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Abstract

Fine-tuning large pretrained Transformer mod-
els can focus on either introducing a small num-
ber of new learnable parameters (parameter effi-
ciency) or editing representations of a small num-
ber of tokens using lightweight modules (represen-
tation efficiency). While the pioneering method
LoRA (Low-Rank Adaptation) inherently bal-
ances parameter, compute, and memory efficiency,
many subsequent variants trade off compute and
memory efficiency and/or performance to fur-
ther reduce fine-tuning parameters. To address
this limitation and unify parameter-efficient and
representation-efficient fine-tuning, we propose
Weight-Generative Fine-Tuning (WeGeFT, pro-
nounced wee-gift), a novel approach that learns
to generate fine-tuning weights directly from
the pretrained weights. WeGeFT employs a
simple low-rank formulation consisting of two
linear layers, either shared across multiple layers
of the pretrained model or individually learned
for different layers. This design achieves multi-
faceted efficiency in parameters, representations,
compute, and memory, while maintaining or ex-
ceeding the performance of LoRA and its variants.
Extensive experiments on commonsense reason-
ing, arithmetic reasoning, instruction following,
code generation, and visual recognition verify the
effectiveness of our proposed WeGeFT.

1. Introduction

Fine-tuning pretrained deep neural networks (DNNs) as fea-
ture backbones for downstream tasks has been an important
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and challenging research topic. In recent years, large feature
backbones with open weights, such as LLaMA (Touvron
et al., 2023a;b; Al@Meta, 2024), have become ubiquitous.
Training such models from scratch is infeasible with lim-
ited resources, and fine-tuning them entirely can also be
prohibitively costly. This raises two critical questions: (i)
which parts of a pretrained model should be fine-tuned (of-
ten treated as a hyperparameter), and (ii) how those parts
should be fine-tuned. In this paper, we focus on the lat-
ter question by leveraging module/layer selection strategies
widely adopted in prior art.

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a pio-
neering and widely adopted approach that achieves built-in
efficiency in parameters, compute, and memory. LoRA
learns fine-tuning weight residuals in low-rank forms for
pretrained weights on a layer-specific basis (see the left of
Fig. 1). Thanks to its strong applicability and promising
performance, many follow-up works have emerged, such
as DoRA (Liu et al., 2024) and VeRA (Kopiczko et al.,
2023). However, these variants often sacrifice compute
efficiency (training wall time) and/or GPU memory effi-
ciency to achieve reductions in learnable parameters or per-
formance gains on certain downstream tasks. As we demon-
strate in experiments, DoRA, while matching or slightly
surpassing LoRA’s performance, increases training wall
time by more than 5x and consumes around 3GB more GPU
memory. On the other hand, VeRA, though significantly re-
ducing the number of learnable parameters, performs much
worse than LoRA while drastically increasing training wall
time (by more than 20x) and consuming similar additional
GPU memory. These trade-offs motivate us to seek a
formulation that can significantly reduce the number of
learnable parameters, achieve superior or on-par perfor-
mance compared with LoRA, and retain its efficiency in
compute and memory.

Towards these objectives, the recently proposed ReFT (Wu
et al., 2024) introduces a promising framework that focuses
on lightweight representation-editing modules instead of
learning weight residuals, as LoRA does. ReFT is inspired
by causal intervention mechanisms (Geiger et al., 2024) and
operates in a layer-specific manner. While ReFT methods
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Figure 1: Comparisons between (a) LoORA (Hu et al., 2022) and (b) our proposed WeGeFT.

reduce learnable parameters and retain compute and mem-
ory efficiency comparable to LoRA, they often show inferior
performance, as confirmed in our experiments. Additionally,
selecting where to intervene within the model to achieve
strong downstream task performance is non-trivial. For in-
stance, DiReFT, one of the two ReFT formulations, can be
interpreted as applying LoRA directly to hidden representa-
tions at specific intervention points. This motivates us to
seek a unified perspective between parameter-efficient
and representation-efficient fine-tuning that enables sim-
pler formulations while achieving on-par or better per-
formance.

In summary, our experiments reveal the limitations of LoORA
variants such as DoRA and VeRA, as well as alternative
methods like ReFT, highlighting their drawbacks in com-
pute, memory, and performance trade-offs. QOutperform-
ing LoRA while maintaining multi-faceted efficiency in
parameters, representations, compute, and memory re-
mains a significant challenge. In this paper, we propose a
novel approach to address this challenge.

To clarify the foundation of our proposal, we first review
the formulation of LoRA (Hu et al., 2022). Denote the
pretrained weights of a layer [ € L of a Transformer model
by W! € Rut>Xdin and the fine-tuned weights by W' e
ReoutXdin T 0RA is defined as:

LoRA: W'!=w'+ B'. A, 1)
where B! € Rw*" and A' € R™%» are two low-
rank matrices representing new learnable model parame-
ters introduced during fine-tuning, and r is the rank (r <
min(dyy,, dou)). Typically, B! is initialized to zeros, while
Al is randomly initialized.

We rethink LoRA from three key aspects:

* Pretrained Weight Awareness: LoRA imposes no con-
straints on B’ and A’ beyond their low-rank structure,
enabling downstream task data to dictate the fine-tuning
process. However, the pretrained weights 7' encode
“carry-over” knowledge that is expected to be useful for
downstream tasks. By making fine-tuning weight resid-
uals aware of the pretrained weights, we hypothesize

that performance can be further enhanced, especially for
stronger pretrained models. Therefore, we aim to param-
eterize fine-tuning weight residuals in a weight-aware
manner.

+ Layer-Specific vs. Shared Adaptation: In LoRA, B!
and A are layer-specific, which ensures layer-local adap-
tation. Recent methods like Tied LoRA (Renduchintala
et al., 2024) propose sharing B and A across selected lay-
ers, while VB-LoRA (Li et al., 2024) introduces a shared
vector bank to compose all low-rank matrices via a differ-
entiable top-k admixture. Although these approaches re-
duce the number of learnable parameters, our experiments
show that they often underperform or significantly de-
grade performance. For instance, Tied LoRA reduces pa-
rameter count but sacrifices expressivity, while VB-LoRA
adds unnecessary complexity via top-k modeling. We ad-
vocate for parameter sharing across layers but emphasize
that the expressivity of the fine-tuned model should rely
on pretrained weights to compensate for the reduction
in learnable parameters. Our results highlight the criti-
cal role of pretrained weight awareness in enabling this
trade-off.

* Additive vs. Multiplicative Updates: LoRA uses ad-
ditive weight residuals (B’ - A"), which can be limiting
in terms of expressivity. Alternatively, multiplicative up-
dates may enable richer, structured transformations. For
example, DiReFT (Wu et al., 2024) applies multiplicative
updates in the representation space. Let y! € Rdout 1
denote the activation output (representation) for the i-th
token at layer [. DiReFT updates it as:

DiReFT: ¢l =y! + B'- (A -yl + 1)), )
= (I+B"-A") -y, + B -V,
where B! € RoutXr Al ¢ RT¥dout apd p € R™*! are
parameters of the representation-editing module. I is the
identity matrix. While DiReFT introduces multiplicative
residuals into the representation space, it is coupled with
token intervention search (token-selective).

To achieve multi-faceted efficiency across parameters, rep-
resentations, compute, and memory, we propose Weight-
Generative Fine-Tuning (WeGeFT, pronounced wee-gift),
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Figure 2: Comparisons of performance vs. trainable parameters between our WeGeFT and baseline methods on three tasks
using the Llama model family. Figure 3 shows that WeGeFT maintains the compute and memory efficiency of LoRA, thus
achieving very strong multi-faceted efficiency across parameters, representations, compute and memory. See Section 4 for

experimental details.

a simple yet effective formulation (see the right of Fig. 1):
Our WeGeFT: W!'=W!'4+W'. 4.9,  (3)
where ¢ € R%»*" and 1) € R"*%n are low-rank matrices

shared across layers, and 7 is the rank. See Appendix C for
gradient analyses between LoRA and our WeGeFT.

* Weight-Aware Parameter Sharing: WeGeFT can be
viewed as a weight-aware variant of LoRA, where the
layer-specific B! in LoRA becomes weight-aware (B! =
W' . ¢) and the layer-specific A’ becomes layer-agnostic
(A = 1)). Compared to Tied LoRA (Renduchintala et al.,
2024), WeGeFT retains layer-specific information via B,
preserving performance. Unlike VB-LoRA (Li et al.,
2024), WeGeFT avoids the need for a complex shared
vector bank and top-k admixture, instead relying on a
pair of shared low-rank matrices (¢, 1) for simplicity and
stability. WeGeFT achieves significant improvements in
parameter efficiency without sacrificing performance and
even enables performance gains when stronger pretrained
models (e.g., LLaMA 1 vs. Llama 3) are used.

* Residual Learning in Weight Space: WeGeFT extends
the residual learning principle of ResNets (He et al.,
2016), z = = + f(x), into the weight space. In contrast,
DiReFT (Wu et al., 2024) applies this principle in the
representation space with causal intervention treatments.
WeGeFT, however, eliminates the need to search for spe-
cific intervention positions and is token-agnostic, ensuring
it retains LoRA’s compute and memory efficiency while
offering greater flexibility (see Sec. 3.2).

Fig. 2 shows result comparisons on three benchmark
datasets, which demonstrate the overall multi-faceted effi-
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Figure 3: Comparison of the ratio of the GPU Memory
(Training Wall Time) for various PEFT methods with the
GPU Memory (Training Wall Time) of LoRA. WeGeFT
maintains the efficiency of LoRA, as opposed to DoRA and
VeRA. Note that while VB-LoRA maintains the memory
and compute efficiency, it performs worse than LoRA as
seen in Figure 2.

ciency of our proposed WeGeFT. Fig. 3 shows the efficiency
comparisons of GPU memory footprint and training wall
time.

* Visual Inspection of WeGeFT in Computer Vision
Tasks: Let C' = W' - ¢ be the transformation using the
first linear layer of WeGeFT for an output projection layer
in MHSA (see Sec. 4.5). We show that C! € Rout X"
can be used as a token-clustering head. Using the fine-
tuned model, the activation of the output projection layer
is, Ql € RVXdout where N the number of visual tokens
in raster order. We compute 7 heatmaps for visual token
clustering by,

l _nl l
HN><r =YN xdoput 'Cdoutxrv (4)
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Figure 4: WeGeFT can play the role of a r-way token-clusltering head that can localize meaningful objects/parts on images.

More examples can be found in Figure 5 in the Appendix.

which can highlight semantically meaningful parts of the
image. We normalize the r heatmaps to [0, 1] individually
and use 0.5 as the threshold in visualizations (Fig. 4).

2. Related Work and Our Contributions

Parameter Efficient Fine-tuning (PEFT). The goal of
PEFT methods is to reduce the computational resources
(memory footprint, wall time, etc.) required for fine-tuning
large models such as Transformers (Vaswani et al., 2017)
and Vision Transformers (ViTs) (Dosovitskiy et al., 2021).
Prompt-based methods either append prompts to the input
tokens (Lester et al., 2021; Jia et al., 2022), or the inter-
mediate layers (Li & Liang, 2021; Liu et al., 2021; Zhang
et al., 2023b). Early work on PEFT used sequential/parallel
learnable adapters added after the Multi-Head Self Atten-
tion and/or FEN blocks (Houlsby et al., 2019; Bapna &
Firat, 2019; Pfeiffer et al., 2021; 2020; Riicklé et al., 2021;
Mahabadi et al., 2021a; Chen et al., 2022). LoRA (Hu
et al., 2022) and its variants (Zhang et al., 2023a; Dettmers
et al., 2023; Lialin et al., 2023; Kopiczko et al., 2023; Gao
etal., 2024; Liu et al., 2024) learn residuals to the pretrained
weight matrices in the form of low-rank factorization, re-
moving the added inference cost in adapter based methods.
BitFit (Zaken et al., 2022) fine-tunes all the bias terms in a
pretrained backbone. MEND (Mitchell et al., 2022) edits
a pretrained model by learning fine-tuning weights from
the gradient inputs with a low-rank MLP parameterization.
FacT (Jie & Deng, 2023) shares the trainable parameters
across Self-Attention and MLP blocks. While this reduces
trainable parameters, it has a drawback: Transformer mod-
ules serve distinct functions - attention layers largely handle
syntactical and in-context learning abilities (Bietti et al.,
2023; Voita et al., 2019), while MLP layers encode factual
knowledge (Meng et al., 2022). Sharing parameters across
these modules may therefore be suboptimal. Tied-LoRA
(Renduchintala et al., 2024) shares the residual weights
across layers, and also across Query, Key and Value compo-
nents. In Section 5.2, we show that the weight-awareness
in WeGeFT is essential for parameter sharing across layers,
enabling it to outperform Tied-LoRA.

Hypernetworks. (Ha et al., 2016) introduced Hypernet-

works, i.e., neural networks that generate the parameters
for other neural networks, in language modeling tasks by
generating the weights of an LSTM (Hochreiter & Schmid-
huber, 1997). Hypernetworks have previously been applied
for few-shot classification (Zhao et al., 2020; Zhmoginov
et al., 2022), transfer learning (Requeima et al., 2019) and
continual learning (von Oswald et al., 2020; Yin et al., 2022).
Similar to our proposed approach, (Requeima et al., 2019)
learns to adapt a global feature extractor through an adapta-
tion network. In a few shot continual learning setup, (Vla-
dymyrov et al., 2023) uses a hyper-Transformer to generate
the parameters for a separate Convolutional Neural Network
(ConvNet), which use as inputs both a support set of images
of the current task and the ConvNet parameters generated
for the previous tasks. HyperFormer++ (Mahabadi et al.,
2021b) uses a Multi-Layer Perceptron (MLP) to generate
the parameters from layer embedding and a latent vector for
Adapters (Houlsby et al., 2019) introduced across layers of
a pretrained model in a multitask setting. Unlike (Mahabadi
et al., 2021b), we directly use the weights of the frozen
pretrained model, thus eliminating the need for embeddings.

Neural Functionals: Our approach is related to neural
functionals that aim to learn deep neural networks acting
on the weights of other neural networks. For toy problems,
equivariant architectures have been explored for tasks like
classifying implicit neural representations (Navon et al.,
2023; Zhou et al., 2023a;b; Kofinas et al., 2024), adapting
model architectures to new domains (Navon et al., 2023),
predicting model generalization performance (Zhou et al.,
2023a;b; Kofinas et al., 2024; Lim et al., 2023), and learned
optimizers (Zhou et al., 2024). However, our work is the
first to explore fine-tuning of a model using it’s own weights.
We do not use equivariant architectures, but note that this
direction of work is orthogonal to ours, and can be further
explored in the future.

Our Contributions are summarized as follows:

* Weight-Generative Fine-Tuning Framework: WeGeFT
introduces a novel formulation where fine-tuning weight
residuals are parameterized directly using pretrained
weights, leveraging their inherent knowledge for better
expressivity, and leading to multiplicative updates in the
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weight space for richer and more structured transforma-
tions compared to additive methods.

e Multi-Faceted Efficiency: WeGeFT achieves multi-
faceted efficiency across parameters, representation, com-
pute and memory by using shared low-rank matrices
(¢, 1), significantly reducing learnable parameters while
retaining LoRA’s simplicity without sacrificing perfor-
mance (See Figure 2 and Figure 3).

* Unified Parameter and Representation Efficiency:
WeGeFT bridges the gap between parameter-efficient and
representation-efficient fine-tuning by unifying weight-
generative parameterization and shared low-rank matrices.

* Strong and Scalable Performance: WeGeFT consis-
tently matches or outperforms LoRA and its variants,
achieving superior scalability with stronger pretrained
models like Llama 3.

3. Approach

In this section, we elaborate on our simple formulation
of WeGeFT (Eqn. 3) from the more general parameter-
generation perspective, which can provide deeper insights.

3.1. Weight Generation for Explicit Weight-Awareness

For alayer! € L of a pretrained Transformer model, to learn
its fine-tuning weights, denoted by AWW!, that are aware of
pretrained weights W' to “carry over” their knowledge, a
general formulation is to train a generator network,

AW!' =G(W'e),Vie L, 6))
where © is the learnable parameters of the weight generator.

G(+;©) needs to be parameterized in a way to meet the
desired multi-faceted efficiency. Inspired by the low-rank
parameterization scheme in LoRA, we have,

G(W';0) = fyoggo fe(W),VI €L, (©)
where both f, : RéewtXdin  — Rdowtx” and f, (z)
Rout X _y RdoutXdin are linear projection layers (without
bias terms) with  representing the “rank”. gy : Rdout X" —
R%ut X7 realizes latent transformations in the low r-dim
space. © = (¢, 1, 0) collects all learnable parameters.

We note that this design offers a very flexibile way to cap-
ture underlying contingency between the fine-tuning weight
residuals and the pretrained weights in all L layers. Sur-
prisingly, we observe that we do not need gy based on our
ablation studies (see Section 5.1). In other words, gg is an
identity transformation, leading to the simple formulation
in Eqn. 3. Our (post-hoc) intuitive understanding is:

* If gy includes only linear transformations, it can be natu-
rally absorbed into f4 and/or fy,.

s If gy is an overall non-linear transformation, G(W'; ©)
applies the non-linear transformation in the weight space,
which may not be necessary. After all, iterative updates

in weight space, including the from-scratch-training of
the pretrained weights W' themselves, are mostly sim-
ple updates based on SGD. Nonlinear transformations
may be destructive to the “carry over” knowledge in
the pretrained weights, thus negatively impact weight-
awareness. More importantly, with a nonlinear gy, our
WeGeFT will sacrifice the multiplicative updates in Eqn. 3,
W' = W'. (I + ¢ - ), to additive updates, W' =
W+ go(W'- ¢) -, which will also significantly impact
compute and memory efficiency.

WeGeFT can be applied along the d,,; dimension too. In
Eqn. 3, (¢,%) are applied along the d;,, dimension of pre-
trained weights 1. Tt is straightforward to apply WeGeFT
along the d,,; dimension by,

W =W+ (¢- )" - W, @)
where ¢ € R%ut X" and ) € R"*dout,

WeGeFT Without Parameter Sharing. It is straightfor-
ward to apply our WeGeFT (Eqn. 3 and Eqn. 7) without
sharing (¢,) across layers (denoted by WeGeFT-Sep),
which will increase the learnable parameters of the counter-
part (WeGeFT with parameter sharing), and to the same as
LoRA. We show that WeGeFT-Sep can obtain on-par or bet-
ter performance than LoRA, demonstrating the advantage of
weight-awareness. This flexibility allows WeGeFT to scale
more elegantly to larger and diverse datasets, which cannot
be achieved by prior methods like VeRA and VB-LoRA.

3.2. WeGeFT as Token-Agnostic ReFT

Consider a linear layer with pretrained weights 7! and
the pretrained bias term b', and WeGeFT weights W =
(I+ ¢ - ) - W' (Eqn. 3). For an input z', the output repre-
sentation/activation at this layer is,

g=at W = 1, @)

it=al ([[+¢-9),
where & is the “fine-tuned” input representation/activa-
tion using the same WeGeFT parameters. Hence, our
WeGeFT can be equivalently applied to the input ac-
tivation, rather than the pretrained weights, to achieve
the same fine-tuning effect, maintaining the memory and
compute efficiency of LoRA in implementation. Unlike the
ReFT (Wu et al., 2024) that entails a dedicated search for
where the representation interventions should apply at the
token level, our WeGeFT eliminates the need of search, en-
abling token-agnosticity. Thanks to the parameter sharing,
our WeGeFT can retain the representation efficiency.

4. Experiments

We conduct extensive experiments across Natural Language
Generation and Visual Recognition, and compare our two-
linear-layer parameterized WeGeFT with various PEFT
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Table 1: Results of fine-tuning Llama 2 (7B) on the Meta-
MathQA dataset and evaluating it on the GSM8k test
set. All baseline results are obtained from (Wang et al.,
2024), except VB-LoRA is trained by us together with our
proposed WeGeFT. We train our WeGeFT and VB-LoRA
by following the same settings in (Wang et al., 2024).

Table 2: Results of fine-tuning Llama 1 and 2 (7B) on the
Math10k benchmark. The Mem. refers to GPU memory,
and Wall Time is the time required to complete 1 epoch of
training. All results are obtained by us using our code base
for fair comparisons, except those by DiReFT and LoReFT
using LLaMA 1 are from (Wu et al., 2024).

Method | %Trainable | GSM8k (Acc.)
Full 100 54.20+0.42
LoRA (Hu et al., 2022) 0.297 42.08+0.04
PiSSA (Meng et al., 2024) 0.297 44.54+027
rsLoRA (Kalajdzievski, 2023) 0.297 45.62+0.10
LoRA+ (Hayou et al., 2024) 0.297 52.11+0.62
DoRA (Liu et al., 2024) 0.317 53.07+0.75
AdaLoRA (Zhang et al., 2023a) 0.445 50.72+1.39
LoRA-GA (Wang et al., 2024) 0.297 53.60+0.30
VB-LoRA (Li et al., 2024) 1.194 44934152
Our WeGeFTy,,, 0.068 54.89+092

methods and ReFT. We also conduct ablation studies on the
different parameterization schemes of WeGeFT. More de-
tails can be found in Appendix D. In all the experiments, we
follow the baselines in selecting the layers to fine-tune for
downstream tasks for fair comparisons. For clarity, we use
WeGeFTy,, (Eqn. 3), WeGeFT,,,, (Eqn. 7), and WeGeFT-
Sepq,,, (Eqn. 3 but without parameter sharing).

4.1. Arithmetic Reasoning

We demonstrate the multi-faceted efficiency of WeGeFT
with experiments on the Math10k benchmark (Hu et al.,
2023) for Arithmetic Reasoning, which is a small scale
dataset enabling comprehensive evaluations. We conduct
further experiments with MetaMathQA (Yu et al., 2024), a
larger and higher quality fine-tuning dataset, to understand
the impact of higher quality data on WeGeFT. In both exper-
iments, we evaluate the model on the final answer following
the same protocol used in prior works. Experimental details
and hyperparameters are provided in Appendix D.2.

Results: Table 1 shows the results of finetuning using the
MetaMathQA datasets, and evaluating on the GSM8k test
set. WeGeFT outperforms all the prior methods with 4
times fewer parameters, and slightly outperform the full fine-
tuning. We use the relatively smaller Math10k benchmark
(Table 2) to run comprehensive evaluations for WeGeFT
with respect to multi-faceted efficiency.

* Parameter Efficiency: WeGeFT efficiently adapts both
strong and weak models, as shown by finetuning LLaMA-1
and LLaMA-2 (7B) on the Math10k benchmark in Table
2. LLaMA-1 (7B), a weak model for arithmetic reason-
ing (11% zero-shot accuracy on GSM8k (Touvron et al.,
2023a)), requires substantial adaptation. Table 2 shows
WeGeFT adapts LLaMA-1 (7B) far more effectively than
prior PEFT methods. Reducing parameters in LoRA and
DoRA significantly degrades performance—LoRA’s accu-
racy drops from 50.9 (r = 16) to 48.9 (r = 2). At a com-

SR
< » S
g | T |E| « & & &2
8 £ = 5 = £ =z Ry
£ 3 ] & 7 S 5
Method [ = = < &} = 17 <
LoRAT=16 0.416 | 18.01 | 043 | 235 385 853 564 | 50.9
s DoRA"=16 0.427 | 20.37 | 236 | 21.5 379 86.0 553 | 502
{-E WeGeFT-Sepy,, | 0416 18.01 | 0.46 238 379 845 542 50.1
= | LoRA"=2 0.052 | 17.74 | 043 | 23.1 346 839 54.1 | 489
% DoRA"=2 0.065 | 20.09 | 2.36 | 21.1 346 84.0 53.8 | 484
5 | VeRA 0.042 | 20.65 | 9.01 | 21.3 340 82.8 50.7 | 472
~ | FacT-TT 0.051 | 17.74 | 0.52 | 21.5 30.7 80.3 50.3 | 45.7
FacT-TK 0.062 | 17.75 | 0.59 | 21.3 348 822 519|475
VB-LoRA 0.840 | 18.33 | 0.42 | 21.26 293 789 49.5 | 44.7
WeGeFTy,, 0.052 17.74 | 0.51 243 365 824 569 50.0
DiReFT 0.031 | 3142 | 026 | 21.3 241 745 427 | 406
LoReFT 0.031 | 5542 | 029 | 214 260 762 46.8 | 42.6

WeGeFT,,,, 0.016 17.71 | 0.36 20.74 33.0 80.8 535 47.0

LoRA"=16 0.416 | 18.01 | 043 | 245 434 86.1 572|528
DoRA"™=16 0.429 ‘ 20.37 | 2.35 ‘ 241 414 871 571 ‘ 52.4
g WeGeFT-Sepg,, | 0416 18.01 | 046 26.1 424 859 586 53.3
& | LoRA™=2 0.052 | 17.74 | 042 | 247 402 850 56.0 | 51.5
g DoRA"=2 0.065 | 20.09 | 2.35 | 240 40.6 84.6 56.0 | 51.3
5 VeRA 0.042 | 20.65 | 9.00 | 23.5 38.7 853 543|504
VB-LoRA 0.840 | 1833 | 043 | 224 334 814 524|474
FacT-TT 0.051 | 17.74 | 0.52 | 249 383 819 562 | 50.3
FacT-TK 0.062 | 17.75 | 0.59 | 245 410 857 544|514
WeGeFT,,, 0.052 17.74 | 0.50 23.6 424 842 574 519
DiReFT 0.031 | 3142 | 0.26 | 20.5 279 775 459 | 429
LoReFT 0.031 | 5542 | 0.29 | 248 31.7 79.6 509 | 46.7
WeGeFT,,,, 0.016 17.71 | 0.39 26.1 380 83.1 573 511

parable parameter count ( 0.05%), WeGeFT outperforms
all baselines (LoRA, DoRA, VeRA, VB-LoRA) and nearly
matches LoRA at » = 16. This demonstrates that gen-
erating fine-tuning residuals from pretrained weights
improves parameter efficiency by enabling adaptation
with minimal parameters, whereas LoRA and DoRA
with » = 2 struggle to perform well.

* Computational and Memory Efficiency: WeGeFT main-
tains compute and memory efficiency while achieving equal
or higher accuracy than prior PEFT methods, unlike DoRA
and VeRA, which compromise efficiency. Although VeRA
reduces trainable parameters, it requires a large interme-
diate dimension for fixed random weights (12288 here).
On Math10k, VeRA takes ~9 hours/epoch and 20.65GB
GPU memory, whereas LoRA and WeGeFT need only ~0.5
hours/epoch and 17.74GB under the same setup. Table 10
in Appendix A confirms that reducing the intermediate di-
mension to 1024 (as in (Kopiczko et al., 2023)) lowers time
and memory costs but causes a severe accuracy drop. Table
11 in Appendix B shows that WeGeFT is efficient even with
mixed-precision float16. Thus, Similar to LoRA, WeGeFT
can be used even with consumer GPUs.

* Impact of Data Quality: WeGeFT “reacts” positively to
the quality of training datasets, as can be seen by the relative
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Table 3: Results of fine-tuning LLaMA-1 7B, Llama 2 7B and Llama 3 8B on eight Commonsense Reasoning benchmarks
(Commonsensel70k). ReFT results are obtained from (Wu et al., 2024).

Method | Params (%) | BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA | Avg
LoRA (Hu et al., 2022) 0.416 733 845 804 94.2 85.5 87.6 72.6 85.6 | 83.0
2 DORA (Liu etal., 2024) 0.427 734 848 807 94.4 85.7 87.4 72.4 859 | 83.1
= VeRA (Kopiczko et al., 2023) 0.023 704 824 799 91.4 81.8 83.3 67.0 80.6 | 79.6
:'c VB-LoRA (Li et al., 2024) 0.840 70.5 826 793 92.5 83.1 84.5 68.1 81.7 | 80.3
S WeGeFTy,, 0.052 728 847  80.8 93.9 84.3 86.7 72.3 85.1 | 82.6
<
~  DiReFT (Wu et al., 2024) 0.031 69.5 83.0  79.0 92.5 80.5 82.2 68.0 77.5 | 79.0
LoReFT (Wu et al., 2024) 0.031 69.3 844 803 93.1 84.2 83.2 68.2 78.9 | 80.2
WeGeFTy, , 0.016 71.5 834 811 93.6 83.7 86.1 72.0 83.9 | 81.9
LoRA (Hu et al., 2022) 0.416 748 859  80.8 94.8 86.3 88.3 75.4 859 | 84.0
DoRA (Liu et al., 2024) 0.427 746 862  8l.1 94.9 86.8 89.1 75.9 86.7 | 84.4
& VeRA (Kopiczko et al., 2023) 0.023 719 822  80.0 92.2 83.3 84.3 68.8 80.5 | 80.4
T VB-LoRA (Li et al., 2024) 0.840 71.6 832 797 92.8 83.5 84.8 69.3 81.9 | 80.8
T'é WeGeFTy,, 0.052 739 857 821 94.6 85.6 88.3 74.7 854 | 83.8
= DiReFT (Wuetal., 2024) 0.031 708 836 802 93.6 82.1 84.8 70.4 81.5 | 80.9
LoReFT (Wu et al., 2024) 0.031 71.1 83.8 808 94.3 84.5 85.6 72.2 82.3 | 81.8
WeGeFTy, , 0.016 734 852  81.8 94.3 85.3 87.7 74.9 83.8 | 83.3
LoRA (Hu et al., 2022) 0.392 746 894 813 95.9 87.7 91.9 81.7 87.7 | 863
DoRA (Liu et al., 2024) 0.361 762 90.8 821 96.7 89.0 93.5 83.4 89.1 | 87.6
@ VeRA (Kopiczko et al., 2023) 0.018 71.6 857  80.7 93.8 85.2 87.6 75.6 84.1 | 83.0
€ VB-LoRA (Li et al., 2024) 0.712 72.3 837  80.0 93.1 84.1 85.1 70.5 819 | 813
‘é WeGeFTy,, 0.049 76.0  89.7  83.1 96.7 89.1 93.0 84.4 89.8 | 87.7
= DiReFT (Wuetal.,, 2024) 0.026 734 8.7 810 95.6 85.5 91.8 81.8 854 | 854
LoReFT (Wu et al., 2024) 0.026 75.1 902 820 96.3 87.4 92.4 81.6 87.5 | 86.6
WeGeFTy, 0.013 757 899 825 96.4 88.7 92.5 82.3 86.3 | 86.8

performance improvement from Math10k benchmark (Table
2) to the MetaMathQA benchmark (Table 1).

* Comparison with ReFT: To compare with DiReFT and
LoReFT, we apply WeGeFTjy,,, following their fine-tuning
strategy (Eqn. 2). WeGeFT achieves higher average accu-
racy than both ReFT variants while using half the parame-
ters on LLaMA-1 and LLaMA-2. ReFT’s higher memory
usage (and lower wall time) is due to its implementation
lacking gradient checkpointing, whereas our HuggingFace
PEFT-based implementation uses checkpointing for better
scalability with large models.

4.2. Commonsense Reasoning

We use combined training data of eight benchmarks (i.e.,
Commonsensel70k, containing a total of 170k training
samples), and evaluate on their test sets individually, follow-
ing the same protocol used in (Hu et al., 2023) and (Wu et al.,
2024). The examples in the Commonsensel70k are formu-
lated as multiple choice questions and consist of BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap
et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande
(Sakaguchi et al., 2021), Arc-e and Arc-c (Clark et al., 2018),
and OBQA (Mihaylov et al., 2018) datasets. We experiment
with LLaMA-1 (7B), Llama 2 (7B) and Llama 3 (8B) mod-
els. Experimental details including hyperparameters are
provided in Appendix D.3.

Results are shown in Table 3. Based on the observations

of our initial experiments, WeGeFT-Sep does not show sig-
nificant improvement over WeGeFT. Hence, we focus on
evaluating WeGeFT on the Commonsense 170k benchmark.
We summarize the observations as follows:

* The weight-awareness of our WeGeFT is positively cor-
related with the expressivity of the pretrained models.
WeGeFT slightly outperforms DoRA in fine-tuning Llama
3 (8B) using 8x fewer parameters, while DoRA outper-
forms WeGeFT in fine-tuning both LLaMA 1 and Llama
2 at the expense of 8x more parameters and more expen-
sive training cost. Considering the trend of increasingly
powerful pretrained large foundation models, WeGeFT
shows a very promising potential due to its efficiency and
strong performance.

» Although VeRA uses less parameters, its performance
is much worse and the training cost is very high, sim-
ilar to the observations on Math10k. Furthermore, our
WeGeFT,,,, outperforms VeRA with even less parame-
ters and much more efficient training.

* Compared with DiReFT and LoReFT, our WeGeFT is
still better and reduces the parameters by half.

4.3. Instruction Following

We fine-tune LLaMA-2 (7B) on a 52k subset of the Wiz-
ardLM dataset (Xu et al., 2024), filtering out samples con-
taining “Sorry” and “As an AI” following (Wang et al.,
2024). We evaluate the instruction following ability on the
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Table 4: Results of fine-tuning Llama 2 (7B) on the Wiz-
ardLM dataset (Xu et al., 2024) and evaluating it on the
MT-Bench (Zheng et al., 2023). All the results except VB-
LoRA are obtained from (Wang et al., 2024). We train VB-
LoRA and WeGeFT following the same settings as (Wang

et al., 2024).
Method ‘ Params (%) ‘ First Turn Score
Full 100 5.56+0.09
LoRA (Hu et al., 2022) 0.297 5.61+0.10
PiSSA (Meng et al., 2024) 0.297 5.3040.02
rsLoRA (Kalajdzievski, 2023) 0.297 5.2540.03
LoRA+ (Hayou et al., 2024) 0.297 5.7140.08
DoRA (Liu et al., 2024) 0.317 5.97+0.02
AdaLLoRA (Zhang et al., 2023a) 0.445 5.5740.05
LoRA-GA (Wang et al., 2024) 0.297 5.95+0.16
VB-LoRA (Li et al., 2024) 1.194 5.5740.05
WeGeFT,,, 0.068 5.75+0.11

MT-Bench dataset (Zheng et al., 2023), which spans do-
mains such as math, roleplay, reasoning, and coding. We
report the the single turn score by prompting an LLM judge
(GPT4) to rate the responses from the fine-tuned model
from 1-10. Experimental settings and hyperparameters can
be found in Appendix D.4).

Results are shown in Table 4. Our WeGeFT is on-par with
LoRA-GA and DoRA with 4 times fewer parameters. It
also slightly outperforms the full fine-tuning.

4.4. Code Generation

We fine-tune Llama 2 (7B) using the Code-Feedback dataset
(Zheng et al., 2024), which is a multi-turn dataset contain-
ing execution and human feedback. We evaluate the fine-
tuned models on HumanEval (Chen et al., 2021), containing
Python problems evaluated for functional correctness. Ex-
perimental settings and hyperparameters are in Section D.5.

Table 5: Results of fine-tuning Llama 2 (7B) on the Code-
Feedback dataset (Zheng et al., 2024) and evaluating it
on the HumanEval (Chen et al., 2021). All results except
VB-LoRA are obtained from (Wang et al., 2024). We train
VB-LoRA and WeGeFT following the same settings as
(Wang et al., 2024).

Method | Params (%) | Pass@1

Full 100 19.87+0.57
LoRA (Hu et al., 2022) 0.297 14.76+0.17
PiSSA (Meng et al., 2024) 0.297 16.02+0.78
rsLoRA (Kalajdzievski, 2023) 0.297 16.01+0.79
LoRA+ (Hayou et al., 2024) 0.297 18.17+0.52
DoRA (Liu et al., 2024) 0.317 19.75+0.41
AdaLL.oRA (Zhang et al., 2023a) 0.445 17.80-+0.44
LoRA-GA (Wang et al., 2024) 0.297 19.81+1.46
VB-LoRA (Li et al., 2024) 1.194 14.92+0.92
WeGeFTy,, 0.068 19.39+0.68

Results are shown in Table 5. Our WeGeFT is on-par with

LoRA-GA and DoRA.

4.5. Visual Recognition

Data. We evaluate WeGeFT on the VTAB-1k benchmark
(Zhai et al., 2019) and the fine-grained visual classification
(FGVC) benchmark containing Caltech-UCSD Birds (Wah
et al., 2011), NABirds (Horn et al., 2015), Oxford Flowers
(Nilsback & Zisserman, 2008), Stanford Cars (Gebru et al.,
2017), and Stanford Dogs (Khosla et al., 2011).

Models. We use the ViT-B/16 architecture (Dosovitskiy
et al., 2021) pretrained on ImageNet21k dataset (Deng et al.,
2009) using a supervised objective, with the checkpoints
from the t imm package (Wightman, 2019). We apply LoRA
and WeGeFT to the output projection layers in MHSA,
which is inspired by observations in (Savadikar et al., 2023).
All hyperparameters are provided in Appendix D.6.

Results: Tables 6 and 7 show that our WeGeFT performs
better than other PEFT methods on both FGVC, while using
fewer parameters. The GPU memory consumption is similar
among the different methods with negligible differences.
With 5.9 times less parameters used (0.025M vs 0.147M),
on FGVC tasks, our WeGeFT improves LoRA by 0.68%
Top-1 accuracy.

Table 6: Results on the finegrained visual classification
(FGVC) tasks with ViT-B/16 pretrained on ImageNet21k.
The number of trainable parameters are reported without
the classification head (which has the same number of pa-
rameters for all the methods).

Method | Params (M) | CUBS  Bird Flower Dog Car | Avg
VPT 0.046 87.88 84.79 98.98 84.51 82.89 | 87.81
BitFit 0.083 87.75 84.61 99.32 8523 84.01 | 88.18
LoRA 0.147 88.00 84.94 99.32 85.36 85.92 | 88.71
WeGeFTg4,, 0.025 89.71 86.28 99.22 87.44 84.28 | 89.39

Table 7: Results on the VTAB benchmark (Zhai et al., 2019)
with ViT-B/16 pretrained on ImageNet21k. Trainable pa-
rameters are reported the same way as Table 6.

Method

| Params (M) | Natural | Specialized | Structured | Avg

VPT 0.046 81.0 85.7 58.9 72.7
BitFit 0.083 81.8 85.2 57.8 72.4
LoRA 0.147 82.0 85.9 61.0 74.0

FacT-TT 0.040 79.8 86.0 58.0 71.9

FacT-TK 0.069 80.0 86.8 60.9 73.4

WeGeFTy,, 0.025 82.0 86.3 61.1 74.1
5. Ablation Studies

5.1. Different Parameterization Schema for WeGeFT

As mentioned in Section 3.1, a simple linear transformation
of the pretrained weights works surprisingly well in gen-
erating fine-tuning residual weights. To verify effects of
non-linear gy () in Eqn. 6. We compare,

* Transformer: We treat the set of shared pretrained weights
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across L layers as a batch of L sequences each consist-
ing of d,,; tokens in r-dim space (after the first linear
project layer f4), denoted by V. We then apply a single
Transformer block (Vaswani et al., 2017).

* MLP-Mixers: Similar to vanilla Transformers, we apply a
single MLP-Mixer (Tolstikhin et al., 2021) block.

* Multi-Layer Perceptrons (MLPs): e.g., gOWV;0) =
Linear(GELU(Linear(WV; 61)); 02), where 6, €
R™TXr+mT and f € R™™ 7+ consist of weights and
bias terms of the two linear layers with the MLP latent
dimension ratio m (e.g., m = 2).

» Element-wise non-linearity functions without learnable
parameters (i.e., § = (): e.g., g(W) = Sigmoid(W) or
g(W) = GELU(W).

Table 8: Comparisons between various non-linear transfor-
mations for gg on the FGVC benchmark.

Schema ‘ Params (M) ‘ CUBS Bird Flower Dog Car ‘ Avg
Identity 0.025 89.71 86.28 99.22 87.44 84.28 | 89.39
Sigmoid 0.025 89.56  84.61  99.20 86.69 84.04 | 88.82
GeLU 0.025 89.70 8530  99.19 86.71 83.81 | 88.94
MLP 0.036 89.06 8544  99.30 86.17 84.24 | 88.84
Transformer | 0.027 89.56  86.23  99.24 8631 84.26 | 89.12
MLP Mixer | 0.125 88.76  86.21  99.25 86.35 85.66 | 89.25

Through ablation studies on the FGVC benchmark, we ver-
ify that using any non-linear transformation for gg results
in degradation in performance. We use the same settings as
Section 4.5. As seen from Table 8, the simple two-linear
layer formulation achieves better or equivalent performance
than all other schema at a lower parameter cost. While we
do not have a theoretical understanding yet, we hypothe-
size that the superior performance of the identity operation
over more complex and non-linear operations is because
of difficulty in optimization. We only study the non-linear
formulation on small models on simpler tasks due to compu-
tational constraints, and note that this presents an interesting
avenue for future research.

5.2. Alternative Formulation of Tied LoRA

Tied LoRA (Renduchintala et al., 2024) uses a sophisticated
design of sharing weights across layers. We test a straightfor-
ward parameter sharing LoRA, i.e., AW! =B - A VI € L,
where (B, A) is shared across layers. Table 9 shows that this
strategy leads to much lower performance than our WeGeFT,
which justifies the advantage of weight-awareness.

Table 9: Comparisons of Shared LoRA and WeGeFT on
eight commonsense reasoning benchmarks.

Method | Params (%) | Avg
LMl (B) Qi | 005 | dae
e | e |
tame3 o Sie | o | s

6. Remarks on the Effectiveness of WeGeFT

Based on the experimental results, we may draw intuitive
and potentially deeper understanding of PEFT and ReFT
methods using pretrained Transformer backbones: Pre-
trained Transformer backbones “distill” general and diverse
knowledge from a large-scale pretraining dataset, encoded
in the pretrained weights. When fine-tuning them at a down-
stream task, to “absorb” new information in the training
data of the downstream task, one of the simplest updates
that minimally “distorts” and maximally “preserves” the
pretrained knowledge is defined by Eqn. 3 or Eqn. 7, thanks
to the low-rank factorized linear projection in the parameter
space. The newly “absorbed” information from the down-
stream task is also linearly expressed in the space spanned
by the pretrained weights (knowledge).

7. Conclusion

We present Weight-Generative Fine-Tuning (WeGeFT) for
adapting pretrained Transformer backbones on downstream
tasks. Our WeGeFT learns to generate the fine-tuning
weight-residuals for layers selected in fine-tuning directly
from their frozen pretrained weights. It is parameterized
using two-linear-layers (without bias terms). It achieves
multi-faceted efficiency across parameters, representations,
compute and memory in comparisons with LoRA and its
variants, and ReFT. We conduct experiments across various
tasks, including Natural Language Generation (instruction
following, commonsense reasoning, code generation, and
arithmetic reasoning), and Visual Recognition. WeGeFT
shows strong performance while retaining multi-faceted
efficiency.
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Appendix
A. Detailed analysis of Training Time

To show the advantage of WeGeFT over VeRA, we conduct further experiments by setting the intermediate rank in VeRA to
be 1024 (as used in (Kopiczko et al., 2023)). Table 10 shows that while reducing the dimension lowers the training time and
memory costs, it causes a severe drop in accuracy.

Table 10: Results of fine-tuning Llama 1 and 2 (7B) on the Math10k benchmark. The Mem. refers to GPU memory, and
Wall Time is the time required to complete 1 epoch of training. All results are obtained by us using our code base for fair
comparisons, except those by DiReFT and LoReFT using LlaMA 1 are from (Wu et al., 2024).

8¢ ;
e | S | E |« & £ g2
g £ = 2 = E < =)
] 2 s =4 17} > >
Method & = = | = o = n | <
LoRA™=16 0416 | 18.01 | 043 | 23.5 385 853 564 | 50.9
__ | DoRAT=16 0427 | 2037 | 236 | 21.5 379 86.0 553 | 502
@ | WeGeFT-Sepq,, | 0.416 | 18.01 | 0.46 | 23.8 37.9 845 542 | 50.1
= | LoRA™=? 0.052 | 17.74 | 043 | 23.1 34.6 839 54.1 | 489
§ DoRA™=2 0.065 | 20.09 | 2.36 | 21.1 34.6 84.0 53.8 | 484
= | VeRAT=12288 0.042 | 20.65 | 9.01 | 21.3 340 828 50.7 | 472
— | VeRAT=1024 0.015 | 17.80 | 1.15 | 23.0 305 79.1 484 | 452
WeGeFTy, 0.052 | 17.74 | 0.51 | 243 365 824 569 | 50.0
WeGeFTy, 0.016 | 17.71 | 0.36 | 20.7 33.0 80.8 53.5 | 47.0
LoRA™=16 0416 | 18.01 | 043 | 245 434 86.1 572|528
DoRA™=16 0429 | 2037 | 2.35 | 241 414 87.1 57.1 | 524
& | WeGeFT-Sepy,, | 0.416 | 18.01 | 0.46 | 26.1 424 859 586 | 53.3
[
& | LoRA™2 0.052 | 17.74 | 042 | 247 402 850 56.0 | 515
£ | DoRA"=? 0.065 | 20.09 | 2.35 | 240 40.6 84.6 56.0 | 51.3
= VeRA"=12288 0.042 | 20.65 | 9.00 | 23.5 387 853 543|504
VeRA"=1024 0.015 | 17.80 | 1.15 | 23.6 355 82.1 533 | 48.6
WeGeFTy, 0.052 | 17.74 | 0.50 | 23.6 424 842 574 | 51.9
WeGeFT,,, 0.016 | 17.71 | 039 | 26.1 38.0 83.1 57.3 | 51.1

B. Performance of WeGeFT with mixed precision float16

We conduct additional experiments with LLaMA-1 (7B) using mixed-precision float16 instead of mixed-precision bfloat16.
The table below shows that WeGeFT and LoRA experience a similar relative performance drop with float16 while maintaining
comparable memory and wall-time, consistent with float16’s known limitations as compared to bfloat16. The performance
drop due to float16 can be offset by increasing the number of trainable parameters in WeGeFT. As shown in the table,
WeGeFT with a rank of 128 outperforms LoRA even with float16, while using four times fewer parameters. These results
further confirm WeGeFT’s compatibility with any device that supports LoRA.

Table 11: Results of fine-tuning Llama 1 (7B) on the Math10k benchmark with pretrained weights and activations converted
to float16 and bfloat16 precisions.

S| 8|
~ wn (5]
e T | E| < & £ 2| 2
g £ = 2 = < =)
= o = =) 7 < = 2
Method v = = < &) = %) <
biloat16 LoRAT=16 0.416 | 18.01 | 043 | 23.5 38.5 853 56.4 | 509
WeGeFT;fn64 0.052 | 17.74 | 0.51 | 243 365 824 569 | 50.0
LoRA"™=16 0416 | 18.07 | 042 | 21.8 37.9 84.7 57.1 | 504

float16 WeGeFTQ;64 0.052 | 17.75 | 043 | 22.7 360 835 549 | 493
WeGeFTQ;128 0.104 | 17.80 | 0.43 | 22.7 385 84.6 56.1 | 50.5
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C. Analysis of WeGeFT vs. LoRA

To rigorously distinguish WeGeFT from LoRA, we perform an analytical gradient comparison in the context of fine-tuning
Transformer-based architectures.
C.1. Gradient Analysis

Consider a simplified Transformer layer with pretrained weights W' for layer /. LoRA fine-tunes by introducing additive
low-rank residuals:

Wiga = W'+ B'A! ©)
where B! and A’ are learnable low-rank matrices.

In contrast, consider Eqn. 3, WeGeFT fine-tunes through a multiplicative residual explicitly dependent on pretrained weights:

Wivegerr = W'(I + ¢ - ) (10)
with shared low-rank matrices ¢ and ).

Let £ denote a scalar loss function (e.g., cross-entropy). For LoRA, the gradient computations with respect to the matrices
Al and B! are:

o
0A!

oL
_ (BI)TXIZ, 55 — X/l(Al)T (11)
where X! = (%)T X!~ aggregates local gradient information.

For WeGeFT, gradients for ¢ and v include information aggregated across layers due to parameter sharing:

oL T Ty 9L Tyl T

= — wH'x — = wH'Xx 12
5 = ® le( X 55 Xl} )X (12)
Here, WeGeFT gradients inherently integrate knowledge from pretrained weights across multiple layers, encapsulating
broader contextual and structural dependencies than LoRA.

C.2. Implications for Optimization Dynamics

» Layer-wise vs. Global Updates: LoRA updates parameters in isolation per layer, restricting interaction. In contrast,
WeGeFT updates are global, considering inter-layer correlations and leading to more cohesive and stable optimization
trajectories.

* Pretrained Knowledge Utilization: By explicitly multiplying residuals with pretrained weights, WeGeFT exploits
existing model structure, preserving crucial pretrained information, potentially yielding superior convergence and
generalization.

» Expressivity and Efficiency Trade-off: WeGeFT maintains expressivity through multiplicative updates despite substantial
parameter sharing, balancing parameter efficiency without compromising learning capacity, unlike traditional additive
methods such as LoRA.

C.3. Summary of Advantages

* Improved Parameter Efficiency: Explicitly leverages pretrained weights to achieve stronger fine-tuning results with
fewer learnable parameters.
* Optimized Gradient Flow: Gradients leverage global information, enabling coordinated fine-tuning across layers.

This analysis underpins the empirical advantages of WeGeFT observed in extensive experimentation, highlighting funda-
mental theoretical distinctions from LoRA.
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D. Implementation Details and Hyperparameter Tuning

In practice, we use a scaling factor of £ for residuals as done in LoRA (Hu et al., 2022). We also use dropout (Srivastava
et al., 2014) on the pretrained weights before transforming using WeGeFT parameters as a means of regularization:
Wwh=w!+ gDropout(Wl) -, (13)
T

We omit this in the main section for ease of notation and simplicity, as it does not affect the analysis. In experiments, we
initialize v to all zeros and ¢ to Kaiming Uniform initialization (He et al., 2015).

D.1. Computing Resources and Code

All our experiments are run on a single Nvidia A100 GPU. Our code is provided in the supplementary materials.

D.2. Arithmetic Reasoning

On the Math10k, we follow (Wu et al., 2024), and tune the hyperparameters by fine-tuning the LLaMA-1 (7B) model on
the GSM8k dataset (Cobbe et al., 2021) using a separate validation set constructed from the training set, and use the same
hyperparamters for Llama-2 (7B). Table 12 shows the hyperparameters used in our experiments. We perform hyperparameter
search using the seed 42, and report the final results by averaging over three runs with seeds 42, 43, and 44. We use a greedy
decoding scheme during inference, with a maximum new token number of 512. For experiments on fine-tuning Llama
2 (7B) on MetaMathQA and evaluating on GSM8k, we use the hyperparameters from (Wang et al., 2024), and tune the
learning rate on a validation split from Meta-MathQA. We report average scores across 3 runs with seeds 42, 43, 44.

Table 12: Hyperparameters used for the Math10k experiments. We use greedy sampling following (Wu et al., 2024)

Hyperparameter | Value
Max Sequence Length | 512
Optimizer AdamW
Weight Decay 0.0
LR Scheduler Linear
Batch Size 16
Epochs 3
Learning Rate 4x107*
Rank 64
WeGeFTa,, Scaling Factor 128
Warmup Ratio 0.1
Dropout 0.1
Fine-Tuned Layers Query, Key, Value, Up Projection, Down Projection
Learning Rate 7x 107
Rank 64
WeGeF Ty, Scaling Factor 64
Warmup Ratio 0.06
Fine-Tuned Layers Out Projection, Down Projection

D.3. Commonsense Reasoning

We tune the hyperparameters for commonsense reasoning by fine-tuning the LLaMA-1 model on the BoolQ dataset (Clark
et al., 2019) using a separate validation set constructed from the training set. Table 14 shows the hyperparameters used in
our experiments. We search for the hyperparameters using LLaMa-1 (7B) and use the same hyperparameters for LLaMA-1
(13B), Llama 2 (7B) and Llama 3 (8B) models. We perform hyperparameter search using the seed 42, and report the final
results by averaging over three runs with seeds 42, 43, and 44. We use a greedy decoding scheme during inference, with a
maximum new token number of 32.

19



WeGeFT (wee-gift): Weight-Generative Fine-Tuning

Table 13: Hyperparameters used for fine-tuning on MetaMathQA and evaluating on GSM8k.

Hyperparameter | Value
Max Sequence Length 1024
Optimizer AdamW
Weight Decay 0.0
LR Scheduler Cosine
Batch Size 32
Epochs 1
Learning Rate 5x 1074
Rank 64
WeGeFT Scaling Factor 128
Warmup Ratio 0.03
Dropout 0.0
Fine-Tuned Layers All linear layers (excluding vocabulary projection and head)
Generation: Temperature | 0.8
Generation: top_p 0.95

Table 14: Hyperparameters used for the commonsense reasoning experiments. We use greedy sampling following (Wu et al.,

2024)

Hyperparameter | Value
Max Sequence Length | 512
Optimizer AdamW
Weight Decay 0.0
LR Scheduler Linear
Batch Size 16
Epochs 3
Learning Rate 9x107°
Rank 64

WeGeFT Scaling Factor 128
Warmup Ratio 0.1
Fine-Tuned Layers Query, Key, Value, Up Projection, Down Projection
Learning Rate 6 x 1074
Rank 64

WeGeFT (Output) Scaling Factor 64
Warmup Ratio 0.06
Dropout 0.0

Fine-Tuned Layers

Out Projection, Down Projection

D.4. Instruction Following

For fine-tuning Llama 2 (7B) on WizardLM and evaluating on MT-Bench, we use the hyperparameters from (Wang et al.,
2024) and use the same learning rate as MetaMathQA experiments. We report average scores across 3 runs with seeds 42,

43, 44.

D.5. Code Generation

For fine-tuning Llama 2 (7B) on Code-Feedback dataset (Zheng et al., 2024) and evaluating on HumanEval, we use the
hyperparameters from (Wang et al., 2024) and tune the learning rate on a separate validation split from Code-Feedback. We

report average scores across 3 runs with seeds 42, 43, 44.

D.6. FGVC Experiments

For all the experiments, we use ViT-B/16 model (Dosovitskiy et al., 2021), which contains 12 transformer blocks, each
with 12 heads in the Multi-Head Self-Attention (MHSA) blocks, and a dimension of 768. We use checkpoints from the
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Table 15: Hyperparameters used for fine-tuning on Code-Feedback and evaluating on HumanEval.

Hyperparameter | Value
Max Sequence Length 1024
Optimizer AdamW
Weight Decay 0.0
LR Scheduler Cosine
Batch Size 32
Epochs 1
Learning Rate 4x1074
Rank 64
WeGeFT Scaling Factor 128
Warmup Ratio 0.03
Dropout 0.0
Fine-Tuned Layers All linear layers (excluding vocabulary projection and head)
Generation: Temperature | 0.8
Generation: top_p 0.95

Table 16: Hyperparameters used for fine-tuning on WizardLM and evaluating on MT-Bench.

Hyperparameter ‘ Value
Max Sequence Length 1024
Optimizer AdamW
Weight Decay 0.0

LR Scheduler Cosine
Batch Size 32
Epochs 1
Learning Rate 5x 107*
Rank 64
Scaling Factor 128
Warmup Ratio 0.03
Dropout 0.0
Fine-Tuned Layers All linear layers (excluding vocabulary projection and head)
Generation: Temperature | 0.8
Generation: top_p 0.95

model pretrained on the ImageNet21k (Deng et al., 2009) under the supervised training protocol provided by the t imm
package. For both VTAB and FGVC experiments, we use a hyperparameter search using the validation sets and use the
training+validation data during the final run and report the results on the test sets. The hyperparameter search space used
in our experiments in provided in Table 17. We use the same train, validation and test splits as (Shi et al., 2023), except
for Stanford Cars dataset (Gebru et al., 2017). Due to the unavailability of the dataset from the original source, and the
difference in the format of the data provided by the updated source, we create our own training and validation split (with the
same number of images as (Shi et al., 2023)) and use the official testing split. We initialize ¢ with zeros and ¢ with Kaiming
uniform initialization.
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Table 17: Hyperparameter search space used for FGVC experiments. During the search, we use 25 epochs due to
computational constraints, and use 100 epochs in the final run with the selected hyperparameters

Hyperparameter | Values
- Learning Rate le 3, 1.5e73,2¢73,2.5¢73, 5e 3, 1e—2
BitFit .
Weight Decay 0.0
VPT Learning Rate le 3, 1.5e73, 2¢3, 2.5e73, 53, 1le~2
Weight Decay 0.0
Num. Prompts 5
LoRA Learning Rate le 3, 1.5e73, 2¢3, 2.5e73, he~3, 1le~2
Weight Decay 0.01, 0.001, 0.0001, 0.0
Rank r 8
; —4 4 £ _—4 1,-3 -3 £,—3
WeGeFT Legrnmg Rate le™*, 2.5e7 %, be ™%, 1le™ 7, 2.5e¢77, be
Weight Decay 0.01, 0.001, 0.0001, 0.0
Rank r 16
Optimizer AdamW
LR Scheduler Cosine
Warmup Epochs 5
Epochs 100
Batch Size 32

E. Visual Inspection of Our Two-Linear-Layer Parameterized WeGeFT
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Flgure 5: More examples of the visual interpretability of our two-linear-layer parameterized WeGeFT tested on the FGVC
benchmark. We show examples of head, wings and legs of birds in the fop-left, examples of flower petals in the top-right,
examples of head, ears and legs of dogs in the bottom-left, and examples of tires, windshield and bumper of cars in the
bottom-right.
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