specific ice type’s concentration
exceeds 65% of the polygon’s area, it becomes the dominant
type and assigns the polygon-level label.

Finally, based on curated and labeled polygon-level data
described above, we generate 2-modal pixel-level labeled data
to be used for our experimentation. During the rasterization
of these polygon-level labels to a pixel-based label, each pixel
within the bounds of a polygon adopts the polygon’s dominant
label as an approximation. It is important to note that while
we have access to abundant polygon-level labels, true pixel-
level labels are absent. As an alternative, instead we use
pseudo labeled pixels that are labeled based on the dominant
ice type within the polygon that contains them. To reduce
approximation errors, we use polygons where the dominant
ice type covers over 65% of the area and limit our experiments
to a subset of these pseudo-labeled pixels, simulating limited
true pixel labeled data. Despite these limitations, our approach
shows promising results for sea ice classification

For each file in the dataset containing SAR and AMSR2
data, we generated 32 x 32 patches with a stride of 32,
focusing on patches within polygons representing a single ice
type or open water, yielding approximately 98,605 patches.
These were split into training (80%), validation (10%), and
test (10%) sets, resulting in around 79,869, 8,874, and 9,860
samples, respectively. The training set was further divided
into labeled and unlabeled subsets, with a minimal number
of labeled samples per class selected randomly to ensure
representation, while the remainder was used as unlabeled data
to simulate limited labeling

Additionally, for cross-location co-training experiment, We
focus on two regions, SouthEast and Qaanaaq, selected for
their comprehensive coverage of all six sea ice classes. The
dataset is location-tagged within each filename. For data
preparation, we utilized only the HH channel of the SAR
imagery to generate data patches, following the procedure
previously described. Data patches are generated at a size of
32 x 32 pixels to maintain uniformity across analyses. The
data include 60,665 samples from SouthEast and 106,885 from
Qaanaaq. The combined test set from both locations includes
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about 15,080 samples.

2) Evaluation Metric: The F1 score, a commonly used
metric, was employed to assess models performance. F1
score considers both precision, which measures the ratio of
correctly predicted positive observations to the total predicted
positives, and recall, which calculates the ratio of correctly
predicted positive observations to all actual positives. F1 score
is computed using the formula:

Fl—9x precision X recall

precision + recall M

3) Configuration of the Models: To evaluate our co-training
approach, two CNN models were trained separately on SAR
and AMSR?2 datasets. Fig. 1 shows the architecture and layer
specifications. Key parameters included a batch size of 16,
30 epochs, the Adam optimizer (learning rate 0.001), and
categorical cross-entropy loss, ensuring effective training and
validation.

Additionally, A 95% confidence threshold was initially set
to select pseudo-labeled samples for training, decreasing by
0.05 if no samples met it in an iteration. Up to 100 highly
confident pseudo-labeled samples per model were added each
cycle, repeating for up to 30 cycles. Training stopped if
accuracy did not improve over three iterations. Performance
was assessed using the F1 score, comparing co-trained models
with a supervised CNN.

In experiments on co-training across various locations, we
used uniform CNN model parameters (Fig. 1) consistent
with the co-training framework. Each location’s CNN model
was trained using this co-training setup. For comparison,
we trained identical CNN models in a supervised manner,
enabling us to assess whether co-training across locations im-
proves performance over location-specific supervised models.

The label propagation approach used a k-nearest neighbor
kernel with K=6, optimized for both datasets after testing
values from 1 to 10. The model ran for a maximum of 100
iterations, refining label assignments to improve classification.
Results, evaluated with the F1 score, were compared to a
supervised CNN.

In the after-training (AT) stage, we used the same pa-
rameters as in co-training, employing a stacking ensemble
with logistic regression to combine predictions from both
models. The logistic regression model used L2 regularization
(C' =1.0) and the ’lbfgs’ solver, with up to 100 iterations for
convergence. This stacked model’s performance was compared
on test data with a supervised CNN using early integration,
where SAR and AMSR?2 data were concatenated.

Each model was run five times, and the F1 score values rep-
resent the average of these runs. The models were developed
using TensorFlow and Keras, with computations performed on
a single NVIDIA RTX A6000 GPU.

B. Experimental Results

Our experiments evaluated our proposed SSL methods and
data integration techniques for sea ice classification outper-
formed traditional supervised methods, effectively addressing
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the lack of pixel-level labels. Co-training, label propagation,
and data integration significantly improved classification ac-
curacy and robustness, proving effective even with limited
labeled data.

For comparison, we used supervised CNN models on SAR
and AMSR2 data as baselines, trained for 30 epochs with
a batch size of 16, Adam optimizer, and categorical cross-
entropy loss. We compared these baselines to individual co-
trained and label propagation models, each trained on SAR or
AMSR?2 data. To assess data integration, we also compared
two-stage integration methods against a CNN trained with
concatenated SAR and AMSR?2 data, allowing a thorough
evaluation of SSL approaches and data integration against
supervised models.

a) Comparative Analysis of Semi-Supervised vs. Super-
vised Approaches: Fig. 3 shows the performance of various
approaches across different quantities of pixel-level labeled
data. Under conditions of limited labeled data, the SSL
approach proves particularly advantageous, transforming the
challenge of sparse supervision into a strength by adeptly
leveraging unlabeled data to substantially enhance classifica-
tion performance. Particularly, the individual co-trained model
trained on AMSR2 data exhibits significant improvement when
incorporating information from the SAR model, surpassing the
performance of its corresponding supervised counterpart by
approximately 30% with fewer than 16 labeled data instances.
Similarly, for experiments where the individual co-trained
model focuses on SAR data, with labeled data fewer than
16 instances, the mean improvement over the corresponding
supervised model is approximately 13%. This improvement
underscores the efficacy of leveraging complementary infor-
mation from the AMSR2 data under small data regime.

b) Comparative Analysis of AT Integration vs. Data
Concatenation: Fig. 4 compares the results of a supervised
CNN trained on the concatenation of SAR and AMSR2 data
with after training integration (AT stage) of co-trained models.
The results demonstrate significant improvements in accuracy
for the AT stage integration of co-trained CNNs compared to
the single CNN trained on concatenated data, across various
numbers of pixel-level labeled data points. For instance, with
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six pixel-level labeled data points, the supervised CNN on
concatenation of SAR and AMSR2 achieved an accuracy of
25.56%, while the AT stage of co-trained models reached
70.88%. This trend of superior performance for the AT stage
method continues as the number of labeled data points in-
creases.

c) Comparative Analysis of Cross-Location Co-Training
vs. Supervised Learning: Fig. 5, which includes curves that are
titled Co-trained on SouthEast, Co-trained on Qaanaaq, Super-
vised CNN on SouthEast, and Supervised CNN on Qaanaaq.
These titles correspond to the respective models and locations
where their data are used to train the models. Note that in this
experiment, when the x-axis shows 6 labeled data points, it
means that each co-trained model is trained with 6 pixel-level
labeled samples. In contrast, the supervised models specific to
each location are trained with 12 labeled samples from that
location. This ensures fairness of the comparison while the co-
trained models benefit from the diverse information provided
by both locations. We tested with labeled sample sizes of 6,
9, 12, and 24 for each co-trained model. The results show
that in the Southeast location, the co-trained models perform
as well as or better than the supervised models, especially
with 24 labeled samples. In Qaanaaq, the co-trained models
outperform the supervised models at 6 and 9 labeled samples,
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for different number of labeled data.

but as the number of labeled samples increases, the supervised
models begin to perform better as expected.

1) Parameter Sensitivity Analysis: Next, We conducted
a sensitivity analysis to examine how varying the number
of pixel-level labels (from 6 to full dataset) and amounts
of unlabeled data (from 1 to nearly 6000) impact model
performance. This analysis helps optimize the balance between
labeled and unlabeled data, fine-tuning the SSL process for
best performance under different data conditions.

a) Influence of Labeled Data Ratio on Supervised and
Semi-Supervised Learning Performance: Fig. 6 shows the
average F1 score on test set for each of the SSL and full super-
vised models across different numbers of pixel-level labeled
data points. The plot shows that as the number of labeled data
points increases, the performance of the supervised approach
becomes more competitive. Specifically, for SAR data, the
co-trained models maintain superior performance until the
number of labeled data points reaches 160, with co-training
improving performance by an average of 17%. Also, for
AMSR?2 data, the co-trained model outperforms the supervised
CNN until the number of labeled samples exceeds 640, with
co-training showing on average 31% improvement. Label
propagation approach consistently demonstrates competitive
performance, even with limited labeled data, highlighting its
efficacy in leveraging unlabeled data. For SAR data, the label
propagation approach outperforms the supervised CNN until
the number of labeled instances reaches 48, improving per-
formance by an average of 15%. Similarly, for AMSR2 data,
label propagation maintains its advantage until there are 640
labeled instances, showing on average 27% improvement. As
a result of these findings, it becomes evident how labeled data
size differ between label propagation approach and supervised
CNN. Despite this, label propagation remains a strong option,
especially in small data scenarios, effectively leveraging both
labeled and unlabeled data.

b) Influence of Labeled Data Ratios on Data Integration:
Fig. 7 illustrates the impact of varying the number of labeled
data samples on performance of both CNN models with data
concatenation and model with after-training data integration.
The figure demonstrates the consistent performance gains
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Concatenation vs. Data Integration at AT Stage Across Different Numbers
of Labeled Data

achieved by the after-training (AT) data integration approach.
The model traning by AT stage integration consistently out-
performs the CNN model trained on concatenated SAR and
AMSR?2 data, particularly excelling with fewer labeled sam-
ples. Notably, until the number of labeled data points reaches
160, the AT integration shows an average improvement of 29%
over the supervised model. This approach effectively combines
the strengths of co-trained SAR and AMSR?2 models, yielding
more accurate and robust classifications. Even with more
labeled samples, the AT integration maintains its advantage,
underscoring the importance of data integration during and
after training. In conclusion, integrating co-trained CNNs
on SAR and AMSR2 data outperforms a single CNN on
concatenated data, achieving higher accuracy and robustness
by leveraging each dataset’s unique characteristics.

c) Evaluating SSL Performance with Varying Unlabeled
Data Ratios: Fig. 8 illustrates how the amount of unlabeled
data, with a fixed count of 16 pixel-level labeled data points,
influences the average F1 score for both label propagation
models and co-trained CNNs using SAR and AMSR?2 data.
The data show a clear trend: as the volume of unlabeled
data increases, there is a corresponding improvement in the
F1 score. This pattern highlights the value of incorporating
unlabeled data to capitalize on the inherent data distribution,
which in turn boosts model performance through iterative
refinements. The results for the co-training approach reveal
significant performance enhancements across individual co-
trained models trained on SAR and AMSR?2 data with varying
quantities of unlabeled data. As the number of unlabeled data
points increases, F1 scores consistently improve, highlighting
the value of unlabeled data in enhancing model accuracy
within an SSL framework, especially when labeled data is
limited.

V. CONCLUSION

In conclusion, this study addresses the challenges of sea ice
classification with limited pixel-labeled data by investigating
SSL techniques, including co-training, label propagation, and
data integration through two starge of during and after training.
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By leveraging SAR and AMSR2 data, we demonstrated that
these approaches significantly enhance classification accuracy,
particularly in scenarios with limited pixel-level labeled data.
The integration of data through ensemble methods further im-
proves model performance, effectively combining the strengths
of different data sources both during and after training. Our
findings establish the superiority of SSL. methods over super-
vised CNN models, especially when labeled data is scarce,
while also highlighting the continued relevance of supervised
models as labeled data increases.

For future work, several promising directions emerge.
Firstly, exploring advanced co-training strategies, such as
incorporating additional modalities, holds potential for further
improving classification accuracy. Additionally, extending our
study to incorporate temporal and spatial information could
enhance the robustness of the classification system, especially
in dynamic sea ice environments.
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