

1
2

3 Predicting the contribution of single trait evolution to rescuing a plant population from demographic
4 impacts of climate change

5 Campbell, Diane R.^{1,2}, Powers, John M.^{1,2} and Justin Kipness²

6

7 1. Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92697

8 2. Rocky Mountain Biological Laboratory, Crested Butte, CO 81224

9

10 **Abstract**

11 Evolutionary adaptation can allow a population to persist in the face of a new environmental
12 challenge. With many populations now threatened by environmental change, it is important to
13 understand whether this process of evolutionary rescue is feasible under natural conditions, yet
14 work on this topic has been largely theoretical. We used unique long-term data to parameterize
15 deterministic and stochastic models of evolutionary rescue with field estimates for the subalpine
16 plant *Ipomopsis aggregata* and hybrids with its close relative *I. tenuituba*. In the absence of
17 evolution or plasticity, the two studied populations are projected to go locally extinct due to
18 earlier snowmelt under climate change, which imposes drought conditions. Phenotypic selection
19 on specific leaf area (SLA) was estimated in 12 years and multiple populations. Those data on
20 selection and its environmental sensitivity to annual snowmelt timing in the spring were
21 combined with previous data on heritability of the trait, phenotypic plasticity of the trait, and the
22 impact of snowmelt timing on mean absolute fitness. Selection favored low values of SLA
23 (thicker leaves). The evolutionary response to selection on that single trait was insufficient to
24 allow evolutionary rescue by itself, but in combination with phenotypic plasticity it promoted
25 evolutionary rescue in one of the two populations. The number of years until population size
26 would stop declining and begin to rise again was heavily dependent upon stochastic
27 environmental changes in snowmelt timing around the trend line. Our study illustrates how field
28 estimates of quantitative genetic parameters can be used to predict the likelihood of evolutionary
29 rescue. Although a complete set of parameter estimates are generally unavailable, it may also be
30 possible to predict the general likelihood of evolutionary rescue based on published ranges for
31 phenotypic selection and heritability and the extent to which early snowmelt impacts fitness.

32 **Key words:** adaptation, climate change, environmental stochasticity, evolutionary rescue,
33 genetic variation, *Ipomopsis*, phenotypic plasticity, phenotypic selection, snowmelt, specific leaf
34 area.

35 **Lay summary**

36 Climate change is threatening many populations around the world. A population can avoid
37 extinction by dispersal to more favorable locations, but that is not possible for many plants with
38 limited seed dispersal. An alternative is evolutionary change in which changes in traits increase
39 fitness and result in rescue of an otherwise endangered population. Some populations of a
40 subalpine herb, Scarlet gilia, are threatened by increasingly early spring snowmelt due to climate
41 change. Long-term field data on this species generated a unique opportunity to examine if
42 evolutionary rescue is likely in a plant population. We estimated the strength of natural selection
43 on specific leaf area (leaf thinness) in 12 years and its dependence on the date of snowmelt that
44 year. Combined with previous estimates of the heritability of the trait (which affects speed of
45 evolution), the direct response of the trait to date of snowmelt (plasticity) and the demographic
46 impact of early snowmelt, models predicted that evolutionary rescue is possible in one of two
47 threatened populations. Evolutionary rescue occurred in part because the plastic change to
48 thicker leaves under early snowmelt and drought was adaptive. Our work provides one of the
49 first examples to apply evolutionary rescue models to natural populations.

50

51 **Introduction**

52 Climate change is putting many populations at risk of extinction (Bellard et al., 2012; MacLean
53 & Wilson, 2011). At-risk species could persist in the face of climate change by (1) dispersal to
54 new localities with more favorable environmental conditions, (2) altering phenology to match
55 abiotic conditions that change temporally, or (3) expressing new trait values that are adaptive
56 under the new conditions, through a response to selection, phenotypic plasticity, or both.

57 Whereas examples of the first mechanisms are relatively well-known, the third mechanism of
58 persisting in the face of climate change has been less well documented under natural conditions
59 (Parmesan, 2006). With rapid environmental changes around the world, understanding adaptive
60 responses to the changing climate is urgently important, particularly for species with limited
61 dispersal ability, such as many plants.

62 Adaptive responses to climate change could result from genetic changes due to evolution
63 in response to the new conditions or to phenotypic plasticity (Chevin et al., 2013). The process
64 by which adaptive evolutionary change occurs sufficiently rapidly to counteract a decline in
65 population size under initially unfavorable conditions has been called evolutionary rescue (Bell
66 & Gonzalez, 2011). Evolutionary rescue has been modeled primarily using classical quantitative
67 genetic approaches (Chevin et al., 2013; Chevin et al., 2010; Gomulkiewicz & Holt, 1995; Kopp
68 & Matuszewski, 2014), although there is increasing interest in incorporating genomics (Bay et
69 al., 2017; Urban et al., 2023). The likelihood of evolutionary rescue depends upon the balance
70 between the speed of evolutionary adaptation and the initial maladaptation of the population
71 (Gomulkiewicz & Holt, 1995). A population declines initially in size due to the environmental
72 challenge, then alleles or traits adaptive in the new environment increase in frequency, leading to
73 higher mean absolute fitness and eventually a rebound in population size, if fitness is increased

74 enough before the population goes extinct (Carlson et al., 2014). Evolutionary rescue can occur
75 under greater environmental change when (1) genetic variance in a trait is high, (2) selection on
76 the trait has a high sensitivity to the environment, and (3) generation time is short (Chevin et al.,
77 2010). Phenotypic plasticity can enhance adaptation and further promote population persistence
78 if plasticity is not costly to the organism (Scheiner et al., 2019). Despite that theoretical
79 understanding, and laboratory demonstrations with microbes (Bell, 2017), we currently lack
80 much understanding of how often conditions are sufficient for multicellular organisms in nature
81 (Gomulkiewicz & Shaw, 2013; Urban et al., 2023), but see Peschel & Shaw (2024).

82 Here we use a well-studied plant system to determine how evolution in a single trait
83 influences the likelihood of population persistence under climate change. Whereas the analysis
84 of a single trait under selection does not capture some important features of evolutionary rescue,
85 such as shifts in multiple genetically correlated traits, the approach illustrates how theoretical
86 models of evolutionary rescue can be applied to real systems with all the challenges in estimating
87 parameters under field conditions. At least three kinds of information are necessary: genetic
88 variance, strength and environmental sensitivity of natural selection, and effect of an
89 environmental challenge on mean fitness. All of these are difficult to measure under natural
90 conditions, although information on one or two of them is sometimes available for a given plant
91 species, including estimates of selection on functional traits (Dudley, 1996), genetic variation
92 (Ahrens et al., 2019), or change in mean fitness in a novel environment (Walter et al., 2023).
93 Here we leverage 12 years of data on natural selection and plasticity, in combination with
94 previously published data, to provide for the first time all three kinds of information for natural
95 plant populations.

96 We focus on specific leaf area (SLA) in subalpine plants, especially Scarlet gilia,
97 *Ipomopsis aggregata*, and its close congener *Ipomopsis tenuituba* (Polemoniaceae), in the Rocky
98 Mountains, Colorado, USA. In the western USA including Colorado, there is already a 10-20%
99 loss in water contained in the snowpack since the 1980s, with a further loss of 60% projected
100 over the next 30 years (Fyfe et al., 2017), and this reduced snowpack has caused shifts towards
101 earlier melting in the spring (Clow, 2010). In the Colorado Rocky Mountains, *Ipomopsis*
102 populations are threatened by earlier snowmelt, which currently causes lower seedling
103 emergence, lower chance of survival to the next year, and lower seed production, projecting
104 declines in local abundance (Campbell, 2019). Whereas pollen dispersal could introduce new
105 genes that aid persistence, seed dispersal and migration to more suitable habitat are unlikely to
106 contribute to persistence as seeds rarely disperse > 1 m (Campbell et al., 2017). On the other
107 hand, several traits of *I. aggregata* experience ongoing natural selection and show genetic
108 variance (Campbell et al., 2022), thus providing the raw material for evolutionary rescue from
109 these deleterious impacts of climate change. One such trait is specific leaf area (SLA): the ratio
110 of leaf area to dry mass. On a global scale, low SLA (i.e. thick leaves) is often associated with
111 dry conditions as it reduces surface area, thereby reducing water loss from the leaf, at the cost of
112 reduced photosynthesis (Poorter et al., 2009). In some natural populations of *Ipomopsis*, plants
113 with low SLA had higher survival (Campbell et al., 2024), demonstrating selection on the trait.
114 In a short-term experimental study of *I. aggregata*, selection on this trait depended upon
115 snowmelt timing in the spring; plants with low SLA were more likely to survive to flower when
116 snowmelt was artificially accelerated, but not so under later snowmelt (Navarro et al., 2022). In a
117 quantitative genetic study in the field, SLA showed significant narrow sense heritability of 10%,
118 indicating its potential to evolve in response to phenotypic selection (Campbell et al., 2022).

119 Finally, the trait shows phenotypic plasticity; in repeated measures of the same plants over
120 several years, SLA is lower in years of earlier snowmelt (Campbell et al., 2022), which is
121 adaptive (Navarro et al., 2022).

122 We first use 12 years of field data on SLA and its impact on fitness from years that varied
123 greatly in snowmelt timing to determine overall selection on SLA and its environmental
124 sensitivity under natural conditions. Only one rare study of flowering time measured selection in
125 natural plant populations over a longer period (Ehrlén & Valdés, 2020). We then develop models
126 of evolutionary rescue, incorporating the known genetic variance in that trait, and use them to
127 determine whether evolutionary response to the selection is sufficient to counteract the impact of
128 snowmelt timing on population growth. We address four specific questions:

129 1. How does selection on specific leaf area (SLA) depend on snowmelt timing?
130 2. How do magnitudes of heritability and selection intensity affect the likelihood of evolutionary
131 rescue, and do actual field estimates for SLA fall in the range needed for evolutionary rescue?
132 3. Is population persistence likely given the overall temporal trend towards earlier snowmelt, and
133 how does environmental stochasticity, in the form of variability around that trend, affect
134 persistence? With climate change likely to increase extremes (IPCC, 2022) as well as average
135 temperature, it is important to consider the impact of that variability.
136 4. How does phenotypic plasticity affect the likelihood of evolutionary rescue in this natural
137 system?

138 **Materials and Methods**

139 **Study System**

140 The study sites consisted of three “Poverty Gulch” sites in Gunnison National Forest and
141 one site “Vera Falls” at the Rocky Mountain Biological Laboratory, all in Gunnison County, CO,

142 USA. At Poverty Gulch there is a natural hybrid zone between *Ipomopsis aggregata* ssp.
143 *aggregata* and *I. tenuituba* ssp. *tenuituba* (Campbell et al., 1997). Focal plants included two sets
144 of plants. One set (data from 2009-2019) consisted of plants in common gardens at three sites: an
145 *I. aggregata* site (hereafter “agg”; site L in Campbell et al., 1997), an *I. tenuituba* site (hereafter
146 “ten”; site C) and a site at the center of the natural hybrid zone (hereafter “hyb”; site I). The
147 second set consisted of plants growing in situ at the Poverty Gulch *I. aggregata* site (also
148 included in “agg”), the Poverty Gulch hybrid site (also included in “hyb”), and an *I. aggregata*
149 site at Vera Falls (hereafter “VF”; data from 2017-2023). Natural populations of *Ipomopsis* at
150 these sites are relatively small, with typically 30 to 70 flowering individuals, along with plants in
151 the vegetative state, in a given year.

152 At these sites, plants of *Ipomopsis* emerge as seedlings in the spring, and spend 2 to 12+
153 years as a rosette of leaves before sending up a flowering stalk during the year of flowering
154 (Campbell et al., 2008). The mean generation time is 5 years in this locality (Campbell & Waser,
155 2007). The plants bloom during a single season, set seed, and then die. The plants have
156 hermaphroditic flowers and are self-incompatible. The primary pollinators are hummingbirds
157 and hawkmoths, with occasional flower visits from butterflies and solitary bees (Campbell et al.,
158 1997; Price et al., 2005). The common gardens were started from seed in 2007 and 2008 (details
159 in (Campbell, 2019; Campbell & Powers, 2015). Measurements of SLA in these gardens began
160 when plants were 2 years old, either 2009 or 2010 depending upon the garden, as they are only
161 small seedlings during their first summer after seed maturation. By 2018, all but 15 of the 4512
162 plants originally planted had died, with or without blooming, and we stopped following these
163 gardens. Starting in 2017, in situ vegetative plants at the *I. aggregata* site and the hybrid site
164 whose longest leaf exceeded 25 mm were marked with metal tags to facilitate identification.

165 **Measurements of trait and fitness**

166 In each year of the study, one leaf from each vegetative plant was collected in the field
167 and transported on ice to the nearby Rocky Mountain Biological Laboratory (RMBL), 8 km
168 distant. There each leaf was scanned with a flatbed scanner and analyzed using ImageJ (National
169 Institutes of Health, Bethesda, MD, USA) to measure leaf area. The leaf was dried at 70 deg C
170 for 2 hours and then weighed to obtain dry mass and calculate SLA as area/dry mass. For plants
171 in the common gardens, SLA was measured on 982 leaves from 383 plants in 2009 – 2014. For
172 in situ plants, SLA was measured on one leaf from each of 877 plants in 2017 – 2022.

173 Fitness was estimated as the binary variable of survival to flowering. Plants that were still
174 alive in 2019 in the common gardens or in 2023 at the end of the study were assumed to survive
175 to flowering. Whereas it is theoretically possible SLA could also influence flower number or
176 seeds per survivor through effects on resource acquisition during earlier parts of the lifecycle, a
177 previous study of *I. aggregata* found no evidence that selection on SLA differed whether flower
178 number was included or not in the fitness estimate (Navarro et al., 2022).

179 **Question 1: Selection on SLA and its environmental sensitivity**

180 All data analysis and modeling was done in R ver. 4.4.2. To determine the overall
181 average standardized selection differential on SLA, we first averaged SLA across repeated
182 measurements in multiple years for a given plant. This simplification ignored the extent to which
183 an individual plant matched SLA in a given year to local conditions, but that aspect is partly
184 captured by the addition of plasticity (see below). We then performed analysis of covariance to
185 model relative fitness (fitness divided by global mean fitness) as a function of mean SLA and the
186 factor of site, after expressing SLA in units of standard deviation by subtracting the mean and
187 dividing by the standard deviation across plants. The within-site regression coefficient for the

188 effect of the standardized trait value on relative fitness (fitness divided by mean fitness) gives the
189 SD-standardized selection differential (Kingsolver et al., 2001). Site was included as a fixed
190 factor because survival differed on average across the three sites ($P < 0.0001$ in this analysis of
191 covariance).

192 To evaluate the environmental sensitivity of SLA, we used individual measurements in
193 each year and found the separate standardized selection differential in each year, including site
194 along with the effect of standardized SLA in the model. The selection differential was
195 standardized within year but not within site for this analysis. We then regressed the selection
196 differential (both standardized and unstandardized for use in models) on date of snowmelt in that
197 year. Because we had much longer time series for the agg and hybrid sites, we evaluated
198 environmental sensitivity of selection only for those two sites. A steeper slope would indicate
199 greater environmental sensitivity of selection. We examined trends in snowmelt date from 1985-
200 2023 at sites agg, hyb, VF and the RMBL, at a similar elevation to our agg and VF sites
201 (Supplementary Methods S1). The RMBL data were included because previous studies of how
202 demography depends on snowmelt timing relied on those values (Campbell, 2019), and we
203 therefore calibrated the evolutionary rescue models in the next sections the same way. Snowmelt
204 date was 6 days later at the agg site than at RMBL, 17 days later at the hyb site than at RMBL,
205 and 3 days earlier at site VF, with a common slope of 0.20 days earlier per year.

206 Most models of evolutionary rescue assume that selection on the trait is stabilizing, with
207 an optimum that moves with the environment (Gomulkiewicz & Houle, 2009). In separate
208 analyses, we also tested for stabilizing selection in each year using a model with site, the
209 standardized trait value and the squared value of the standardized trait value. A negative slope of
210 survival on the squared value would indicate curvature to the fitness relationship that

211 corresponds with stabilizing selection. The quadratic regression coefficients were multiplied by 2
 212 to obtain the quadratic selection gradients (Stinchcombe et al., 2008). Since the fitness
 213 component was binary, for all tests we employed function *glm* to perform generalized linear
 214 models with a binomial distribution to test for statistical significance while reporting quantitative
 215 estimates of the selection differentials based on ordinary least squares regression (Kingsolver et
 216 al., 2012).

217 **Question 2: Modeling dependence of evolutionary rescue on selection intensity and
 218 heritability**

219 As the observed selection on SLA was always directional, with no significant stabilizing
 220 or disruptive selection in any year (see Results), we used iterative models of evolutionary rescue
 221 based on directional selection rather than previous models that assumed stabilizing selection. We
 222 developed several models, building from simple to complex. Our first model (*Scenario 1*) was
 223 designed to examine how much evolutionary response (and hence selection intensity and
 224 heritability) was required to counter a particular drop in mean absolute fitness due to early
 225 snowmelt, and for this purpose we used a model for directional selection proposed by Campbell
 226 (2008):

$$227 \quad N_t = \bar{W}_{t-1} N_{t-1} \quad (1)$$

$$228 \quad \bar{W}_t = \bar{W}_0 \left[1 + \frac{b}{v} \Delta z_t \right] \quad (2)$$

229 where N_t = population size in generation t, \bar{W}_t = mean absolute fitness in generation t, and \bar{W}_0 =
 230 mean absolute fitness after the environmental challenge but prior to allowing for evolution. The
 231 portion in brackets expresses how absolute fitness is altered by the evolutionary response given
 232 an abrupt environmental shift to earlier snowmelt. The value Δz_t is the cumulative evolutionary

233 response after t generations in the mean value for trait z. Following standard quantitative genetic
 234 theory:

235
$$\Delta z_t = h^2 S + \Delta z_{t-1} \quad (3)$$

236 where h^2 is heritability and S is the selection differential, which in turn is the covariance between
 237 relative fitness and the trait value (Falconer & MacKay, 1996). Heritability of SLA was set to
 238 0.10, as estimated in the field at these sites (Campbell et al., 2022). The expression b/v converts
 239 Δz_t into an effect on fitness; it equals b, the slope of fitness on z, divided by mean fitness, v. We
 240 assumed a starting stable population of 200 individuals based on historical demographic studies
 241 of *I. aggregata* (Price et al., 2008; Waser et al., 2010) and then a step change to constant
 242 prolonged drought, as in 2012, corresponding to the lowest annual value for absolute fitness
 243 observed across 15 years of study by Campbell (2019). That year had the earliest snowmelt date
 244 (RMBL day in year = 114) in the study, and we used the average of fitness across the *I.*
 245 *aggregata* site ($\bar{W}_0 = 0.82$) and the hybrid site ($\bar{W}_0 = 0.93$; average = 0.88). These values for
 246 fitness were estimated by the intrinsic rate of increase (λ) in integral population models that took
 247 into account all stages of the lifecycle from seed to seedling to vegetative plant to flowering plant
 248 to seed in the next generation (Campbell, 2019). For the strength of selection on SLA, we first
 249 used values from 2010, the year in which we observed the strongest selection favoring low SLA
 250 (Table 1). Since selection was estimated from survival, we are assuming that overall fitness
 251 would be reduced by the same amount as survival. This scenario corresponds to a situation
 252 involving prolonged extreme drought and prolonged strong selection.

253 To fully answer question 2, we examined the sensitivity of the results to changes in
 254 heritability and the selection intensity, in both cases by stepping the parameter from 0.05 to 1.00
 255 by a step of 0.05. Since the plants are hermaphroditic and self-incompatible, in the deterministic

256 case we assumed that the population would be functionally extinct if population size fell below
257 2. To investigate the impact of demographic stochasticity, instead of obtaining the population
258 size in the next generation by multiplying by average fitness, for each individual we drew the
259 number of individuals in the next generation by sampling from a Poisson distribution with a
260 mean equal to average fitness (λ), as justified in Ellner et al. (2016). *Scenario 1* provides a
261 baseline for understanding how population persistence is affected by a particular drop in mean
262 absolute fitness, but has the disadvantage that the environmental change is unrealistic.

263 **Question 3: Population persistence given mean and variance of temporal trend in snowmelt**

264 To determine whether evolutionary rescue can occur given the projected temporal trends
265 in snowmelt date, we modeled *scenario 2* in which snowmelt date was assumed to continue
266 advancing linearly following the trend estimated since 1984 of 0.20 days per year. Because the
267 environmental change is expressed in terms of years rather than generations, we modeled
268 population size over years for this scenario. For simplicity, we retained discrete generations and
269 assumed that the evolutionary response in SLA per year was 0.2 as high as the evolutionary
270 response per generation (= 5 years). We then modeled the effect separately for the hyb and agg
271 populations, for which we have the longest time series of data. These two populations differ in
272 demography, in that the hybrid population is already below replacement ($\lambda < 1$), whereas the *I.*
273 *aggregata* population currently has $\lambda > 1$ but is predicted to fall below replacement in the near
274 future with earlier snowmelt (Campbell, 2019). For these two population, we allowed absolute
275 fitness in the absence of evolution (\bar{W}_0) to decline with snowmelt day at RMBL as determined
276 from fitting quadratic models (Table 2) to the results of integrated projection models in a long-
277 term demographic study (Campbell, 2019).

278 To incorporate the effect of evolution of SLA, we first modeled how the strength of
279 selection on SLA changes with snowmelt day by regressing the selection differential (S) on
280 annual snowmelt date for our 12 years of study (Table 2) and substituting that for S in equation
281 3. As Δz is the change in mean phenotype between two generations and generation time is 5
282 years, we divided $h^2 S$ by 5 in incrementing it each generation (see expression for Δz_t in Table 2).
283 Similarly, to obtain how b/v (the change in fitness with the trait) changes with snowmelt day, we
284 used the regression coefficient b in each year, and regressed that divided by mean survival
285 against snowmelt day (Table 2).

286 We then used our *scenario 2* with its gradual change in snowmelt date to evaluate the
287 influences of environmental stochasticity and phenotypic plasticity. We added environmental
288 stochasticity in the form of observed variation around the trend line for snowmelt day as a
289 function of year. Using again the linear relationship from Wadgymar et al. (2018), we used the
290 *predict* function in base R to find the residual standard deviation of the predicted values during
291 the timespan of 1984 to 2023, which equaled 11.4 days. In each year, we drew a value for
292 snowmelt day from a normal distribution with mean as predicted but now with a standard
293 deviation around it of 11.4 days. Due to the addition of this random element, we ran this model
294 10 times. To incorporate demographic stochasticity, as in *scenario 1*, for each individual we drew
295 the number of individuals in the next generation by sampling from a Poisson distribution with a
296 mean equal to average fitness (λ).

297 **Question 4: Impact of phenotypic plasticity on population persistence**

298 To investigate the impact of phenotypic plasticity on population persistence, we added
299 plasticity in SLA to *scenario 2* both with and without stochastic environmental variability around
300 the temporal trend line in snowmelt. To do so we used an equation for SLA as a function of

301 snowmelt day for a set of plants that were measured repeatedly in different years by Campbell et
302 al. (2022). Thus plasticity was modeled as a linear function of the present environment as
303 detected by the individual plant (Greenspoon & Spencer, 2021). Using repeated measures
304 ANOVA, SLA increased by 1.323 for every day later the snow melted. Assuming no cost of
305 reduced SLA, to our prediction for the trait value in a given year, we added 1.323 times the
306 difference in snowmelt day from the previous year.

307 **Results**

308 **Question 1: Selection on SLA**

309 Using mean values for SLA for individual plants, the overall standardized selection differential
310 was $S' = -0.12$ ($SE = 0.04$, $P = 0.0012$; Fig. 1) for effect of the trait in a model that also included
311 site, as compared to the values of $S' = -0.33$ and -0.19 ($P = 0.007$) in *I. aggregata* and *I.*
312 *tenuituba* sites measured previously in 2009-2014 only (Campbell et al., 2024). These values all
313 indicate that lower values (thicker leaves) led to higher survival to flowering. Selection was
314 detectably different from zero in four years (Table 1), with the strongest value of $S' = -0.23$ (SE
315 $= 0.08$, $P < 0.01$) in 2010. The selection differential (S) did not correlate significantly with
316 snowmelt date in the spring ($r = -0.21$; $P > 0.05$), but was negative, favoring thicker leaves, in 19
317 of 24 site-year combinations (Fig 2). When broken up by site, it showed a positive trend (but not
318 significant) at the hybrid site only; in other words in the direction expected with stronger
319 selection for lower SLA when snowmelt was earlier (Fig 2).

320 **Question 2: Modeling dependence of evolutionary rescue on selection intensity and 321 heritability**

322 With the assumption that early snowmelt made $\bar{W}_0 = 0.88$, in the absence of evolution, a
323 population starting at size 200 would fall below 2 and thus be functionally extinct by the 38th

324 generation (Fig. 3). With the predicted evolution of SLA towards lower values in response to the
325 strongest selection observed ($S' = -0.23$ and *scenario 1*; Fig. 3A), the expected population size
326 fell only as low as 20 individuals (in generations 34-44) before rising again as mean fitness
327 crossed zero and eventually followed exponential growth to above its starting level, showing
328 evolutionary rescue (Fig. 3B). With demographic stochasticity added, 2 of 10 populations
329 starting at size 200 went extinct by the year 2400 (75 generations; Supplementary Figure 1).

330 Increasing the heritability would increase the likelihood of evolutionary rescue (Fig. 4A),
331 whereas halving it would prevent it, given that a population starting at 200 individuals would
332 drop below 2 (the minimum that can perpetuate a self-incompatible species) by generation 66
333 and thus be functionally extinct at that time (Supplementary Figure 2). Doubling the selection
334 intensity in the same way has an even larger effect (Fig. 4; Supplementary Figure 2) because it
335 not only doubles the rate at which the trait value changes but also increases the influence of that
336 change on absolute fitness.

337 Using the overall average value for selection ($S' = 0.13$), as the best estimate, rather than
338 its value of -0.23 in the most extreme year of 2010, the estimated heritability would put
339 *Ipomopsis* right on the dividing line between local extinction and population persistence in a
340 deterministic model (Fig. 4A). With demographic stochasticity added, only 10% of simulated
341 *Ipomopsis* populations persisted to generation 80 (white circle in Fig. 4C). All of these models so
342 far examined evolutionary rescue only in the face of an abrupt shift to earlier snowmelt.

343 **Question 3: Population persistence given mean and variance of temporal trend in snowmelt**

344 *Scenario 2* allowed a more realistic continuous change in the day of snowmelt in the
345 spring (Fig. 5A,B) rather than a shift to extreme drought. In this case, in the absence of
346 evolution, a hybrid population starting at size 200 would fall below 2 in the year 2128 and thus

347 be functionally extinct by the 21th generation (Fig. 5A). Allowing for the observed trend in
348 selection on SLA would not allow evolutionary rescue at the hybrid site, as the population size
349 would still fall below 2, in this case in 2138 and stay below 2 for a very lengthy time (blue line in
350 Fig. 5C shows population size still decreasing in the year 2400). Thus adding the extra realism of
351 the actual trendline for snowmelt timing and selection eliminated the opportunity for
352 evolutionary rescue. Even though the initial environmental hit to survival was less strong than in
353 *scenario 1* (mean fitness in generation 1 = 0.92 as compared with 0.88 in model 1), selection was
354 weaker and would not reach the value used in *scenario 1* until the year 2175 (supplementary
355 Table S1). Increasing heritability to 0.30 would make evolutionary rescue possible even in this
356 more realistic scenario, as a hybrid population starting at size 200 would not drop below 3
357 individuals (green line in Fig. 5C).

358 In contrast, *scenario 2* with a realistic trendline for snowmelt in an *I. aggregata*
359 population showed very little effect of heritability on population persistence (Fig. 5B). This
360 population is not yet below replacement (Campbell 2019), so allowing for selection and using
361 the best fitting quadratic relationship for how mean fitness has previously changed with
362 snowmelt, the population would initially increase in size, but start to decline by 2045 as fitness
363 drops below 1 due to earlier snowmelt. Selection on SLA is not only weaker at the start in this
364 population than in the *I. aggregata* population, but it also trends towards favoring larger SLA
365 with earlier snowmelt in this population (Fig. 2). Even raising heritability of SLA to 0.30 would
366 have little effect on the population dynamics, and the population is predicted to drop below its
367 starting value by 2073 and be functionally extinct ($N < 2$) by around 2128, a value similar to that
368 for the hybrid population (Fig. 5D) despite the difference in population dynamics to arrive at that
369 point.

370 Adding variability in prediction of snowmelt date did not change the basic pattern that
371 both populations would go extinct in the absence of plasticity (Fig. 6). Variability in snowmelt
372 date had, however, more effect on the dynamics in the *I. aggregata* population, causing extreme
373 swings in population size in the first several decades that would greatly change the predicted date
374 for population extinction (Fig. 6B). The two populations showed different magnitudes of
375 response to variability in snowmelt date because fitness in the absence of evolution is more
376 sensitive to snowmelt date in the *I. aggregata* population. Allowing for demographic
377 stochasticity had little effect except that all very small populations were predicted to go locally
378 extinct by 2181 (Fig. 6C and 6D).

379 **Question 4: Impact of phenotypic plasticity on population persistence**

380 Adding phenotypic plasticity of SLA had a large effect for the hybrid population,
381 allowing the simulated population to persist, never dropping below $N = 10$, when it had not in its
382 absence, and allowing the population to grow starting in 2202 (compare blue line in Fig. 7C with
383 blue line in Fig. 5C). This was not so for the *I. aggregata* population; even though phenotypic
384 plasticity now made SLA decrease over time, it did not do so rapidly enough to generate
385 evolutionary rescue (Fig. 7). For the hybrid population, adding environmental stochasticity in
386 snowmelt timing on top of plasticity, the number of years until population growth became
387 positive was extremely variable across runs of the model, spanning a range from the start until
388 approximately 2300 (Fig. 8A). The variation arose because strong phenotypic plasticity made
389 SLA highly responsive to the yearly fluctuations in snowmelt. Number of years until population
390 growth became positive was highly responsive to initial changes in SLA, with a few early low
391 values leading to early evolutionary rescue due to strong increases in absolute fitness (see brown
392 line in Fig. 8A). Even with demographic stochasticity, however, the population had an 80%

393 chance of being rescued by evolution in this case (Fig. 8C), in comparison with the case without
394 plasticity in which the hybrid population always went extinct (Fig. 6C). Adding environmental
395 and/or demographic stochasticity on top of selection and plasticity still did not allow
396 evolutionary rescue in the *I. aggregata* population (Fig. 8B, D).

397 **Discussion**

398 Climate change is projected to cause earlier snowmelt in mountains around the world due
399 to higher temperatures and reduced snowpacks (Clow, 2010; IPCC, 2022; Kraaijenbrink et al.
400 2021). Here we modeled how earlier snowmelt affects absolute fitness, trait evolution, and the
401 impact of that evolution on population persistence in a subalpine herb. A simple model based on
402 directional selection (*scenario 1*) confirmed results of other models in which evolutionary rescue
403 is more likely with higher heritability and lower initial maladaptation (Gomulkiewicz & Holt,
404 1995). Using field estimates of parameters, and a gradual trend in snowmelt date (*scenario 2*) we
405 projected local population extinction even if adaptive evolution of the trait of specific leaf area is
406 allowed, but that phenotypic plasticity in combination with evolution would likely rescue one of
407 the two populations modeled. The simulated hybrid population is currently below replacement
408 but is projected to be rescued by evolution of that single trait due to the combination of strong
409 selection and plasticity. Although the simulated *I. aggregata* population is currently growing, it
410 is projected to fall below replacement due to earlier snowmelt, and the weaker selection on SLA
411 in that population is likely insufficient to rescue the population, even allowing for adaptive
412 plasticity. Thus in this case the population most threatened in the near term is the one with better
413 prospects for long-term persistence. Note that these models predict local population extinctions,
414 not species extinction. *Ipomopsis aggregata* is widespread and common across the mountains of
415 the western USA, encompassing a very wide range of environmental conditions (Grant &

416 Wilken, 1986). Furthermore, there is evidence that recruitment of vegetative rosettes is enhanced
417 by soil disturbance, suggesting that populations may have historically arisen and went locally
418 extinct (Juenger & Bergelson, 2000).

419 . Our models are relatively simplistic in comparison with some models of evolutionary
420 rescue (Xu et al., 2023), but we viewed that as necessary to fit to the kind of information
421 typically available. In developing the models, we made many key assumptions. First, we
422 assumed that climate change can cause snowmelt to get progressively earlier following its
423 current linear fit trend over the past four decades, and that no other environmental changes will
424 affect these populations. While recognizing that simplicity, and the increase in extinction that
425 can be caused by a non-linear environmental change (Greenspoon & Spencer, 2021), we view
426 incorporation of alternative climate scenarios (Thomas et al., 2004) as beyond the scope of this
427 paper. Second, we assumed natural selection was linear, which may be true in the short-term but
428 is unlikely in the longer term as specific leaf area approaches its optimal value for survival. As
429 SLA gets lower, surface areas for photosynthesis decreases, and at some point carbon
430 assimilation may then limit fitness more than reduction of water loss. This could occur if a plant
431 escapes drought by rapid growth early in the season. Tests of this drought escape strategy in
432 other species have produced mixed results (Sherrard & Maherli, 2006; Wolfe & Tonsor, 2014).
433 Third, we assumed that phenotypic plasticity would continue indefinitely along a linear trend.
434 Although unlikely in the very long term, SLA in our models with plasticity did not fall below the
435 minimum observed value ($81 \text{ cm}^2/\text{g}$) in a recent study of *I. aggregata* (Navarro et al., 2022) until
436 well after absolute fitness rose above 1 causing population size to increase (Fig. 8A). Fourth, we
437 assumed that allowing for variation in time to flowering and thus overlapping generations would
438 not alter population dynamics significantly. Fifth we assumed no cost to phenotypic plasticity, as

439 defined by a fitness decrement of a highly plastic genotype relative to a less plastic genotype, an
440 assumption that may often be met (Murren et al., 2015). Six, we had to make some assumptions
441 about initial population size and when a small population would go extinct, either if population
442 size dropped below 2, or with number of surviving offspring following a Poisson distribution.
443 The populations we studied are small, with 30 to 70 flowering individuals, along with vegetative
444 individuals, in a given year, and local extinction was not very sensitive to population size
445 between 100 and 200. But demographic stochasticity would cause local extinction even in some
446 cases when population size could otherwise eventually recover, and neither extinction criterion
447 captures fully the reality of variation in lifetime fitness (Shaw et al., 2008). We saw a large
448 interactive effect of environmental stochasticity and phenotypic plasticity, which allowed for
449 evolutionary rescue to take a very wide range of possible times to occur in the hybrid population.
450 Other forms of stochasticity would likely add to that variation in outcome. Thus, even though we
451 predicted that the hybrid population could eventually be rescued by selection and adaptive
452 plasticity in SLA, it is not currently possible to predict for a given local population precisely
453 when population growth would become positive again.

454 In addition to these assumptions for a closed population, we also assumed no gene flow
455 or dispersal between populations. Gene flow via pollen could introduce genes that increase
456 adaptation (Wolf & Campbell, 1995). Seed dispersal on the other hand is very limited with seeds
457 rarely moving > 1 m (Campbell et al., 2017). The two populations modeled here are 700 m apart
458 and differ in snowmelt date by 11 days on average, meaning that 64 years of seed dispersal
459 upslope would be required to gain just one day later of snowmelt, which is insufficient to keep
460 up with the trend in snowmelt timing.

461 The information needed to project population persistence with evolution is rarely
462 available. But for *Ipomopsis*, we have long-term estimates of how snowmelt timing affects mean
463 absolute fitness (Campbell, 2019), heritabilities of some functional traits (Campbell et al., 2022),
464 and now 12 years of selection estimates, allowing us to estimate environmental sensitivity. We
465 are unaware of other plant systems for which all of these data are available, but a few cases come
466 close. For example, data on genetic variation and selection were combined to compare the
467 number of generations for northern populations of a primrose to evolve some traits of southern
468 populations separated by a temperature difference that climate change could produce in 70-140
469 years (Mattila et al., 2024). Besides *Ipomopsis*, we are aware of one other plant system for which
470 similar information on the three parameters in our *scenario 1* model (drop in mean absolute
471 fitness, selection, and heritability) are available: *Boechera stricta*, another herbaceous species in
472 the Rocky Mountains. We repeated the deterministic and stochastic versions of that model with
473 two sets of parameter estimates for *B. stricta* (Supplementary Methods S2). Conditions appear to
474 allow for evolutionary rescue in some parts of the range based on the earlier study (black circles
475 in Fig. 4C, D; (Wadgymar et al., 2017)) but not under snow removal conditions that mimic
476 climate change (white circles in Fig. 4C,D; Bemmels & Anderson, 2019). Extending the model
477 to other plants, we plotted 95% confidence intervals for 653 selection differentials and 1214
478 estimates of heritabilities for functional traits reviewed by (Geber & Griffen, 2003). The majority
479 of the space, but by no means all, overlapped with conditions where evolutionary rescue could
480 take place (Fig. 4B), with the important caveat that an abrupt shift to an environment resulting in
481 mean absolute fitness of 0.79 is assumed and the additional caveat that many of the studies
482 estimated heritability in a greenhouse or growth chamber where values were higher than in the
483 field (mean = 0.42 vs 0.12).

484 Our models incorporated adaptive evolution and plasticity of only one quantitative trait.
 485 All else equal, adding more traits could likely increase the potential for evolutionary rescue by
 486 increasing absolute fitness more quickly. But phenotypic plasticity may modify that result. Note
 487 that we chose the trait of SLA because of prior evidence that it was under strong natural selection
 488 in the field environments (Campbell et al., 2024) and was plastic with respect to snowmelt
 489 timing in a concordant direction (Campbell et al., 2022). A recent meta-analysis found that
 490 plastic traits tend to have more additive genetic variation and thus higher evolvability (Noble, et
 491 al., 2019). Some other traits of *Ipomopsis* that are also under selection may not show plasticity,
 492 or may not show it in an adaptive direction. For example, earlier snowmelt leads to smaller
 493 flowers and reduced nectar production and yet those traits values are expected to reduce
 494 pollination and seed production (Powers et al., 2022). Furthermore, selection on flower length
 495 has gotten weaker over time with earlier snowmelt (Campbell & Powers, 2015). We are currently
 496 testing how allowing for multivariate trait evolution would affect evolutionary rescue in
 497 *Ipomopsis*.

498 With a single trait, the increase in mean fitness due to evolution of SLA was small
 499 compared to an upper bound on the rate of adaptation, following Fisher's fundamental theorem
 500 of natural selection (Fisher, 1930):

$$501 \quad \bar{W}_{t+1} = \bar{W}_t + \frac{V_A(W)}{\bar{W}_t} \quad (4)$$

502 where $V_A(W)$ = additive genetic variance in fitness (Peschel & Shaw, 2024). That was
 503 previously estimated in a quantitative genetic study of *Ipomopsis aggregata* under field
 504 conditions as 54% of mean fitness (with a large confidence interval), based on survival from seed
 505 to flowering (Campbell, 1997). With heritability at 0.10, adaptation per generation in our models

506 was much lower than that theoretical maximum based on all traits. For example, in generation 1
507 it equaled 0.4 % in *scenario 1* (supplementary Table S1).

508 We modelled expected evolutionary rescue with a quantitative genetic approach. Another
509 promising approach is to use genomics and perform genomic sequencing over time (Urban et al.,
510 2023). A few studies have detected genome evolution by comparisons over time, as in the
511 European great tit (Stonehouse et al., 2023) or over different habitats that differ in ways expected
512 under climate change, as in corals (Bay et al., 2017). These results have occasionally been used
513 to make projections for persistence under climate change, but notably they have had to assume
514 how many loci are involved in thermal tolerance and affect fitness in the field (Bay et al., 2017),
515 whereas we had field data on how the trait affected fitness in particular years. This is one
516 advantage of the quantitative genetic approach; whereas it does not identify particular loci, it is
517 easier to measure field impacts on fitness, as shown by hundreds of studies (Kingsolver et al.,
518 2012) and also how mean fitness changes over time (Shaw, 2019). That may make it a more
519 feasible way to add evolutionary potential to extinction-risk assessments (Forester et al., 2022).

520 **Conclusions**

521 Using a long-term study of natural selection in the field, in combination with prior field
522 information on heritability and mean absolute fitness, we were able to show that evolutionary
523 rescue of a plant population due to evolution of specific leaf area is possible, if we also allow for
524 the high phenotypic plasticity in the trait. Selection and plasticity in combination were projected
525 to rescue one of two populations, and it was the population currently more threatened in which
526 selection was strongest and evolutionary rescue appeared most likely. Our work provides one of
527 the first examples to estimate the major parameters in evolutionary rescue models under natural
528 conditions.

529

530 **Data and code availability**

531 Data and scripts will be made available in Dryad Digital Repository and Zenodo upon

532 acceptance of the manuscript.

533 **Author contributions**

534 D.C. conceived the study, supervised the data collection, performed the data analysis and

535 modeling, and drafted the initial version of the manuscript. All authors collected field data and

536 contributed to later versions of the manuscript.

537 **Funding**

538 This work was supported by grants from the US National Science Foundation (DEB-0542876,

539 DEB-1654655, and DEB-2135270 to D.C.) and RMBL fellowships to D.C.

540 **Conflicts of interest**

541 The authors declare no conflicts of interest.

542 **Acknowledgements**

543 We thank Ian Breckheimer for snow cover data, Maria Rebolleda-Gomez for comments on the

544 manuscript, and many field assistants over the years: Arturo Aguilar, Laura Barbour, Madison

545 Crowell, Kirsten Dales, Colleen Danaher, Alexandra Faidiga, Emily Gruber, Maya Midzik,

546 Ayaka Paul, Gabe Trujillo, and Camille Wendlandt.

547

548 **References**

549 Ahrens, C. W., Andrew, M. E., Mazanec, R. A., Ruthrof, K. X., Challis, A., Hardy, G., . . .

550 Rymer, P. D. (2019). Plant functional traits differ in adaptability and are predicted to be

551 differentially affected by climate change. *Ecology and Evolution*, 10, 232-248.

552 Anderson, J. T., & Wadgymar, S. M. (2020). Climate change disrupts local adaptation and

553 favours upslope migration. *Ecology Letters*, 23, 181-192.

554 Bay, R. A., Rose, N. H., Logan, C. A., & Palumbi, S. R. (2017). Genomic models predict

555 successful coral adaptation if future ocean warming rates are reduced. *Science Advances*, 3(11).

556 doi:10.1126/sciadv.1701413

557 Bell, G. (2017). Evolutionary rescue. *Annual Review of Ecology, Evolution and Systematics*, 48,

558 605-627.

559 Bell, G., & Gonzalez, A. (2011). Adaptation and evolutionary rescue in metapopulations

560 experiencing environmental deterioration. *Science*, 332, 1327-1330.

561 Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of

562 climate change on the future of biodiversity. *Ecology Letters*, 15, 365-377.

563 Bemmels, J. B., & Anderson, J. T. (2019). Climate change shifts natural selection and the

564 adaptive potential of the perennial forb *Boechera stricta* in the Rocky Mountains. *Evolution*, 73,

565 2247-2262.

566 Campbell, D., & Waser, N. (2007). Evolutionary dynamics of an *Ipomopsis* hybrid zone:

567 confronting models with lifetime fitness data. *American Naturalist*, 169, 298-310.

568 Campbell, D. R. (1997). Genetic and environmental variation in life-history traits of a

569 monocarpic perennial: a decade-long field experiment. *Evolution*, 51, 373-382.

570 Campbell, D. R. (2008). Pollinator shifts and the origin and loss of plant species. *Annals of the*
571 *Missouri Botanical Garden*, 95, 264-274.

572 Campbell, D. R. (2019). Early snowmelt projected to cause population decline in a subalpine
573 plant. *Proceedings of the National Academy of Sciences USA*, 116(26), 12901-12906.

574 Campbell, D. R., Brody, A. K., Price, M. V., Waser, N. M., & Aldridge, G. (2017). Is plant
575 fitness proportional to seed set? An experiment and a spatial model. *American Naturalist*, 190.

576 Campbell, D. R., & Powers, J. M. (2015). Natural selection on floral morphology can be
577 influenced by climate. *Proceedings of the Royal Society B*, 282, 21050178.

578 Campbell, D. R., Powers, J. M., & Crowell, M. (2024). Pollinator and habitat-mediated selection
579 as potential contributors to ecological speciation in two closely related species. *Evolution Letters*,
580 8, 311-321.

581 Campbell, D. R., Raguso, R. A., Midzik, M., Bischoff, M., & Broadhead, G. (2022). Genetic and
582 spatial variation in vegetative and floral traits across a hybrid zone. *American Journal of Botany*,
583 109, 1780-1793.

584 Campbell, D. R., Waser, N. M., Aldridge, G., & Wu, C. A. (2008). Lifetime fitness in two
585 generations of *Ipomopsis* hybrids. *Evolution*, 62, 2616-2627.

586 Campbell, D. R., Waser, N. M., & Meléndez-Ackerman, E. J. (1997). Analyzing pollinator-
587 mediated selection in a plant hybrid zone: hummingbird visitation patterns on three spatial
588 scales. *American Naturalist*, 149(2), 295-315.

589 Carlson, S. M., Cunningham, C. J., & Westley, P. A. H. (2014). Evolutionary rescue in a
590 changing world. *Trends in Ecology and Evolution*, 29, 521-530.

591 Chevin, L., Gallet, R., Gomulkiewicz, R., Holt, R. D., & Fellous, S. (2013). Phenotypic plasticity
592 in evolutionary rescue experiments. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 368, 20120089 - 20120089.

593

594 Chevin, L., Lande, R., & Mace, G. M. (2010). Adaptation, plasticity, and extinction in a
595 changing environment: Towards a predictive theory. *Plos Biology*, 8, e1000357.

596 Clow, D. W. (2010). Changes in the timing of snowmelt and streamflow in Colorado: a response
597 to recent warming. *Journal of Climate*, 23, 2293-2306.

598 Dudley, S. (1996). Differing selection on plant physiological traits in response to environmental
599 water availability: a test of adaptive hypotheses. *Evolution*, 50, 92-102.

600 Ehrlén, J., & Valdés, A. (2020). Climate drives among-year variation in natural selection on
601 flowering time. *Ecology Letters*, 23, 653-662.

602 Ellner, S. P., Childs, D. Z., & Rees, M. (2016). *Data-driven modelling of structured populations: A practical guide to the integral projection model*. Switzerland: Springer International
604 Publishing.

605 Falconer, D. S., & MacKay, T. F. C. (1996). *Introduction to quantitative genetics*. New York:
606 Prentice Hall.

607 Fisher, R. A. (1930). *The genetical theory of natural selection*. Oxford: Clarendon.

608 Forester, B. R., Beever, E. A., Darst, C., Szymanski, J., & Funk, W. C. (2022). Linking
609 evolutionary potential to extinction risk: applications and future directions. *Frontiers in Ecology
610 and Evolution*, 20(9), 507-515. doi:10.1002/fee.2552

611 Fyfe, J. C., Derksen, C., Mudryk, L., Flato, G. M., Santer, B. D., Swart, N. C., . . . Jiao, Y.
612 (2017). Large near-term projected snowpack loss over the western United States. *Nature Communications*, 8, 14996. doi:10.1038/ncomms14996

613

614 Geber, M., & Griffen, L. (2003). Inheritance and natural selection on functional traits.

615 *International Journal of Plant Sciences*, 164(3 Suppl.), S21-S42.

616 Gomulkiewicz, R., & Holt, R. (1995). When does evolution by natural selection prevent

617 extinction? *Evolution*, 49, 201-207.

618 Gomulkiewicz, R., & Houle, D. (2009). Demographic and genetic constraints on evolution.

619 *American Society of Naturalists*, 174, E218-E229.

620 Gomulkiewicz, R., & Shaw, R. G. (2013). Evolutionary rescue beyond the models. *Philosophical*

621 *Transactions of the Royal Society B: Biological Sciences*, 368, 20120093.

622 Grant, V., & Wilken, D. (1986). Taxonomy of the *Ipomopsis aggregata* group (Polemoniaceae).

623 *Botanical Gazette*, 147, 359-371.

624 Greenspoon, P. B., & Spencer, H. G. (2021). Avoiding extinction under nonlinear environmental

625 change: models of evolutionary rescue with plasticity. *Biology Letters*, 17.

626 doi:10.1092/rsbl.2021.0459

627 IPCC. (2022). *Climate change 2022: impacts, adaptation and vulnerability*. Retrieved from

628 Cambridge, UK:

629 Juenger, T., & Bergelson, J. (2000). Factors limiting rosette recruitment in scarlet gilia,

630 *Ipomopsis aggregata*: seed and disturbance limitation. *Oecologia*, 123, 358-363.

631 Kingsolver, J. G., Diamond, S. E., Siepielski, A. M., & Carlson, S. M. (2012). Synthetic analyses

632 of phenotypic selection in natural populations: lessons, limitations and future directions.

633 *Evolutionary Ecology*, 26, 1101-1118.

634 Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C. E., . . .

635 Beerli, P. (2001). The strength of phenotypic selection in natural populations. *American*

636 *Naturalist*, 157, 245-261.

637 Kopp, M., & Matuszewski, S. (2014). Rapid evolution of quantitative traits: theoretical
638 perspectives. *Evolutionary Applications*, 7, 169-191.

639 Kraaijenbrink, P. D. A., Stiger, E. E., Yao, T., & Immerzeel, W. W. (2021). Climate change
640 decisive for Asia's snow meltwater supply. *Nature Climate Change*, 11, 591-597.

641 MacLean, I. M. D., & Wilson, R. J. (2011). Recent ecological responses to climate change
642 support predictions of high extinction risk. *Proceedings of the National Academy of Sciences*
643 USA, 108, 12337-12342.

644 Mattila, A. L., Opedal, O. H., Hällfors, M. H., Pietikäinen, L., Koivusaari, S. H. M., &
645 Hyvärinwn, M. (2024). The potential for evolutionary rescue in an Arctic seashore plant
646 threatened by climate change. *Proceedings of the Royal Society B*, 291, 20241351.

647 Murren, C. J., Auld, J. R., Callahan, H., Ghalambor, C. K., Handelsman, C. A., Heskel, M. A., . .
648 . Schlichting, C. D. (2015). Constraints on the evolution of phenotypic plasticity: limits and costs
649 of phenotype and plasticity. *Heredity*, 115, 295-301.

650 Navarro, J., Powers, J. M., Paul, A., & Campbell, D. R. (2022). Phenotypic plasticity and
651 selection on leaf traits in response to snowmelt timing and summer precipitation. *New*
652 *Phytologist*, 234, 1477-1490.

653 Noble, D. W. A., Radersma, R., & Uller, T. (2019). Plastic responses to novel environments are
654 biased towards phenotype dimensions with high additive genetic variation. *Proceedings of the*
655 *National Academy of Sciences USA*, 116(27), 13452-13461.

656 Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. *Annual*
657 *Review of Ecology, Evolution and Systematics*, 37, 637-669.

658 Peschel, A. R., & Shaw, R. G. (2024). Comparing the predicted versus realized rate of adaptation
659 of *Chamaecrista fasciculata* to climate change. *American Naturalist*, 203(1).

660 Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and
661 consequences of variation in leaf mass per area (LMA): a meta-analysis. *New Phytologist*, 182,
662 565-588.

663 Powers, J. M., Briggs, H. M., Dickson, R., Li, X., & Campbell, D. R. (2022). Earlier snowmelt
664 and reduced summer precipitation alter floral traits important to pollination. *Global Change
665 Biology*, 28, 323-339.

666 Price, M. V., Campbell, D. R., Waser, N. M., & Brody, A. K. (2008). Bridging the generation
667 gap in plants: pollination, parental fecundity, and offspring demography. *Ecology*, 89, 1596-
668 1604.

669 Price, M. V., Waser, N. M., Irwin, R. E., Campbell, D. R., & Brody, A. K. (2005). Temporal and
670 spatial variation in pollination of a montane herb: a seven-year study. *Ecology*, 86, 2106-2116.

671 Scheiner, S. M., Barfield, M., & Holt, R. D. (2019). The genetics of phenotypic plasticity. XVII.
672 Response to climate change. *Evolutionary Applications*, 13, 388-399.

673 Shaw, R. G. (2019). From the past to the future: Considering the value and limits of evolutionary
674 prediction. *American Naturalist*, 193, 1-10.

675 Shaw, R. G., Geyer, C. J., Wagenius, S., Hangelbroek, H. H., & Etterson, J. R. (2008). Unifying
676 life-history analyses for inference of fitness and population growth. *American Naturalist*, 172,
677 E35-E47.

678 Sherrard, M., & Maherali, H. (2006). The adaptive significance of drought escape in *Avena
679 barbata*, an annual grass. *Evolution*, 60, 2478-2489.

680 Stinchcombe, J. R., Agrawal, A. A., Aneil, F., Hohenlohe, P. A., Arnold, S. J., & Blows, M. W.
681 (2008). Estimating nonlinear selection gradients using quadratic regression coefficients: Double
682 or nothing? *Evolution*, 62, 2435-2440.

683 Stonehouse, J. C., Spurgin, L. G., Laine, V. N., Bosse, M., The Great Tit HapMap Consortium,
684 Groenen, M. A. M., Slater, J. (2023). The genomics of adaptation to climate in European great
685 tit (*Parus major*) populations. *Evolution Letters*, 8(1), 18-28. doi:10.1093/evlett/qrad043

686 Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., . . .
687 Williams, S. E. (2004). Extinction risk from climate change. *Nature*, 427, 145-148.

688 Urban, M. C., Swagers, J., Stoks, R., Snook, R. R., Otto, S. P., Noble, D. W. A., . . . Teplitsky,
689 D. (2023). When and how can we predict adaptive responses to climate change? *Evolution*
690 *Letters*.

691 Wadgymar, S. M., Daws, C., & Anderson, J. T. (2017). Integrating viability and fecundity
692 selection to illuminate the adaptive nature of genetic clines. *Evolution Letters*, 1, 26-39.

693 Wadgymar, S. M., Ogilvie, J. E., Inouye, D. W., Weis, A. E., & Anderson, J. T. (2018).
694 Phenological responses to multiple environmental drivers under climate change: insights from a
695 long-term observational study and a manipulative field experiment. *New Phytologist*, 218, 517-
696 529.

697 Walter, G. M., Clark, J., Terranova, D., Cozzolino, S., Cristaldo, A., Hiscock, S. J., & Bridle, J.
698 (2023). Hidden genetic variation in plasticity provides the potential for rapid adaptation to novel
699 environments. *New Phytologist*, 239, 374-387. doi:10.1111/nph.18744

700 Waser, N. M., Campbell, D. R., Price, M. V., & Brody, A. K. (2010). Density-dependent
701 demographic responses of a semelparous plant to natural variation in seed rain. *Oikos*, 119,
702 1929-1935.

703 Wolf, P. G., & Campbell, D. R. (1995). Hierarchical analysis of allozymic and morphometric
704 variation in a montane herb, *Ipomopsis aggregata* (Polemoniaceae). *Journal of Heredity*, 86,
705 386-394.

706 Wolfe, M. D., & Tonsor, S. J. (2014). Adaptation to spring heat and drought in northeastern
707 Spanish *Arabidopsis thaliana*. *New Phytologist*, 201, 323-334.

708 Xu, K., Vision, T. J., & Servedio, M. R. (2023). Evolutionary rescue under demographic and
709 environmental stochasticity. *Journal of Evolutionary Biology*, 36, 1525-1538.

710

711

712

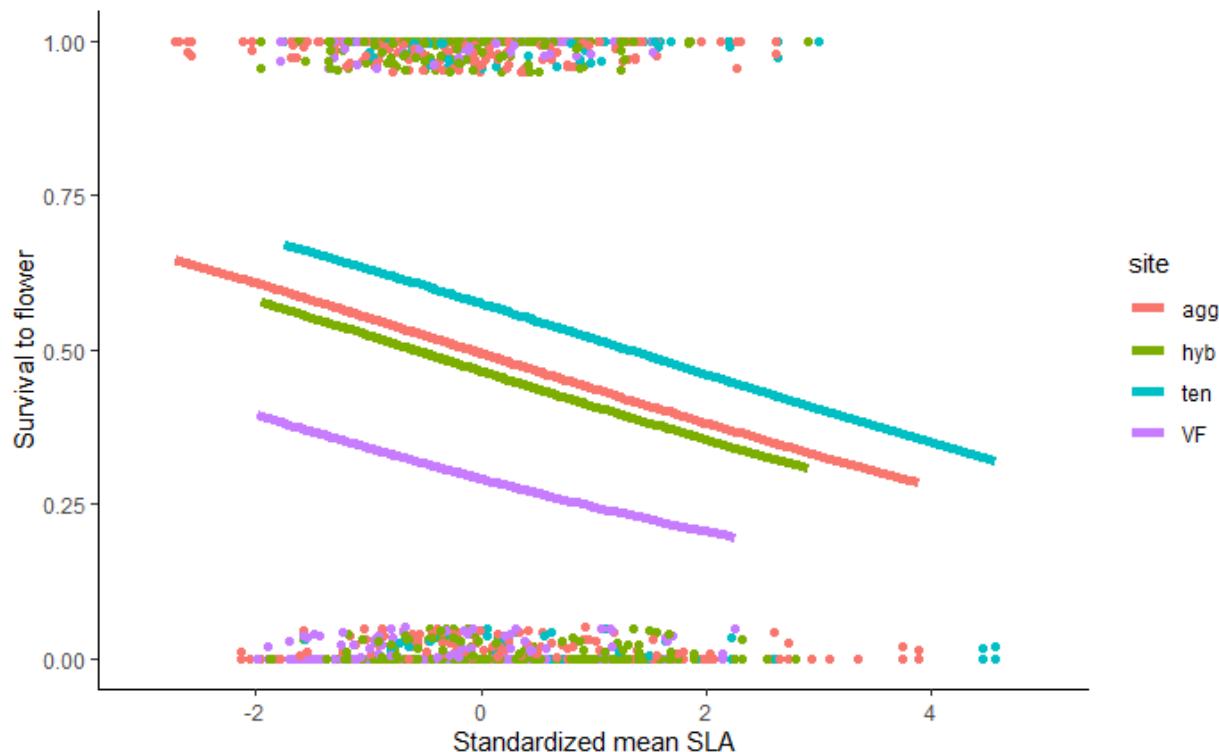
713

714 Table 1. Standardized selection differentials on SLA in each year. Directional selection
 715 differentials were estimated from models with a linear term of standardized SLA along with the
 716 factor of site. Quadratic selection gradients were estimated by doubling the quadratic regression
 717 coefficient in models with linear and quadratic terms of standardized SLA along with site.
 718 Statistical departure from zero was assessed using models with a binomial distribution of
 719 residuals and was not based on standard errors from the estimates in ordinary least squares
 720 regression.

Year	Directional selection differential	Quadratic selection gradient
2009	-0.171 ± 0.081*	0.092 ± 0.108
2010	-0.230 ± 0.087*	-0.004 ± 0.090
2011	-0.039 ± 0.065	0.094 ± 0.050
2012	-0.033 ± 0.067	0.084 ± 0.048
2013	-0.174 ± 0.063**	-0.002 ± 0.074
2014	-0.063 ± 0.060	0.098 ± 0.070
2017	-0.213 ± 0.081*	-0.160 ± 0.122
2018	0.022 ± 0.112	-0.102 ± 0.105
2019	-0.058 ± 0.133	0.268 ± 0.282
2020	0.060 ± 0.135	0.057 ± 0.160
2021	0.125 ± 0.117	0.002 ± 0.135
2022	-0.114 ± 0.075	-0.037 ± 0.109

721

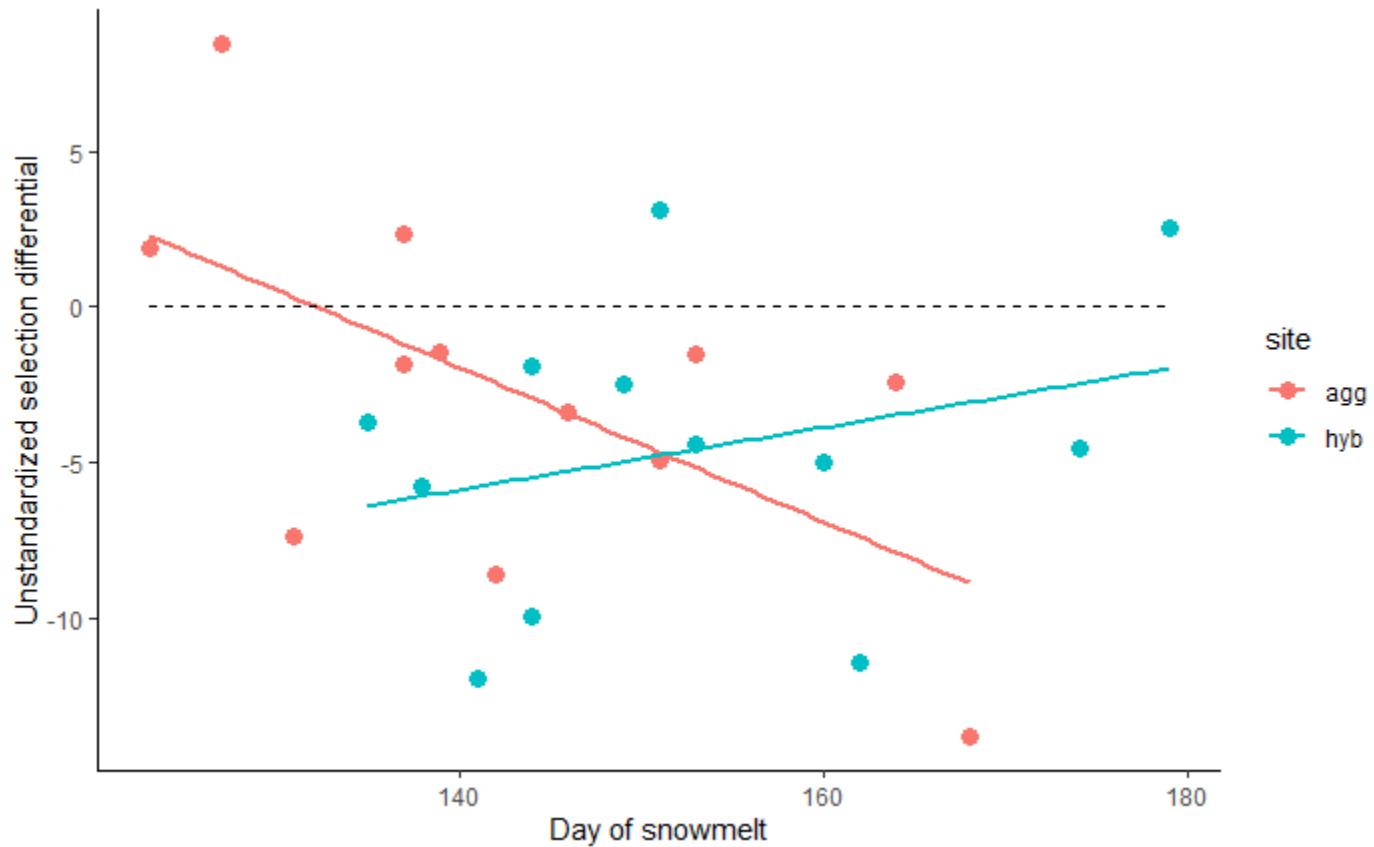
722 * P < 0.05. ** P < 0.01.


723 Table 2. Parameter expressions used in modeling the impact of a linear trend in snowmelt
 724 timing and selection on specific leaf area (*scenario 2*).

Site	Process	Parameter expression
Both sites	Trend in snowmelt timing	$d = 539.2 - 0.20 \text{year}$
	SD in predicted snowmelt	11.4d
hybrid	Absolute fitness in absence of evolution	$\bar{W}_0 = 1.352 - 0.0202d + 0.000126d^2$
	Selection differential	$S = -10.041 + 0.040d_t$
	Change in trait value by time t	$\Delta z_t = \frac{h^2(-10.041 + 0.040d_t)}{5} + \Delta z_{t-1}$
	Effect of trait value on absolute fitness relative to the mean	$\frac{b_t}{v_t} = (-0.0224 + 0.00012d_t)/\bar{W}_{0t}$
<i>I. aggregata</i>	Absolute fitness in absence of evolution	$\bar{W}_0 = 7.504 - 0.1378d + 0.00067d^2$
	Selection differential	$S = 31.493 - 0.252d_t$
	Change in trait value	$\Delta z_t = \frac{h^2(31.493 - 0.252d_t)}{5} + \Delta z_{t-1}$
	Increase in absolute fitness relative to the mean	$\frac{b_t}{v_t} = (0.0144 - 0.00012d_t)/\bar{W}_{0t}$

725

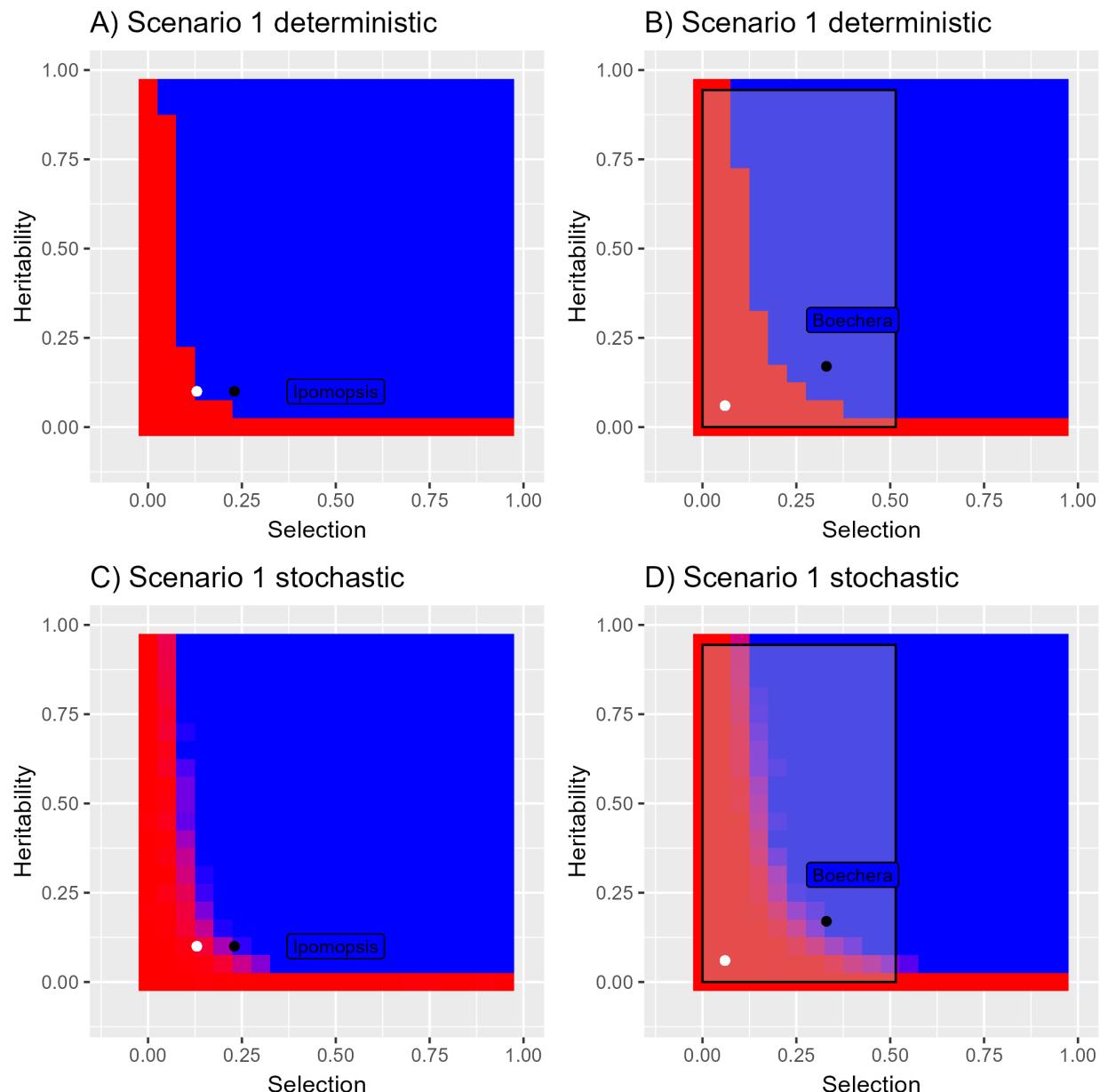
726


727

728

729 Figure 1. Survival to flowering as a function of mean SLA for a plant. Points are jittered for
 730 visibility. Lines are predicted values obtained by inverse prediction from analysis of covariance
 731 with a binomial distribution: $\text{glm}(\text{survtoflr} \sim \text{site} + \text{rsla}, \text{family} = \text{binomial})$. These are bounded
 732 by 1 and 0 but appear approximately linear over the range of observed SLA. Sites “agg” and
 733 “VF” both contain *Ipomopsis aggregata*. Site “ten” contains *I. tenuituba*, and site “hyb” contains
 734 natural hybrids between the two parental species.

735


736
737 Figure 2. Unstandardized selection differential as a function of day of snowmelt in two sites. The
738 models were originally fit to RMBL day of snowmelt and then adjusted by a constant to reflect
739 accurate estimates of snowmelt in the individual sites. The selection estimate was negative
740 (below the dashed line) in 19 of 24 site-year combinations, but did not show significant
741 environmental sensitivity to day of snowmelt.

742

743 Figure 3. *Scenario I* with constant extreme environment. A) Evolution of SLA with constant
 744 selection ($S' = 0.23$) and heritability = 0.10. B) Change in population size (N) for the case of no
 745 evolution (red line) and case of constant selection (blue line). In 2010, the year with strongest
 746 selection for smaller SLA, mean survival (v) = 0.554, and the regression coefficient (b) of
 747 absolute survival on raw SLA was -0.0034, making b/v (the relative amount by which absolute
 748 fitness is changed per cm^2/g increase in SLA) = -0.0061. The selection differential (S) obtained
 749 from the covariance of relative survival with raw SLA was -5.866, and heritability was assumed
 750 to be 0.10, making $\Delta z = -0.59$, a drop in SLA of 0.59 cm^2/g per generation.

751

752

753

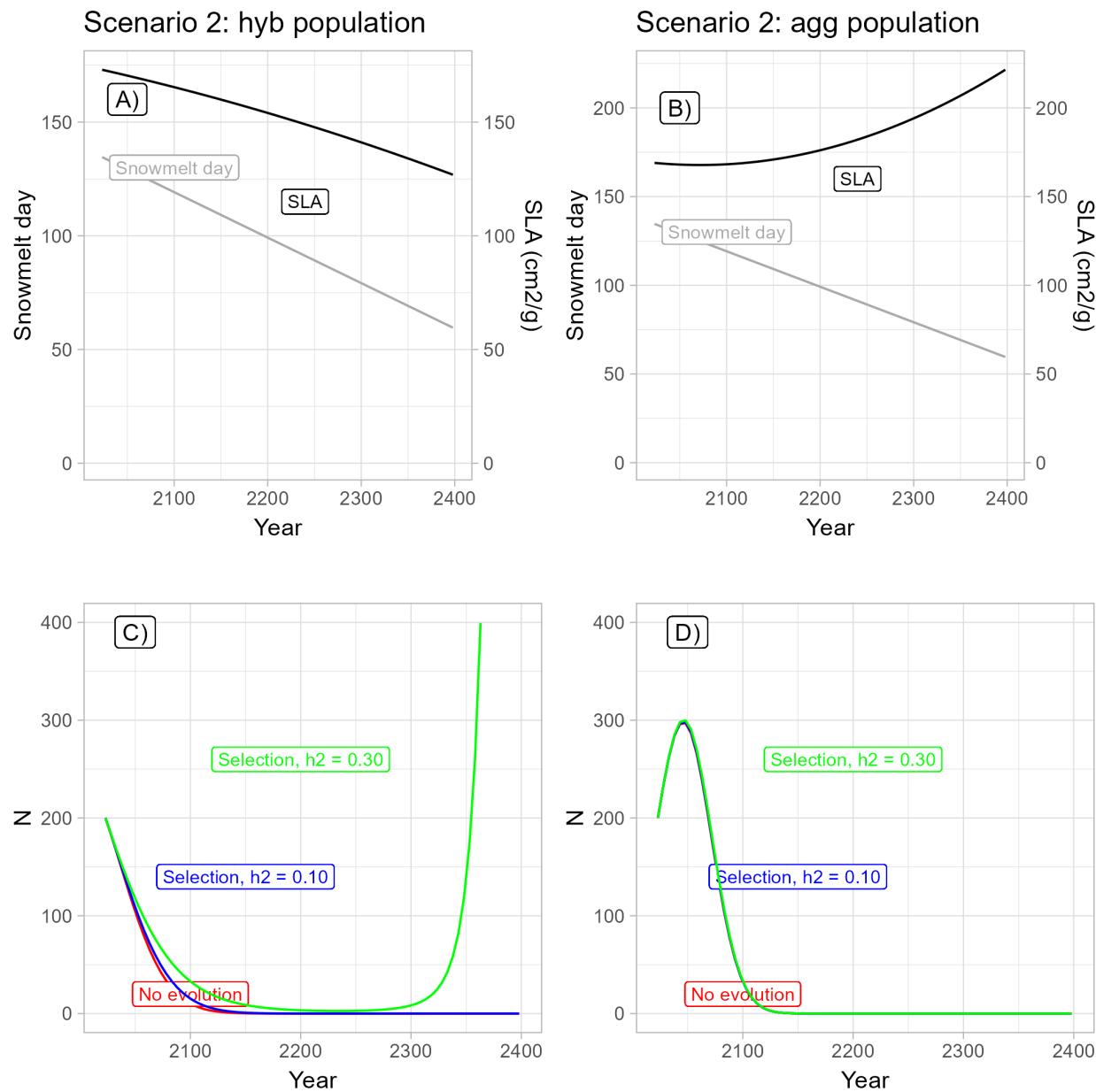
754

755

756

757

Figure 4. Parameter space for heritability and standardized selection differential showing conditions allowing evolutionary rescue in response to a constant extreme environment (*scenario 1*). Starting population size = 200. Red indicates extinction. Blue indicates evolutionary rescue by generation 75. Deterministic models shown for (A) Mean absolute fitness under early snowmelt in the absence of evolution = 0.88 in *Ipomopsis aggregata* and (B) 0.79 in *Boechera*


758 *stricta*. Points for species are plotted at their field-estimated parameter values. For *Ipomopsis*
759 (A,C) the black circle indicates the strongest selection observed ($S' = 0.23$) and the white circle
760 indicates mean selection ($S' = 0.13$). For *Boechera* (B,D), the two points correspond to two sets
761 of parameters from different common garden experiments (see supplementary methods S2).
762 Panels (C) and (D) include demographic stochasticity. In that case, approximately 90% of runs
763 for *Ipomopsis* values went extinct when $S' = 0.13$. The gray rectangle in (B) and (D)
764 encompasses a 95% confidence interval around the mean values for the selection differential and
765 heritability in a review of plant functional traits (Geber & Griffen, 2003).

766

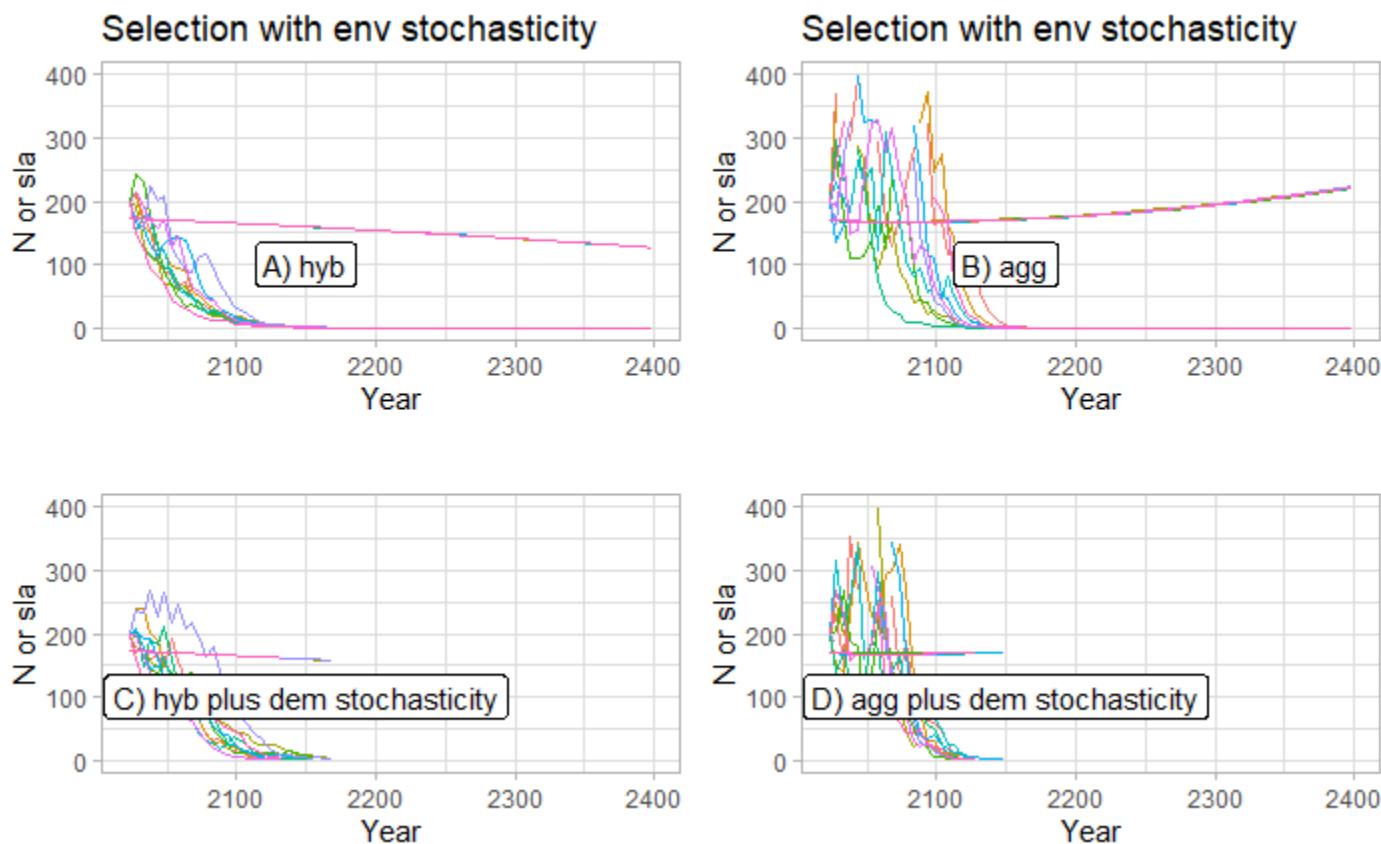
767

768

769

770

771 Figure 5. Predictions for selection but no plasticity or stochasticity in *scenario 2* with gradually
 772 earlier snowmelt. Snowmelt date (days since 1 January) and the evolutionary response of SLA
 773 shown for the (A) hybrid population and (B) *I. aggregata* population. Population size (N) for the

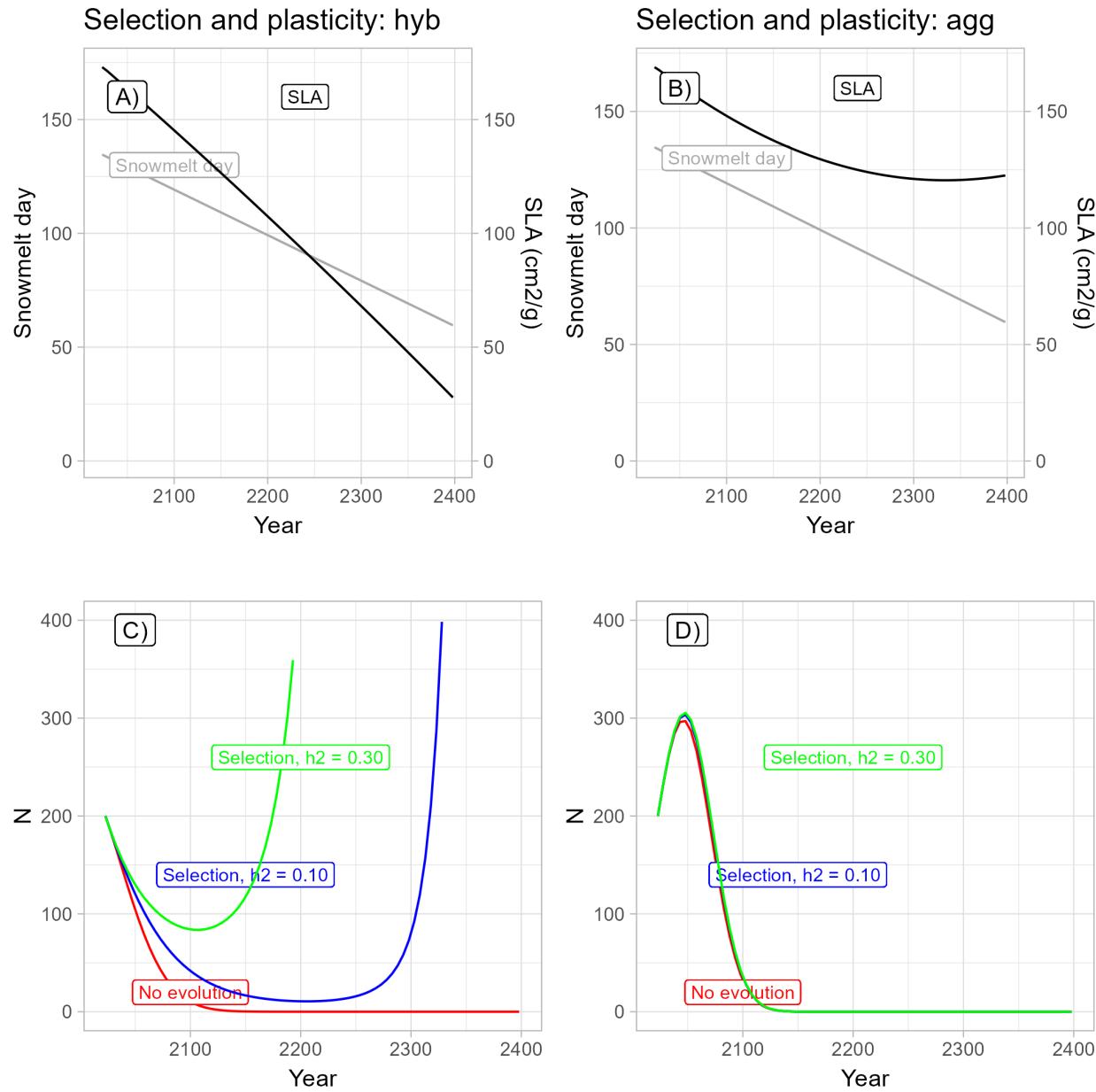

774 case of no selection (red line), selection with observed heritability of 0.10 (blue line), and
775 selection with heritability of 0.30 (green line) for approximately 75 generations shown for the
776 hybrid population (C) and *I. aggregata* population (D).

777

778

779

780

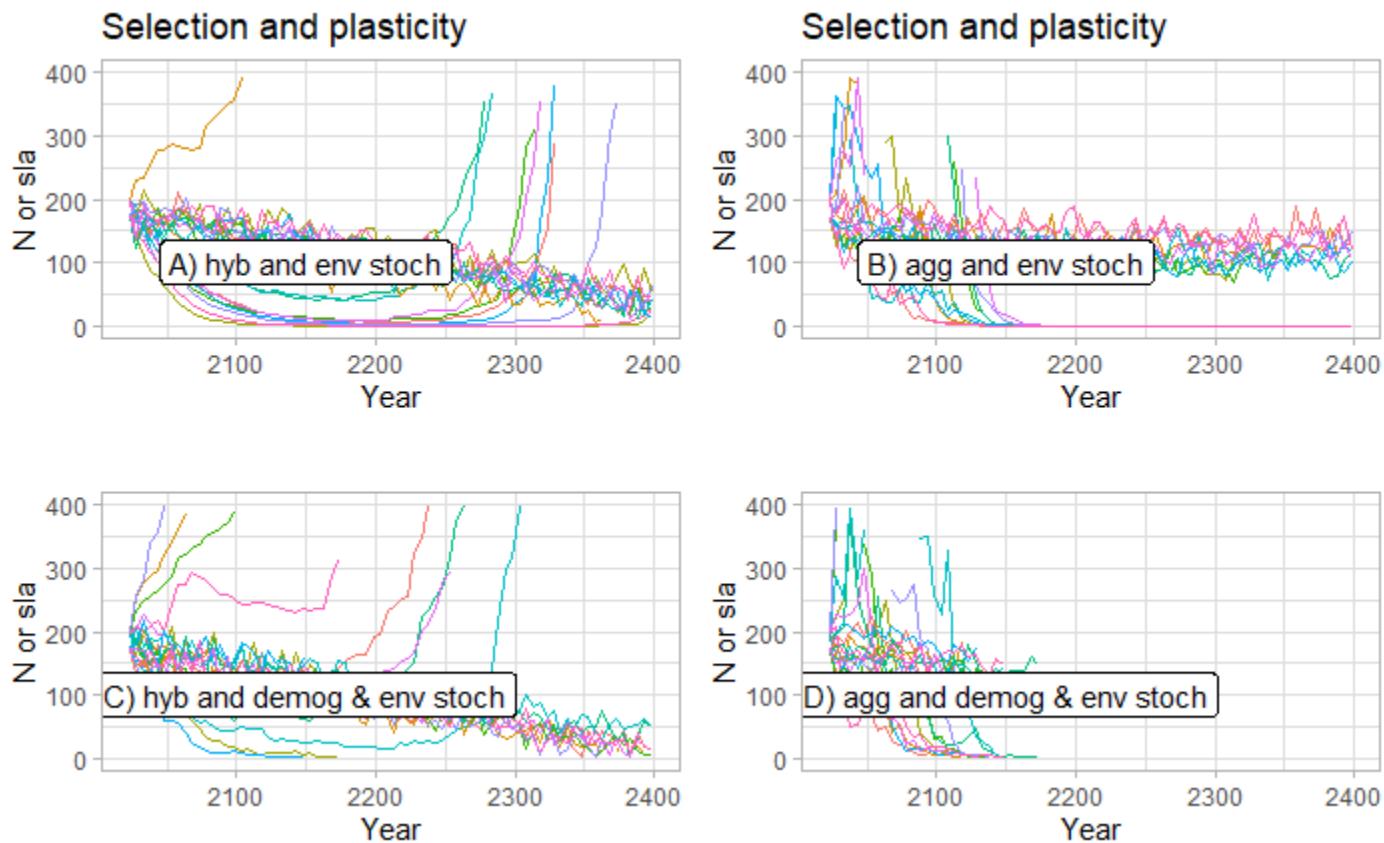

781

782 Figure 6. Predicted population size and the evolutionary response of SLA as a function of year
 783 with environmental stochasticity in the form of variance in snowmelt around the trendline. The
 784 model includes selection on SLA but not phenotypic plasticity. Heritability was set at 0.10. A
 785 separate line is plotted for each of 10 replicates for (A) hybrid population without demographic
 786 stochasticity, (B) *I. aggregata* population without demographic stochasticity, (C) hybrid
 787 population with demographic stochasticity, and (D) *I. aggregata* population with demographic
 788 stochasticity.

789

790

791
792
793
794



795
796 Fig. 7. Predictions for selection with added plasticity but no stochasticity in *scenario 2* with
797 gradually earlier snowmelt.. Starting population size = 200. Snowmelt date (days since 1
798 January) and the evolutionary response of SLA shown for the (A) hybrid population and (B) *I.*

799 *aggregata* population. Population size (N) for the case of no selection (red line), selection with
800 observed heritability of 0.10 (blue line), and selection with heritability of 0.30 (green line) for
801 approximately 75 generations shown for the hybrid population (C) and *I. aggregata* population
802 (D).

803

804

805

806

807 Figure 8. Predicted size of population (N) and mean SLA (cm^2/g) as a function of generation
 808 with selection, phenotypic plasticity and environmental stochasticity in the form of variance in
 809 snowmelt around the trendline. The observed heritability of 0.10 was used. All populations
 810 started with size $N = 200$. The response of SLA is shown in the same color as the population size
 811 for the corresponding run. Ten sample runs are shown for (A) the hybrid population and (B) the
 812 *I. aggregata* population without demographic stochasticity and (C) the hybrid population and (D)
 813 the *I. aggregata* population with demographic stochasticity.

814

815 **Supplementary Materials**816 **Methods S1. Snowmelt timing**

817 We examined trends in snowmelt date (date of bare ground) from 1985-2023 at sites agg,
818 hyb, and VF and 1984-2022 at the Rocky Mountain Biological Laboratory, 8 km distant and at a
819 similar elevation to our *I. aggregata* site (<http://www.gothicwx.org/ground-cover.html>). The
820 RMBL data were included because previous studies of how demography depends on snowmelt
821 timing that are incorporated into modeling here relied on those values (Campbell, 2019), and we
822 therefore calibrated the evolutionary rescue models in the next sections the same way. Snowmelt
823 timing at the two actual sites (agg and hyb) differs only by a constant, as shown by the following
824 analysis. We obtained estimates of snowmelt date at each site in each year from maps of snow
825 persistence prepared by I. Breckheimer from an analysis of Landsat data and the size of the
826 snowpack measured in snow water equivalent near snow telemetry sites
827 (<https://arcg.is/1yzKDG>). In a model of snowmelt day as a function of year, site (RMBL, agg,
828 hyb, VF) and the site x year interaction, the interaction was not significant ($F_{3, 144} = 0.06, P =$
829 0.9800). Removing the interaction from the model, snowmelt date was 6 days later at the agg site
830 than at RMBL, 17 days later at the hyb site than at RMBL, and 3 days earlier at site VF, with a
831 common slope of 0.20 days earlier per year ($SE = 0.09, P = 0.0294$).

832

833 **Methods S2. Evolutionary rescue in *Boechera stricta***

834 Information on the three parameters needed for the model of extreme drought and
835 prolonged selection (drop in mean absolute fitness, selection, and heritability) is available for
836 another species in the Colorado Rocky Mountains, *Boechera stricta* (Brassicaceae). This small
837 mustard is primarily self-pollinating, but for comparison with *Ipomopsis*, we still considered

838 population extinction to occur if $N < 2$. At an elevation of 3133 m, the species has historically
839 stable population size, but in more recent common garden studies, $\lambda = 0.79$ (Anderson &
840 Wadgymar, 2020). One set of parameter values came from (Wadgymar et al., 2017) who
841 estimated significant heritability of SLA as 0.17 (mean of three provided estimates) and
842 significant standardized selection intensity at -0.33. The second set came from snow removal
843 plots mimicking climate change conditions that found little evidence for an evolutionary
844 response in SLA and non-significant heritability of 0.06 (mean of three estimates; (Bemmels &
845 Anderson, 2019)). We repeated the deterministic and stochastic versions of the model for a
846 constant extreme drought and selection (*scenario 1*) with these parameter estimates and
847 compared the results with those for *Ipomopsis* using its overall average standardized selection
848 differential on SLA.

849

850 **References for Supplementary Material**

851 Anderson, J. T., & Wadgymar, S. M. (2020). Climate change disrupts local adaptation and
852 favours upslope migration. *Ecology Letters*, 23, 181-192.

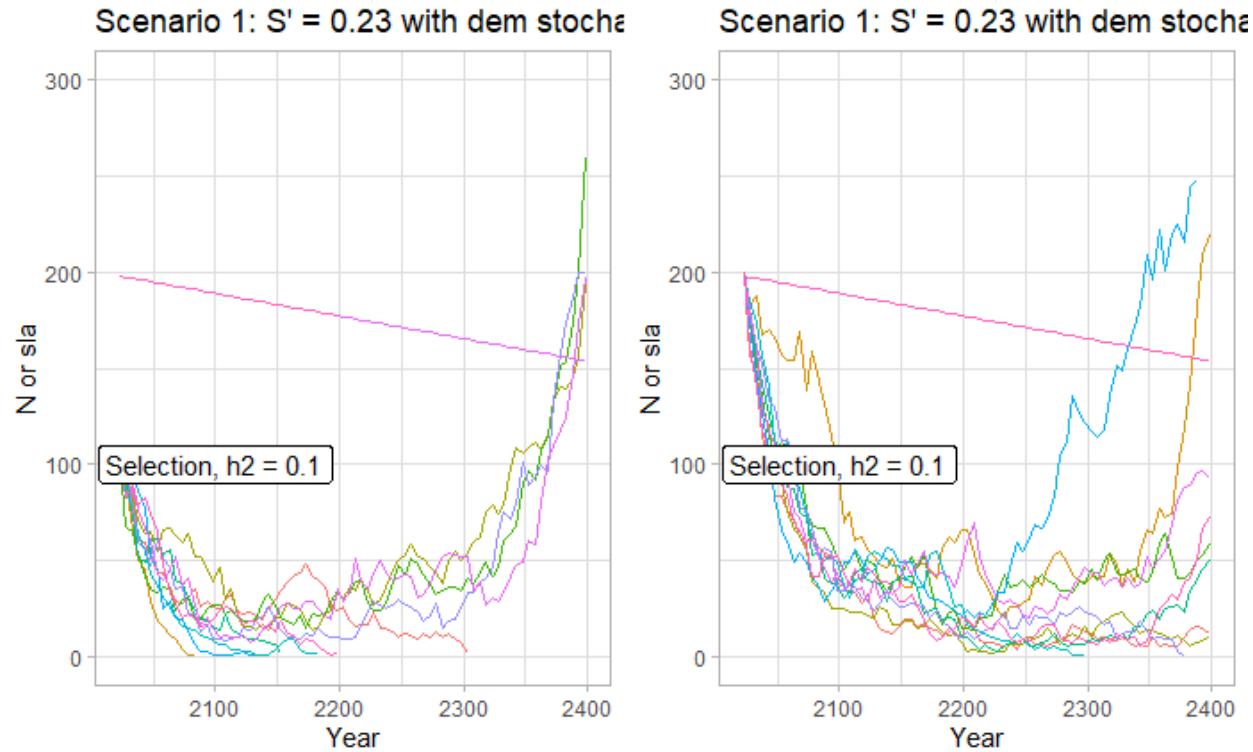
853 Bemmels, J. B., & Anderson, J. T. (2019). Climate change shifts natural selection and the
854 adaptive potential of the perennial forb *Boechera stricta* in the Rocky Mountains. *Evolution*, 73,
855 2247-2262.

856 Campbell, D. R. (2019). Early snowmelt projected to cause population decline in a subalpine
857 plant. *Proceedings of the National Academy of Sciences USA*, 116(26), 12901-12906.

858 Wadgymar, S. M., Daws, C., & Anderson, J. T. (2017). Integrating viability and fecundity
859 selection to illuminate the adaptive nature of genetic clines. *Evolution Letters*, 1, 26-39.

860

861 Table S1. Intermediate dynamics in iterative models for population size. Heritability of
 862 the trait was set at 0.10, and starting population size at 200. Adaptation (increase in mean fitness)
 863 is given by $\frac{b}{v} \Delta z_t$. \bar{W}_0 = mean absolute fitness in absence of evolution.

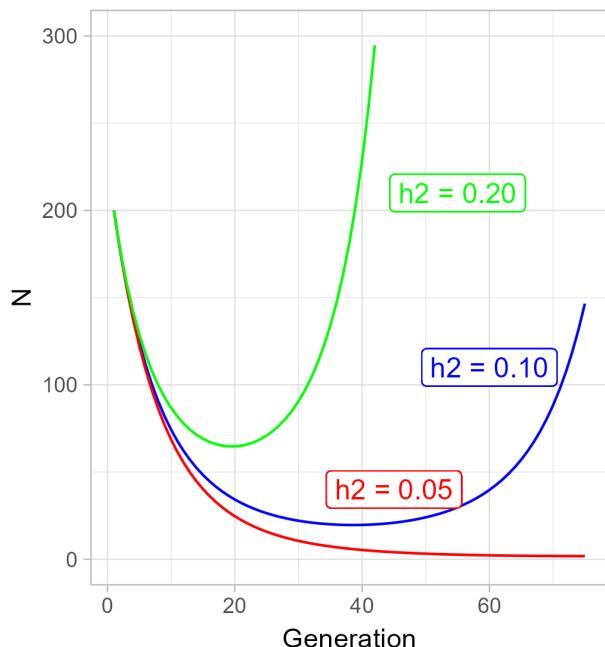

864

Scenario 1: Constant environment and constant selection							
Generation	Year	\bar{W}_0	S	$\frac{b}{v}$	Δz_t	$\frac{b}{v} \Delta z_t$	N with evolution
1	2028	0.88	-5.866	-0.0061	-0.587	.0035807	176.6
2	2033	0.88	-5.866	-0.0061	-1.174	.0071614	156.5
3	2038	0.88	-5.866	-0.0061	-1.761	0.0107421	139.2
4	2043	0.88	-5.866	-0.0061	-2.348	0.0143228	124.3
5	2048	0.88	-5.866	-0.0061	-2.935	0.0179305	111.3
6	2053	0.88	-5.866	-0.0061	-3.522	0.0214842	100.1
7	2058	0.88	-5.866	-0.0061	-4.109	0.0250649	90.3
8	2063	0.88	-5.866	-0.0061	-4.696	0.0286456	81.7
9	2068	0.88	-5.866	-0.0061	-5.283	0.0322263	74.2
10	2073	0.88	-5.866	-0.0061	-5.870	0.035807	67.7
Scenario 2: Mean fitness and selection change with snowmelt date as in hybrid population.							
Generation	Year	\bar{W}_0	S	$\frac{b}{v}$	Δz_t	$\frac{b}{v} \Delta z_t$	N with evolution

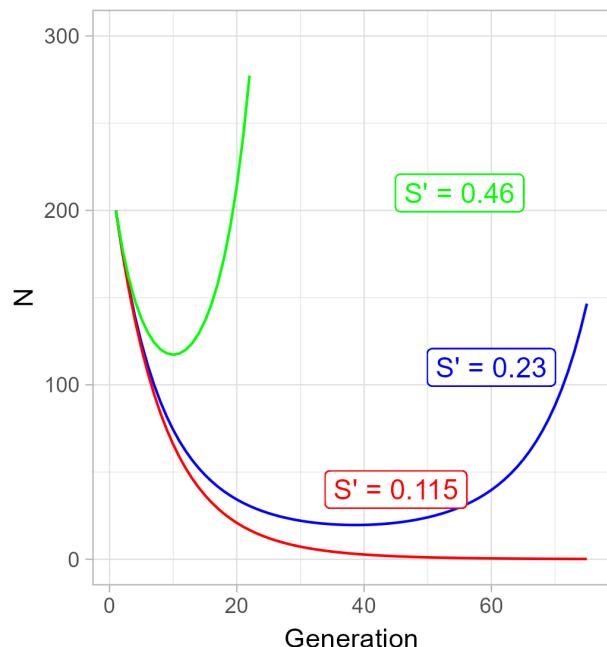
1	2028	0.905	-4.697	-0.0064	-0.56	0.003584	183.3
2	2033	0.889	-4.737	-0.0065	-1.03	0.006695	166
3	2038	0.876	-4.777	-0.0066	-1.51	0.009966	148.5
4	2043	0.863	-4.817	-0.0067	-1.99	0.013333	131.4
5	2048	0.850	-4.857	-0.0068	-2.47	0.016796	114.9
6	2053	0.838	-4.897	-0.0070	-2.96	0.02072	99.3
7	2058	0.826	-4.937	-0.0071	-3.45	0.024495	85
8	2063	0.814	-4.977	-0.0072	-3.95	0.02844	71.9
9	2068	0.802	-5.017	-0.0073	-4.45	0.032485	60.2
10	2073	0.791	-5.057	-0.0074	-4.95	0.03663	49.9

865

866



867


868 Supplementary Figure 1. *Scenario 1* of constant selection in an extreme environment with
 869 demographic stochasticity added. Ten sample runs are shown starting with $N = 100$ (left panel)
 870 or $N = 200$ (right panel). Parameter values are the same as in Fig. 3 with the exception of the
 871 addition of demographic stochasticity.

872

A) Scenario 1: Effect of heritability

B) Scenario 1: Effect of selection

873

874 Supplementary Figure 2. Effects of heritability and selection on population dynamics in *scenario*
 875 *I* with constant extreme environment. A) Selection is kept at $S' = 0.23$, and heritability varies. B)
 876 Heritability is kept at 0.10 and selection varies. Predicted population size is shown as a function
 877 of generation.

878