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Abstract

Fine-tuning large pretrained Transformer mod-

els can focus on either introducing a small num-

ber of new learnable parameters (parameter effi-

ciency) or editing representations of a small num-

ber of tokens using lightweight modules (represen-

tation efficiency). While the pioneering method

LoRA (Low-Rank Adaptation) inherently bal-

ances parameter, compute, and memory efficiency,

many subsequent variants trade off compute and

memory efficiency and/or performance to fur-

ther reduce fine-tuning parameters. To address

this limitation and unify parameter-efficient and

representation-efficient fine-tuning, we propose

Weight-Generative Fine-Tuning (WeGeFT, pro-

nounced wee-gift), a novel approach that learns

to generate fine-tuning weights directly from

the pretrained weights. WeGeFT employs a

simple low-rank formulation consisting of two

linear layers, either shared across multiple layers

of the pretrained model or individually learned

for different layers. This design achieves multi-

faceted efficiency in parameters, representations,

compute, and memory, while maintaining or ex-

ceeding the performance of LoRA and its variants.

Extensive experiments on commonsense reason-

ing, arithmetic reasoning, instruction following,

code generation, and visual recognition verify the

effectiveness of our proposed WeGeFT.

1. Introduction

Fine-tuning pretrained deep neural networks (DNNs) as fea-

ture backbones for downstream tasks has been an important
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and challenging research topic. In recent years, large feature

backbones with open weights, such as LLaMA (Touvron

et al., 2023a;b; AI@Meta, 2024), have become ubiquitous.

Training such models from scratch is infeasible with lim-

ited resources, and fine-tuning them entirely can also be

prohibitively costly. This raises two critical questions: (i)

which parts of a pretrained model should be fine-tuned (of-

ten treated as a hyperparameter), and (ii) how those parts

should be fine-tuned. In this paper, we focus on the lat-

ter question by leveraging module/layer selection strategies

widely adopted in prior art.

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a pio-

neering and widely adopted approach that achieves built-in

efficiency in parameters, compute, and memory. LoRA

learns fine-tuning weight residuals in low-rank forms for

pretrained weights on a layer-specific basis (see the left of

Fig. 1). Thanks to its strong applicability and promising

performance, many follow-up works have emerged, such

as DoRA (Liu et al., 2024) and VeRA (Kopiczko et al.,

2023). However, these variants often sacrifice compute

efficiency (training wall time) and/or GPU memory effi-

ciency to achieve reductions in learnable parameters or per-

formance gains on certain downstream tasks. As we demon-

strate in experiments, DoRA, while matching or slightly

surpassing LoRA’s performance, increases training wall

time by more than 5x and consumes around 3GB more GPU

memory. On the other hand, VeRA, though significantly re-

ducing the number of learnable parameters, performs much

worse than LoRA while drastically increasing training wall

time (by more than 20x) and consuming similar additional

GPU memory. These trade-offs motivate us to seek a

formulation that can significantly reduce the number of

learnable parameters, achieve superior or on-par perfor-

mance compared with LoRA, and retain its efficiency in

compute and memory.

Towards these objectives, the recently proposed ReFT (Wu

et al., 2024) introduces a promising framework that focuses

on lightweight representation-editing modules instead of

learning weight residuals, as LoRA does. ReFT is inspired

by causal intervention mechanisms (Geiger et al., 2024) and

operates in a layer-specific manner. While ReFT methods
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Figure 1: Comparisons between (a) LoRA (Hu et al., 2022) and (b) our proposed WeGeFT.

reduce learnable parameters and retain compute and mem-

ory efficiency comparable to LoRA, they often show inferior

performance, as confirmed in our experiments. Additionally,

selecting where to intervene within the model to achieve

strong downstream task performance is non-trivial. For in-

stance, DiReFT, one of the two ReFT formulations, can be

interpreted as applying LoRA directly to hidden representa-

tions at specific intervention points. This motivates us to

seek a unified perspective between parameter-efficient

and representation-efficient fine-tuning that enables sim-

pler formulations while achieving on-par or better per-

formance.

In summary, our experiments reveal the limitations of LoRA

variants such as DoRA and VeRA, as well as alternative

methods like ReFT, highlighting their drawbacks in com-

pute, memory, and performance trade-offs. Outperform-

ing LoRA while maintaining multi-faceted efficiency in

parameters, representations, compute, and memory re-

mains a significant challenge. In this paper, we propose a

novel approach to address this challenge.

To clarify the foundation of our proposal, we first review

the formulation of LoRA (Hu et al., 2022). Denote the

pretrained weights of a layer l ∈ L of a Transformer model

by W l ∈ R
dout×din , and the fine-tuned weights by Ŵ l ∈

R
dout×din . LoRA is defined as:

LoRA: Ŵ l =W l +Bl ·Al, (1)

where Bl ∈ R
dout×r and Al ∈ R

r×din are two low-

rank matrices representing new learnable model parame-

ters introduced during fine-tuning, and r is the rank (r ≪
min(din, dout)). Typically, Bl is initialized to zeros, while

Al is randomly initialized.

We rethink LoRA from three key aspects:

• Pretrained Weight Awareness: LoRA imposes no con-

straints on Bl and Al beyond their low-rank structure,

enabling downstream task data to dictate the fine-tuning

process. However, the pretrained weights W l encode

“carry-over” knowledge that is expected to be useful for

downstream tasks. By making fine-tuning weight resid-

uals aware of the pretrained weights, we hypothesize

that performance can be further enhanced, especially for

stronger pretrained models. Therefore, we aim to param-

eterize fine-tuning weight residuals in a weight-aware

manner.

• Layer-Specific vs. Shared Adaptation: In LoRA, Bl

and Al are layer-specific, which ensures layer-local adap-

tation. Recent methods like Tied LoRA (Renduchintala

et al., 2024) propose sharing B and A across selected lay-

ers, while VB-LoRA (Li et al., 2024) introduces a shared

vector bank to compose all low-rank matrices via a differ-

entiable top-k admixture. Although these approaches re-

duce the number of learnable parameters, our experiments

show that they often underperform or significantly de-

grade performance. For instance, Tied LoRA reduces pa-

rameter count but sacrifices expressivity, while VB-LoRA

adds unnecessary complexity via top-k modeling. We ad-

vocate for parameter sharing across layers but emphasize

that the expressivity of the fine-tuned model should rely

on pretrained weights to compensate for the reduction

in learnable parameters. Our results highlight the criti-

cal role of pretrained weight awareness in enabling this

trade-off.

• Additive vs. Multiplicative Updates: LoRA uses ad-

ditive weight residuals (Bl · Al), which can be limiting

in terms of expressivity. Alternatively, multiplicative up-

dates may enable richer, structured transformations. For

example, DiReFT (Wu et al., 2024) applies multiplicative

updates in the representation space. Let yli ∈ R
dout×1

denote the activation output (representation) for the i-th

token at layer l. DiReFT updates it as:

DiReFT: ŷli = yli +Bl · (Al · yli + bl), (2)

= (I+Bl ·Al) · yli +Bl · bl,

where Bl ∈ R
dout×r, Al ∈ R

r×dout , and bl ∈ R
r×1 are

parameters of the representation-editing module. I is the

identity matrix. While DiReFT introduces multiplicative

residuals into the representation space, it is coupled with

token intervention search (token-selective).

To achieve multi-faceted efficiency across parameters, rep-

resentations, compute, and memory, we propose Weight-

Generative Fine-Tuning (WeGeFT, pronounced wee-gift),
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Figure 2: Comparisons of performance vs. trainable parameters between our WeGeFT and baseline methods on three tasks

using the Llama model family. Figure 3 shows that WeGeFT maintains the compute and memory efficiency of LoRA, thus

achieving very strong multi-faceted efficiency across parameters, representations, compute and memory. See Section 4 for

experimental details.

a simple yet effective formulation (see the right of Fig. 1):

Our WeGeFT: Ŵ l =W l +W l · φ · ψ, (3)

=W l · (I+ φ · ψ),

where φ ∈ R
din×r and ψ ∈ R

r×din are low-rank matrices

shared across layers, and r is the rank. See Appendix C for

gradient analyses between LoRA and our WeGeFT.

• Weight-Aware Parameter Sharing: WeGeFT can be

viewed as a weight-aware variant of LoRA, where the

layer-specific Bl in LoRA becomes weight-aware (Bl =
W l · φ) and the layer-specific Al becomes layer-agnostic

(A = ψ). Compared to Tied LoRA (Renduchintala et al.,

2024), WeGeFT retains layer-specific information via Bl,

preserving performance. Unlike VB-LoRA (Li et al.,

2024), WeGeFT avoids the need for a complex shared

vector bank and top-k admixture, instead relying on a

pair of shared low-rank matrices (φ, ψ) for simplicity and

stability. WeGeFT achieves significant improvements in

parameter efficiency without sacrificing performance and

even enables performance gains when stronger pretrained

models (e.g., LLaMA 1 vs. Llama 3) are used.

• Residual Learning in Weight Space: WeGeFT extends

the residual learning principle of ResNets (He et al.,

2016), x = x+ f(x), into the weight space. In contrast,

DiReFT (Wu et al., 2024) applies this principle in the

representation space with causal intervention treatments.

WeGeFT, however, eliminates the need to search for spe-

cific intervention positions and is token-agnostic, ensuring

it retains LoRA’s compute and memory efficiency while

offering greater flexibility (see Sec. 3.2).

Fig. 2 shows result comparisons on three benchmark

datasets, which demonstrate the overall multi-faceted effi-

4.5

9.5

15.5

21.5

DoRA WeGeFT VB-LoRA VeRA

0.0

0.5

1.0

1.5

R
at

io

GPU Memory Training Wall Time

Figure 3: Comparison of the ratio of the GPU Memory

(Training Wall Time) for various PEFT methods with the

GPU Memory (Training Wall Time) of LoRA. WeGeFT

maintains the efficiency of LoRA, as opposed to DoRA and

VeRA. Note that while VB-LoRA maintains the memory

and compute efficiency, it performs worse than LoRA as

seen in Figure 2.

ciency of our proposed WeGeFT. Fig. 3 shows the efficiency

comparisons of GPU memory footprint and training wall

time.

• Visual Inspection of WeGeFT in Computer Vision

Tasks: Let Cl =W l · φ be the transformation using the

first linear layer of WeGeFT for an output projection layer

in MHSA (see Sec. 4.5). We show that Cl ∈ R
dout×r

can be used as a token-clustering head. Using the fine-

tuned model, the activation of the output projection layer

is, ŷl ∈ R
N×dout , where N the number of visual tokens

in raster order. We compute r heatmaps for visual token

clustering by,

H l
N×r =ŷ

l
N×dout

· Cldout×r
, (4)
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Figure 4: WeGeFT can play the role of a r-way token-clustering head that can localize meaningful objects/parts on images.

More examples can be found in Figure 5 in the Appendix.

which can highlight semantically meaningful parts of the

image. We normalize the r heatmaps to [0, 1] individually

and use 0.5 as the threshold in visualizations (Fig. 4).

2. Related Work and Our Contributions

Parameter Efficient Fine-tuning (PEFT). The goal of

PEFT methods is to reduce the computational resources

(memory footprint, wall time, etc.) required for fine-tuning

large models such as Transformers (Vaswani et al., 2017)

and Vision Transformers (ViTs) (Dosovitskiy et al., 2021).

Prompt-based methods either append prompts to the input

tokens (Lester et al., 2021; Jia et al., 2022), or the inter-

mediate layers (Li & Liang, 2021; Liu et al., 2021; Zhang

et al., 2023b). Early work on PEFT used sequential/parallel

learnable adapters added after the Multi-Head Self Atten-

tion and/or FFN blocks (Houlsby et al., 2019; Bapna &

Firat, 2019; Pfeiffer et al., 2021; 2020; Rücklé et al., 2021;

Mahabadi et al., 2021a; Chen et al., 2022). LoRA (Hu

et al., 2022) and its variants (Zhang et al., 2023a; Dettmers

et al., 2023; Lialin et al., 2023; Kopiczko et al., 2023; Gao

et al., 2024; Liu et al., 2024) learn residuals to the pretrained

weight matrices in the form of low-rank factorization, re-

moving the added inference cost in adapter based methods.

BitFit (Zaken et al., 2022) fine-tunes all the bias terms in a

pretrained backbone. MEND (Mitchell et al., 2022) edits

a pretrained model by learning fine-tuning weights from

the gradient inputs with a low-rank MLP parameterization.

FacT (Jie & Deng, 2023) shares the trainable parameters

across Self-Attention and MLP blocks. While this reduces

trainable parameters, it has a drawback: Transformer mod-

ules serve distinct functions - attention layers largely handle

syntactical and in-context learning abilities (Bietti et al.,

2023; Voita et al., 2019), while MLP layers encode factual

knowledge (Meng et al., 2022). Sharing parameters across

these modules may therefore be suboptimal. Tied-LoRA

(Renduchintala et al., 2024) shares the residual weights

across layers, and also across Query, Key and Value compo-

nents. In Section 5.2, we show that the weight-awareness

in WeGeFT is essential for parameter sharing across layers,

enabling it to outperform Tied-LoRA.

Hypernetworks. (Ha et al., 2016) introduced Hypernet-

works, i.e., neural networks that generate the parameters

for other neural networks, in language modeling tasks by

generating the weights of an LSTM (Hochreiter & Schmid-

huber, 1997). Hypernetworks have previously been applied

for few-shot classification (Zhao et al., 2020; Zhmoginov

et al., 2022), transfer learning (Requeima et al., 2019) and

continual learning (von Oswald et al., 2020; Yin et al., 2022).

Similar to our proposed approach, (Requeima et al., 2019)

learns to adapt a global feature extractor through an adapta-

tion network. In a few shot continual learning setup, (Vla-

dymyrov et al., 2023) uses a hyper-Transformer to generate

the parameters for a separate Convolutional Neural Network

(ConvNet), which use as inputs both a support set of images

of the current task and the ConvNet parameters generated

for the previous tasks. HyperFormer++ (Mahabadi et al.,

2021b) uses a Multi-Layer Perceptron (MLP) to generate

the parameters from layer embedding and a latent vector for

Adapters (Houlsby et al., 2019) introduced across layers of

a pretrained model in a multitask setting. Unlike (Mahabadi

et al., 2021b), we directly use the weights of the frozen

pretrained model, thus eliminating the need for embeddings.

Neural Functionals: Our approach is related to neural

functionals that aim to learn deep neural networks acting

on the weights of other neural networks. For toy problems,

equivariant architectures have been explored for tasks like

classifying implicit neural representations (Navon et al.,

2023; Zhou et al., 2023a;b; Kofinas et al., 2024), adapting

model architectures to new domains (Navon et al., 2023),

predicting model generalization performance (Zhou et al.,

2023a;b; Kofinas et al., 2024; Lim et al., 2023), and learned

optimizers (Zhou et al., 2024). However, our work is the

first to explore fine-tuning of a model using it’s own weights.

We do not use equivariant architectures, but note that this

direction of work is orthogonal to ours, and can be further

explored in the future.

Our Contributions are summarized as follows:

• Weight-Generative Fine-Tuning Framework: WeGeFT

introduces a novel formulation where fine-tuning weight

residuals are parameterized directly using pretrained

weights, leveraging their inherent knowledge for better

expressivity, and leading to multiplicative updates in the
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weight space for richer and more structured transforma-

tions compared to additive methods.

• Multi-Faceted Efficiency: WeGeFT achieves multi-

faceted efficiency across parameters, representation, com-

pute and memory by using shared low-rank matrices

(φ, ψ), significantly reducing learnable parameters while

retaining LoRA’s simplicity without sacrificing perfor-

mance (See Figure 2 and Figure 3).

• Unified Parameter and Representation Efficiency:

WeGeFT bridges the gap between parameter-efficient and

representation-efficient fine-tuning by unifying weight-

generative parameterization and shared low-rank matrices.

• Strong and Scalable Performance: WeGeFT consis-

tently matches or outperforms LoRA and its variants,

achieving superior scalability with stronger pretrained

models like Llama 3.

3. Approach

In this section, we elaborate on our simple formulation

of WeGeFT (Eqn. 3) from the more general parameter-

generation perspective, which can provide deeper insights.

3.1. Weight Generation for Explicit Weight-Awareness

For a layer l ∈ L of a pretrained Transformer model, to learn

its fine-tuning weights, denoted by ∆W l, that are aware of

pretrained weights W l to “carry over” their knowledge, a

general formulation is to train a generator network,

∆W l = G(W l; Θ), ∀l ∈ L, (5)

where Θ is the learnable parameters of the weight generator.

G(·; Θ) needs to be parameterized in a way to meet the

desired multi-faceted efficiency. Inspired by the low-rank

parameterization scheme in LoRA, we have,

G(W l; Θ) = fψ ◦ gθ ◦ fφ(W
l), ∀l ∈ L, (6)

where both fφ : R
dout×din → R

dout×r and fψ(x) :
R
dout×r → R

dout×din are linear projection layers (without

bias terms) with r representing the “rank”. gθ : R
dout×r →

R
dout×r realizes latent transformations in the low r-dim

space. Θ = (φ, ψ, θ) collects all learnable parameters.

We note that this design offers a very flexibile way to cap-

ture underlying contingency between the fine-tuning weight

residuals and the pretrained weights in all L layers. Sur-

prisingly, we observe that we do not need gθ based on our

ablation studies (see Section 5.1). In other words, gθ is an

identity transformation, leading to the simple formulation

in Eqn. 3. Our (post-hoc) intuitive understanding is:

• If gθ includes only linear transformations, it can be natu-

rally absorbed into fφ and/or fψ .

• If gθ is an overall non-linear transformation, G(W l; Θ)
applies the non-linear transformation in the weight space,

which may not be necessary. After all, iterative updates

in weight space, including the from-scratch-training of

the pretrained weights W l themselves, are mostly sim-

ple updates based on SGD. Nonlinear transformations

may be destructive to the “carry over” knowledge in

the pretrained weights, thus negatively impact weight-

awareness. More importantly, with a nonlinear gθ, our

WeGeFT will sacrifice the multiplicative updates in Eqn. 3,

Ŵ l = W l · (I + φ · ψ), to additive updates, Ŵ l =
W l + gθ(W

l · φ) ·ψ, which will also significantly impact

compute and memory efficiency.

WeGeFT can be applied along the dout dimension too. In

Eqn. 3, (φ, ψ) are applied along the din dimension of pre-

trained weights W l. It is straightforward to apply WeGeFT

along the dout dimension by,

Ŵ l =W l + (φ · ψ)⊤ ·Wl, (7)

where φ ∈ R
dout×r and ψ ∈ R

r×dout .

WeGeFT Without Parameter Sharing. It is straightfor-

ward to apply our WeGeFT (Eqn. 3 and Eqn. 7) without

sharing (φ, ψ) across layers (denoted by WeGeFT-Sep),

which will increase the learnable parameters of the counter-

part (WeGeFT with parameter sharing), and to the same as

LoRA. We show that WeGeFT-Sep can obtain on-par or bet-

ter performance than LoRA, demonstrating the advantage of

weight-awareness. This flexibility allows WeGeFT to scale

more elegantly to larger and diverse datasets, which cannot

be achieved by prior methods like VeRA and VB-LoRA.

3.2. WeGeFT as Token-Agnostic ReFT

Consider a linear layer with pretrained weights W l and

the pretrained bias term bl, and WeGeFT weights Ŵ l =
(I+ φ · ψ) ·W l (Eqn. 3). For an input xl, the output repre-

sentation/activation at this layer is,

ŷl = xl · Ŵ l⊤ + bl = x̂l ·W l⊤ + bl, (8)

x̂l = xl · (I+ φ · ψ)⊤,

where x̂l is the “fine-tuned” input representation/activa-

tion using the same WeGeFT parameters. Hence, our

WeGeFT can be equivalently applied to the input ac-

tivation, rather than the pretrained weights, to achieve

the same fine-tuning effect, maintaining the memory and

compute efficiency of LoRA in implementation. Unlike the

ReFT (Wu et al., 2024) that entails a dedicated search for

where the representation interventions should apply at the

token level, our WeGeFT eliminates the need of search, en-

abling token-agnosticity. Thanks to the parameter sharing,

our WeGeFT can retain the representation efficiency.

4. Experiments

We conduct extensive experiments across Natural Language

Generation and Visual Recognition, and compare our two-

linear-layer parameterized WeGeFT with various PEFT
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Table 1: Results of fine-tuning Llama 2 (7B) on the Meta-

MathQA dataset and evaluating it on the GSM8k test

set. All baseline results are obtained from (Wang et al.,

2024), except VB-LoRA is trained by us together with our

proposed WeGeFT. We train our WeGeFT and VB-LoRA

by following the same settings in (Wang et al., 2024).

Method %Trainable GSM8k (Acc.)

Full 100 54.20±0.42

LoRA (Hu et al., 2022) 0.297 42.08±0.04

PiSSA (Meng et al., 2024) 0.297 44.54±0.27

rsLoRA (Kalajdzievski, 2023) 0.297 45.62±0.10

LoRA+ (Hayou et al., 2024) 0.297 52.11±0.62

DoRA (Liu et al., 2024) 0.317 53.07±0.75

AdaLoRA (Zhang et al., 2023a) 0.445 50.72±1.39

LoRA-GA (Wang et al., 2024) 0.297 53.60±0.30

VB-LoRA (Li et al., 2024) 1.194 44.93±1.52

Our WeGeFTdin 0.068 54.89±0.92

methods and ReFT. We also conduct ablation studies on the

different parameterization schemes of WeGeFT. More de-

tails can be found in Appendix D. In all the experiments, we

follow the baselines in selecting the layers to fine-tune for

downstream tasks for fair comparisons. For clarity, we use

WeGeFTdin (Eqn. 3), WeGeFTdout
(Eqn. 7), and WeGeFT-

Sepdin (Eqn. 3 but without parameter sharing).

4.1. Arithmetic Reasoning

We demonstrate the multi-faceted efficiency of WeGeFT

with experiments on the Math10k benchmark (Hu et al.,

2023) for Arithmetic Reasoning, which is a small scale

dataset enabling comprehensive evaluations. We conduct

further experiments with MetaMathQA (Yu et al., 2024), a

larger and higher quality fine-tuning dataset, to understand

the impact of higher quality data on WeGeFT. In both exper-

iments, we evaluate the model on the final answer following

the same protocol used in prior works. Experimental details

and hyperparameters are provided in Appendix D.2.

Results: Table 1 shows the results of finetuning using the

MetaMathQA datasets, and evaluating on the GSM8k test

set. WeGeFT outperforms all the prior methods with 4

times fewer parameters, and slightly outperform the full fine-

tuning. We use the relatively smaller Math10k benchmark

(Table 2) to run comprehensive evaluations for WeGeFT

with respect to multi-faceted efficiency.

• Parameter Efficiency: WeGeFT efficiently adapts both

strong and weak models, as shown by finetuning LLaMA-1

and LLaMA-2 (7B) on the Math10k benchmark in Table

2. LLaMA-1 (7B), a weak model for arithmetic reason-

ing (11% zero-shot accuracy on GSM8k (Touvron et al.,

2023a)), requires substantial adaptation. Table 2 shows

WeGeFT adapts LLaMA-1 (7B) far more effectively than

prior PEFT methods. Reducing parameters in LoRA and

DoRA significantly degrades performance—LoRA’s accu-

racy drops from 50.9 (r = 16) to 48.9 (r = 2). At a com-

Table 2: Results of fine-tuning Llama 1 and 2 (7B) on the

Math10k benchmark. The Mem. refers to GPU memory,

and Wall Time is the time required to complete 1 epoch of

training. All results are obtained by us using our code base

for fair comparisons, except those by DiReFT and LoReFT

using LLaMA 1 are from (Wu et al., 2024).
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LoRAr=16 0.416 18.01 0.43 23.5 38.5 85.3 56.4 50.9

DoRAr=16 0.427 20.37 2.36 21.5 37.9 86.0 55.3 50.2

WeGeFT-Sepdin 0.416 18.01 0.46 23.8 37.9 84.5 54.2 50.1

LoRAr=2 0.052 17.74 0.43 23.1 34.6 83.9 54.1 48.9

DoRAr=2 0.065 20.09 2.36 21.1 34.6 84.0 53.8 48.4

VeRA 0.042 20.65 9.01 21.3 34.0 82.8 50.7 47.2

FacT-TT 0.051 17.74 0.52 21.5 30.7 80.3 50.3 45.7

FacT-TK 0.062 17.75 0.59 21.3 34.8 82.2 51.9 47.5

VB-LoRA 0.840 18.33 0.42 21.26 29.3 78.9 49.5 44.7

WeGeFTdin 0.052 17.74 0.51 24.3 36.5 82.4 56.9 50.0

DiReFT 0.031 31.42 0.26 21.3 24.1 74.5 42.7 40.6

LoReFT 0.031 55.42 0.29 21.4 26.0 76.2 46.8 42.6

WeGeFTdout
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LoRAr=16 0.416 18.01 0.43 24.5 43.4 86.1 57.2 52.8

DoRAr=16 0.429 20.37 2.35 24.1 41.4 87.1 57.1 52.4

WeGeFT-Sepdin 0.416 18.01 0.46 26.1 42.4 85.9 58.6 53.3

LoRAr=2 0.052 17.74 0.42 24.7 40.2 85.0 56.0 51.5

DoRAr=2 0.065 20.09 2.35 24.0 40.6 84.6 56.0 51.3

VeRA 0.042 20.65 9.00 23.5 38.7 85.3 54.3 50.4

VB-LoRA 0.840 18.33 0.43 22.4 33.4 81.4 52.4 47.4

FacT-TT 0.051 17.74 0.52 24.9 38.3 81.9 56.2 50.3

FacT-TK 0.062 17.75 0.59 24.5 41.0 85.7 54.4 51.4

WeGeFTdin 0.052 17.74 0.50 23.6 42.4 84.2 57.4 51.9

DiReFT 0.031 31.42 0.26 20.5 27.9 77.5 45.9 42.9

LoReFT 0.031 55.42 0.29 24.8 31.7 79.6 50.9 46.7

WeGeFTdout
0.016 17.71 0.39 26.1 38.0 83.1 57.3 51.1

parable parameter count ( 0.05%), WeGeFT outperforms

all baselines (LoRA, DoRA, VeRA, VB-LoRA) and nearly

matches LoRA at r = 16. This demonstrates that gen-

erating fine-tuning residuals from pretrained weights

improves parameter efficiency by enabling adaptation

with minimal parameters, whereas LoRA and DoRA

with r = 2 struggle to perform well.

• Computational and Memory Efficiency: WeGeFT main-

tains compute and memory efficiency while achieving equal

or higher accuracy than prior PEFT methods, unlike DoRA

and VeRA, which compromise efficiency. Although VeRA

reduces trainable parameters, it requires a large interme-

diate dimension for fixed random weights (12288 here).

On Math10k, VeRA takes ∼9 hours/epoch and 20.65GB

GPU memory, whereas LoRA and WeGeFT need only ∼0.5

hours/epoch and 17.74GB under the same setup. Table 10

in Appendix A confirms that reducing the intermediate di-

mension to 1024 (as in (Kopiczko et al., 2023)) lowers time

and memory costs but causes a severe accuracy drop. Table

11 in Appendix B shows that WeGeFT is efficient even with

mixed-precision float16. Thus, Similar to LoRA, WeGeFT

can be used even with consumer GPUs.

• Impact of Data Quality: WeGeFT “reacts” positively to

the quality of training datasets, as can be seen by the relative

6
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Table 3: Results of fine-tuning LLaMA-1 7B, Llama 2 7B and Llama 3 8B on eight Commonsense Reasoning benchmarks

(Commonsense170k). ReFT results are obtained from (Wu et al., 2024).

Method Params (%) BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg

L
L

aM
A

-1
(7

B
)

LoRA (Hu et al., 2022) 0.416 73.3 84.5 80.4 94.2 85.5 87.6 72.6 85.6 83.0

DoRA (Liu et al., 2024) 0.427 73.4 84.8 80.7 94.4 85.7 87.4 72.4 85.9 83.1

VeRA (Kopiczko et al., 2023) 0.023 70.4 82.4 79.9 91.4 81.8 83.3 67.0 80.6 79.6

VB-LoRA (Li et al., 2024) 0.840 70.5 82.6 79.3 92.5 83.1 84.5 68.1 81.7 80.3

WeGeFTdin 0.052 72.8 84.7 80.8 93.9 84.3 86.7 72.3 85.1 82.6

DiReFT (Wu et al., 2024) 0.031 69.5 83.0 79.0 92.5 80.5 82.2 68.0 77.5 79.0

LoReFT (Wu et al., 2024) 0.031 69.3 84.4 80.3 93.1 84.2 83.2 68.2 78.9 80.2

WeGeFTdout
0.016 71.5 83.4 81.1 93.6 83.7 86.1 72.0 83.9 81.9

L
la

m
a

2
(7

B
)

LoRA (Hu et al., 2022) 0.416 74.8 85.9 80.8 94.8 86.3 88.3 75.4 85.9 84.0

DoRA (Liu et al., 2024) 0.427 74.6 86.2 81.1 94.9 86.8 89.1 75.9 86.7 84.4

VeRA (Kopiczko et al., 2023) 0.023 71.9 82.2 80.0 92.2 83.3 84.3 68.8 80.5 80.4

VB-LoRA (Li et al., 2024) 0.840 71.6 83.2 79.7 92.8 83.5 84.8 69.3 81.9 80.8

WeGeFTdin 0.052 73.9 85.7 82.1 94.6 85.6 88.3 74.7 85.4 83.8

DiReFT (Wu et al., 2024) 0.031 70.8 83.6 80.2 93.6 82.1 84.8 70.4 81.5 80.9

LoReFT (Wu et al., 2024) 0.031 71.1 83.8 80.8 94.3 84.5 85.6 72.2 82.3 81.8

WeGeFTdout
0.016 73.4 85.2 81.8 94.3 85.3 87.7 74.9 83.8 83.3

L
la

m
a

3
(8

B
)

LoRA (Hu et al., 2022) 0.392 74.6 89.4 81.3 95.9 87.7 91.9 81.7 87.7 86.3

DoRA (Liu et al., 2024) 0.361 76.2 90.8 82.1 96.7 89.0 93.5 83.4 89.1 87.6

VeRA (Kopiczko et al., 2023) 0.018 71.6 85.7 80.7 93.8 85.2 87.6 75.6 84.1 83.0

VB-LoRA (Li et al., 2024) 0.712 72.3 83.7 80.0 93.1 84.1 85.1 70.5 81.9 81.3

WeGeFTdin 0.049 76.0 89.7 83.1 96.7 89.1 93.0 84.4 89.8 87.7

DiReFT (Wu et al., 2024) 0.026 73.4 88.7 81.0 95.6 85.5 91.8 81.8 85.4 85.4

LoReFT (Wu et al., 2024) 0.026 75.1 90.2 82.0 96.3 87.4 92.4 81.6 87.5 86.6

WeGeFTdout
0.013 75.7 89.9 82.5 96.4 88.7 92.5 82.3 86.3 86.8

performance improvement from Math10k benchmark (Table

2) to the MetaMathQA benchmark (Table 1).

• Comparison with ReFT: To compare with DiReFT and

LoReFT, we apply WeGeFTdout
following their fine-tuning

strategy (Eqn. 2). WeGeFT achieves higher average accu-

racy than both ReFT variants while using half the parame-

ters on LLaMA-1 and LLaMA-2. ReFT’s higher memory

usage (and lower wall time) is due to its implementation

lacking gradient checkpointing, whereas our HuggingFace

PEFT-based implementation uses checkpointing for better

scalability with large models.

4.2. Commonsense Reasoning

We use combined training data of eight benchmarks (i.e.,

Commonsense170k, containing a total of 170k training

samples), and evaluate on their test sets individually, follow-

ing the same protocol used in (Hu et al., 2023) and (Wu et al.,

2024). The examples in the Commonsense170k are formu-

lated as multiple choice questions and consist of BoolQ

(Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap

et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande

(Sakaguchi et al., 2021), Arc-e and Arc-c (Clark et al., 2018),

and OBQA (Mihaylov et al., 2018) datasets. We experiment

with LLaMA-1 (7B), Llama 2 (7B) and Llama 3 (8B) mod-

els. Experimental details including hyperparameters are

provided in Appendix D.3.

Results are shown in Table 3. Based on the observations

of our initial experiments, WeGeFT-Sep does not show sig-

nificant improvement over WeGeFT. Hence, we focus on

evaluating WeGeFT on the Commonsense170k benchmark.

We summarize the observations as follows:

• The weight-awareness of our WeGeFT is positively cor-

related with the expressivity of the pretrained models.

WeGeFT slightly outperforms DoRA in fine-tuning Llama

3 (8B) using 8x fewer parameters, while DoRA outper-

forms WeGeFT in fine-tuning both LLaMA 1 and Llama

2 at the expense of 8x more parameters and more expen-

sive training cost. Considering the trend of increasingly

powerful pretrained large foundation models, WeGeFT

shows a very promising potential due to its efficiency and

strong performance.

• Although VeRA uses less parameters, its performance

is much worse and the training cost is very high, sim-

ilar to the observations on Math10k. Furthermore, our

WeGeFTdout
outperforms VeRA with even less parame-

ters and much more efficient training.

• Compared with DiReFT and LoReFT, our WeGeFT is

still better and reduces the parameters by half.

4.3. Instruction Following

We fine-tune LLaMA-2 (7B) on a 52k subset of the Wiz-

ardLM dataset (Xu et al., 2024), filtering out samples con-

taining “Sorry” and “As an AI” following (Wang et al.,

2024). We evaluate the instruction following ability on the

7
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Table 4: Results of fine-tuning Llama 2 (7B) on the Wiz-

ardLM dataset (Xu et al., 2024) and evaluating it on the

MT-Bench (Zheng et al., 2023). All the results except VB-

LoRA are obtained from (Wang et al., 2024). We train VB-

LoRA and WeGeFT following the same settings as (Wang

et al., 2024).

Method Params (%) First Turn Score

Full 100 5.56±0.09

LoRA (Hu et al., 2022) 0.297 5.61±0.10

PiSSA (Meng et al., 2024) 0.297 5.30±0.02

rsLoRA (Kalajdzievski, 2023) 0.297 5.25±0.03

LoRA+ (Hayou et al., 2024) 0.297 5.71±0.08

DoRA (Liu et al., 2024) 0.317 5.97±0.02

AdaLoRA (Zhang et al., 2023a) 0.445 5.57±0.05

LoRA-GA (Wang et al., 2024) 0.297 5.95±0.16

VB-LoRA (Li et al., 2024) 1.194 5.57±0.05

WeGeFTdin 0.068 5.75±0.11

MT-Bench dataset (Zheng et al., 2023), which spans do-

mains such as math, roleplay, reasoning, and coding. We

report the the single turn score by prompting an LLM judge

(GPT4) to rate the responses from the fine-tuned model

from 1-10. Experimental settings and hyperparameters can

be found in Appendix D.4).

Results are shown in Table 4. Our WeGeFT is on-par with

LoRA-GA and DoRA with 4 times fewer parameters. It

also slightly outperforms the full fine-tuning.

4.4. Code Generation

We fine-tune Llama 2 (7B) using the Code-Feedback dataset

(Zheng et al., 2024), which is a multi-turn dataset contain-

ing execution and human feedback. We evaluate the fine-

tuned models on HumanEval (Chen et al., 2021), containing

Python problems evaluated for functional correctness. Ex-

perimental settings and hyperparameters are in Section D.5.

Table 5: Results of fine-tuning Llama 2 (7B) on the Code-

Feedback dataset (Zheng et al., 2024) and evaluating it

on the HumanEval (Chen et al., 2021). All results except

VB-LoRA are obtained from (Wang et al., 2024). We train

VB-LoRA and WeGeFT following the same settings as

(Wang et al., 2024).

Method Params (%) Pass@1

Full 100 19.87±0.57

LoRA (Hu et al., 2022) 0.297 14.76±0.17

PiSSA (Meng et al., 2024) 0.297 16.02±0.78

rsLoRA (Kalajdzievski, 2023) 0.297 16.01±0.79

LoRA+ (Hayou et al., 2024) 0.297 18.17±0.52

DoRA (Liu et al., 2024) 0.317 19.75±0.41

AdaLoRA (Zhang et al., 2023a) 0.445 17.80±0.44

LoRA-GA (Wang et al., 2024) 0.297 19.81±1.46

VB-LoRA (Li et al., 2024) 1.194 14.92±0.92

WeGeFTdin 0.068 19.39±0.68

Results are shown in Table 5. Our WeGeFT is on-par with

LoRA-GA and DoRA.

4.5. Visual Recognition

Data. We evaluate WeGeFT on the VTAB-1k benchmark

(Zhai et al., 2019) and the fine-grained visual classification

(FGVC) benchmark containing Caltech-UCSD Birds (Wah

et al., 2011), NABirds (Horn et al., 2015), Oxford Flowers

(Nilsback & Zisserman, 2008), Stanford Cars (Gebru et al.,

2017), and Stanford Dogs (Khosla et al., 2011).

Models. We use the ViT-B/16 architecture (Dosovitskiy

et al., 2021) pretrained on ImageNet21k dataset (Deng et al.,

2009) using a supervised objective, with the checkpoints

from the timm package (Wightman, 2019). We apply LoRA

and WeGeFT to the output projection layers in MHSA,

which is inspired by observations in (Savadikar et al., 2023).

All hyperparameters are provided in Appendix D.6.

Results: Tables 6 and 7 show that our WeGeFT performs

better than other PEFT methods on both FGVC, while using

fewer parameters. The GPU memory consumption is similar

among the different methods with negligible differences.

With 5.9 times less parameters used (0.025M vs 0.147M),

on FGVC tasks, our WeGeFT improves LoRA by 0.68%

Top-1 accuracy.

Table 6: Results on the finegrained visual classification

(FGVC) tasks with ViT-B/16 pretrained on ImageNet21k.

The number of trainable parameters are reported without

the classification head (which has the same number of pa-

rameters for all the methods).

Method Params (M) CUBS Bird Flower Dog Car Avg

VPT 0.046 87.88 84.79 98.98 84.51 82.89 87.81

BitFit 0.083 87.75 84.61 99.32 85.23 84.01 88.18

LoRA 0.147 88.00 84.94 99.32 85.36 85.92 88.71

WeGeFTdin 0.025 89.71 86.28 99.22 87.44 84.28 89.39

Table 7: Results on the VTAB benchmark (Zhai et al., 2019)

with ViT-B/16 pretrained on ImageNet21k. Trainable pa-

rameters are reported the same way as Table 6.

Method Params (M) Natural Specialized Structured Avg

VPT 0.046 81.0 85.7 58.9 72.7

BitFit 0.083 81.8 85.2 57.8 72.4

LoRA 0.147 82.0 85.9 61.0 74.0

FacT-TT 0.040 79.8 86.0 58.0 71.9

FacT-TK 0.069 80.0 86.8 60.9 73.4

WeGeFTdin 0.025 82.0 86.3 61.1 74.1

5. Ablation Studies

5.1. Different Parameterization Schema for WeGeFT

As mentioned in Section 3.1, a simple linear transformation

of the pretrained weights works surprisingly well in gen-

erating fine-tuning residual weights. To verify effects of

non-linear gθ() in Eqn. 6. We compare,

• Transformer: We treat the set of shared pretrained weights
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across L layers as a batch of L sequences each consist-

ing of dout tokens in r-dim space (after the first linear

project layer fφ), denoted by W . We then apply a single

Transformer block (Vaswani et al., 2017).

• MLP-Mixers: Similar to vanilla Transformers, we apply a

single MLP-Mixer (Tolstikhin et al., 2021) block.

• Multi-Layer Perceptrons (MLPs): e.g., g(W; θ) =
Linear(GELU(Linear(W; θ1)); θ2), where θ1 ∈
R
m·r×r+m·r and θ2 ∈ R

r×m·r+r consist of weights and

bias terms of the two linear layers with the MLP latent

dimension ratio m (e.g., m = 2).

• Element-wise non-linearity functions without learnable

parameters (i.e., θ = ∅): e.g., g(W) = Sigmoid(W) or

g(W) = GELU(W).

Table 8: Comparisons between various non-linear transfor-

mations for gθ on the FGVC benchmark.

Schema Params (M) CUBS Bird Flower Dog Car Avg

Identity 0.025 89.71 86.28 99.22 87.44 84.28 89.39

Sigmoid 0.025 89.56 84.61 99.20 86.69 84.04 88.82

GeLU 0.025 89.70 85.30 99.19 86.71 83.81 88.94

MLP 0.036 89.06 85.44 99.30 86.17 84.24 88.84

Transformer 0.027 89.56 86.23 99.24 86.31 84.26 89.12

MLP Mixer 0.125 88.76 86.21 99.25 86.35 85.66 89.25

Through ablation studies on the FGVC benchmark, we ver-

ify that using any non-linear transformation for gθ results

in degradation in performance. We use the same settings as

Section 4.5. As seen from Table 8, the simple two-linear

layer formulation achieves better or equivalent performance

than all other schema at a lower parameter cost. While we

do not have a theoretical understanding yet, we hypothe-

size that the superior performance of the identity operation

over more complex and non-linear operations is because

of difficulty in optimization. We only study the non-linear

formulation on small models on simpler tasks due to compu-

tational constraints, and note that this presents an interesting

avenue for future research.

5.2. Alternative Formulation of Tied LoRA

Tied LoRA (Renduchintala et al., 2024) uses a sophisticated

design of sharing weights across layers. We test a straightfor-

ward parameter sharing LoRA, i.e., ∆W l = B ·A ∀l ∈ L,

where (B,A) is shared across layers. Table 9 shows that this

strategy leads to much lower performance than our WeGeFT,

which justifies the advantage of weight-awareness.

Table 9: Comparisons of Shared LoRA and WeGeFT on

eight commonsense reasoning benchmarks.

Method Params (%) Avg

LLaMA-1 (7B)
Shared LoRA 0.052 78.0

WeGeFTdin 0.052 82.6

Llama-2 (7B)
Shared LoRA 0.052 78.3

WeGeFTdin 0.052 83.8

Llama-3 (8B)
Shared LoRA 0.044 76.1

WeGeFTdin 0.044 87.7

6. Remarks on the Effectiveness of WeGeFT

Based on the experimental results, we may draw intuitive

and potentially deeper understanding of PEFT and ReFT

methods using pretrained Transformer backbones: Pre-

trained Transformer backbones “distill” general and diverse

knowledge from a large-scale pretraining dataset, encoded

in the pretrained weights. When fine-tuning them at a down-

stream task, to “absorb” new information in the training

data of the downstream task, one of the simplest updates

that minimally “distorts” and maximally “preserves” the

pretrained knowledge is defined by Eqn. 3 or Eqn. 7, thanks

to the low-rank factorized linear projection in the parameter

space. The newly “absorbed” information from the down-

stream task is also linearly expressed in the space spanned

by the pretrained weights (knowledge).

7. Conclusion

We present Weight-Generative Fine-Tuning (WeGeFT) for

adapting pretrained Transformer backbones on downstream

tasks. Our WeGeFT learns to generate the fine-tuning

weight-residuals for layers selected in fine-tuning directly

from their frozen pretrained weights. It is parameterized

using two-linear-layers (without bias terms). It achieves

multi-faceted efficiency across parameters, representations,

compute and memory in comparisons with LoRA and its

variants, and ReFT. We conduct experiments across various

tasks, including Natural Language Generation (instruction

following, commonsense reasoning, code generation, and

arithmetic reasoning), and Visual Recognition. WeGeFT

shows strong performance while retaining multi-faceted

efficiency.
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Appendix

A. Detailed analysis of Training Time

To show the advantage of WeGeFT over VeRA, we conduct further experiments by setting the intermediate rank in VeRA to

be 1024 (as used in (Kopiczko et al., 2023)). Table 10 shows that while reducing the dimension lowers the training time and

memory costs, it causes a severe drop in accuracy.

Table 10: Results of fine-tuning Llama 1 and 2 (7B) on the Math10k benchmark. The Mem. refers to GPU memory, and

Wall Time is the time required to complete 1 epoch of training. All results are obtained by us using our code base for fair

comparisons, except those by DiReFT and LoReFT using LlaMA 1 are from (Wu et al., 2024).
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LoRAr=16 0.416 18.01 0.43 23.5 38.5 85.3 56.4 50.9

DoRAr=16 0.427 20.37 2.36 21.5 37.9 86.0 55.3 50.2

WeGeFT-Sepdin 0.416 18.01 0.46 23.8 37.9 84.5 54.2 50.1

LoRAr=2 0.052 17.74 0.43 23.1 34.6 83.9 54.1 48.9

DoRAr=2 0.065 20.09 2.36 21.1 34.6 84.0 53.8 48.4

VeRAr=12288 0.042 20.65 9.01 21.3 34.0 82.8 50.7 47.2

VeRAr=1024 0.015 17.80 1.15 23.0 30.5 79.1 48.4 45.2

WeGeFTdin 0.052 17.74 0.51 24.3 36.5 82.4 56.9 50.0

WeGeFTdout
0.016 17.71 0.36 20.7 33.0 80.8 53.5 47.0

L
la

m
a

2
(7

B
)

LoRAr=16 0.416 18.01 0.43 24.5 43.4 86.1 57.2 52.8

DoRAr=16 0.429 20.37 2.35 24.1 41.4 87.1 57.1 52.4

WeGeFT-Sepdin 0.416 18.01 0.46 26.1 42.4 85.9 58.6 53.3

LoRAr=2 0.052 17.74 0.42 24.7 40.2 85.0 56.0 51.5

DoRAr=2 0.065 20.09 2.35 24.0 40.6 84.6 56.0 51.3

VeRAr=12288 0.042 20.65 9.00 23.5 38.7 85.3 54.3 50.4

VeRAr=1024 0.015 17.80 1.15 23.6 35.5 82.1 53.3 48.6

WeGeFTdin 0.052 17.74 0.50 23.6 42.4 84.2 57.4 51.9

WeGeFTdout
0.016 17.71 0.39 26.1 38.0 83.1 57.3 51.1

B. Performance of WeGeFT with mixed precision float16

We conduct additional experiments with LLaMA-1 (7B) using mixed-precision float16 instead of mixed-precision bfloat16.

The table below shows that WeGeFT and LoRA experience a similar relative performance drop with float16 while maintaining

comparable memory and wall-time, consistent with float16’s known limitations as compared to bfloat16. The performance

drop due to float16 can be offset by increasing the number of trainable parameters in WeGeFT. As shown in the table,

WeGeFT with a rank of 128 outperforms LoRA even with float16, while using four times fewer parameters. These results

further confirm WeGeFT’s compatibility with any device that supports LoRA.

Table 11: Results of fine-tuning Llama 1 (7B) on the Math10k benchmark with pretrained weights and activations converted

to float16 and bfloat16 precisions.
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LoRAr=16 0.416 18.01 0.43 23.5 38.5 85.3 56.4 50.9

WeGeFTr=64
din

0.052 17.74 0.51 24.3 36.5 82.4 56.9 50.0

float16

LoRAr=16 0.416 18.07 0.42 21.8 37.9 84.7 57.1 50.4

WeGeFTr=64
din

0.052 17.75 0.43 22.7 36.0 83.5 54.9 49.3

WeGeFTr=128
din

0.104 17.80 0.43 22.7 38.5 84.6 56.1 50.5
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C. Analysis of WeGeFT vs. LoRA

To rigorously distinguish WeGeFT from LoRA, we perform an analytical gradient comparison in the context of fine-tuning

Transformer-based architectures.

C.1. Gradient Analysis

Consider a simplified Transformer layer with pretrained weights W l for layer l. LoRA fine-tunes by introducing additive

low-rank residuals:

Ŵ l
LoRA =W l +BlAl (9)

where Bl and Al are learnable low-rank matrices.

In contrast, consider Eqn. 3, WeGeFT fine-tunes through a multiplicative residual explicitly dependent on pretrained weights:

Ŵ l
WeGeFT =W l(I + φ · ψ) (10)

with shared low-rank matrices φ and ψ.

Let L denote a scalar loss function (e.g., cross-entropy). For LoRA, the gradient computations with respect to the matrices

Al and Bl are:

∂L

∂Al
= (Bl)⊤X ′l,

∂L

∂Bl
= X ′l(Al)⊤ (11)

where X ′l =
(

∂L
∂Xl

)⊤
X l−1 aggregates local gradient information.

For WeGeFT, gradients for φ and ψ include information aggregated across layers due to parameter sharing:

∂L

∂ψ
= φ⊤

∑

l

(W l)⊤X ′l,
∂L

∂φ
=

∑

l

(W l)⊤X ′lψ⊤ (12)

Here, WeGeFT gradients inherently integrate knowledge from pretrained weights across multiple layers, encapsulating

broader contextual and structural dependencies than LoRA.

C.2. Implications for Optimization Dynamics

• Layer-wise vs. Global Updates: LoRA updates parameters in isolation per layer, restricting interaction. In contrast,

WeGeFT updates are global, considering inter-layer correlations and leading to more cohesive and stable optimization

trajectories.

• Pretrained Knowledge Utilization: By explicitly multiplying residuals with pretrained weights, WeGeFT exploits

existing model structure, preserving crucial pretrained information, potentially yielding superior convergence and

generalization.

• Expressivity and Efficiency Trade-off: WeGeFT maintains expressivity through multiplicative updates despite substantial

parameter sharing, balancing parameter efficiency without compromising learning capacity, unlike traditional additive

methods such as LoRA.

C.3. Summary of Advantages

• Improved Parameter Efficiency: Explicitly leverages pretrained weights to achieve stronger fine-tuning results with

fewer learnable parameters.

• Optimized Gradient Flow: Gradients leverage global information, enabling coordinated fine-tuning across layers.

This analysis underpins the empirical advantages of WeGeFT observed in extensive experimentation, highlighting funda-

mental theoretical distinctions from LoRA.
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D. Implementation Details and Hyperparameter Tuning

In practice, we use a scaling factor of α
r

for residuals as done in LoRA (Hu et al., 2022). We also use dropout (Srivastava

et al., 2014) on the pretrained weights before transforming using WeGeFT parameters as a means of regularization:

Ŵ l =W l +
α

r
Dropout(W l) · φ · ψ, (13)

We omit this in the main section for ease of notation and simplicity, as it does not affect the analysis. In experiments, we

initialize ψ to all zeros and φ to Kaiming Uniform initialization (He et al., 2015).

D.1. Computing Resources and Code

All our experiments are run on a single Nvidia A100 GPU. Our code is provided in the supplementary materials.

D.2. Arithmetic Reasoning

On the Math10k, we follow (Wu et al., 2024), and tune the hyperparameters by fine-tuning the LLaMA-1 (7B) model on

the GSM8k dataset (Cobbe et al., 2021) using a separate validation set constructed from the training set, and use the same

hyperparamters for Llama-2 (7B). Table 12 shows the hyperparameters used in our experiments. We perform hyperparameter

search using the seed 42, and report the final results by averaging over three runs with seeds 42, 43, and 44. We use a greedy

decoding scheme during inference, with a maximum new token number of 512. For experiments on fine-tuning Llama

2 (7B) on MetaMathQA and evaluating on GSM8k, we use the hyperparameters from (Wang et al., 2024), and tune the

learning rate on a validation split from Meta-MathQA. We report average scores across 3 runs with seeds 42, 43, 44.

Table 12: Hyperparameters used for the Math10k experiments. We use greedy sampling following (Wu et al., 2024)

Hyperparameter Value

Max Sequence Length 512

Optimizer AdamW

Weight Decay 0.0

LR Scheduler Linear

Batch Size 16

Epochs 3

WeGeFTdin

Learning Rate 4× 10−4

Rank 64

Scaling Factor 128

Warmup Ratio 0.1

Dropout 0.1

Fine-Tuned Layers Query, Key, Value, Up Projection, Down Projection

WeGeFTdout

Learning Rate 7× 10−4

Rank 64

Scaling Factor 64

Warmup Ratio 0.06

Fine-Tuned Layers Out Projection, Down Projection

D.3. Commonsense Reasoning

We tune the hyperparameters for commonsense reasoning by fine-tuning the LLaMA-1 model on the BoolQ dataset (Clark

et al., 2019) using a separate validation set constructed from the training set. Table 14 shows the hyperparameters used in

our experiments. We search for the hyperparameters using LLaMa-1 (7B) and use the same hyperparameters for LLaMA-1

(13B), Llama 2 (7B) and Llama 3 (8B) models. We perform hyperparameter search using the seed 42, and report the final

results by averaging over three runs with seeds 42, 43, and 44. We use a greedy decoding scheme during inference, with a

maximum new token number of 32.
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Table 13: Hyperparameters used for fine-tuning on MetaMathQA and evaluating on GSM8k.

Hyperparameter Value

Max Sequence Length 1024

Optimizer AdamW

Weight Decay 0.0

LR Scheduler Cosine

Batch Size 32

Epochs 1

WeGeFT

Learning Rate 5× 10−4

Rank 64

Scaling Factor 128

Warmup Ratio 0.03

Dropout 0.0

Fine-Tuned Layers All linear layers (excluding vocabulary projection and head)

Generation: Temperature 0.8

Generation: top p 0.95

Table 14: Hyperparameters used for the commonsense reasoning experiments. We use greedy sampling following (Wu et al.,

2024)

Hyperparameter Value

Max Sequence Length 512

Optimizer AdamW

Weight Decay 0.0

LR Scheduler Linear

Batch Size 16

Epochs 3

WeGeFT

Learning Rate 9× 10−5

Rank 64

Scaling Factor 128

Warmup Ratio 0.1

Fine-Tuned Layers Query, Key, Value, Up Projection, Down Projection

WeGeFT (Output)

Learning Rate 6× 10−4

Rank 64

Scaling Factor 64

Warmup Ratio 0.06

Dropout 0.0

Fine-Tuned Layers Out Projection, Down Projection

D.4. Instruction Following

For fine-tuning Llama 2 (7B) on WizardLM and evaluating on MT-Bench, we use the hyperparameters from (Wang et al.,

2024) and use the same learning rate as MetaMathQA experiments. We report average scores across 3 runs with seeds 42,

43, 44.

D.5. Code Generation

For fine-tuning Llama 2 (7B) on Code-Feedback dataset (Zheng et al., 2024) and evaluating on HumanEval, we use the

hyperparameters from (Wang et al., 2024) and tune the learning rate on a separate validation split from Code-Feedback. We

report average scores across 3 runs with seeds 42, 43, 44.

D.6. FGVC Experiments

For all the experiments, we use ViT-B/16 model (Dosovitskiy et al., 2021), which contains 12 transformer blocks, each

with 12 heads in the Multi-Head Self-Attention (MHSA) blocks, and a dimension of 768. We use checkpoints from the
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Table 15: Hyperparameters used for fine-tuning on Code-Feedback and evaluating on HumanEval.

Hyperparameter Value

Max Sequence Length 1024

Optimizer AdamW

Weight Decay 0.0

LR Scheduler Cosine

Batch Size 32

Epochs 1

WeGeFT

Learning Rate 4× 10−4

Rank 64

Scaling Factor 128

Warmup Ratio 0.03

Dropout 0.0

Fine-Tuned Layers All linear layers (excluding vocabulary projection and head)

Generation: Temperature 0.8

Generation: top p 0.95

Table 16: Hyperparameters used for fine-tuning on WizardLM and evaluating on MT-Bench.

Hyperparameter Value

Max Sequence Length 1024

Optimizer AdamW

Weight Decay 0.0

LR Scheduler Cosine

Batch Size 32

Epochs 1

Learning Rate 5× 10−4

Rank 64

Scaling Factor 128

Warmup Ratio 0.03

Dropout 0.0

Fine-Tuned Layers All linear layers (excluding vocabulary projection and head)

Generation: Temperature 0.8

Generation: top p 0.95

model pretrained on the ImageNet21k (Deng et al., 2009) under the supervised training protocol provided by the timm

package. For both VTAB and FGVC experiments, we use a hyperparameter search using the validation sets and use the

training+validation data during the final run and report the results on the test sets. The hyperparameter search space used

in our experiments in provided in Table 17. We use the same train, validation and test splits as (Shi et al., 2023), except

for Stanford Cars dataset (Gebru et al., 2017). Due to the unavailability of the dataset from the original source, and the

difference in the format of the data provided by the updated source, we create our own training and validation split (with the

same number of images as (Shi et al., 2023)) and use the official testing split. We initialize φ with zeros and ψ with Kaiming

uniform initialization.
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Table 17: Hyperparameter search space used for FGVC experiments. During the search, we use 25 epochs due to

computational constraints, and use 100 epochs in the final run with the selected hyperparameters

Hyperparameter Values

BitFit
Learning Rate 1e−3, 1.5e−3, 2e−3, 2.5e−3, 5e−3, 1e−2

Weight Decay 0.0

VPT
Learning Rate 1e−3, 1.5e−3, 2e−3, 2.5e−3, 5e−3, 1e−2

Weight Decay 0.0
Num. Prompts 5

LoRA
Learning Rate 1e−3, 1.5e−3, 2e−3, 2.5e−3, 5e−3, 1e−2

Weight Decay 0.01, 0.001, 0.0001, 0.0
Rank r 8

WeGeFT
Learning Rate 1e−4, 2.5e−4, 5e−4, 1e−3, 2.5e−3, 5e−3

Weight Decay 0.01, 0.001, 0.0001, 0.0
Rank r 16

Optimizer AdamW

LR Scheduler Cosine

Warmup Epochs 5

Epochs 100

Batch Size 32

E. Visual Inspection of Our Two-Linear-Layer Parameterized WeGeFT
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Figure 5: More examples of the visual interpretability of our two-linear-layer parameterized WeGeFT tested on the FGVC

benchmark. We show examples of head, wings and legs of birds in the top-left, examples of flower petals in the top-right,

examples of head, ears and legs of dogs in the bottom-left, and examples of tires, windshield and bumper of cars in the

bottom-right.
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