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1. Introduction

Random walk (RW) models [1] provide useful tools for the analysistof dynamical
processes on random networks [2-7]. Here we focus on the case of undirected metworks:
Starting at time ¢ = 0 from a random initial node ¢, at each time step ¥ > 1 an”RW
(also referred to as a simple RW) hops randomly to one of the neighbors ef.its current
node. In some of the time steps the RW visits nodes that have not been visited before,
while in other time steps it revisits nodes that have already been visited at an earlier
time. The mean number (S); of distinct nodes visited by an RW on a random network
up to time ¢t was studied in Ref. [8]. It was found that in the infinite network limit, in
which random networks exhibit a tree structure, (S); ~ rt,/avhere the coefficient r < 1
depends on the network topology. In this case, the revisitséare due to backtracking steps
in which the RW hops back to the previous node and_subsequent retroceding steps in
which it keeps hopping backwards along its own path [9].

In order to perform systematic studies of random walks/on random networks, it is
useful to focus on configuration model networks. Theeonfiguration model is an ensemble
of uncorrelated random networks consisting of "N modes, whose degree sequences are
drawn from a given degree distribution P (k). The admissible degrees are often restricted
to a finite range kpin < k < kpax, where Ay, 18:the minimal degree and k., is the
maximal degree, such that for any¥alue,of kioutside this range P(k) = 0. The mean
degree (K) is denoted by c. To ensure'that an RW starting from any initial node i will
be able to reach any other node j, we focus/on the case in which the whole network
consists of a single connected component. Using the terminology of percolation theory,
these are networks in which the giant ecomponent encompasses the whole network. In the
large network limit, a sufficient condition for a configuration model network to consist
of a single connected compénent _is that ky;, > 3 [6,10]. In fact, a weaker condition of
kmin > 2 is sufficient in the Jarge metwork limit as long as a finite fraction of the nodes
satisfy k£ > 3 [11]. We thus aveid isolated nodes of degree k = 0 and leaf nodes of degree
k =1, which may form iselated tree structures.

The first return (FR) time Tpg of an RW is the first time at which it returns to
the initial node ¢ [12]. The first return time varies between different instances of the
random walk Arajectory and its properties can be captured by a suitable distribution.
The distribution of/first return times may depend on the specific realization of the
random neétwork and on the choice of the initial node 7. The distribution of first return
times from a random node to itself in a given ensemble of random networks is denoted
by P{(Irr =1t). A classical result regarding first return times is Kac’s lemma, which
states thatithe mean first return time of an RW from a given node i to itself is given
by [13=15]

1
P "

where P;(0c0) is the probability that an RW will reside at node i at a given time step

E[TFR(i)] =
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under steady state conditions (which are achieved in the long time limit ¢ — oce)sIn
the case of undirected networks, Eq. (1) can be expressed in a more expligit form,
namely [15]

E[Ter(2)] = ]/\;Ca (2)

where k; is the degree of node 7. This implies that the mean first return time from a

random node to itself is given by

Bifin] = () )

where (X) is the average of the random variable X over the degree/distribution P (k).

One can distinguish between two types of first returmtrajectories: first return
trajectories in which the RW retrocedes its own steps haekwards all the way back to the
initial node i and first return trajectories in which the RW returns to ¢ via a path that
does not retrocede its own steps [9,16]. In the retzoceding trajectories, each edge that
belongs to the RW trajectory is crossed the same number of times in the forward and
backward directions. In the non-retroceding.trajectories the RW path includes at least
one cycle. In the infinite system limit, in whichythe network exhibits a tree structure,
the only way to return to the initial node 18, via a retroceding trajectory [17,18]. In
finite networks both scenarios coexist, whereithe distribution P(TFr = t) is dominated
by retroceding trajectories at short times,and by non-retroceding trajectories at long
times [9,19, 20].

A more general problem invelves the calculation of the first passage (FP) time
Trp, which is the first time at which ‘a'random walk starting from an initial node i at
time ¢ = 0 visits a specified_targetsnode j [12,16,21,22]. The first return problem is a
special case of the first passage problem, in which the initial node coincides with the
target node. The distribution P(Trr = t) of first return times of RWs was studied on
the Bethe lattice, whichiexhibits a tree structure of an infinite size [17,23-26] and on
random regular graphsy(RRGs) [9,19].

An important variant of the RW model is the non-backtracking random walk
(NBW), in which theymove backwards to the previous node is excluded [27]. Since
backtracking/steps are exeluded, in the infinite network limit in which the network
exhibits a treestrueture, an NBW never revisits a previously visited node. In particular,
it never returns,to the initial node. In a finite network, the first return process of NBWs
takes plage only via non-retroceding trajectories, which rely on the existence of cycles.

NBWs are important for several reasons, which are summarised below. They
provide a inore efficient way to explore and analyze complex networks, compared to
standard random walks. This is due to the fact that by avoiding backtracking steps
theyiean cover more of the network in less time [28]. NBWs are useful for identifying
comniunity structures within networks [29]. In certain types of networks, NBWs can
help mitigate localization effects that might trap standard random walks in specific
regions of the network.
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In this paper we present analytical results for the distribution of first return times, of
NBWs on configuration model networks consisting of N nodes with degree distribution
P(k). An NBW starting from an initial node ¢ forms a random trajectory in the network
and eventually returns to ¢ without backtracking its steps even once. In order o return
to the initial node, the trajectory must include at least one cycle. The figst return time
may take any even or odd value that satisfies Tpg > 3. Using probabilistic methods
we calculate the tail-distribution of first return times P(Tyr > t|[K = k) of NBWs
starting from a random node of degree k. Averaging over the degree distribution, we
obtain the overall tail distribution of first return times P(Twr >.t). We find that
P(Trg > t) is given by a discrete Laplace transform of the degree distribution P (k). We
calculate the mean first return time E[Trg| and show that ‘it eoincides with the result
of Fasino et al. [30], which extends Kac’s lemma to second,order random walks. We
also calculate the variance Var(Tggr) which accounts forythe variability of first return
times between different NBW trajectories. We applythis formalism to random regular
graphs, Erdos-Rényi networks and configuration model'networks with exponential and
power-law degree distributions and obtain closed-form, expressions for P(Tyr > t) and
its first two moments. The analytical results are found to be in very good agreement
with the results obtained from computer simulations.

The paper is organized as follows. In Sec. 2 we present the configuration model
networks, their construction and essentialsproperties. In Sec. 3 we present the non-
backtracking random walk. In Sec. 4 we'derive formulae for the distribution P(Trg > t)
of first return times of NBWsgon configuration model networks and for its mean E[Tyg]
and variance Var(Trg). In Seen, 5 we apply these results to RRGs, Erdds-Rényi
(ER) networks and to configuration médel networks with exponential and power-law
distributions. The results are diseussed in Sec. 6 and summarised in Sec. 7.

2. Configuration model networks

The configuration model is‘an ensemble of uncorrelated random networks whose degree
sequences are drawn from a given degree distribution P(k) [31-35]. These networks
are simple graphs imthe sense that each pair of nodes is connected by at most a single
edge and there are,no self;-loops. The first moment (mean degree) and the second
moment of P(k) are denoted by (K™), where n = 1 and 2, respectively, while the
variance 48 given by V[K] = (K?) — (K)?. The support of the degree distribution of
random metworks is often bounded from below by ku;, > 1 such that P(k) = 0 for
0 <4< Emin — 1, with non-zero values of P(k) only for k > k. For example, the
commonly fused choice of k;,, = 1 eliminates the possibility of isolated nodes in the
network:"Choosing k., = 2 also eliminates the leaf nodes. One may also control the
upper bound by imposing k£ < k.. This may be important in the case of finite networks
with heavy-tail degree distributions such as power-law distributions. The configuration
model network ensemble is a maximum entropy ensemble under the condition that the
degree distribution P(k) is imposed [32-34]. Here we focus on the case of undirected

Page 4 of 34



Page 5 of 34

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-121792.R2

First return times of non-backtracking random walks )

networks.

To generate a network instance drawn from an ensemble of configuration' model
networks of NV nodes, with a given degree distribution P(k), one draws the degrees of
the N nodes independently from P(k). This gives rise to a degree sequence'of the form
k1, ko, ..., ky. For the discussion below it is convenient to list the degree sequence in a
decreasing order of the form ky > ko > --- > ky. It turns out that not every possible
degree sequence is graphical, namely admissible as a degree sequénce of a’/network.
Therefore, before trying to construct a network with a given degree sequence, one should
first confirm the graphicality of the degree sequence. To be graphical,.a degree sequence
must satisfy two conditions. The first condition is that the sum of the degrees is an
even number, namely » . k; = 2L, where L is an integer that represents the number of
edges in the network. The second condition is expressed/bynthe Erdds-Gallai theorem,
which states that an ordered sequence of the form ky >wke > -+ > ky that satisfies the
first condition is graphical if and only if the condition

n N
> ki <n(n—1)+ Y min(kin) (4)
i=1 i=nt1
holds for all values of n in the range 1 < n'< No— 1 36, 37].

To construct a network instance consisting of NV nodes with a given degree sequence
ki, ko, ..., kn (where sz\il k; = 2L and L'is'the total number of undirected edges), we
create a multiset of 2L stubs which includes k; stubs for each node ¢. Pairs of stubs
are then selected randomly and connected,to each other to form edges between the
corresponding nodes. To illustrate the process we represent the stubs by 2L balls,
where the k; balls associated with nodeé ¢ are marked by i. We then choose a random
arrangement of the 2L balls.in amarray of L cells, such that each cell includes exactly
two balls. In practice, a framdom arrangement of balls into cells can be obtained by
generating a randomypermutation of the 2L balls and grouping them sequentially into
L pairs, making the construction straightforward to implement. A cell containing balls
7 and j represents an'édge between nodes i and j. The representation in terms of balls
and cells is partigularly convenient for implementation on the computer, since a single
random permutation of.the 2L balls produces a uniformly random pairing of stubs, from
which the network can be eonstructed directly.

The network ebtained from the procedure described above is a multigraph with
the given degree sequence, which may include self-loops (edges connecting a node to
itself) orimultiple edges (two or more edges connecting the same pair of nodes). To
eliminate the self-loops and multiple edges, we apply an edge switching process, which
yields a simple graph while preserving the degree sequence. In this process, as long as
the network has not yet become a simple graph, at each time step we select randomly
one of the self-loops (7,7) or one of the multiple edges (i,7). In case that a self-loop
(1,1) was selected, we select a random edge (¢',j’) and swap the two edges into (i,17")
and (i, 7'). Similarly, in case that a multiple edge (i, ) was selected, we select a random
edge (7, ') and swap the two edges into (7,7') and (7,5’). In both cases, we complete
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the move only after we make sure that the swapping does not create a new self-leop.or
a new multiple edge. This random edge-switching process continues until no self-loops
or multiple edges remain. The procedure described above provides the random simple
graph ensemble used in the simulations.

The elimination of multiple edges may introduce some degree-degree correlations
in the resulting simple graph. To keep these degree-degree correlations negligible, the
degree distribution must exhibit a structural cutoff such that the expected number of
nodes of degree k > v/Nc¢ is o(1) [38,39]. In the case of fat-tailed degree distributions
such as the power-law degree distribution, one needs to impose.an upper cutoff
kmax < V/Nec. The degree distributions of all the network models‘éonsidered here satisfy
the above conditions, so degree-degree correlations are negligible.

Some commonly studied configuration model networks,can be described in terms
of single parameter families of degree distributions. These inelude the RRG, the ER
network and configuration model networks with exponential and power-law degree
distributions. A particularly convenient choice of the parameter is the mean degree
¢ = (K). In this case, the degree distribution can herexpressed by P(k) = P.(k), such
that small values of ¢ correspond to the'dilute network limit while large values of ¢
correspond to the dense network limit.

Configuration model networks in which the lewer bound of the degree distribution
satisfies knin = 0 or 1, may exhibit a percolation transition at some value ¢y of the
mean degree, referred to as the percolatien threshold. Below the transition the network
consists of finite tree components, while abové'the transition a giant component emerges.
The percolation transition is a second order phase transition, whose order parameter
is the fraction g of nodes that resideron the giant component. Below the transition,
where ¢ < ¢, the order parameter is/g = 0, while for ¢ > ¢ the fraction g = g(c) of
nodes that reside on the giant.component gradually increases. The giant component of a
configuration model network consists of a 2-core which is decorated by tree branches [40].
The 2-core is a conneeted component, such that each node on the 2-core has links to
at least two other nedes that reside on the 2-core. The nodes that reside on the tree
branches have the property that their deletion would break the giant component into
two or more compenents. Such nodes are referred to as articulation points [41, 42].
Similarly, the deletion oftans edge that resides on one of the tree branches would break
the giant component into two components. Such edges are referred to as bredges [43].

In thispaper we focus on the case in which the whole network consists of a single
connected component, for which ¢ = 1. Below we discuss the conditions for ¢ = 1 in
RRGS, ER networks and configuration model networks with exponential and power-law
distributions.

Consider an RRG that consists of N nodes of degree ¢ (where Nc is even). For
¢ =yl the nodes form dimers. For ¢ = 2 the network, which is referred to as a 2-
random regular graph (2-RRG), consists of closed loops or cycles. In the large network
limit, the expected number of cycles is Ng =~ %lnN and the cumulative distribution
of cycle lengths is given by P(L < ¢) ~ In¢/In N, where ¢ < N [44]. Here we focus
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on RRGs with ¢ > 3, which in the large network limit consist of a single conneeted
component [45,46].

In the case of ER networks, in the large network limit there is a phase transition
at ¢ = In N, where g — 1 [6,10]. Above this point, the giant component_encémpasses
the whole network, linking all the nodes into a single connected component.

In general, a sufficient condition for a configuration model network with degree
distribution P(k) to consist of a single connected component in the large network limit
N — 00 i8 kmin > 3 [47]. In fact, a weaker condition of kp;, > 2 is alsewsufficient, as long
as a finite fraction of the nodes in the network are of degrees £ > 3 [11]. In the analysis
presented below of NBWs on configuration model networks with exponential and power-
law distributions, we chose networks of size N = 1000 that satisfy ki, > 3. We checked
each network instance to confirm that it consists of a singléixconnected component.

In a finite configuration model network, there isasnon-zero probability that the
network will consist of a single connected component eveniif it includes some nodes
of degree k = 1. It was recently shown [48] that as the.network size N is increased,
it may still consist of a single connected compg@nentiwith high probability as long as
the number n; of nodes of degree k = 1 grows more slowly than v/N. However, in
networks that include leaf nodes of degree kb = 1, NBWs that enter these nodes will
get stuck. Therefore, in the study of NBWs it is important not only to ensure that
the network consists of a single connectedreomponent, but also that this component
does not include any leaf nodes. This implies that the 2-core of the network (namely
the largest subgraph in whichyall the nodes are of degree k > 2) encompasses the whole
network. It also implies that the metwork does not include any articulation points [41,42]
or bredges [43].

3. Non-backtracking random, walks

NBWs are RWs for which the move backwards to the previous node is excluded. They
belong to the class of second=order random walks, in which the transition probabilities
depend not only _on the\current node but also on the previous node [27,30]. This
introduces memoryhinto, the process, which makes it no longer Markovian in the
traditional sense. The challenge is to analyze such processes using methods that are
typically applied to/Markov chains, which rely on the memoryless property. Recently,
Fasino et“al. introduced a mapping of second order random walks into first order
processes, on alarger state space, referred to as the pullback process [30]. Instead
of viewing the random walk as taking place between the nodes of the original graph, the
pullback process considers a random walk on the directed-line graph associated with the
originaligraph. Using this method they showed that the mean first return time E[Tpg]
ofyany second order random walk (including NBWs) on undirected networks satisfies
Eq. (1), thus extending the validity of Kac’s lemma to second order random walks on
undirected networks [30]. Note that Kac’s lemma deals with the mean first return time
and has no implications on the overall shape of the distribution and its higher order
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moments.

NBWs exhibit faster mixing times than standard random walks, meaning they
converge to their stationary distribution more quickly [49,50]. They thus inspire
the design of more efficient algorithms for various graph-based problems, ‘including
link prediction and node centrality measures [51]. The non-backtracking (Hashimoto)
matrix B associated with these walks has spectral properties that can reveabimportant
information about the network structure, often more clearly than traditional adjacency
matrices [15,52,53]. Actually, the mixing time is inversely proportional to/the spectral
gap of the matrix B [14]

2frnix X

A1 — Aaf’ )
where A\; and A, are the largest and second largest eigenvaluesiof B, respectively.

For the special case of RRGs it was shown that| the mixing time of NBWs (and
RWs) scales like tix o In N [28,54]. This result was'later generalized to a broader class
of configuration model networks with k,;, > 3 [55)3This result sits well with the fact
that both the mean distance [56,57] and the diameter [58-62] of RRGs are proportional
to In V. It implies that an NBW starting from a ramdom initial node ¢ at time ¢t = 0
may reach any other node in the network within In/V time steps. Moreover, using the
shell structure around the initial node.i.as a, spherical coordinate system, the radial
component of the location of each node is given by its distance from 7. Since RRGs
are locally tree-like at distances in the range’! < In N [63], an NBW starting from i
essentially moves deterministically to the néxt shell away from ¢ as far as the tree-like
structure persists. This is unlike the case of RWs which behave like biased random

walks along the radial axis, moving outwards with probability 1 —1/c and inwards with
probability 1/c¢ [9,57].

4. The distribution of first return times

Consider an NBW/ on an undirected random network, starting from a random initial
node ¢ at time ¢'= 0. At time ¢ = 1 it hops into a random neighbor of ¢ and at
each subsequentstep it hops randomly into one of the neighbors of its current node,
excluding the previous node. Here we focus on the case of configuration model networks
that consisty of ‘@single connected component, such that an NBW starting from any
initial node canireach any other node in the network.

At eachutime step ¢ > 3 an NBW may either step into a yet-unvisited node or into
a node that has already been visited two or more time steps earlier. Similarly, at each
time step£ > 4 an NBW may go through an edge from node i to node i, that has been
crossed before in the same direction, or through an edge that has not yet been crossed
in that direction. We thus distinguish between the two possibilities of crossing an edge:
from 4 to ¢ and from ¢ to i. In a network of size N and mean degree ¢, the expected
number of such ’directed’ edges is Nc. Below we consider the expected number of
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distinct ’directed’ edges (L), crossed by an NBW up to time ¢ on a configuration.medel
network. The initial condition is (L)o = 0. The probability that at time step ¢ an NBW.
will cross a yet uncrossed ’directed’ edge is given by

ALy = (L)is1 — (L)t (6)

In the first three time steps the NBW crosses new ‘directed’ edgestwith probability
1, which implies that AL, = 1 for ¢t = 0,1 and 2. For ¢ > 3 we use a mean-field approach,
which essentially assumes that the ‘directed’ edges that have already been crossed and
those that have not yet been crossed are distributed uniformlyin_thenetwork and can
thus be visited with equal probability at any time step. This approach applies under
the condition that the network consists of a single connected ‘comiponent. A further
condition is that the network will not be dominated by lineariehains consisting of nodes
of degree k = 2, namely that P(k = 2) will be sufficientlyismall (networks that do not
satisfy this condition are referred to as almost 2-RRGs,[11]).

In configuration model networks that consist.ef.a single’connected component with
kmin > 3 and no leaf nodes, the mixing time sdales like/t,,ix o< In N [54, 55], while the
mean first return time scales like E[Tggr] o6, N. Thus, for sufficiently large networks
tmix < E[Tgr]. This separation of time scales implies that apart from the very early
stages of the first return trajectories, NBWs,sample the ‘directed’ edges in a unifom
fashion. Under these conditions, the probability.that at time £+ 1 the NBW will cross a
‘directed’ edge which has been crossed befere is equal to the fraction of ‘directed’ edges
that have already been crossedy This fraction is given by ((L); —2)/(Nc—2), where the
subtraction of 2 from the numetrator,and the denominator accounts for the fact that the
‘directed’ edges crossed at times ¢t — 1 and ¢ cannot be crossed again at time ¢ + 1. This
implies that the probability.Al; isigiven by

(L) —2
AL =1—~———.
! Ne—2 (7)
To simplify the analysis, we'reduce Eq. (7) to the form
(L)
AL =1—-~———.
! Ne (8)

The reduction from Eq. (7) to Eq. (8) relies on the assumption that the network is both
sufficientlylarge and sufficiently dense, such that the product Nc¢ satisfies N¢ > 2. In
addition} this reduction becomes accurate when the expected number of ‘directed’ edges
(L) awhich have already been visited by the NBW satisfies (L); > 1. This condition
is indeed satisfied for sufficiently long times. Since for t < N¢ the number of distinct
‘directed’redges visited by the NBW satisfies (L); ~ ¢, the condition (L); > 1 can be
replaced by ¢ > 1.
Inserting AL; from Eq. (6) into Eq. (8), we obtain the recursion equation

1

(Lo = (0 (1= ) +1 )
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Solving Eq. (9), we obtain

I t 0<t<3 .
(L = 36_%—%]\[0(1—6_%3) t> 3. (1)
While Eq. (8) is valid to a good approximation for ¢ > 3, it becomes precise above the

mixing time, where the random walker samples ‘directed’ edges in asuniformifashion.
Thus, apart from the first few steps, Eq. (10) can be approximated by

(L), = Ne (1 - e—N%) . (11)
The probability that an NBW will not visit a specific randem nade of degree k for

Nc
that in order to visit a node of degree k£ the NBW must,enter via one of the £ edges

k
the first time up to time ¢, can be expressed by (1 — <L>;1> . This is due to the fact

connected to i. Since an NBW quickly loses memoryhof its initial node, the probability
of not returning to an initial node of degree k up to time #iisthe same as the probability
not to visit any node of the same degree up to time t. ‘Lherefore, the tail distribution of
first return times, under the condition that.the initial node 7 is of degree k, is given by

P(Tpg > t|E = k) = (1 Yy %)k (12)

Inserting (L);—; from Eq. (10) into Eq. (12), and using the fact that k < N¢, we obtain
the tail distribution of first return times for initial nodes of degree k, which is given by
B(Tep SH|K = k) = e e, (13)

To obtain the tail distribution'P(Trg > t) of first return times of an NBW starting
from a random node, we average over all possible initial nodes. This amounts to
averaging over all possible degrees, with weights given by P(k). We obtain

P(Tyg > t) = Ze ~eP P (k). (14)

Interestingly, /6he right hand side of Eq. (14) is a discrete Laplace transform of the
degree distribution P (k). This transform is related to the one-sided Z-transform and to
the starreditransform [64]. To illustrate this point, we express Eq. (14) in the form

P(Trg > 1) Z *P(k (15)
where

z=e Ne. (16)

In_ fact, the right hand side of Eq. (15) is equal to the generating function Gg(z) of
the degree distribution P(k). The generating function is known to play a central role

Page 10 of 34
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in the analysis of structural properties of random networks such as the percolation
threshold [32] and the distribution of shortest path lengths [65]. Therefore, Eq. (15)
provides a remarkable connection between structural properties of a network, captured
by Go(z) and properties of dynamical processes taking place on the network.

From known properties of the (discrete) Laplace transform, we infer that the tail
of P(Tyr > t) is determined by the abundances of the lowest degree nodesyat the left
end of P(k). In contrast, the left end of P(TFr > t) is determined by the highest degree
nodes (or hubs) in the tail of P(k).

The probability mass function of first return times is given/by the difference

P(TFR:t) :P<TFR>t—1)—P(TFR>t) (17)

The moments of the distribution of first return times can'be obtained from the tail-sum
formula [66]. In particular, the mean first return timefis given by

E[Tvr] = i P(Tir3yt), (18)

and the second moment is given by

E [Tog) A2t 1) P(Tyr > t) (19)
=0,
The variance is given by
Var(TFR) =K [TI?R] - E[TFR]Z (20)

To evaluate the mean first return time, we insert P(Tpr > t) from Eq. (14) into
Eq. (18) and obtain

TFR iie NCtP (21)

t=0 k=0

Exchanging the order of the summations and carrying out the sum over ¢, we obtain

E[Trr] = Z (k). (22)

kol—e N('

Expanding the exponent in the denominator in terms of k/(Nc¢) < 1 and taking the
leading) termy;, we obtain

E[Tyr] ~ ) %P(k) — <N7> (23)

This result coincides with Kac’s lemma, which is obtained from general properties of
discrete stochastic processes [13,30]. Eq. (23) also implies that conditioning on initial
nodes of a given degree k, the mean first return time is given by
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Eq. (23) implies that the mean first return time is proportional to the mean inverse
degree <%> In order to express this quantity in terms of (K) and Var(K), one can’use
a Taylor expansion of 1/K around (K) and obtain its expectation value

<%> :<—[1(>+<71>3Var([()—@<([(—(K))3>+.... (25)

This expansion is suitable for narrow distributions that are concentrated around their
mean value. Moreover, in the case of symmetric distributions#he thizd.term on the right
hand side of Eq. (25) vanishes and the first two terms are expected‘to provide accurate
results for <%> Within the domain of validity of Eq. (25), we,conclude that the mean
first return time E[TFg| of an NBW on a configuration medel network is proportional
to the variance of the degree distribution of the network.

Using a similar derivation for the second moment, which is based on Eq. (19), we
obtain

E [T3] = g (11%5:)213(1:) ~ 22 (%)2 P(k) = 2< (%)2 > (26)

This results goes beyond thegeneralization of Kac’s lemma for second-order random
walks [30] and is valid for the specific case of the NBW.
Conditioning on initial nodes of a given degree k, the second moment is given by

9 Ne\?
E [I3R| K = k] ~2 - (27)
Inserting E [TZg] from B (26) and E[Trg] from Eq. (23) into Eq. (20), we obtain

Var(Trgr) ~ N*¢? <2<%> — <%>2> : (28)

Thus, the variance of the distribution of first return times, conditioned on initial nodes
of a givenadegree k. is given by

N2¢?
k2
Thisyindicates that the variance Var(Tgg) of the distribution of first return times can

Var(TFR|K = ]{Z) =

(29)

be divided into two parts, according to

1 1
Var(Tyr) = N?c¢* Var (E) + N202<ﬁ>’ (30)

Page 12 of 34



Page 13 of 34

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-121792.R2

First return times of non-backtracking random walks 13

where the first term on the right hand side of Eq. (30) can be attributed to the variations
in the degrees between different initial nodes, while the second term can be attributed
to the variation in the first return times between NBW trajectories originating from
nodes of the same degree.

5. Application to specific random networks

In this section we apply the general results derived above to NBWs ‘on specific random
networks that belong to the class of configuration model networks [32]. In particular we
study the first return process on RRGs, ER networks and configuration model networks
with exponential and power-law degree distributions. For each type of network we
calculate the tail distribution of first return times as well/as. the mean and variance.

5.1. Random regular graphs

Random regular graphs are random networks of asfinite sizé in which all the nodes are
of the same degree, but the connectivity ig randem/[10)+ They thus belong to the class
of configuration model networks. Consider an RRG that consists of N nodes of degree
¢ > 3. In such network, in the large N limit, all the nodes reside on a single connected
component. As a result, an RW (or. NBW) starting from any initial node i may reach
any other node j.

The degree distribution of an RRG iswa degenerate distribution of the form

P(k) = 0., (31)

where the mean degree (K) = @is an integer and the variance Var(K) = 0.
Inserting P(k) from Eq. (31) into Eq. (14), we obtain the tail distribution of first
return times, which is given/by

P(Tpg >t) = e ¥, (32)

It would bepuseful to compare the distribution of first return times of NBWs
on RRGs to the corresponding distribution of simple RWs on RRGs. The latter
distribution consists\of a contribution from retroceding trajectories, which are dominant
at short times‘and non-retroceding trajectories, which are dominant at long times. The
distribution P(T¥r > t), given by Eq. (32), is analogous to the contribution of the non-
retroceding RW trajectories in simple RWs, which for sufficiently long times is given
by [9]

c—1/) N

This implies that the backtracking and retroceding steps slow down the first return

P(Teg > t{~-RETRO) = exp {— (C - 2) i} . (33)

process of RWs by a factor of g compared to NBWs.
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In Fig. 1 we present analytical results, obtained from Eq. (32), for thestail
distribution P(TFr > t) (solid line) of first return times of an NBW on an,RRG of
size N = 1000. Note that the right hand side of Eq. (32) does not depend on the degree
¢, which implies that the results are valid for RRGs with any degree ¢ > 3. 'Indeed, the
analytical results are found to be in very good agreement with the results.obtained from
computer simulations for RRGs with ¢ = 3 (x) and ¢ = 10 (o).

The mixing time of an NBW on an RRG of size N and degree ¢ is given /by [54]

N
~In(c—1)
Applying this result to NBWs on RRGs of size N = 1000/with degrees of ¢ = 3 and
¢ =10, it is found that #,,;,(1000, 3) ~ 10 and #,,; (1000, 10)se~ 3, which are clearly much
smaller than the time scales that are relevant to the first returisprocess.

tmix (IV, €) + O(1). (34)

For the simulations we generated 20 independent, instanges of the network. On each
network instance, we generated 100,000 NBW trajectories, where each trajectory starts
from a random initial node i at time t = 0. Each/NBW trajectory was terminated upon
its first return to the initial node 7. The first return time ¢ is thus equal to the length
of the trajectory. The simulation results were ebtained by averaging the results over all
these trajectories.

Inserting Eq. (32) into Eq. (23)ywe.obtain ‘the mean first return time, which is
given by

E[Trr] ~ N, (35)

thus the mean first return time does mot depend on the degree c. This result is in
agreement with Kac’s lemma, expressed by Eq. (1). Since all the nodes in an RRG are
of the same degree, the probability that an RW (or an NBW) will reside at any given
node at time ¢ is P;(e0) ="1/N.</Inserting P;(cc) into Eq. (1), we obtain E[TFr] = N.
This result is also in agreement with the mean first return time of a simple RW on an
RRG, calculated inRef. [9].

Similarly, one can calculate the second moment, which is given by

E [T3g] ~ 2N (36)

Thereforegthe variance is

Var(Tyg) ~ N2 (37)

Sinee in an'RRG all the nodes are of the same degree, this variance reflects the variability
between first return trajectories originated from nodes of the same degree. Going back
torkEg. (30), we conclude that Eq. (37) represents the lowest possible variance in the
distribution of first return times for random networks consisting of /N nodes.

Interestingly, for a simple RW on an RRG, it was found that the variance of the
distribution of first return times is given by [9]

Page 14 of 34
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c
c—2
This result is larger than the variance for NBWs by a multiplicative factor ofy==;. This

Var(TFR) >~ N2. (38)

factor is significant for sparse RRGs and approaches 1 as c is increased. I is dueto’the
fact that in simple RWs the distribution of first return times is bimodal, consisting of two
different types of first return trajectories. At short times it is dominated by retroceding
trajectories while at long times it is dominated by non-retroceding trajectories. This
separation of time scales broadens the distribution and increases the'wariance. The
difference in the variance between NBWs and simple RWs reflects'the fact that Kac’s
lemma applies only to the mean first return time and does siot provide any prediction
for the variance.

5.2. Erdos-Rényi networks

Consider an Erdés-Rényi network that consists of N nodes..In such network, each pair
of nodes is connected by an edge with probability pa[67-69]. As a result, the degree
distribution is a Poisson distribution of the.form [3]

e—cck
P(k) =) (39)
for k=0,1,2,..., where ¢ = (N — 1)p'is,the mean degree (K) and the variance is given

by Var(K) = c.

In general, for ¢ > 1 an ERsnetwork consists of a giant component and finite tree
components. Since we focus in this paper on networks that consist of a single connected
component, we restrict ourselves to the case in which ¢ > In N, where in the large
network limit the giant component encompasses the whole network [6,10]. In the case
that ¢ > In N, the probability that a random node will be isolated is P(K =0) < 1/N,
which implies that in'a‘typical metwork instance the expected number of isolated nodes
will be smaller than 1. Singe we study NBWs we would like to ensure that the network
instances we consider will also not include leaf nodes of degree k = 1. Therefore, in the
analysis we focus/omthe limit of sufficiently dense networks that satisfy ¢ > =W (—1/N),
where W (z) ig"theé Lambert W function [70]. In this limit the probability that a random
node will be'a/leaf mode satisfies P(K = 1) < 1/N. In practice, when we generate
network instances for the computer simulations, we discard network instances that
include isolated nodes or leaf nodes.

For an NBW starting from a random node ¢ on an ER network, the tail distribution
of first return times is obtained by inserting Eq. (39) into Eq. (14), which yields

P(Tpg > t) = exp [c (e‘NLc - 1)} . (40)

Note that in the long time limit of ¢ — oo, P(Tpr > t) — e ¢, which is bounded by
1/N for ¢ > In N and hence vanishes in the large system limit. However, for finite
networks the fact that P(Tyr > t) does not vanish in the limit of ¢ — oo and therefore
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the moments diverge. In order to deal with this issue, we adjust the degree distribution
by eliminating the possibility of isolated nodes of degree k = 0 and leaf nodes of degree
k = 1. The adjusted degree distribution is given by

1 ecck
l—e“—ce = k!
for k > 2. Inserting the adjusted degree distribution from Eq. (41)'into Eq.) (14), we
obtain

P(k|K > 1) = , (41)

e—C

P(Tpr > t|K > 1) = . o [exp (ce‘ﬁ> — = ce‘ﬁ] : (42)

Taking the long time limit of Eq. (42), we obtain the leading order asymptotic behavior,

_e*C_

which exhibits an exponential tail of the form

cete 2
P(Tpg > t|K > 1) ~ Tt 43
(Ter > 1] ) 2(1—6*0—06—0)6 (43)
This tail is dominated by the lowest degreemodes.in/themetwork, whose degree is k = 2.
In Fig. 2 we present analytical results for the tail distribution P(Tpg > t|K > 1)

(solid lines) of first return times of an NBW 'en annErdés-Rényi network of size N = 1000

and mean degree ¢ = 10. The analytical results, obtained from Eq. (42), are in very
good agreement with the results obtained from computer simulations (circles).
Inserting P(Trgr > t|K > 1) from Eqa(42) into Eq. (23), we obtain

Nc

K> 1] . (44)
Evaluating the mean on the rightthand side of Eq. (44), we obtain

—C

e

E[Trri > 1) ch1 [Ei(c) —c—Inc—17], (45)

— e—C — CG—C

where Ei(x) is the expenential integral [70]

Ei(z) = / ’ %tdt, (46)

and 7 is the BEuler-Mascheroni constant [70]. In the limit of large mean degree ¢, Eq.
(45) canbe simplified to

1 1
where"@(1/c?) means that the terms of order 1/c? and higher are ignored in the
expansion. This is in agreement with the first two terms on the right hand side of Eq.

(25), econfirming the validity of the expansion to the Poisson distribution, for sufficiently
large values of the mean degree c. Eq. (47) shows that the mean first return time in an
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ER network is larger than in an RRG of the same size, and is a decreasing function, of
c.

In Fig. 3 we present analytical results for the mean first return time E[Tpgr| K> 1]
(solid line) of an NBW on an Erdés-Rényi network of size N = 1000, as _a' funetion of
the mean degree c¢. The analytical results, obtained from Eq. (45), arelin very,good
agreement with the results obtained from computer simulations (circles).

Similarly, we can calculate the second moment, by plugging Eq./(41) into/Eq. (26).
We obtain

— o0
¢ |

1—e¢—ce¢ Kl k2
=2

E[T3:|K > 1] ~ 2N% (48)

Carrying out the summation on the right hand size of Eq. (48), we obtain

¢ 1,11
E [T2|K > 1] ~ 2N23 —° Bl —1]. 4
[FR| ~ } cl—e*C—ce*C T 22,2 ¢ (49)
a1, G2, a3 . . . .
where 3F3( b b b z) is the generalized hypergeometric function [70]. Thus, the
1,Y2,V3

variance of P(Trg > t|K > 1) is give by

e ¢ 1.1.1
Var(Trr|K > 1) = 2N2¢3 F o
ar(Ter| ) M [3 3<2,2,2

)|

£ N2 ( ¢’ )2 [Ei(c) — c—Inc -], (50)

l1—e¢—cec

In the limit of large mean degree ¢, one can simplify Eq. (50), which takes the form

4 1

c c
In Fig. 4 we present, analytical results for the variance Var(Trg|K > 1) (solid line)
of the distributiom of first return times of an NBW on an Erdds-Rényi network of size
N = 1000, as asfunctions6f the mean degree c. The analytical results, obtained from Eq.
(50), are in very good agréement with the results obtained from computer simulations

(circles).

5.8. Configuration model networks with an exponential degree distribution

Consider an ensemble of configuration model networks with an exponential degree
distribution of the form

P(k) = Ae°*, (52)

where o > 0 is the rate parameter and the degree k takes values in the range
Fain < k < oo [P(k) =0 for 0 < k < kyin — 1]. The parameter A is a normalization
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factor and it is given by A = (1 —e~)e%min, In order to obtain a network that comsists
of a single connected component, one needs to choose ki, > 2.

Imposing the normalization condition and parameterising the distribution in terms
of the mean degree ¢ = (K), one can rewrite the degree distribution in the form [42]

P<k) B 1 c— kmin k_kmin (53)
_C_kmin—i_1 C_kmin_'_1 ’
for k > kpin. The parameter o from Eq. (52) can be expressed in theform
C — kmin +1
=In{——— ). 54
“ N ( Cc— kmin ) ( )

The variance of the exponential degree distribution can belexpressed in the form

Var(K) = (C — kmin + 1)(0 | kmin); (55)

such that in the limit of a broad degree distribution, where ¢ > ky;, it can be
approximated by

Var(K) ~ ¢, (56)

Inserting P(k) from Eq. (53) dnutesEq. (14) and carrying out the summation, we
obtain the distribution of first return times

1 o

1
Bl — ko _c—hnin oyt
in ot —k ine Nec

To explore the asymptotic long time tail of P(Trgr > t) we expand the right hand side
of Eq. (57) in powers of exp (—Nic) < 1, we obtain

1 Emin
P(TFR > t) ~ m€_ Ne t. (58)

As can be seen, this tailis dominated by the lowest degree nodes, whose degree is kyin.

In Fig. 5 we present analytical results for the tail distribution P(7Fr > t) (solid
lines) of first réturn times,of an NBW on a configuration model network of size N = 1000
that exhibits'an exponential degree distribution with k,;, = 3 and mean degree ¢ = 10.
The analyfical results, obtained from Eq. (57), are in very good agreement with the
results obtained from computer simulations (circles).

To, caleulate the mean of the distribution of first return times, we use Eq. (23), and
obtain

c C — Ky
E|Tvr| = N d 201 ki 59
[FR] C+1_kmin <C+1_kmin’ ’ )7 ( )

where ®(z, s, ) is the Lerch transcendent [70]. In the limit of large mean degree ¢, we
obtain
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E[Tyr] = N |lnc— Hy, . 1+ O (ln_c)} , (60)

Cc

where H,, is the Harmonic number [70]. Note that the leading term in E[Trgr)yis given
by Nlnc, unlike the the RRG and ER network, in which E[Tggr] ~ N.| This reflects
the fact that the variance of the degrees in the exponential case is much larger than in
the Poisson distribution and that it increases as c is increased. Since the, exponential
distribution is broad and highly asymmetric, the expansion presentedin Eq./(25) cannot
be used to reproduce the results of Eq. (60). Eq. (60) shows that the mean first return
time in configuration model networks with an exponential degree'distribution increases
logarithmically with the mean degree c.

In Fig. 6 we present analytical results for the mean fitst return time E[Twg] (solid
line) of an NBW on a configuration model network of size N =:1000 which exhibits an
exponential degree distribution with k,;, = 3, as a function ef/the mean degree c¢. The
analytical results, obtained from Eq. (59), are in very good agreement with the results
obtained from computer simulations (circles).

Similarly, we calculate the second mgment, using Eq. (26). We obtain

E[1%] = 2V—C Vg (97 b, (61)
FRI ™ C—f—l—k‘min C+1_kmin7 ;o )

In the limit of large ¢, we obtain

Inc

E [TFQR] — 2N? [(c + 2kmin #1)C(2, knin) —Inc+Hy,, 1 —1+0 (T)} . (62)

where ((s,a) is the Hurwitzizeta function [70].
The variance is given by

2
2@ ( c—kmin 2 ka . > (1) ( c—Kmin 1 k . )
R T ctl—kpiy 7 7 I
Var(Tygr) = (Nc)? o B - P B : (63)

In the limit of large ¢, one can express the variance in a simpler form, namely

1 —1)Inc

min

Var(Tyg) ~ N? [20 C(2, ki) — (Inc)? + 2 (H,
+ 2 (kain - 1) C(27 kmin) + 2Hkmm71

1
—HX _ —240 (HTC)} . (64)

Note that the leading term is proportional to the mean degree c.
In Fig. 7 we present analytical results for the variance Var(Tyg) (solid line) of
the distribution of first return times of an NBW on a configuration model network of
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size N = 1000, which exhibits an exponential degree distribution with k.;, = 3yas a
function of the mean degree ¢. The analytical results, obtained from Eq. (63), are in
very good agreement with the results obtained from computer simulations (circles)s

5.4. Configuration model networks with a power-law degree distribution

Consider a configuration model network with a power-law degree distribution of the
form

P(k) = Ak, (65)

where the degree k takes values in the range ki, < k% <bknax- The parameter
A = [C(7, kmin) — C(7, kmax + 1)] 7! is a normalization cofstant. Here we focus on the
case that Kk, > 2, in which the network consists of a single connected component.

Since a power-law distribution may allow nodes,of highidegree, it is important to
note that in order to enable the construction of a configuration model network in which
degree-degree correlations are negligible, on must impese an upper cutoff on the degree
distribution, which satisfies kyax < vV Ne [38,39].

The mean degree is given by [42]

C(7 — 17 kmin) S C('V - 17 kmax + 1)

c=(K)= , 66
< > C(% kmin) - C(% kmax + 1) ( )
and the second moment of the degree distribution is
=2 kmin - - 27 kmax 1

C('% kmin) - C('% kmax + 1)

The variance of the degree distribution is given by Var(K) = (K?) — (K).
For v < 2 the mean degree (and the variance) diverge when k., — oo. For v > 3

both the mean degree‘and the variance are bounded. In the intermediate range of

2 < v < 3 the mean degreey(K’) is bounded while the variance Var(K') diverges. In this

regime, as kyax is increased, the variance diverges like

1
Var( K =~ kmax 3_7‘ 68
( ) (3 - 7)[€('7a kmin) - g(% Kmax + 1)] ( ) ( )
Inserting P(k) from Eq. (65) into Eq. (14) and carrying out the summation, we
obtain
e_ﬁkminQ) <€_ﬁ7ry’ kmln) — e_ﬁ(kmax‘i‘l)@ <6_ﬁ,77 kmax + 1)
P(TFR > t) = (69)

g(’ya kmin) - g(’% kmax + ]-)

To explore the asymptotic long time tail of P(Trgr > t) we expand the right hand side
of Eq. (69) in powers of exp (—Nic) < 1, we obtain
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(kmin>_’y ,@t
e Ne ',

C(’yv kmin) - C(77 kmax + 1)
As can be seen, this tail is dominated by the lowest degree nodes, whose degree.is kpyin:

P(Tyg > t) ~ (70Y

In Fig. 8 we present analytical results for the tail distribution P(Zkr > t) (solid
lines) of first return times of an NBW on a configuration model network of size /N = 1000
that exhibits a power-law degree distribution with ki = 3, knax = 30 and vy = 2.5,
which yields a mean degree of (K) ~ 5.58. The analytical results, ‘ebtained from Eq.
(69), are in very good agreement with the results obtained from computer simulations
(circles).

Inserting P(k) from Eq. (65) into Eq. (23) and carryingieut the summation, we
obtain the mean first return time, which is given by

C(’Y + 17 kmin) - C(,}/ T 17 kmax + 1)

C(77 kmin) - C(’y’ Ko 17 1)

Since the power-law distribution is broad and highly asymmetric, the expansion

presented in Eq. (25) for (%) cannot be used toreproduce the results of Eq. (71).

In the limit of kp.x — oo, inserting (K) from Eqi (66), Eq. (71) is reduced to

C(7 _ 17 kmin)((ﬁy + 17 kmin) '

E[Trr] = N(K) (71)

E|Tvr| = N 72
e (€ Fmin)|? (72)
For v # 1 and k > 0, the Hurwitz zeta funetion can be expressed in the form
k= kY 1 o 1 1 1
k) = - - v—1 —kxd
Cv. k) = = +7_1+F(7)/0 <6x_1 x+2)x e "dz, (73)

where I'(y) is the Gamma functions[70]. In the context of this paper the Hurwitz zeta
function (7, k) is evaluated/n the range of v > 1 and k > 3. Exploring the terms on
the right hand size of\Eq. (73).im'this range of values, it was found that the contribution
of the integral is negligible. Thus, Eq. (73) can be simplified to

k) ~ L (1 + ﬂ) | (74)

v—1
Inserting ((v; k) from Eq.(74) into Eq. (72), we obtain

2 2
(1 sZ5himin) (1+ 2o

(\V]

E[TFR] ~ N , 5 (75)
(14 25kmin)
For sufficiently large values of ki, Eq. (72) can be approximated by
(y—1)° 1
ETer| =2 N | ——— .

In_practice, for ky;, = 3 there is a slight deviation between the right hand sides of
Egs. (72) and (76), which becomes negligible for k;, > 5. It is found that E[Tgg] is a
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monotonically decreasing function of the exponent ~. In the limit of v > 1 it converges
towards E[Trg| ~ N, where it coincides with the result for RRGs. In the opposite limit,
when v — 27 the mean first return time diverges (given that k., — 00).

Going back to Eq. (71), taking the limit of kyayx > kmin and using Equn(74) to
approximate the ratio (v + 1, kmin)/C (77, kmin) While leaving (K') unchanged, we obtain

7 —1(K)
Y kmin.

While the results obtained from Eq. (77) are not as accurate 4s those obtained from

E[Tyr] ~ N (77)

Eq. (76), it provides useful insight on the relation between the'mean first return time
and the mean degree (K). Comparing Eq. (77) to Eq. (24) shews that the mean first
return time is dominated by the lowest degree nodes.

The second moment, obtained from Eq. (26), is given by

2<(7 + 27 kmin) 1 C(fy + 27 kmax + 1)

2 _
5 [TFR] B 2(N<K>) C(’Ya kmin) = C(’Ya kmax + 1) ’ (78)
and the variance is given by
_ C(7 + 2] kmin) A g('y +2, Kmax + 1)
Var(TFR) - 2<N<K>)2 C(’V; kmin) 4 C(’% kmax + 1)
2 C(7+1akmin>_C(7+17kmax+1) ?
Sl e e e )

In the limit of k.x — 00, and for values of v which are sufficiently far above v = 2, the
variance of the distribution of first return times can be roughly approximated by

2
2 2
(1 + ﬁkmin> <]- + mkmin>
3
2
(14 2k

2 2
2 2
. N2 (1 + y—1 kmin) <1 + Y+l kmin)

Var(TFR) -~ 2N2

; 1 (80)
(14 2himin
For sufficiently large values of ki, Eq. (80) can be approximated by
3(A~2 2 2

(v =12y +1)2(y+2)
In théldimit of large v, the variance converges towards N2, in agreement with the result

for RRGs. Interestingly, in the opposite limit of ¥ — 2% the variance remains finite,
unlike the mean first return time that tends to diverge.
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6. Discussion

A key observation, expressed by Eq. (13) is that the distribution of fir§t returnitimes
for an initial node of a given degree k depends only on the degree k and onithe total
number of ’directed’ edges in the network, given by Nec. It does not depend on the
degree distribution P(k), which accounts for the way in which the Nc¢ =2k remaining
‘directed’ edges are divided among the N — 1 remaining nodes. This implies that the
distribution of first return times is determined by local properties of 'the network and is
not sensitive to the global structure.

In Fig. 9 we present analytical results for the distributionef first return times of
NBWs starting from a random initial node of degree k& = .8in _a cenfiguration model
network of size N = 1000 and mean degree ¢ = 8, givendby Eq. (13). The analytical
results are found to be in very good agreement with simulation‘results for RRGs (o),
ER networks (x) and configuration model networks with expenential (4) and power-law
(O) distributions. As can be seen, the distribution P(Tpg > | K = 8) does not depend
on the degree distribution P(k) but only on the mean degree ¢ and on the degree of the
initial node.

Comparing the results obtained for the four random network models considered
above, we conclude that the mean first return timestrongly depends on the variability
of the degrees of nodes in the networks.More specifically, as the degree distribution
P(k) becomes broader the mean first return time E[Trg| increases. This is illustrated
by the fact that for an NBW on an RRG E{Z#g| ~ N, for an NBW on an ER network
E[Tpr|K > 1] ~ N (14 1),/forpan NBW 0n a configuration model network with an
exponential degree distribution” E[Tsg] ~ Nlnc and for an NBW on a configuration
model network with a power-law degree distribution E[T¥gr] ~ N¢/kmin. In light of
these results, it is interesting to note that the dependence of the mean first return time
on the mean degree ¢ is a'non-trivial issue, which depends on the details of the degree
distribution. In the examplesstudied here we observe three different behaviors: in RRGs
the mean first return timeis.independent of ¢, in ER networks it decreases with ¢ and in
configuration model networks with an exponential degree distribution it increases with
c.

In all the"network ensembles considered above, the long-time tail of P(Trg > t)
exhibits a decaying exponential form, which is determined by the lowest-degree nodes in
the network: From a broader perspective, it implies that the distribution of first return
times is mostly/ characterised by low-degree nodes that reside in the periphery of the
netwerk. This'is unlike the outburst dynamics of other processes such as the spreading
of information and infections, which are dominated by the highest degree nodes (or
hubs)that reside in the core of the network [5].

Apart from the first return process, there are other significant events that take
place over the lifetime of an NBW (and other RWs) on a random network. One of them
is the first hitting (FH) process, which is the first time at which an NBW steps into a
previously visited node. Starting from a random initial node 7, in the early stages of its
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trajectory, an NBW visits a new node at each time step. During this time, the statistical
properties of the NBW trajectory are identical to those of a self avoiding walk [71]. After
the first hitting event, in some of the time steps the NBW visits yet-unvisited nodesiand
in other time steps it revisits nodes that it has already visited before. The distribution of
first hitting times of RWs and NBWs on ER networks were studied in Refs: [72] and [73],
respectively. It was found that in both cases, for sufficiently dense ER networks in which
there are no leaf nodes of degree k = 1, the distribution P(Try > t) of first hitting times
is given by a product of an exponential distribution and a Rayleigh distribution, which
is a special case of the Weibull distribution. In this limit, the mean first hitting time of
NBWs on ER networks is given by

E(Ten) = \/?/N (82)

Similar results were also obtained for first hitting precesses on’RRGs [74].

The results presented in this paper shed light on the more general class of first
passage processes. Consider an NBW starting from & random initial node 7, seeking a
target node j, where j # ¢. Unlike the fitst return event of an NBW which may take
place only at t > 3, a first passage event mayitake place even at t = 1 (in case that i
and j are connected by an edge). We thus concluderthat to a very good approximation,
the distribution of first passage times offNBWs on’configuration model networks can be
expressed in the form

Another important event, which e¢curs at much longer time scales, is the step at
which an NBW (or RW) completeswisiting all the nodes in the network. The time at
which this happens is called the cover-time. For RWs on RRGs it was shown that the
mean cover time scales dike

E[T¢] o« Nln N. (84)

This means that on,average an RW visits each node In N times before it completes
visiting all thé modes in:the network at least once. The distribution of cover times of
RWs on RRGs/was studied in Refs. [4,75,76]. Since they do not backtrack their steps,
NBWs scanrthe network more efficiently than RWs. This is expected to affect the pre-
factor of the scaling relation on the right hand side of Eq. (84) but is not expected to
changesthe way the cover time scales with N.

The results presented in this paper were derived in the context of configuration
modelinetworks. However, we expect them to apply within a good approximation
to.a somewhat broader class of small-world networks which are sufficiently strongly
g¢onnected without bottlenecks and exhibit short mixing times of the NBW, determined
by the spectral gap of the non-backtracking (Hashimoto) matrix. In contrast, these
results are not expected to apply in the case of modular networks, which consist of
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several modules with weak connections between them and for networks that exhibit
long mixing times. However, in the case of modular networks, at short times, the
distribution of first return times is likely to behave as if the module on which the initial
node resides is isolated from other modules. This behavior persists until the probability
that the NBW will hop into some other module becomes significant.

In essence, the derivation presented above requires that the mixing time will be
much shorter than the mean first return time, such that the assumption that the NBW
samples uniformly the ’directed’ edges is justified. In light of this ‘it.is interesting to
discuss the effect of degree-degree correlations. In general, negative or disassortative
correlations tend to enhance the connectivity of the network [42] and hence shortens
the mixing times [77] by increasing the spectral gap. On the'ether hand, positive or
assortative correlations are known to decrease the spectral'gap [78], thus increasing the
mixing time. This is particularly relevant in networksythat have many high degree
nodes, such as scale-free networks where high assertativityyinay break the network
into disconnected components [42]. However, for low correlations the overall impact
of degree-degree correlations on the spectrum is notylarge, especially on short range
correlations between eigenvalues that follow the predictions of random matrix theory
[79]. In summary, in the case of disassortativemetworks we expect our results to hold.
Regarding networks that exhibit low to mild positive assortativity and to the extent that
they do not break the network inte disconmected components, we expect the results to
hold to a good approximation.

Another key factor influencing the mixing times is the clustering coefficient,
primarily mediated through its effect on the spectral gap. The clustering coefficient
measures how often a node’s neighbors form triangles indicating the degree of local
inter-connectedness. Networks with higher clustering coefficients typically have smaller
spectral gaps. This occurs/because increased clustering introduces more local structure.
A smaller spectral gap leadsto longer mixing times, since random walks become trapped
in tightly connected neighborhood before fully exploring the network [80]. Consequently,
higher clustering inereases the mixing times. We thus expect our results to be valid as
long as the clustering is not too strong.

While directed metworks are of significant theoretical interest, they introduce
complexities /that fall eutside the scope of this paper. In directed networks the
asymmetry ofiédges/creates distinct behavior as the random walk dynamics are heavily
influenced by both the in-degrees and out-degrees. This asymmetry complicates the
analysis ‘of return times and of the mixing behavior, often leading to nodes with low
in-degrees being visited only rarely or potentially not at all. Additionally, in weakly
coniected networks random walkers may become trapped in certain domains rendering
the analysis of return times more intricate. As the focus of this paper is on undirected
networks, we leave these issues to future work.
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7. Summary

We presented analytical results for the distribution of first return timés of NBWs on
configuration model networks consisting of N nodes with degree distributien P(k);
focusing on the case in which the network consists of a single connected compomnent.
It was found that the tail distribution P(Trg > t) of first return times ig,given by a
discrete Laplace transform of the degree distribution P(k). This result demonstrates the
relation between structural properties of a network, captured by the degree distribution,
and the properties of dynamical processes taking place on the network. It was found that
P(Trr > t) exhibits an exponential tail, which is determined bysthe properties of the
low-degree nodes that reside in the periphery of the network."We calculated the mean
first return time and found that E[Tyg] = (5€). Surprisingly, this fesult coincides with
the result of Kac’s lemma that applies to simple RWs, in.agreement with recent rigorous
results by Fasino et al. [30]. We also calculated the variance Var(7rg ), which accounts for
the variability of the first return times between differenttNBW trajectories. We applied
this formalism to random regular graphs, Erdés-Rényinetworks and configuration model
networks with exponential and power-law degree distributions and obtained closed-form
expressions for P(Tgpgr > t) and its first twonmomnents. These results provide useful
insight on the advantages of NBWs over simple RWS in network exploration, sampling
and search processes. Our results areérexpected to‘hold for a broader class of networks,
in which the mixing time is much shorter than the mean first return times.

This work was supported by Grant nes 2020720 from the United States-Israel
Binational Science Foundation (BSF) and grant no. 2102832 from the National Science
Foundation (NSF).
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Figure 1. Analytical results (solid line), obtained, from Eq. (32), for the tail
distribution P(Tgg > t) of first return times of an. NBW on an RRG of size N = 1000.
The right hand side of Eq. (32) does not.depend enythe degree ¢, which implies that
these results are valid for RRGs with any degree ¢ > 3. Indeed, the analytical results
are in very good agreement with the results obtained from computer simulations for
¢ =3 (x) and for ¢ = 10 (o). Each data point-of the simulation results was obtained by
averaging the results obtained for 20 network/instances and 100,000 NBW trajectories
for each network instance.
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Figure 2. Analytical results for the tail distribution P(Trg > ¢|K > 1) (solid line)
of first return times of an NBW on an Erd&s-Rényi network of size N = 1000 and
mean degree ¢ = 10. The analytical results, obtained from Eq. (42), are in very
good agreement with the results obtained from computer simulations (circles). The
simulation results were obtained using the same averaging procedure as in Fig. 1.
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Figure 3. Analytical results for the mean_ first return time E[Tpr|K > 1] (solid
line) of an NBW on an Erdds-Rényi network of.size N = 1000, as a function of the
mean degree ¢, for ¢ > In N, where the whele network consists of a single connected
component and network instances that includeleafinodes are discarded. The analytical
results, obtained from Eq. (45),/axe in very good agreement with the results obtained
from computer simulations (circles). »Each ‘data point of the simulation results was
obtained by averaging the results obtained,for 20 network instances and 10,000 NBW
trajectories for each network instance.
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Figure 4. Analytical results for the variance Var(Trr|K > 1) (solid line) of the
distribution of first return times of an NBW on an Erdés-Rényi network of size
N = 1000, as a function of the mean degree c. The analytical results, obtained
from Eq. (50), are in very good agreement with the results obtained from computer
simulations (circles). The simulation results were obtained using the same averaging
procedure as in Fig. 3.
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Figure 5. Analytical results for the tail distribution»P(Zrgr > t) (solid lines) of first
return times of an NBW on a configuration' model nefwork of size N = 1000 which
exhibits an exponential degree distributionswith kpin'= 3 and mean degree ¢ = 10. The
analytical results, obtained from Eq. (57), are in,very good agreement with the results
obtained from computer simulations (circles). The simulation results were obtained
using the same averaging procedure as,in Fig. 1.
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Figure 6. Analytical results for the mean first return time E[Twg] (solid line) of
an NBW on a configuration model network of size N = 1000, which exhibits an
exponential degree distribution with kny;,, = 3, as a function of the mean degree c.
The analytical results, obtained from Eq. (59), are in very good agreement with
the results obtained from computer simulations (circles). The simulation results were
obtained using the same averaging procedure as in Fig. 3.
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2 Figure 7. Analytical results for the variance Var(Trgr)i(solid line) of the distribution of
23 first return times of an NBW on a configuration model network of size N = 1000, which
24 exhibits an exponential degree distributiomswith kyi’ = 3, as a function of the mean
25 degree c. The analytical results, obtainéd fromyEq.” (63), are in very good agreement
26 with the results obtained from ¢omputer simulations (circles). The simulation results
27 were obtained using the same averaging procedure as in Fig. 3.
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54 Figure 8. Analytical results for the tail distribution P(Trg > t) (solid lines) of first
55 return times of an NBW on a configuration model network of size N = 1000 which
56 exhibits a power-law distribution with kyi, = 3, kmax = 30 and v = 2.5. The analytical
57 results, obtained from Eq. (69), are in very good agreement with the results obtained
from computer simulations (circles). The simulation results were obtained using the
same averaging procedure as in Fig. 1.
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Figure 9. Analytical results for the distribution of first return times for NBWs
starting from an initial node of degree k = 8yin configuration model networks of
size N = 1000 and mean degree ¢ = 8 given by BEq. (13). The analytical results
are found to be in very good agreement withhsimulation results for RRGs (o), ER
networks (x) and configurationgmodel networks with exponential (4) and power-law
(O) distributions. Each data point in the simulation results was obtained by averaging
over 20 independent network instances and. 10,000 NBW trajectories in each network
instance, starting from the same initial node of degree k = 8.
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