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Abstract: Tropical cyclone (TC) lifetime maximum intensity (LMI) exhibits a distinct bimodal 22 

distribution, with peaks at tropical storm and major hurricane strength. Using a best-track-based 23 

algorithm to identify eyewall replacement cycle (ERC) storms, we show that ERC storms 24 

overwhelmingly populate the high-intensity peak. Both reintensifying and non-reintensifying ERC 25 

storms contribute, but those unable to reintensify cluster near 120–140 kt, defining the secondary 26 

peak. In contrast, reintensifying ERC storms can achieve higher intensities when moving over 27 

warmer seas with greater ocean heat content and reduced vertical wind shear. The scarcity of storms 28 

at intermediate intensities (85–105 kt) arises from rapid intensification, which drives systems 29 

quickly through this range. These results clarify that while rapid intensification explains the trough 30 

at mid-intensities, ERCs, by halting or enabling further strengthening, shape the high-intensity peak 31 

and its upper tail. Incorporating ERC dynamics into intensity statistics may improve understanding 32 

and prediction of TC extremes. 33 

Key words: Tropical cyclones, lifetime maximum intensity, eyewall replacement cycle, bimodal 34 

distribution 35 

Plain Language Summary: Tropical cyclones (TCs) are powerful storms whose strongest winds, 36 

called the lifetime maximum intensity (LMI), tend to cluster at two different levels: many storms 37 

peak only as tropical storms, while others become major hurricanes. In this study, we show that a 38 

key structural process, known as an eyewall replacement cycle (ERC), largely explains this “two-39 

peak” pattern. An ERC occurs when a storm’s inner eyewall is replaced by a new, outer eyewall. 40 

Using a new detection method applied to best-track data, we found that nearly all storms with ERCs 41 

fall into the higher-intensity group. Those that fail to strengthen again after the ERC typically peak 42 

around 120–140 kt, producing the secondary peak in the distribution. In contrast, storms that re-43 

intensify after an ERC can reach greater intensities if they pass over warmer oceans with high heat 44 

content and encounter weak vertical wind shear. The relative lack of storms at mid-range intensities 45 

(85–105 kt) is explained by rapid intensification, which pushes storms quickly through this range. 46 

These results show that ERCs play a central role in shaping the statistics of the strongest tropical 47 

cyclones and underscore the value of identifying ERCs to improve intensity forecasts. 48 
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1. Introduction  49 

Tropical cyclones (TCs) are among the most destructive weather systems in the tropics, 50 

exhibiting substantial variation in intensity, structure, and lifetime. Despite improvements in track 51 

forecasting, predicting TC intensity remains a persistent challenge. One particularly intriguing 52 

feature is the observed bimodal distribution (probability distribution function – PDF) in lifetime 53 

maximum intensity (LMI), which refers to the peak 1-minute sustained wind speed attained by a 54 

TC during its lifetime (Lee et al., 2016). Most storms reach either low (tropical storm) or high 55 

(major hurricane) intensities, while relatively fewer attain intermediate intensities. 56 

Previous studies have attributed this bimodality to several distinct mechanisms. Soloviev et 57 

al. (2014) observed that the secondary peak in the LMI distribution, along with the intervening 58 

minimum, aligns with a local minimum and maximum, respectively, in their parameterized surface 59 

drag coefficient. They proposed that drag coefficient variability may influence the LMI bimodality. 60 

Lee et al. (2016) emphasized the role of rapid intensification (RI), showing that non-RI storms 61 

exhibit a unimodal peak near tropical storm intensity, whereas the secondary high-intensity peak 62 

emerges only when RI storms are included. More recently, Song et al. (2018) and Xiang et al. 63 

(2025) reported a strengthening of this bimodality, linked to increasing global sea surface 64 

temperatures and greater variability in storm intensity. 65 

Because eyewall replacement cycles (ERCs) are a distinct phase in many intense TCs, we 66 

hypothesize that they may underlie the secondary peak at high intensities. During an ERC, a 67 

concentric outer eyewall forms and gradually replaces the original inner eyewall, usually inducing 68 

a temporary weakening of the storm followed by potential reintensification (Willoughby et al., 69 

1982; Sitkowski et al., 2011). This process is often marked by an abrupt outward jump in the radius 70 

of maximum wind (RMW) (Kossin & Sitkowski, 2009; Yang et al., 2024; Jiang & Wang, 2024). 71 

ERCs become increasingly frequent in stronger storms: in the North Atlantic, the probability of 72 

ERC rises from below 5% in Category 1 storms to over 50% in Category 5 hurricanes (Kossin & 73 

Sitkowski, 2009), with even higher rates observed in the western North Pacific (Kuo et al., 2009; 74 

Yang et al., 2013, 2021). 75 
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Although previous work has elucidated the processes leading up to LMI, it has largely 76 

overlooked how structural transitions, specifically ERCs, might shape the LMI distribution. 77 

Because intense storms that develop a secondary eyewall have typically already undergone RI 78 

(Fischer et al., 2020; Currier et al., 2024), ERCs are often viewed as interruptions to that 79 

intensification and as limits on a storm’s ultimate intensity. In this way, ERCs may act to suppress 80 

the secondary peak on the high-intensity side of the observed bimodal LMI distribution. 81 

In this study, we examine how ERCs influence the observed bimodal distribution of TC LMI. 82 

We analyze both the frequency of ERCs and post-ERC evolution, particularly whether storms 83 

reintensify after an ERC, and their impact on the populations of intermediate- and high-intensity 84 

storms. We demonstrate that RI is a major driver of the minimum at intermediate intensities, 85 

whereas ERCs predominantly control the secondary peak at high intensities, with storms that can 86 

reintensify out of an ERC pushing the secondary peak to higher intensities. By linking storm 87 

structural dynamics with statistical intensity distributions, our results provide new insights into the 88 

drivers of the bimodal LMI distribution and underscore the pivotal role of ERCs in TC intensity 89 

forecasting. 90 

2. Data and methods 91 

2.1 Datasets 92 

This study employs several datasets to characterize TC intensity, structure, and environmental 93 

variables. Storm position, 10-m maximum sustained wind speed, and radius of maximum wind 94 

(RMW) were obtained from the International Best Track Archive for Climate Stewardship 95 

(IBTrACS; Knapp et al., 2010; Gahtan et al., 2024). We analyze the influence of ERCs on the LMI 96 

distribution over the period 1 July 2001–2023, which corresponds to the period of globally 97 

consistent RMW estimates (Landsea & Franklin, 2013), excluding 2004 due to incomplete RMW 98 

data. 99 

Environmental variables were drawn from the Statistical Hurricane Intensity Prediction 100 

Scheme (SHIPS) archive (DeMaria et al., 2005). Because SHIPS records are available only for 101 
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2002–2003 and 2005–2021 globally, and from 1 July 2001 onward for the western North Pacific, 102 

our environmental analysis is limited to these intervals. From SHIPS we extract sea surface 103 

temperature (SST), vertical wind shear (VWS), mid-level relative humidity (RH), oceanic heat 104 

content (OHC), and maximum potential intensity (MPI). We also compute the fractional MPI 105 

(FMPI), the ratio of a storm’s instantaneous intensity to its theoretical MPI, which serves as a proxy 106 

for how close a storm is to its thermodynamic ceiling and thus its capacity for reintensification 107 

after the ERC. 108 

To calibrate and validate our ERC detection, we rely on an independent dataset of secondary 109 

eyewall formation (SEF) events in western North Pacific TCs during 1999–2020, derived from 110 

microwave satellite imagery (Wang et al., 2025). This SEF catalog guided the development and 111 

tuning of our best-track-based ERC algorithm (Section 2.2). 112 

2.2 Methods 113 

ERCs represent structural transitions in TCs typically identified via high resolution satellite 114 

or microwave imagery. Because such imagery is not available uniformly across basins or through 115 

historical records, we developed a best-track RMW-based detection algorithm to perform long-116 

term analysis across all TC basins. This approach is justified by the fact that ERCs almost 117 

invariably produce an abrupt jump in the RMW as the outer eyewall becomes dominant (Kossin & 118 

Sitkowski, 2009; Yang et al., 2024; Jiang & Wang, 2024). Algorithm design and tuning were 119 

guided by a curated SEF dataset for western North Pacific storms (Wang et al., 2025). 120 

Our algorithm first finds each instance where the RMW increases between consecutive 6-hour 121 

points in the best-track file. Our ERC detection procedure applies five filters to the best-track RMW 122 

time series. To be considered an ERC case by the algorithm the RMW increase must feature: 1) an 123 

intensity dependent RMW increase between the two consecutive data points of ≥15 nm for storms 124 

with winds of 65–75 kt at the point of RMW increase, ≥10 nm for 80–95 kt, and ≥5 nm for ≥100 125 

kt; 2) no intensification in the points prior to the RMW increase of >5 kt/6h or 10 kt/12h for storms 126 

with winds of ≤95 kt at the point of RMW increase, (and >10 kt/6h or 15 kt/12h for ≥100 kt storms), 127 

since ERCs rarely coincide with strong intensification phases; 3) ≥65 kt winds at the time of the 128 
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RMW increase, in line with prior SEF studies; 4) the RMW jump occurring within 30° latitude of 129 

the equator to exclude extratropical transition cases; and 5) a minimum distance of 200 km from 130 

land, excluding SEF cases that fail to complete ERC before landfall and terrain-induced RMW 131 

fluctuations. This algorithm captures the hallmark RMW signature of ERCs while minimizing false 132 

positives from rapid intensification or extratropical processes. 133 

To validate the algorithm, each SEF event in the Wang et al. (2025) reference dataset occurring 134 

within the RMW best-track dataset’s bound of 2001–2003 and 2005–2020 was manually reviewed 135 

and assigned as either an ERC case or a non-ERC case, with the latter being done in cases where 136 

the storm was too close to land to complete an ERC. The remainder of the storms within the 137 

dataset’s period that were not listed as SEF storms in the microwave-based dataset were also 138 

reviewed via geostationary imagery. Several storms with clear ERC signatures were assigned as 139 

ERC cases, while the rest remained non-ERC cases. It was found that of the 275 total storm cases 140 

in the SEF dataset, our algorithm correctly identified 152 non-ERC cases and 102 ERC cases, with 141 

8 non-ERC cases being incorrectly identified as having an ERC and 13 ERC cases being missed 142 

by our algorithm, which we will call false ERC and false non-ERC cases. We then assessed the 143 

algorithm’s performance using accuracy, precision and recall, which are defined as follows: 144 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
(𝑇𝑟𝑢𝑒 𝐸𝑅𝐶 + 𝑇𝑟𝑢𝑒 𝑁𝑜𝑛 𝐸𝑅𝐶)

(𝐴𝑙𝑙 𝐶𝑎𝑠𝑒𝑠)
         (1) 145 

Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛  =  
(𝑇𝑟𝑢𝑒 𝐸𝑅𝐶)

(𝑇𝑟𝑢𝑒 𝐸𝑅𝐶 + 𝐹𝑎𝑙𝑠𝑒 𝐸𝑅𝐶)
         (2) 146 

𝑅𝑒𝑐𝑎𝑙𝑙  =  
(𝑇𝑟𝑢𝑒 𝐸𝑅𝐶)

(𝑇𝑟𝑢𝑒 𝐸𝑅𝐶 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑜𝑛−𝐸𝑅𝐶)
         (3) 147 

Our algorithm produced accuracy, precision and recall values of 0.924, 0.927, and 0.887 148 

respectively, suggesting that our algorithm is acceptable. After computing the fraction of storms in 149 

each Saffir-Simpson Hurricane Wind Scale category that underwent ERC, it was found that our 150 

algorithm suggested a slightly higher albeit comparable ERC frequency to that given by Huang et 151 

al. (2023) for all five intensity categories. This is deemed reasonable, as Huang et al. (2023) 152 

suggested that a dataset incorporating cases identified by geostationary imagery would include 153 

more storms than one solely utilizing microwave imagery, which is capable of missing short-154 
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duration ERC events. Although there remains some inconsistency between our adjusted dataset and 155 

the best-track-based dataset, the metrics suggest our best-track-based algorithm provides a 156 

reasonable representation of the set of ERC storms. 157 

In our analysis, storms flagged as Category E (ERC cases) were further divided based on their 158 

post-ERC intensity evolution. Category EI (ERC, intensifying) includes storms that reintensified 159 

after an ERC, whereas Category ED (ERC, decaying) comprises storms that did not. To elucidate 160 

different evolutionary pathways, we subdivided Category EI into two timing-based groups: 161 

Category EIB (ERC, Intensifying, before LMI) where the first ERC occurred before the storm 162 

reached its LMI, and Category EIA (ERC, intensifying, after LMI) where the first ERC occurred 163 

after the storm attained its LMI.  164 

 165 

Figure 1. Flowchart showing the storm classification scheme used in this study. The number of 166 

storms in each category within the LMI dataset is given in parentheses. 167 

We also defined two additional pairings to examine environmental influences across the LMI 168 

spectrum and varying reintensification potentials. By FMPI at the completion of ERC, we 169 

considered EIL (ERC, intensifying, low FMPI) and EDL (ERC, decaying, low FMPI) for 170 

FMPI<0.7 (storms well below their thermodynamic limit), and EIH (ERC, intensifying, high FMPI) 171 

and EDH (ERC, decaying, high FMPI) for FMPI≥0.7 (storms approaching their thermodynamic 172 

ceiling). By LMI bin, we considered low LMI<85 kt (primary peak in the LMI probability density), 173 
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medium LMI 85–105 kt (local trough in the LMI distribution), and high LMI>105 kt (secondary 174 

peak in the LMI distribution). This scheme allows us to isolate how ERC timing, thermodynamic 175 

state, and ultimate storm intensity jointly govern post-ERC evolution. 176 

Figure 1 summarizes all major classification categories. These groupings enable a systematic 177 

evaluation of the environmental conditions and evolutionary pathways associated with each ERC 178 

type, offering new insights into the processes that shape the LMI distribution. 179 

3. Results 180 

 181 
Figure 2. Components of the LMI probability density function (PDF): (a) all storms, RI and non-182 

RI subsets; (b) all storms, ERC (E) and non-ERC (N) subsets; (c) ERC storms divided into 183 

reintensifying (EI) and non-reintensifying (ED) cases; and (d) EI storms subdivided into those 184 

undergoing ERC before (EIB) and after (EIA) LMI. The dataset includes 2001–2023 globally, 185 

plus the second half of 2001 in the western North Pacific. RI is defined as ≥35 kt/24 h following 186 

Lee et al. (2016). All curves are smoothed using a 5-bin weighted moving average.  187 

Figure 2a reaffirms the bimodal structure of the LMI probability density function (PDF), with 188 

pronounced peaks at both low and high intensities, consistent with earlier findings (Lee et al., 2016; 189 

Song et al., 2018; Xiang et al., 2025). In good agreement with Lee et al. (2016), rapid intensification 190 
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(RI) storms in our dataset show a strong connection with the secondary LMI peak. Because many 191 

ERC storms undergo RI prior to secondary eyewall formation, it is not surprising that ERC storms 192 

(Category E) contribute to the secondary peak and the higher intensities in the LMI distribution 193 

(Figure 2b). By contrast, non-ERC storms (Category N), like non-RI storms, dominate the lower-194 

intensity peak. 195 

Further disaggregation of Category E storms shows that both reintensifying (Category EI) and 196 

non-reintensifying (Category ED) cases contribute to the secondary LMI peak (Figure 2c). ED 197 

storms peak near 120 kt, decrease gradually toward 140 kt, and drop off rapidly thereafter, closely 198 

matching the LMI distribution around the secondary peak in Figure 2b. This indicates that ED 199 

storms contribute more strongly to the secondary peak than EI storms, whose LMI peaks around 200 

135 kt. These results demonstrate that the ERC process interrupts RI and prevents storms from 201 

reaching higher intensities. Splitting EI storms into those experiencing their first ERC before LMI 202 

(Category EIB) versus after LMI (Category EIA) reveals that EIB storms dominate the EI 203 

distribution, peaking near 135 kt and tapering gradually at higher intensities. In contrast, relatively 204 

few storms undergo ERC after their LMI (EIA). This suggests that reintensification after ERCs is 205 

critical in enabling storms to achieve higher LMIs, and identifying the key factors that support 206 

post-ERC reintensification is therefore essential. 207 

We first compared environmental parameters at each storm’s LMI between ERC (Category E) 208 

and non-ERC (Category N) cases. Mean MPI was modestly higher for ERC storms (133.9 kt) than 209 

for non-ERC storms (128.6 kt) (Figure 3a). The abundance of high MPI, non-ERC cases likely 210 

reflects regions with dense storm tracks, such as the Philippine Sea, Caribbean Sea, and Gulf of 211 

Mexico, where storms often make landfall before an ERC can occur. Fractional MPI (FMPI) values 212 

were even more divergent: ERC storms were strongly skewed toward FMPI=0.8–1.0, indicating 213 

that they frequently approach their theoretical thermodynamic limit (Figure 3b). 214 
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 215 

Figure 3. Probability density functions of environmental variables at the time of LMI for non-ERC 216 

(N) and ERC (E) storms. Variables shown are: (a) MPI, (b) fractional MPI, (c) SST, (d) ocean 217 

heat content (OHC), (e) vertical wind shear (VWS), and (f) midlevel relative humidity (RH). 218 

Distributions are smoothed using a 3-bin weighted average. 219 

Other environmental variables at LMI showed smaller but statistically significant differences. 220 

Mean SST and midlevel RH were similar between categories (~28.4–28.7oC and ~62.6–62.8%, 221 

respectively), but ERC storms experienced substantially higher OHC (~46 vs. 32 kJ cm⁻²) and 222 

lower vertical wind shear (~12 vs. 14.5 kt) (Figures 3c–3f). Student’s T-tests (α=0.05) confirm that 223 

MPI, FMPI, SST, OHC, and shear differ significantly between ERC and non-ERC groups, 224 

underscoring the role of enhanced thermodynamic and reduced shear environments in facilitating 225 

ERCs. 226 
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 227 

Figure 4. Mean (bars) and one standard deviation (lines) of potential intensity and environmental 228 

variables at the completion of ERC for ED and EI storms. Variables include: (a) MPI, (b) 229 

fractional MPI, (c) SST, (d) OHC, (e) VWS, and (f) midlevel RH. Outlier FMPI values >1.5 230 

were omitted. The number of cases in each LMI category is indicated in (a). 231 

To evaluate post-ERC reintensification potential, we compared environmental parameters at 232 

the time of completion of ERC between the reintensifying (Category EI) and non-reintensifying 233 

(Category ED) storms. Category EI storms exhibited narrower MPI distributions (Figure 4a) and 234 

FMPI values predominantly in the 0.6–0.8 range, conditions conducive to further intensification. 235 

By contrast, many Category ED storms clustered near FMPI=1.0, indicating they had effectively 236 

reached their thermodynamic ceiling and lacked the potential for additional strengthening (Figure 237 

4b). 238 

Environmental contrasts at the completion of ERC were even more pronounced than those at 239 

the time of LMI. Category EI storms had higher SSTs (mean 28.8°C vs. 27.8°C, Figure 4c), nearly 240 

twice the OHC (47.2 vs. 26.1 kJ cm-2, Figure 4d), lower wind shear (11.5 vs. 19.4 kt, Figure 4e), 241 
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and slightly higher RH (62.1% vs. 59.0%, Figure 4f) compared to Category ED, with 242 

reintensification being consistently associated with more favorable conditions through all intensity 243 

ranges. These results emphasize the role of environmental favorability in supporting 244 

reintensification after the ERC. Three of the four environmental variables differed significantly 245 

between the Category ED and EI groups, with P-values on the order of 10-8 to 10-10 for SST, OHC 246 

and shear, while the RH difference was marginally significant (p=0.033). It should be noted that a 247 

limited sample size may limit the robustness of generalizations for these groups, particularly for 248 

Category EI storms below Category 3 intensity, only 6 such cases had LMIs below this strength. 249 

Subgrouping by FMPI highlights further contrasts. Storms in the low FMPI category (EIL; 250 

FMPI<0.7) experienced markedly more favorable environments than their non-reintensifying peers 251 

(EDL), with higher SSTs (~28.9oC), greater OHC (~41.2 kJ cm⁻²), lower shear (~15 kt), and 252 

elevated RH (~62.6%). Notably, even among high FMPI cases (EIH vs. EDH), reintensification 253 

occurred under exceptional conditions: EIH storms exhibited the highest OHC and the lowest shear 254 

of all four FMPI-based subgroups, demonstrating that strong thermodynamic and shear 255 

environments can overcome the proximity to the MPI ceiling. 256 

Finally, stratifying by LMI bins reveals how environmental constraints shape the bimodal PDF. 257 

Low LMI (<85 kt) storms occur in marginal, highly unfavorable environments. In the medium LMI 258 

(85–105 kt) range, which corresponds to the PDF’s trough, storms are scarce and still face 259 

unfavorable but less hostile conditions than those in the low LMI range. Conversely, high LMI 260 

(>105 kt) storms consistently experience the most supportive environments, whether they 261 

reintensify or simply sustain their peak intensity for ERC storms. These contrasts underscore that 262 

the LMI bimodality reflects distinct environmental limitations across intensity regimes. 263 

TCs that undergo ERCs tend to be intense and often experience RI prior to eyewall 264 

replacement. Consequently, the secondary peak in the bimodal LMI distribution is statistically 265 

linked to both RI and ERC events. Intensification rates typically maximize in the 90–115 kt range 266 

(Figure 5), driving storms in this band to intensify further. This explains the trough at intermediate 267 

intensities and the emergence of a secondary peak at higher intensities. However, RI alone cannot 268 
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explain the precise intensity at which the secondary peak occurs. By contrast, ERC storms, 269 

especially those that do not reintensify, exhibit a broad peak between 120–140 kt, closely aligned 270 

with the secondary maximum in the LMI distribution (Figures 2b,c). This demonstrates that the 271 

ERC process interrupts RI and prevents storms from reaching higher intensities, anchoring the 272 

secondary peak at lower values than would be expected if RI proceeded without interruption. Thus, 273 

while RI establishes the conditions for a secondary peak, its exact shape and upper-tail extension 274 

are governed by the distinct evolutionary pathways of ERC storms. 275 

 276 

Figure 5. Box-whisker plots of centered 12-hour intensification rates (IRs), grouped by 20-kt 277 

intensity bins. Only positive IRs are included. Boxes show the 25th–75th percentiles, whiskers 278 

denote the 5th–95th percentiles, and horizontal orange lines mark the medians. 279 

4. Conclusions and discussion 280 

This study provides new insights into the mechanisms shaping the bimodal distribution of TC 281 

LMI. By developing and applying a best-track-based algorithm to detect ERCs, we show that these 282 

structural transitions are central to the emergence and form of the high-intensity peak. While RI 283 

drives storms swiftly through the intermediate 85–105 kt range, ERCs, by halting, sustaining, or 284 

permitting renewed strengthening, determine both the placement and the shape of the secondary 285 

peak. 286 

Our analysis reveals that both reintensifying (EI) and non-reintensifying (ED) ERC storms 287 
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cluster at high intensities. ED storms, which fail to strengthen further, tend to peak between 120–288 

140 kt, anchoring the secondary maximum in the LMI distribution. In contrast, EI storms extend 289 

the distribution’s upper tail by reintensifying after an ERC, with their evolution tightly linked to 290 

environmental favorability. Specifically, higher sea surface temperatures, elevated ocean heat 291 

content, and reduced vertical wind shear consistently distinguish EI storms from their ED 292 

counterparts. Fractional maximum potential intensity further separates storms that are near their 293 

thermodynamic limit from those that retain capacity to intensify, offering a useful diagnostic for 294 

post-ERC outcomes. 295 

Stratification by intensity bins highlights the distinct physical regimes underlying the 296 

bimodality. Low-LMI storms (<85 kt) arise in marginal environments that limit growth. The trough 297 

in the 85–105 kt range reflects the fact that storms rarely end their intensification there; both 298 

observations and theory (Wang et al., 2021a,b, 2022, 2023; Xu et al., 2022, 2023) show that 299 

maximum intensification rates typically occur at intermediate intensities, propelling storms upward. 300 

Above this stage, pathways diverge: storms either sustain RI into higher categories or undergo an 301 

ERC. Because ERCs become increasingly common as intensity rises, they act as the principal 302 

regulator of the high-intensity population. Favorable environments enable post-ERC 303 

reintensification, extending the distribution toward the thermodynamic ceiling, while unfavorable 304 

environments lock storms near the secondary peak. 305 

These results clarify the complementary roles of RI and ERCs in shaping the LMI probability 306 

density function. RI alone explains the trough at mid-intensities, but not the exact placement or 307 

gradual decline of the high-intensity peak. ERCs, by interrupting RI and modulating subsequent 308 

recovery, provide the structural mechanism needed to reproduce both the secondary maximum and 309 

its upper-tail behavior. This perspective helps reconcile earlier studies emphasizing RI thresholds 310 

(e.g., Lee et al., 2016) with more recent work documenting increased variability in storm intensities. 311 

Nevertheless, several caveats remain. Our ERC detection is limited by the resolution of best-312 

track RMW data and may miss short-lived or subtle events. Sample sizes are particularly 313 

constrained in the intermediate and lower-intensity bins, which limits the robustness of subgroup 314 
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statistics. Broader and more consistent ERC datasets, including those derived from high-resolution 315 

satellite records, will be critical to confirming and extending these findings. 316 

In summary, ERCs emerge as a pivotal structural process governing the distribution of TC 317 

maximum intensity. By anchoring the secondary peak and modulating the high-intensity tail, ERCs 318 

explain features of the LMI distribution that RI alone cannot. Incorporating ERC dynamics into 319 

intensity statistics and forecast models is therefore essential for improving prediction of the most 320 

destructive storms and for better anticipating the risks associated with future TC extremes. 321 
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