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Abstract 

Background  The aerial surface of plants, known as the phyllosphere, hosts a complex and dynamic microbiome 
that plays essential roles in plant health and environmental processes. While research has focused on root-associ-
ated microbiomes, the phyllosphere remains comparatively understudied, especially in forest ecosystems. Despite 
the global ecological dominance and importance of conifers, no previous study has applied shotgun metagenomics 
to their phyllosphere microbiomes.

Results  This study uses metagenomic sequencing to explore the microbial phyllosphere communities of subal-
pine Western conifer needle surfaces from 67 trees at six sites spanning the Rocky Mountains, including 31 limber 
pine, 18 Douglas fir, and 18 Engelmann spruce. Sites span ~ 1,075 km and nearly 10° latitude, from Glacier National 
Park to Rocky Mountain Biological Laboratory, capturing broad environmental variation. Metagenomes were gen-
erated for each of the 67 samples, for which we produced individual assemblies, along with three large coassem-
blies specific to each conifer host. From these datasets, we reconstructed 447 metagenome-assembled genomes 
(MAGs), 417 of which are non-redundant at the species level. Beyond increasing the total number of extracted 
MAGs from 153 to 294, the three coassemblies yielded three large MAGs, representing partial sequences of host 
genomes. Phylogenomics of all microbial MAGs revealed communities predominantly composed of bacteria (n = 327) 
and fungi (n = 117). We show that both microbial community composition and metabolic potential differ significantly 
across host tree species and geographic sites, with site exerting a stronger influence than host.

Conclusions  This dataset offers new insights into the microbial communities inhabiting the conifer needle sur-
face, laying the foundation for future research on needle microbiomes across temporal and spatial scales. Variation 
in functional capabilities, such as volatile organic compound (VOC) degradation and polysaccharide metabolism, 
closely tracks shifts in taxonomic composition, indicating that host-specific chemistry, local environmental factors, 
and regional microbial source pools jointly shape ecological roles. Moreover, the observed patterns of mobile genetic 
elements and horizontal gene transfer suggest that gene exchange predominantly occurs within microbial lineages, 
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with occasional broader transfers dispersing key functional genes (e.g., those involved in polysaccharide metabolism), 
which may facilitate microbiome adaptation.

Keywords  Microbial ecology, Phyllosphere, Conifer, Metagenome, Mobile genetic elements

Background
Coniferous forests, which dominate temperate and boreal 
ecosystems, provide critical ecosystem services such as 
carbon sequestration [97], regulation of water cycles [11], 
soil erosion control [99], and habitat for diverse plant 
and animal species. However, these forests are increas-
ingly under threat from climate change [115]. Current 
perspectives on forest management often overlook the 
significance of forest tree microbiomes. These microbi-
omes comprise ectomycorrhizal (ECM) fungi [47] along-
side other fungal and bacterial species adapted to forest 
vegetation and soil [4]. A better understanding of forest 
microbiomes is essential due to their role in maintaining 
forest health, resilience, and biodiversity. A significant 
portion of this biodiversity resides on the aerial surfaces 
of plants, also known as the phyllosphere, one of the 
largest microbial habitats on Earth [75, 124]. Microbes 
that reside on leaves are vital for nutrient cycling, plant 
growth, and mitigating both biotic and abiotic stress [75], 
yet while agricultural and model plant phyllospheres have 
been extensively studied [66, 72], the phyllospheres of 
forest trees remain understudied.

The phyllosphere hosts a community of airborne gen-
eralists [14] that is shared among plants of different spe-
cies [104, 124]. Leaf surface microbes are dispersed via 
aerosols and dust particles, and wind facilitates their 
movement over short and long distances. While the phyl-
losphere can act as a passive aerosol sampler [43], per-
sistent microbial communities are maintained through 
plant–microbe interactions and adaptation to leaf envi-
ronments [122]. The leaf community of a given plant is 
influenced by plants growing in the immediate vicin-
ity but also with additional microbial signatures from 
more distant plant surfaces [81]. Conifer forests provide 
a vast and enduring reservoir of phyllosphere microbes. 
Unlike the ephemeral leaves of many agricultural plants, 
conifer needles offer a long-lived surface for micro-
bial colonization, with individual needles persisting for 
years to decades [37]. The trees themselves can live for 
centuries or even millennia, sustaining these microbial 
communities over extended timescales. Studies of other 
evergreen plants, such as sagebrush [48], demonstrate 
that persistent communities of leaf-associated microbes, 
including at least 20 fungal genera, are maintained over 
time and are influenced by both weather and leaf age. 
Similarly, conifers likely provide stable habitats and sig-
nificant reservoirs for phyllosphere-associated microbial 

communities, supporting interactions across both nearby 
and distant habitats and plant ecosystems.

For example, in boreal forests, the composition of the 
microbial community living on nitrogen‑fixing mosses 
depends on both the moss species and the surrounding 
canopy structure [56]. A higher proportion of conifers 
in the overstory is associated with greater α‑diversity in 
moss‑associated microbiomes, likely because conifers 
modify the forest floor environment (e.g., through nee-
dle litter, pH, and moisture), creating conditions that 
support a more diverse microbial community [107, 109]. 
While microbial dispersal was not directly assessed in 
[107, 109], conifer-derived microbes, such as those from 
needle surfaces, may contribute to moss colonization and 
influence community assembly alongside environmental 
filtering. Thus, the presence of conifers and the sharing of 
microbial communities among plant species can enhance 
microbial diversity and stability in forest ecosystems. 
Moreover, the ability of conifers to host diverse micro-
bial communities, including nitrifiers that significantly 
contribute to nitrogen cycling, further underscores their 
ecological importance as habitats for important phyllo-
sphere communities [44]. Additionally, coniferous trees 
often endure extreme environmental conditions, such as 
high UV radiation, low temperatures, and nutrient-poor 
soils, making them ideal for studying stress tolerance 
mechanisms in phyllosphere communities. Conifer spe-
cies exhibit diverse needle characteristics that potentially 
influence the taxonomic and functional composition of 
microbial communities on their leaf surfaces. Second-
ary metabolites like terpenes and phenolic compounds 
in needles create unique chemical environments [34], 
selecting for specific microbial taxa that are tolerant of, 
or potentially capable of metabolizing, these compounds 
[61].

In parallel, polysaccharide decomposition is another 
critical microbial function in the phyllosphere with 
broader implications for forest carbon cycling. Conifer 
needle surfaces contain complex plant polymers such as 
cellulose, pectin, and hemicellulose derived from cuti-
cles and cell walls. Among the microbes that inhabit 
these surfaces, members of the Bacteroidetes phylum 
are common colonizers [124] and are well equipped to 
degrade such polymers due to their diverse repertoires 
of carbohydrate-active enzymes (CAZymes) [6]. Recent 
work suggests that phyllosphere microbial communi-
ties influence ecosystem-level processes, including the 
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“home-field advantage” in litter decomposition, where 
microbes accelerate decomposition of their host’s own 
litter relative to foreign litter sources [39]. This advan-
tage could arise because early colonization and metab-
olism of polysaccharides by phyllosphere organisms 
creates priority effects, influencing microbial succes-
sion and subsequent litter breakdown in soils. However, 
the prevalence and genomic mechanisms underlying 
polysaccharide decomposition specifically in conifer 
phyllosphere microbiomes remain largely unexplored.

Bacterial communities on conifer needles have been 
implicated in nitrogen fixation and growth promo-
tion [7, 84], both of which contribute to stress resil-
ience. Additional mechanisms by which phyllosphere 
microbes may enhance conifer stress tolerance include 
protection against extreme temperatures via heat shock 
and antifreeze proteins [57], desiccation resistance 
through biofilm formation or production of extracellu-
lar polysaccharides that retain moisture [106], and the 
synthesis of protective pigments such as carotenoids 
that absorb or mitigate UV radiation [58]. A recent 
genome-centered study of switchgrass and miscanthus 
phyllosphere communities revealed that these microbes 
harbor genes for osmoprotectants, compatible solutes, 
and antioxidative enzymes like catalases and peroxi-
dases, which detoxify reactive oxygen species gener-
ated under environmental stress [51]. Both conifers and 
grasses are exposed to similar abiotic stresses, such as 
drought temperature extremes, and oxidative stress, 
which can select for analogous stress tolerance func-
tions in their leaf-associated microbiomes [122]. Thus, 
similar microbial mechanisms may be at work in the 
conifer phyllosphere. In addition to these adaptations, 
phyllosphere microbes may also influence trace gas 
dynamics, including methane oxidation [15], although 
the extent and mechanisms of methane cycling in 
conifer needle microbiomes remain poorly under-
stood. Beyond abiotic stress mitigation, phyllosphere 
microbes, including both bacteria and fungi, play criti-
cal roles in defending their host plants against biotic 
stress. Leaf surface communities can directly suppress 
pathogens and herbivores through competitive exclu-
sion [75], production of antimicrobial and antiher-
bivore compounds [85], and induction of systemic 
resistance. For instance, fungal endophytes in conifer 
needle tissues have been shown to reduce infection 
severity by pathogenic fungi and enhance resistance 
to insect herbivory [3, 22], while bacterial communi-
ties further contribute to pathogen suppression by 
competing for nutrients and space and producing anti-
biotics, thereby shaping plant community dynamics 
and improving overall plant fitness [54]. Despite these 
promising roles, targeted studies on microbial-driven 

biotic stress tolerance in conifer phyllospheres remain 
relatively sparse, underscoring the need for further 
investigation into these complex interactions.

Furthermore, mobile genetic elements (MGEs), includ-
ing phages, prophages, plasmids and transposons, may 
facilitate microbial adaptation to environmental stress-
ors and host defenses through horizontal gene trans-
fer (HGT) [65, 112]. Although most research on MGEs 
has focused on soil and rhizosphere microbiomes, plant 
associated habitats such as the phyllosphere also harbor 
MGEs and antibiotic resistance genes (ARGs) that con-
tribute to microbial functional plasticity [52]. Interest-
ingly, large-scale metagenomics comparisons suggest 
that phyllosphere-associated bacteria may be relatively 
depleted in MGEs compared to other environments [71], 
potentially reflecting distinct ecological constraints on 
horizontal gene transfer in this habitat [10]. Neverthe-
less, those MGEs that persist may contribute to stress 
response, chemical defense, or metabolic flexibility, 
underscoring the need to better characterize their roles 
in conifer needle microbiomes.

Studies using 16S rRNA-based profiling of bacterial 
needle communities, including work by Carper et  al. 
[20] and Carrell et al. [21], have shown that the subalpine 
conifer phyllosphere harbors diverse bacterial popula-
tions shaped by a complex interplay between selection 
and dispersal, with local site factors influencing com-
munities more than host species identity or time across 
the growing season. However, the functional potential 
of forest tree phyllosphere communities remains under-
studied, particularly with respect to key processes such 
as polysaccharide decomposition, the role of mobile 
genetic elements (MGEs) in adaptation, and the poten-
tial for methane cycling. To our knowledge, no shotgun 
metagenomics studies of the needle surface exist to date. 
To address this gap, we sequenced the metagenomes of 
needle microbiomes from three species of subalpine 
conifers – limber pine, Engelmann spruce, and  Douglas 
fir – from six sites in the Rocky Mountains, USA, rang-
ing from Glacier National Park, MT (48.70°N) to Rocky 
Mountain Biological Laboratory, CO (38.96°N) and 
spanning 1,075  km. We generated 67 metagenomes, 
where each was assembled and binned into Metagenome 
Assembled Genomes (MAGs), but we also utilized three 
large coassemblies specific to each host conifer species, 
creating a combined, dereplicated set of MAGs that was 
used to assess overall genome-level abundance, diversity, 
and functional potential within the conifer needle micro-
biomes. By generating the first broad‑scale metagen-
omic survey of conifer‑needle microbiomes spanning six 
Rocky Mountain sites and three host species, this study 
establishes a critical baseline for future work on phyl-
losphere ecology and function, providing an important 
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foundational resource for understanding the genomic 
diversity and functional potential of these unique phyl-
losphere communities. Examining the long-lived, aerial 
surfaces of conifers, key reservoirs for microbial disper-
sal across landscapes, this work offers insight into micro-
bial connectivity, persistence, and influence beyond the 
immediate leaf surface, shaping broader forest and eco-
system processes.

Methods
Conifer needle sampling and DNA extraction
Conifer needles were collected from each of the three 
conifer tree species at each of the six different sampling 
locations. For each tree, approximately 10  g of tissue (a 
twig with needles) was collected at breast height from 
the north side of the tree using sterile razor blades and 
placed into sterile bags. The samples were then placed on 
ice and shipped overnight to the University of California, 
Merced. Two 1-g samples were placed in 50  mL tubes, 
immersed in 15  mL of PBS-S buffer, vortexed for 15  s, 
and then sonicated for 5 min. Samples were transferred 
to a new tube and centrifuged for 15 min at 3200 g. The 
resulting pellet, consisting of needle surface microbes 
(bacteria and microbial eukaryotes), was resuspended in 
1.5 mL of PBS, transferred to a 2 mL tube, centrifuged for 
5 min at 10 000 g, and frozen at −80 C until extraction. A 
CTAB protocol described in Carper et al. [20] was used 
to extract DNA. This protocol was designed to exclude 
cells from inside the needle tissue.

Metagenomic DNA sequencing
Illumina libraries were prepared using standard JGI 
protocols, i.e. following the protocols described in [12]. 
Briefly, the Nextera XT kit (Illumina) was used with 2 ng 
of DNA that was fragmented and adapter ligated. Ligated 
DNA fragments were PCR amplified and purified using 
SPRI beads (Beckman Coulter). Library concentrations 
were determined with quantitative PCR (qPCR) using 
a LightCycler 480 real-time PCR instrument (Roche). 
Sequencing was performed on the HiSeq 2500 platform, 
generating 150 bp paired-end reads.

Metagenome assembly and annotation
Paired end reads were trimmed and screened accord-
ing to BBTools documentation [5] and corrected using 
BFC [73] version r191. Reads without a mate pair were 
removed. Following trimming and error correction, 
reads were assembled using metaSPAdes [91]. The fil-
tered read set was mapped to the final assembly where 
coverage statistics were generated with BBMap version 
38.22 using default parameters. Coassemblies were gen-
erated for each host tree species (Engelmann spruce, 
n = 18, limber pine, n = 31, and douglas fir, n = 18) with 

MetaHipMer2 [50] using default settings. It is worth not-
ing that an attempt was made to create a coassembly of 
all 67 metagenomes, however, all attempts failed, which 
prompted us to perform coassemblies of metagenomes 
within each tree species. Small contigs, less than 500 bp 
were removed, and coverage information was generated 
internally in Metahipmer2 during post assembly process-
ing. For individual assemblies, coverage information was 
generated using BBTools version 38.79 (pileup.sh using 
default parameters. Functional annotation of the assem-
bled contigs was performed using the IMG annotation 
pipeline [25] and eggNOG-mapper v2 [17]. CRISPR ele-
ments were predicted within IMG via a modified ver-
sion of CRT-CLI version 1.2 [8]. rRNA genes (5S, 16S, 
23S) were identified by comparing the contigs against the 
Rfam version 13.0 database [86] via cmsearch from the 
Infernal version 1.1.3 package [87]. Prediction of tRNAs 
was performed using tRNAscan-SE [23] version 2.0.8. 
A combination of GeneMarkS-2 version 1.05 [78] and 
Prodigal version 2.6.3 [53] were used to predict protein-
coding genes.

MAG production and quality control
Metagenome binning was performed using MetaBAT2 
[59] with default parameters, using both composition and 
coverage to generate the MAGs analyzed in this study. 
All MAGs were quality assessed using CheckM2 [27], 
and completeness and contamination estimates for each 
genome are provided in the Supplementary Excel Table. 
To ensure consistency across both bacterial and eukary-
otic MAGs, we adopted the numerical cutoffs from the 
bacterial minimal information about metagenome-
assembled genome (MIMAG) standards [13] rather than 
specifically assigning HQ/MQ/LQ labels, which were not 
defined for eukaryotes at the time of publication, includ-
ing categorization into MIMAG standards [13]. Genes 
were called and annotated using the Integrated Microbial 
Genomes (IMG) system at the DOE Joint Genome Insti-
tute (JGI) [26]. Furthermore, all genomes were subject to 
a combined pairwise genomic ANI analysis using fastANI 
[55] with a 95% identity and 70% alignment threshold to 
define species-level clusters. Genomes were then clus-
tered into species-level groups using MCL [123] version 
14–137 with an inflation parameter of 1.5.

Phylogenomics of bacterial MAGs
A 56 single copy concatenated marker gene tree was 
constructed by combining a set of reference genomes 
spanning the bacterial domain together with the indi-
vidually assembled and coassembled MAGs. To gen-
erate a phylogenetically broad yet non-redundant set 
of references, we clustered all publicly available IMG 
isolate bacterial genomes using CD-HIT [76], based 
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on the RNA polymerase gene (rpoB) at 80% sequence 
identity. This clustering produced a reduced set of ref-
erence genomes, roughly unique at the genus to family 
taxonomic levels (see also Supplementary Fig.  1). The 
MAGs were dereplicated by grouping them into spe-
cies-level groups using Mash [96] version 2.0 at a cut-
off distance of 0.05, followed by clustering with MCL 
[123] version 14–137 with an inflation parameter of 1.5. 
This dereplicated set of MAGs and the reduced set of 
bacterial reference genomes were passed through the 
SGTree version 0.0.10 pipeline (https://​github.​com/​
NeLLi-​team/​sgtree). Briefly, this pipeline extracts sets 
marker genes from the query and reference genomes 
using hmmsearch [82] version 3.1b2, performs align-
ments of each marker with MAFFT [60] version v7.490 
(2021/Oct/30) using the mafft-linsi option, trims align-
ments with trimAl version1.4 [18], and removes sites 
when more than 90% of taxa contain a gap. Due to 
various levels of MAG completeness, not all MAGs 
are included in the bacterial phylogeny (Fig.  2A; spe-
cifically, MAGs with less than 20% completeness were 
excluded, resulting in the omission of 10% of MAGs 
from the tree. Finally, individual protein alignments 
were concatenated, followed by maximum likelihood 
tree construction with IQ-TREE [89] multicore version 
1.6.1 using the WAG substitution model and ultrafast 
bootstrap with 1,000 replicates [49]. Trees were visual-
ized with ggtree v3.2.1 [130].

Phylogenomics of eukaryotic MAGs
To place the eukaryotic MAGs from the conifer needle 
phyllosphere into a concatenated marker gene tree, we 
used BUSCO_Phylogenomics (https://​github.​com/​jamie​
mcg/​BUSCO_​phylo​genom​ics). This is a pipeline that 
relies on extracted BUSCO [116] marker genes. To cre-
ate a reference dataset, we ran BUSCO on the full set of 
eukaryota_odb10 reference genomes to obtain a BUSCO 
profile for each reference. We then ran BUSCO on all 
eukaryotic MAGs with BUSCO completeness scores 
greater than 50%. These MAGs were defined as eukary-
otic based on the identification of Eukaryotic contigs 
with EukRep [127]. EukCC [113] was then run to further 
assess quality. The full set of BUSCO generated output 
consisting of the eukaryota_odb10_reference database 
and our query MAGs was dereplicated into species 
clusters at a Mash [96] version 2.0 distance of 0.05. The 
dereplicated eukaryotic MAGs together with the eukary-
otic reference set were then passed to the BUSCO_phy-
logenomics pipeline, which uses IQ-TREE applying the 
WAG substitution model and ultrafast bootstrap with 
1,000 replicates [49]. Trees were visualized with ggtree 
v3.2.1 [130].

MAG abundances
To assess the taxonomic composition of the conifer 
phyllosphere, we determined the relative abundance of 
microbial taxa by mapping metagenomic reads to the 
set of representative MAGs described above. Metagen-
omic reads from each sample were then mapped to this 
reference set of dereplicated MAGs using BBSplit from 
the BBMap suite (v38.90), which allows for unambigu-
ous assignment of reads to the most similar reference 
genome.

Host-derived MAGs were identified and excluded from 
microbial community analyses. For community‑level 
composition, we expressed the number of reads assigned 
to each microbial MAG as a proportion of all mapped 
reads within that sample. Taxonomic classifications were 
assigned to each MAG based on its placement in a ref-
erence phylogeny (See Phylogenomics of MAGs above). 
The resulting abundance data was processed in R (v4.2.0) 
[103] to visualize taxonomic composition across host 
plants and sampling sites. Hierarchical clustering of 
samples was performed using Bray–Curtis dissimilar-
ity on abundance data rarefied to the minimum sample 
sum (i.e., the lowest total count across samples) using 
the rrarefy() function from the vegan R package [93]. 
Dendrograms were constructed to visualize relation-
ships between metagenomes from different host plants 
and collection sites. Abundance profiles are displayed 
as stacked bar plots showing the relative abundance of 
major taxonomic groups, with taxa contributing less 
than 1% relative abundance grouped into an "Other" cat-
egory. This approach allowed us to examine the influence 
of both host plant species and geographical location on 
microbial community structure in the conifer phyllo-
sphere. Taxa enrichment was determined using DESeq2 
[79], a differential abundance testing framework based 
on the negative binomial distribution that is specifically 
designed for raw count data. Raw reads assigned to each 
taxon were used directly for DESeq2 analysis, while fil-
tering out low-abundance taxa that had either fewer 
than 100 total reads across all samples or fewer than 10 
reads in at least 3 samples. For each host species or site, 
a binary contrast was established comparing the target 
group against all others. P-values were adjusted using the 
DESeq2 built-in procedures to control for false discov-
ery rate (FDR). For statistical analyses and tabular pres-
entation, taxa were considered significantly enriched or 
depleted if FDR < 0.01. For visualization purposes (Sup-
plementary Fig. 2), a relaxed threshold of FDR < 0.5 was 
applied to provide a broader view of potential enrichment 
patterns. Log2 fold change was calculated directly by 
DESeq2, representing the log-ratio of normalized counts 
between target and other groups. The size of points in the 
supplementary figures represents -log10(FDR), allowing 
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visual distinction between highly significant and margin-
ally significant results.

To assess differences in community composition 
among samples, we performed non-metric multidimen-
sional scaling (NMDS) and permutational multivariate 
analysis of variance (PERMANOVA) using the vegan R 
package [94]. Bray–Curtis dissimilarity matrices were 
calculated from rarefied abundance tables. NMDS ordi-
nations were generated with the metaMDS function 
(trymax = 100, k = 2), and stress values were reported 
[28]. PERMANOVA was conducted using the adonis2 
function with 999 permutations to test for significant 
effects of host species and site on community struc-
ture [2]. Ordination plots were visualized with ggplot2 
[128], including convex hulls for group separation, biplot 
arrows for influential taxa, and annotation of PER-
MANOVA p-values and R2 statistics.

Orthologue clustering
For gene content comparisons, annotations of individual 
genes were used in combination with gene family clus-
tering using OrthoFinder 2.1.3 [35], and the dereplicated 
species level MAG collections as input. Only medium 
quality MAGs and higher were used for orthologue 
clustering.

Identification of genes potentially relevant to volatile 
organic compound degradation
To assess the potential for conifer microbes to degrade 
common volatile organic compounds (VOCs), we 
searched the annotations of all MAGs for indicators of 
common VOC compound degradation such as alpha-
pinene, methanol, among others. See Supplemental Excel 
Table for a full list.

Identification and characterization of carbohydrate‑active 
enzyme gene families
To identify and classify carbohydrate-active enzyme 
(CAZyme) gene families, we utilized dbCAN3 [131], a 
widely used tool for the annotation of CAZymes based 
on the CAZy database [77]. Predicted protein sequences 
from all MAGs were screened against the dbCAN3 data-
base using HMMER [100] version 3.3.2. Hits were fil-
tered based on a stringent e-value cutoff (< 1e-15) and 
coverage threshold (> 35%) to ensure high confidence in 
CAZyme identification. The outputs from dbCAN3 were 
further corroborated by cross-referencing annotations 
generated through the IMG pipeline [26]. To character-
ize the functional diversity and potential ecological roles 
of CAZymes, we categorized identified genes into func-
tional groups, including glycoside hydrolases (GHs), gly-
cosyltransferases (GTs), carbohydrate esterases (CEs), 
polysaccharide lyases (PLs), and auxiliary activities 

(AAs). Each group was analyzed for their distributions 
across the MAGs. Substrate utilization profiles were ana-
lyzed by mapping CAZyme annotations to their associ-
ated substrate types based on the dbCAN3 database. 
CAZyme families annotated with multiple substrate 
preferences were counted in all relevant substrate cat-
egories, such that each enzyme was included in the nor-
malized count for every substrate it is predicted to target. 
For each taxonomic group, we calculated the normal-
ized count of substrate-degrading enzymes per genome 
to account for differences in sampling depth across taxa. 
The normalized count represents the average number 
of enzymes targeting each substrate type that would be 
found in a typical genome from that taxonomic group.

Detection of mobile genetic elements and their host 
associations
To identify MGEs, including viruses and plasmids, from 
both the individual assemblies and coassemblies, con-
tigs were screened with geNomad version 1.1.0 [16] and 
VirSorter2 version 2.2.4 [45], taking the union of both 
results as the full set. MGE completeness was assessed 
with CheckV version 1.0.1 (database version 1.4) [88]. 
MGEs were then clustered into OTUs using skani [117] 
with a 90% sequence identity and a 70% alignment frac-
tion. Hosts were assigned to MGEs if they were either 
binned directly into a MAG or were assigned to a host 
based on the host prediction tool, iPhoP [110]. To com-
plement the automated prediction of MGEs we also 
searched for a small set of common phage, conjugative 
and non-conjugative plasmid and genes within the anno-
tations. The full set of genes used in these searches are 
available in the Supplemental Excel Table.

Detection of horizontally transferred genes
Horizontal gene transfer (HGT) was analyzed among all 
dereplicated MAGs using MetaCHIP [119], a pipeline 
designed to detect HGT events in microbial genomes 
by assessing phylogenetic incongruence and taxonomic 
discrepancies. All dereplicated MAGs were used as 
input, and the pipeline was run with default parameters 
to ensure consistency and reproducibility. MetaCHIP 
begins by identifying candidate HGT genes through 
sequence similarity searches and taxonomic classifica-
tion. Genes are flagged as potential HGT candidates 
if their predicted taxonomy differed significantly from 
that of the host MAG. To validate these candidates, 
MetaCHIP constructs phylogenetic analyses, generat-
ing gene trees for each candidate and comparing them 
to the species tree constructed from single-copy marker 
genes (Fig.  2A). Significant topological discrepancies 
between the gene trees and the species tree were flagged 
as evidence of HGT. To reduce false positives, additional 
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filters were applied, including minimum alignment cov-
erage and sequence identity thresholds. Confirmed HGT 
events were classified into donor-recipient pairs based on 
taxonomic relationships and the predicted functions of 
the transferred genes.

Results & discussion
Study sites, tree species, and dataset overview
This study builds on prior 16S rRNA gene amplicon 
based research investigating bacterial communities of 
limber pine and co-occurring conifers across the lim-
ber pine species range, spanning sites from California 
to Colorado and New Mexico to Montana [20]. For the 
current study, we chose a subset of samples from this 
broader dataset to apply shotgun metagenomics, allow-
ing deeper insights into microbial community composi-
tion and functional potential than previously possible 
with amplicon sequencing. These samples were collected 
from six sites spanning the Rocky Mountains, from Gla-
cier National Park, MT in the north to the Rocky Moun-
tain Biological Laboratory (RMBL), CO in the south. 
At each site, three distinct conifer species, limber pine 
(Pinus flexilis), Douglas fir (Pseudotsuga menziesii), and 
Engelmann spruce (Picea engelmannii), representing dis-
tinct genera within the family Pinaceae, were sampled, 
with minor exceptions: Engelmann spruce was not sam-
pled at Glacier National Park or RMBL. Despite these 
gaps, each site contained limber pine and Douglas fir 
samples, ensuring robust coverage across the latitudinal 
gradient (Fig. 1A). Corresponding climate data [20] from 
each site (Fig. 1B) highlight environmental gradients pre-
sent across sites.

Our metagenomic dataset includes 67 conifer needle 
surface samples collected from individual trees across 
three conifer species: 31 from limber pine, 18 from 
Douglas fir, and 18 from Engelmann spruce. Each sam-
ple yielded a unique shotgun metagenome, resulting in 
67 metagenomes, each with a corresponding individual 
assembly (Fig.  1C, Supplementary Table  1). Addition-
ally, we generated three large-scale coassemblies, one for 
each host species, to enhance the recovery of low-cover-
age sequences [31]. The individual assemblies averaged 
342 Mb, while the coassemblies spanned an average total 
size of 19.3 Gb, offering a valuable resource for exploring 
both taxonomic and functional diversity within the coni-
fer phyllosphere microbiome.

MAG extraction, domain‑level classification and quality 
assessment
To further characterize the microbial communities iden-
tified in these metagenomes, we extracted metagenome-
assembled genomes (MAGs) to analyze the taxonomic 

and functional diversity within the conifer needle micro-
biome. From 67 conifer needle metagenomes we recov-
ered a total of 447 MAGs, three of which were very large 
(average 3.7  Gb), host‐derived MAGs reflecting coni-
fer nuclear genome contamination, and seven insect 
MAGs, including those from Ixodes scapularis (tick, 
average 23  Mb) and Copidosoma floridanum (parasitic 
wasp, average 66 Mb), alongside 437 microbial genomes. 
Despite the challenges of assembling eukaryotic genomes 
from metagenomes [114], the host-derived MAGs pro-
vide valuable context for understanding sequence read 
origins, especially given that conifer genomes are noto-
riously large (typically 20–30 Gb [92],). The host MAGs 
underscore the difficulty of assembling highly repetitive 
eukaryotic genomes from metagenomes, as they aver-
aged only 40.1% completeness by EukCC [113] and 8% 
by BUSCO [116], with BUSCO’s lower estimate likely 
reflecting a more accurate representation of assembly 
gaps. These host-derived MAGs offer useful insights into 
host sequence contamination, a common challenge in 
phyllosphere microbiome studies described previously 
[51]. Our analysis revealed that contamination from host 
sequences was substantial, with a mean of 90.7% ± 2.0% 
SEM of mapped reads aligning to contaminant MAGs 
across samples, highlighting the significant challenge 
of separating microbial biomass from host material in 
phyllosphere studies. In contrast, the mean percent-
age of reads mapping to microbial MAGs (bacterial and 
eukaryotic combined) was 9.3% ± 2.0% SEM. It is also 
worth noting that chloroplast MAGs were not recovered, 
a common result given organellar circularity, lower effec-
tive coverage, and high sequence similarity that lead to 
fragmented or unbinned contigs [125].

The 447 MAGs (including the 10 contaminant MAGS) 
were clustered into 417 species‐level MAGs after derep-
lication, and then partitioned into bacterial and eukary-
otic sets. Bacterial MAGs were taxonomically assigned 
with GTDB-Tk [24] and refined by custom phylogenetic 
analyses (Fig.  2A). Completeness and contamination 
estimates, from CheckM2 for bacteria and EukCC for 
eukaryotes (Supplementary Excel Table), were then used 
to assign quality based on the numerical cutoffs of the 
bacterial MIMAG standards [13], applied uniformly since 
formal HQ/MQ/LQ labels do not yet exist for eukaryotic 
MAGs. Of 327 bacterial MAGs, 40 met the ≥ 90% com-
pleteness ≤ 5% contamination threshold, 102 met ≥ 50% 
completeness ≤ 10% contamination threshold, and 185 
were < 50% complete. Of 117 eukaryotic MAGs, 7 met 
the ≥ 90% completeness ≤ 5% contamination threshold, 
55 met the ≥ 50% completeness ≤ 10% contamination 
threshold, and 58 were < 50% complete (Fig. 1D).
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Host species and geographic site shape the diversity 
of conifer‑associated microbiomes
The microbial diversity observed in our MAG dataset is 
consistent with previous findings from amplicon-based 
studies on limber pine and co-occurring species [20], 
as well as other investigations into conifer-associated 
microbiomes, including those on limber pine, lodge-
pole pine [21], and Monterey pine [1]. While prior stud-
ies focused on bacterial communities using amplicon 
sequencing, our metagenomic approach enables a more 
comprehensive analysis of both bacterial and fungal com-
munities across multiple hosts and geographic locations.

Bacterial communities in the conifer needle microbi-
ome were dominated by phyllosphere-associated taxa, 
particularly members of Alphaproteobacteria, Bacteroi-
dota, and Gammaproteobacteria [104]. Less abundant 

groups included Actinomycetota, Armatimonadota, 
Acidobacteriota, and Myxococcota. Within Alphapro-
teobacteria, Acetobacteraceae were the most prominent, 
with additional representation from Burkholderiaceae, 
Sphingomonadaceae, and Pseudomonadaceae. Hymeno-
bacteraceae dominated among the Bacteroidota, along 
with smaller contributions from Sphingobacteraceae 
and Spirosomaceae (Fig.  2A and B and Supplementary 
Fig.  1A). Additionally, the presence of Rickettsiaceae in 
the phyllosphere is intriguing given their typical role as 
obligate intracellular parasites. Among the eukaryotic 
MAGs, we recovered bins assigned to Ixodes ticks, which 
are well‑known reservoirs of Rickettsia endosymbionts 
[64]. The co‑occurrence of Rickettsiaceae MAGs with 
the arthropod MAGs suggests that the bacteria originate 
from endosymbionts harbored by arthropods incidentally 

Fig. 1  Geographic distribution of sampling sites, their environmental characteristics, and the resulting metagenomic data obtained from three 
conifer host species. A Map showing the sampling sites distributed across the Rocky Mountains, from central Colorado to northern Montana. Site 
codes (GNP = Glacier National Park, SNF = Shoshone National Forest, MBNF = Medicine Bow National Forest, RMNP = Rocky Mountain National Park, 
NR = Niwot Ridge, RMBL = Rocky Mountain BioLab) are shown with the total number of samples collected at each location. Circle sizes on the map 
are uniform and serve as markers for sampling locations. B Environmental parameters (elevation, temperature, and precipitation) for each sampling 
site and host species combination. The size of each circle reflects the underlying metadata value for that site-host combination. Engelmann spruce 
samples were not collected at GNP, MBNF, and RMBL; Douglas fir samples were not collected at RMNP and NR. C Total metagenome distribution 
by host species, with Limber pine representing the largest sample group (n = 31). D Counts of bacterial and eukaryotic metagenome-assembled 
genomes (MAGs) categorized by host species and quality. Species-level OTUs were defined using a 95% average nucleotide identity (ANI) threshold. 
Completeness and contamination thresholds follow the bacterial MAG criteria of Bowers et al. [13] (“MIMAG” standards [13]). Because MIMAG quality 
categories (high/medium/low) are currently not defined for eukaryotic MAGs at the time of publication, we use these explicit numerical thresholds 
for all MAGs rather than the HQ/MQ/LQ labels
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Fig. 2  Analysis of bacterial (left-hand panels) and eukaryotic (right-hand panels) metagenomic data: A Phylogenetic relationships among recovered 
MAGs. The bacterial phylogeny is constructed from 56 concatenated marker genes, while the eukaryotic phylogeny is based on the complete 
set of eukaryotic BUSCO markers. B Relative abundances of microbial taxa across different conifer species. Abundances represent the proportion 
of reads mapped to each MAG, normalized by the total number of reads for the corresponding domain. C Community composition visualized 
through NMDS ordination based on Bray–Curtis dissimilarities (stress values: Bacteria = 0.11, Eukaryota = 0.14). Ordinations use species-level 
dereplicated sets of MAGs for each domain. Host-associated MAGs, including conifer and insect genomes, are excluded from the Eukaryota relative 
abundance and ordination panels to focus on microbial taxa
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collected with the needles, rather than from free‑living 
rickettsiae or protistan associations. Significant differ-
ences in bacterial community composition were detected 
across host species and sampling sites (PERMANOVA, 
p = 0.0001; Fig. 2C). Community composition was signifi-
cantly influenced by both site and host species, with site-
level variation explaining a slightly larger proportion of 
the variation in bacterial communities (R2 = 0.26; Fig. 2C) 
compared to host species (R2 = 0.11; Fig.  2C). Site-level 
variation likely integrates multiple environmental factors, 
including climate and microbial dispersal from surround-
ing habitat, with our prior 16S analysis of a larger set of 
samples from a wider geographic range showing that 
land cover exert a stronger influence than climate alone 
on conifer needle communities [20]. To further quan-
tify these patterns of microbial enrichment across hosts 
and sites, we performed differential abundance analysis, 
which revealed 67 significant site and/or host-microbe 
associations (Table 1, FDR < 0.01).

Engelmann spruce communities exhibited distinct 
taxonomic profiles, with significant enrichment of Bac-
teroidota (Spirosomaceae, Hymenobacteraceae), Actino-
mycetota (Microbacteriaceae, Propionibacteriaceae),  
Alphaproteobacteria (Sphingomonadaceae), and Arma-
timonadota (Chthonomonadaceae) compared to other 
hosts. The enrichment of Sphingomonadaceae is par-
ticularly noteworthy as members of this family are 
known for their ability to metabolize recalcitrant aro-
matic compounds [54, 124], potentially providing adapta-
tion to the complex phytochemistry of spruce needles. In 
contrast, limber pine samples showed significant depletion 
of several bacterial families including Bacteroidota (Spiro-
somaceae, Hymenobacteraceae), Gammaproteobacteria 
(Moraxellaceae) and Alphaproteobacteria (Sphingomona-
daceae), suggesting a more selective microbiome. Douglas 
fir was characterized by elevated levels of Gammaproteo-
bacteria (Moraxellaceae) while showing depletion of several 
Bacteroidota and Armatimonadota families. The interplay 
between host and site effects was evident across all sam-
pling locations. At Glacier National Park, Myxococcota 
(XYA12-FULL-58–9) was significantly enriched, a group 
rarely reported in phyllosphere studies but known for pred-
atory behavior, including synthesis and secretion of antimi-
crobial compounds, nutrient cycling via microbial cell lysis, 
and biofilm modulation through extracellular polymer 
production [74, 83]. Medicine Bow National Park showed 
enrichment of several Gammaproteobacteria families 
(Aestuariirhabdaceae, Enterobacteriaceae, Moraxellaceae) 
and Alphaproteobacteria (Caulobacteraceae), while Niwot 
Ridge showed enrichment of Armatimonadota (Chthono-
monadaceae). Hymenobacteraceae, which emerged as one 
of the most prominent bacterial families in our analysis, 
showed a complex pattern, enriched in Engelmann spruce 

but depleted in limber pine, Douglas fir, Glacier NP, and 
Niwot Ridge. This pattern highlights the context-depend-
ent nature of these host-microbe and site-microbe asso-
ciations [21, 104]. Notably, these taxonomic abundance 
and enrichment patterns agree with the taxonomic vec-
tors displayed in the ordination plots (Fig.  2C), where 
the arrows point in the direction of maximum change 
in abundance for each bacterial family, with their length 
proportional to the correlation with the ordination axes 
(p < 0.05), revealing the taxa most strongly associated 
with community differences across sites and hosts.

Fungal diversity, while less taxonomically rich than 
bacterial diversity, showed comparable site and host-
associated variation. Most fungal MAGs were classified 
within Ascomycota, with smaller contributions from 
Basidiomycota, consistent with the known dominance of 
ascomycetes in the phyllosphere [108] (Fig. 2A and B and 
Supplementary Fig. 1B). Fungal community composition 
was also significantly influenced by site (PERMANOVA, 
p = 0.001; Fig.  2C), with site-level variation (R2 = 0.28; 
Fig. 2C) explaining more of the observed differences than 
host species (R2 = 0.05; Fig.  2C). Several dominant fun-
gal clades included potential pathogens, such as Bipo-
laris maydis and Sphaerulina musiva, which are known 
to cause southern corn leaf blight [121] and poplar can-
kers [33], respectively. While neither is documented as 
a conifer pathogen, their presence on needle surfaces 
likely reflects airborne dispersal, as both produce wind-
borne spores capable of widespread transport. Alterna-
tively, their presence highlights potential gaps in current 
fungal reference databases, underscoring the need for 
expanded genomic resources in fungal ecology. Among 
less dominant fungal taxa, Phialocephala scopiformis 
stood out as a known mutualistic foliar endophyte in 
conifers. This fungus, which provides protection against 
spruce budworm [40], was detected across all host spe-
cies and sites, suggesting it is a generalist capable of colo-
nizing diverse conifer hosts. Its widespread distribution 
raises intriguing questions about its ecological role and 
potential protective benefits across varying environmen-
tal conditions. Although fungal community composition 
also varied across hosts and sites, these patterns were 
less pronounced than those observed for bacterial com-
munities and appeared driven by a few outlier samples. 
Given the limited phylogenetic diversity of fungal MAGs 
at broader taxonomic levels (i.e., the dominance of Asco-
mycota), the remainder of this manuscript focuses on the 
functional dynamics of bacterial communities.

Volatile organic compound metabolism: adaptation 
to conifer chemistry
Trees emit a variety of volatile organic compounds 
(VOCs), including monoterpenes such as α-pinene, 
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which play important roles in stress adaptation, defense 
against herbivores and pathogens, and communication 
between plants [42, 46]. In conifers, VOC emissions are 
a major component of needle chemistry and may influ-
ence the composition and functional capabilities of asso-
ciated microbial communities. To investigate whether 
phyllosphere bacteria interact with these host-emitted 

compounds, we analyzed microbial genes associated 
with VOC degradation across the needle-associated 
metagenomes.

Among VOC-degradation genes, those targeting 
α-pinene, a monoterpene abundantly produced by 
conifers as a chemical defense compound, were the 
most prevalent (Fig.  3A). Within our dataset, pinene 

Table 1  Host and Site-specific enrichment of microbial taxa based on differential abundance analysis. DESeq2 [79] was used to 
identify significantly enriched or depleted taxa (FDR < 0.01) based on raw read counts. For each host species or site (rows), the table 
shows the number of significant taxa and their enrichment status, with the most abundant taxa listed. Min. FDR indicates the strongest 
statistical significance observed for each comparison. Host and site comparisons are distinguished by background colors (blue: 
hosts,green: sites). All host species and site locations showed significant differential abundance patterns, with a total of 67 significant 
host-microbe and site-microbe associations detected
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degradation genes were primarily associated with bacte-
rial families including Acetobacteraceae, Sphingomona-
daceae, and Burkholderiaceae. These taxa likely play 
key roles in both utilizing these compounds as carbon 
sources and mitigating their antimicrobial properties, 
allowing them to thrive on the conifer needle surface. 
Acetobacteraceae and Sphingomonadaceae showed the 
highest abundance of genes associated with pinene deg-
radation, suggesting a selective advantage in metaboliz-
ing conifer-derived VOCs; a capability that may explain 
their dominance in the phyllosphere communities 
we observed across sampling sites. Burkholderiaceae, 
although less abundant overall, also contributed signifi-
cantly to VOC degradation potential, underscoring its 
ecological relevance in specific niches. This pattern of 
metabolic specialization likely reflects bacterial adapta-
tion to metabolizing the chemical defenses produced by 
their hosts [75, 124]. The prevalence of pinene-degra-
dation genes suggests that these bacteria not only adapt 
to the chemical environment of conifer needles but may 
also contribute to shaping this environment, with impli-
cations for tree health, herbivore defense, and climate 
regulation. Pinene serves multiple ecological roles: it acts 
as a chemical defense against herbivores and pathogens, 
deters competing plants, and facilitates communication 

between trees by signaling threats [62]. In the atmos-
phere, pinene is highly reactive and plays a crucial role in 
secondary organic aerosol formation, influencing cloud 
formation and rainfall patterns [38]. Bacterial communi-
ties on needle surfaces may therefore influence pinene’s 
persistence, breakdown, and atmospheric fate.

In contrast, genes targeting other VOCs, such as meth-
anol, geraniol, and phenol, were relatively scarce, indi-
cating limited specialization for these pathways within 
the sampled bacterial communities. While we did not 
detect genes associated with methanol oxidation, genes 
for methane oxidation were identified in known meth-
ane-oxidizing taxa, particularly the genus Methylocys-
tis within the family Beijerinckiaceae (Supplementary 
Fig. 3). This finding aligns with previous work reporting 
methane oxidation potential within conifer-associated 
microbiomes [101]. However, the sporadic presence of 
methane oxidation genes in other bacterial families (e.g., 
Acetobacteraceae and Burkholderiaceae) suggests these 
taxa likely lack complete functional capabilities for meth-
ane oxidation. We also detected near‑complete nitro-
gen‑fixation (nif ) gene sets, most prominently in three 
of the five MAGs that were again classified as Methy-
locystis (Beijerinckiaceae), a well‑established diazotroph 
[29, 120]. Additionally, partial nitrogen fixation pathways 

Fig. 3  Functional diversity of bacterial communities in the conifer phyllosphere. A VOC degradation genes and abundances. Top: Distribution 
of VOC degradation genes across phyllosphere MAGs, categorized by substrate type. The predominance of α-pinene degradation genes reflects 
adaptation to conifer-derived monoterpenes. Bottom: Mean VOC-degradation gene count per genome, normalized by the number of genomes 
per bacterial family, showing Acetobacteraceae and Sphingomonadaceae with the highest abundance of pinene degradation genes. B CAZyme 
diversity and abundances. Top: Total diversity and abundance of CAZyme genes across MAGs, grouped by substrate type. Bottom: Mean CAZyme 
gene count per genome, normalized by the number of genomes per family-level group, highlighting the exceptional CAZyme repertoire 
in Bacteroidetes families (Hymenobacteraceae, Sphingobacteriaceae, and Spirosomaceae) and Chthonomonadaceae. The substrate order follows 
a biochemical gradient from structural plant polysaccharides (cellulose, xylan) to host-derived glycans and specialized substrates



Page 13 of 21Bowers et al. Microbiome          (2025) 13:222 	

were detected in a smaller proportion of MAGs from 
the families Sphingomonadaceae, Burkholderiaceae, 
and Aestuariirhabdaceae (e.g., Pseudomonas). Some of 
these genera may have been responsible for the nitroge-
nase activity previously detected in limber pine foliage 
sampled from Niwot Ridge, CO [7, 84], one of the sites 
represented in this study. Prior work has demonstrated 
the presence of nitrogen-fixing Sphingomonas isolates 
in Scots pine needles [7], confirming diazotrophic activ-
ity among Sphingomonadaceae in conifer phyllospheres 
(Supplementary Fig.  3). These findings underscore the 
potential importance of methane-oxidizing diazotrophs, 
such as Methylocystis, in coupling carbon and nitro-
gen cycling within the conifer phyllosphere, particularly 
under nutrient-limited conditions.

Carbohydrate‑active enzyme distribution: specialized 
polysaccharide metabolism
Bacterial communities in the conifer phyllosphere exhib-
ited significant functional potential for polysaccharide 
metabolism, as evidenced by the distribution of carbohy-
drate-active enzymes (CAZymes) across MAGs (Fig. 3B). 
Bacteroidetes as a phylum consistently displayed the 
highest CAZyme functional potential, with the Hymeno-
bacteraceae, Sphingobacteriaceae, and Spirosomaceae. 
This pattern agrees with the established role of Bacte-
roidetes as specialists in complex carbohydrate degrada-
tion across diverse environments [6]. Interestingly, we 
also observed two MAGs belonging to Chthonomonas 
calidirosea (phylum Armatimonadota) with exceptionally 
high CAZyme gene counts. This finding aligns with pre-
vious studies of C. calidirosea isolates from geothermal 
environments, which reported extensive carbohydrate-
degrading capabilities in this thermophilic bacterium 
[68].

The CAZyme profiles were broadly similar across bac-
terial families, with differences primarily observed in the 
number of gene copies rather than in their presence or 
absence. For example, Hymenobacteraceae consistently 
exhibited high CAZyme gene counts, suggesting poten-
tial importance in polysaccharide metabolism, a pattern 
that may be relevant to the enrichment of Hymenobac-
teraceae within the Engelmann spruce needles at Sho-
shone NF (Fig.  2B and C, Table  1). We speculate that 
their CAZyme repertoire may provide a competitive 
advantage in this specific host-site combination, though 
experimental validation would be needed to confirm 
this relationship. The CAZyme repertoire across fami-
lies targeted a wide range of carbohydrate substrates, 
including cellulose, xylan, chitin, pectin, and arabinoga-
lactan (Supplementary Fig.  4). The ability to metabolize 
diverse polysaccharides likely enhances bacterial ecologi-
cal flexibility, allowing taxa to occupy multiple niches on 

needle surfaces. By breaking down plant-derived poly-
saccharides, CAZyme-producing bacteria play a key role 
in recycling carbon, influencing microbial competition, 
and modulating the availability of nutrients that shape 
conifer phyllosphere dynamics. Carbon recycling in 
the phyllosphere is particularly important because this 
environment is nutrient-limited and subject to fluctuat-
ing abiotic stresses (e.g., desiccation, UV exposure) [75, 
124]. Efficient degradation and utilization of both labile 
(easily degradable, e.g., simple sugars and pectins) and 
recalcitrant (complex, e.g., cellulose and hemicellulose) 
substrates can provide a competitive advantage under 
these conditions [70]. The observed CAZyme patterns 
suggest that many taxa are equipped to access a range of 
substrates, which may reflect adaptation to stress by max-
imizing resource acquisition from available plant poly-
mers. This flexibility likely supports microbial persistence 
and activity during periods of environmental stress, and 
may favor the utilization of more labile substrates when 
available, while also enabling the breakdown of recalci-
trant compounds as needed. These processes are criti-
cal in nutrient-limited phyllosphere ecosystems, where 
microbial interactions and competition for resources 
drive community structure and function [124]. Finally, 
these CAZyme-mediated functions likely extend beyond 
the living needle. Upon litterfall, phyllosphere microbes 
may initiate decomposition, shaping microbial succession 
and influencing nutrient release. Such early condition-
ing enhances local decomposition efficiency by favoring 
well-adapted microbial communities [39], linking phyllo-
sphere metabolism to broader ecosystem carbon cycling.

Mobile genetic elements and horizontal gene transfer 
in the conifer phyllosphere
In the harsh and resource-limited environment of the 
phyllosphere, the ability of microbes to rapidly acquire 
new traits can be key to survival. Mobile genetic ele-
ments (MGEs) and horizontal gene transfer (HGT) are 
major engines of microbial adaptation, spreading genes 
for stress tolerance, metabolism, and competition. To 
explore how gene mobility shapes conifer needle micro-
biomes, we analyzed the distribution of MGEs and 
HGT events across community members. Our analy-
sis revealed distinct patterns of genetic exchange, with 
MGEs primarily mediating lineage-specific transfers and 
HGT enabling broader cross-taxa gene flow.

To investigate the prevalence and diversity of MGEs 
in the pine needle microbiome, we first scanned MAG 
annotations for hallmark genes associated with phages, 
conjugative plasmids, and non-conjugative plasmids. This 
analysis is summarized in Fig. 4A, which displays the dis-
tribution and abundance of these hallmark genes across 
MAGs and distinct taxonomic families, respectively. 
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To complement the gene-level analysis, we screened 
for MGE-containing contigs using VirSorter2 [45] and 
GeNomad [16]. This approach identified 8,956 MGE con-
tigs, including 51 complete phage genomes and 140 high-
quality MGEs, with quality assessments performed using 
CheckV [88]. The results of this contig-level screening 
are presented as bar charts (Fig. 4A, Right), which sum-
marizes the contig‑level screen for each taxonomic fam-
ily, the mean number of phage and plasmid associated 
MGEs per genome and viral diversity, expressed as the 
number of unique viral OTUs per genome (Fig. 4A, Bot-
tom Right).

Altogether, 26% of the identified MGE contigs could 
be directly linked to a host MAG through binning, while 

an additional 0.5% could be linked using iPHoP, which 
incorporates CRISPR spacer matches and other features 
for phage-host predictions [111]. The remaining 74% of 
MGE contigs could not be assigned to a specific host 
MAG (Supplementary Fig.  5). Nevertheless, nearly all 
bacterial families hosted at least one MGE, underscor-
ing their ubiquity in the phyllosphere. Based on tetranu-
cleotide ordinations and host-virus interaction networks 
(Supplementary Fig. 6A and B), we found that the MGEs 
that could be assigned to a host were predominantly con-
strained to a single lineage, exhibiting limited host range. 
For example, MGE sharing was observed between Fal-
siroseomonas and Commensalibacter, however both of 
these lineages fall within the Acetobacteraceae family. 

Fig. 4  MGE gene counts in phyllosphere MAGs. A Left: Distribution and abundance of major MGE hallmark genes across phyllosphere MAGs, 
showing their prevalence across bacterial lineages and split by predicted phage (green), conjugative plasmid (orange) and non-conjugative 
plasmid (purple) gene categories. Top right: Average MGE hallmark gene counts per family-level taxonomic group, normalized by the total number 
of genomes within each family, highlighting enrichment in Alphaproteobacteria families. Bottom right: Mean MGE count per genome, normalized 
by the total number of genomes within each family. Inset bars show the normalized counts split into phage and plasmid MGE types. B Phylogenetic 
relationships and synteny analysis of conjugative plasmids. The synteny plot illustrates the genomic organization of potential conjugative plasmids 
across four Alphaproteobacteria families, ordered by the phylogenetic tree of the traN gene, showing conservation of core conjugative machinery 
genes and variable cargo genes
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In contrast, cross-family MGE transfer was rare, with 
only a few instances detected, such as exchanges involv-
ing Methylocystis (Beijerinckiaceae) and either Com-
mensalibacter or Roseomonas_A (Acetobacteraceae). 
No evidence of widespread cross‑lineage MGE exchange 
was detected, underscoring the lineage‑specific nature of 
MGE‑mediated gene flow. MGEs predominantly facili-
tate gene transfer within closely related taxa, as host 
specificity is influenced by unique interactions between 
phage receptor-binding proteins and bacterial surface 
proteins, which determine the ability of a phage to recog-
nize and infect its host [69, 118]. This pattern aligns with 
observations in other environments where phage host 
ranges are typically narrow and constrained by phyloge-
netic relatedness [32, 63].

In addition to characterizing MGEs at the commu-
nity level, we identified potential conjugative plasmids 
within specific bacterial lineages. Using the traN gene 
as an anchor, synteny analysis revealed conserved 
genomic organization across four Alphaproteobacteria 
families: Sphingomonadaceae, Acetobacteraceae, Cae-
dimonadaceae, and Rickettsiaceae (Fig.  4B). The traN 
gene encodes a surface-exposed protein that plays a 
critical role in mating pair stabilization during conjuga-
tive transfer, promoting stable contact between donor 
and recipient cells [80]. Due to its functional impor-
tance and relative conservation among conjugative 
plasmids, traN serves as a reliable marker for synteny 
analyses [67]. Conjugative plasmids are a class of self‐
replicating mobile genetic elements that carry all of the 
machinery required for horizontal transfer, namely, a 
relaxase (e.g., mobA), Type IV secretion system com-
ponents (e.g., traC, traG, traA, traH), and coupling fac-
tors like traN [41]. By shuttling accessory cargo genes 
(such as imuA, imuB, and dnaE2, which together form 
a DNA‐damage‐induced mutasome), conjugative plas-
mids accelerate microbial adaptation under stress and 
facilitate the spread of novel traits [36, 126]. We also 
identified toxin-antitoxin systems such as the Type II 
TA system RelE-RelB [129] and stress-resistance genes 
like czcA, which encodes a cation efflux system con-
ferring heavy metal resistance [90]. Non-conjugative 
plasmid-associated MGEs revealed notable enrichment 
of hallmark genes, particularly the TetR-family regula-
tors (Fig. 4A). Although TetR proteins are traditionally 
associated with antibiotic resistance in clinical set-
tings, they also broadly mediate microbial responses 
to diverse environmental stressors, including plant-
derived metabolites, oxidative stress, and naturally 
occurring antimicrobial compounds [30, 102]. The 
frequent occurrence of plasmid-borne TetR regulators 
in conifer-associated microbial communities under-
scores their likely ecological importance, independent 

of anthropogenic antibiotic pressures. Supporting 
this, George et al. [43] detected tetracycline resistance 
genes, including TetR regulators, in protected forest 
conifer samples, far removed from agricultural activ-
ity. Taken together, the accessory genes we identified on 
both conjugative and non-conjugative plasmids, sug-
gests that mobile genetic elements may contribute to 
stress adaptation in the phyllosphere,a habitat charac-
terized by fluctuating conditions such as UV exposure, 
desiccation, and nutrient limitation [124].

In contrast to the lineage-constrained MGE distribu-
tions, horizontal gene transfer (HGT) events displayed 
greater diversity and frequency, facilitating genetic 
exchanges across both closely and distantly related taxa. 
Using MetaChip [119], we identified numerous HGT 
events spanning diverse bacterial groups within our coni-
fer phyllosphere MAG dataset. The heatmap presented 
in Fig.  5A highlights the broader scope of HGT, with 
high abundances of HGT events concentrated in spe-
cific taxa, such as Acetobacteraceae and Sphingomona-
daceae (Fig. 5B), although the pattern was similar to that 
of the MGEs, as the total number of HGTs declined with 
increasing taxonomic distance (Supplemental Fig.  7). 
This trend suggests that mobile genetic elements (MGEs) 
play a substantial role in facilitating HGT within certain 
lineages. However, the widespread occurrence of HGT 
across diverse taxa suggests that additional exchange 
mechanisms, beyond MGE activity alone, contribute to 
horizontal transfer, including recombination and natu-
ral DNA uptake [9, 95]. It is likely that some HGT events 
reflect historical MGE transfers whose direct signatures 
are no longer detectable [98]. For example, we observed 
the transfer of CAZyme genes, demonstrating that Ace-
tobacteraceae and Sphingomonadaceae may disperse 
genes associated with polysaccharide metabolism to 
other community members (Fig. 5A, C).

The majority of horizontally transferred genes identi-
fied in our dataset were associated with phage or trans-
poson-related functions (Fig. 5C) and two of these HGT 
genes were part of the conjugative plasmid element 
shown in Fig.  4B. Similar patterns of functional gene 
transfer have been observed in other plant-associated 
microbiomes, where genes conferring adaptive advan-
tages in the plant environment show evidence of horizon-
tal transfer [71]. Overall, many of these HGT-associated 
genes were associated with gene mobility, energy pro-
duction and conversion, genes of unknown function, and 
amino acid metabolism and transport, underscoring not 
only the prevalence of self‐propagating genetic elements 
but also a functional enrichment that has been previously 
documented in environmental microbiomes [19, 119].

Together, these processes of both MGE infection 
and HGT illuminate the complex dynamics of genetic 
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exchange driving microbial adaptation and functional 
potential in the conifer phyllosphere. The lineage-spe-
cific nature of MGEs likely reinforces ecological niche 
partitioning among bacterial taxa, while broader HGT 
events may facilitate adaptive gene sharing across more 
diverse members of the community. These complemen-
tary mechanisms potentially contribute to the resilience 
and functional stability of the phyllosphere microbiome 
in the face of environmental fluctuations characteristic of 
the conifer needle habitat.

Conclusion
This study presents a comprehensive metagenomic anal-
ysis of microbial communities associated with conifer 
needles across a diverse latitudinal gradient in the Rocky 
Mountains. By leveraging a robust dataset of bacterial 
MAGs, we uncovered critical insights into the taxonomic 
and functional diversity of the conifer phyllosphere. Our 
findings underscore the central role of host-derived com-
pounds, such as volatile organic compounds (VOCs) and 
complex polysaccharides, in shaping bacterial commu-
nity structure and driving metabolic adaptations.

Bacterial taxa, particularly members of Acetobacte-
raceae, Sphingomonadaceae, and Burkholderiaceae, 
exhibited specialized capabilities for metabolizing domi-
nant monoterpenes like α-pinene, while members of 
the Bacteroidetes exhibited high potential for breaking 
down complex carbohydrates such as cellulose and xylan. 
These metabolic functions underpin their ecological 
roles, supporting nutrient cycling and microbial commu-
nity resilience within this unique environment. The spa-
tial patterns observed in community composition, with 
pronounced host-site interactions exemplified by the 
Hymenobacteraceae enrichment in Engelmann spruce at 
Shoshone NF, suggest that host chemistry, local environ-
mental conditions, dispersal rates, and metacommunity 
structure, all interact to shape the functional potential of 
needle surface communities.

Predicted MGE contigs were identified as potential 
mediators of recent and localized gene transfer within 
closely related bacterial lineages, highlighting their role 
in short-term evolutionary adaptations. MGEs, including 
plasmids and phages, were found across nearly all bacte-
rial families, reflecting their ubiquity and contribution 

Fig. 5  Horizontal gene transfer (HGT) within the conifer needle microbiome. A Heatmap displaying the relative abundance of candidate HGT 
genes, represented as z-scores and grouped by genus, revealing taxonomic hotspots of gene transfer activity particularly in Acetobacteraceae 
and Sphingomonadaceae. B Normalized HGT gene count per genome, grouped by family-level lineage, highlighting variation in HGT frequency 
across bacterial taxa. C Distribution of HGT gene counts across COG functional categories, showing predominance of mobile genetic element 
functions, such as the Phages and transposons COG category, and hypothetical proteins among horizontally transferred genes
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to the genomic plasticity of phyllosphere communities. 
Notably, MGEs were enriched in alpha- and gamma-pro-
teobacteria compared to other taxa, suggesting that these 
groups may leverage MGEs to enhance their adaptability 
and ecological success. However, the constrained nature 
of MGE-mediated transfers suggests that these elements 
predominantly facilitate gene exchange within taxonomic 
lineages, supporting functional redundancy and niche 
specialization in the phyllosphere. In contrast, horizontal 
gene transfer (HGT) displayed greater diversity and fre-
quency, potentially facilitating the exchange of metabolic 
genes across both closely and distantly related taxa. HGT 
emerged as a significant driver of functional diversifica-
tion, particularly among Acetobacteraceae, which fre-
quently acted as donors of key metabolic traits, including 
genes involved in polysaccharide metabolism.

Collectively, our findings illuminate how host species 
and geographic sites influence the complex dynamics that 
underpin microbial adaptation and resilience within conifer 
needle environments. By integrating metagenomic, func-
tional, and evolutionary perspectives, this study advances 
our understanding of conifer needles as significant micro-
bial reservoirs whose microbial diversity and functional 
potential are closely intertwined with host characteristics 
and environmental context. These insights lay a foundation 
for future research into forest phyllosphere microbiomes, 
emphasizing their ecological roles and contributions to 
plant health and broader forest ecosystem function.
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component analysis (PCA) of tetranucleotide frequencies (TNF) of 
mobile genetic elements (MGEs) identified from metagenome-
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Gene Transfers (HGTs) across taxonomic ranks. Bar plot showing the 
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