

1 **Eyewall Replacement Cycles as a Structural Driver of the Bimodal**
2 **Distribution of Tropical Cyclone Lifetime Maximum Intensity**

3 Elliott Fosler-Lussier¹ and Yuqing Wang^{2*}

4 ¹Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology,
5 University of Hawaii at Manoa, Honolulu, HI 96822

6 ²Department of Atmospheric Sciences and International Pacific Research Center, School of Ocean
7 and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822

8 July 21, 2025 (submitted)
9 September 23, 2025 (first revision)
10 October 14, 2025 (second revision)
11 Dataline

12 **Key Points:**

- 13 • TCs that undergo eyewall replacement cycles (ERCs) contribute greatly to the secondary peak
14 in the bimodal distribution of TC LMI.
- 15 • Reintensifying ERC TCs occur over higher SST with greater ocean heat content and lower
16 vertical wind shear, reaching extremely high LMIs.
- 17 • Rapid intensification drives storms through mid-intensities, while ERCs determine the shape
18 and upper tail of the high intensity peak.

19 Submitted to ***Geophysical Research Letters***

20 *Corresponding author: Prof. Yuqing Wang
21 yuqing@hawaii.edu

22 **Abstract:** Tropical cyclone (TC) lifetime maximum intensity (LMI) exhibits a distinct bimodal
23 distribution, with peaks at tropical storm and major hurricane strength. Using a best-track-based
24 algorithm to identify eyewall replacement cycle (ERC) storms, we show that ERC storms
25 overwhelmingly populate the high-intensity peak. Both reintensifying and non-reintensifying ERC
26 storms contribute, but those unable to reintensify cluster near 120–140 kt, defining the secondary
27 peak. In contrast, reintensifying ERC storms can achieve higher intensities when moving over
28 warmer seas with greater ocean heat content and reduced vertical wind shear. The scarcity of storms
29 at intermediate intensities (85–105 kt) arises from rapid intensification, which drives systems
30 quickly through this range. These results clarify that while rapid intensification explains the trough
31 at mid-intensities, ERCs, by halting or enabling further strengthening, shape the high-intensity peak
32 and its upper tail. Incorporating ERC dynamics into intensity statistics may improve understanding
33 and prediction of TC extremes.

34 **Key words:** Tropical cyclones, lifetime maximum intensity, eyewall replacement cycle, bimodal
35 distribution

36 **Plain Language Summary:** Tropical cyclones (TCs) are powerful storms whose strongest winds,
37 called the lifetime maximum intensity (LMI), tend to cluster at two different levels: many storms
38 peak only as tropical storms, while others become major hurricanes. In this study, we show that a
39 key structural process, known as an eyewall replacement cycle (ERC), largely explains this “two-
40 peak” pattern. An ERC occurs when a storm’s inner eyewall is replaced by a new, outer eyewall.
41 Using a new detection method applied to best-track data, we found that nearly all storms with ERCs
42 fall into the higher-intensity group. Those that fail to strengthen again after the ERC typically peak
43 around 120–140 kt, producing the secondary peak in the distribution. In contrast, storms that re-
44 intensify after an ERC can reach greater intensities if they pass over warmer oceans with high heat
45 content and encounter weak vertical wind shear. The relative lack of storms at mid-range intensities
46 (85–105 kt) is explained by rapid intensification, which pushes storms quickly through this range.
47 These results show that ERCs play a central role in shaping the statistics of the strongest tropical
48 cyclones and underscore the value of identifying ERCs to improve intensity forecasts.

49 **1. Introduction**

50 Tropical cyclones (TCs) are among the most destructive weather systems in the tropics,
51 exhibiting substantial variation in intensity, structure, and lifetime. Despite improvements in track
52 forecasting, predicting TC intensity remains a persistent challenge. One particularly intriguing
53 feature is the observed bimodal distribution (probability distribution function – PDF) in lifetime
54 maximum intensity (LMI), which refers to the peak 1-minute sustained wind speed attained by a
55 TC during its lifetime (Lee et al., 2016). Most storms reach either low (tropical storm) or high
56 (major hurricane) intensities, while relatively fewer attain intermediate intensities.

57 Previous studies have attributed this bimodality to several distinct mechanisms. Soloviev et
58 al. (2014) observed that the secondary peak in the LMI distribution, along with the intervening
59 minimum, aligns with a local minimum and maximum, respectively, in their parameterized surface
60 drag coefficient. They proposed that drag coefficient variability may influence the LMI bimodality.
61 Lee et al. (2016) emphasized the role of rapid intensification (RI), showing that non-RI storms
62 exhibit a unimodal peak near tropical storm intensity, whereas the secondary high-intensity peak
63 emerges only when RI storms are included. More recently, Song et al. (2018) and Xiang et al.
64 (2025) reported a strengthening of this bimodality, linked to increasing global sea surface
65 temperatures and greater variability in storm intensity.

66 Because eyewall replacement cycles (ERCs) are a distinct phase in many intense TCs, we
67 hypothesize that they may underlie the secondary peak at high intensities. During an ERC, a
68 concentric outer eyewall forms and gradually replaces the original inner eyewall, usually inducing
69 a temporary weakening of the storm followed by potential reintensification (Willoughby et al.,
70 1982; Sitkowski et al., 2011). This process is often marked by an abrupt outward jump in the radius
71 of maximum wind (RMW) (Kossin & Sitkowski, 2009; Yang et al., 2024; Jiang & Wang, 2024).
72 ERCs become increasingly frequent in stronger storms: in the North Atlantic, the probability of
73 ERC rises from below 5% in Category 1 storms to over 50% in Category 5 hurricanes (Kossin &
74 Sitkowski, 2009), with even higher rates observed in the western North Pacific (Kuo et al., 2009;
75 Yang et al., 2013, 2021).

76 Although previous work has elucidated the processes leading up to LMI, it has largely
77 overlooked how structural transitions, specifically ERCs, might shape the LMI distribution.
78 Because intense storms that develop a secondary eyewall have typically already undergone RI
79 (Fischer et al., 2020; Currier et al., 2024), ERCs are often viewed as interruptions to that
80 intensification and as limits on a storm's ultimate intensity. In this way, ERCs may act to suppress
81 the secondary peak on the high-intensity side of the observed bimodal LMI distribution.

82 In this study, we examine how ERCs influence the observed bimodal distribution of TC LMI.
83 We analyze both the frequency of ERCs and post-ERC evolution, particularly whether storms
84 reintensify after an ERC, and their impact on the populations of intermediate- and high-intensity
85 storms. We demonstrate that RI is a major driver of the minimum at intermediate intensities,
86 whereas ERCs predominantly control the secondary peak at high intensities, with storms that can
87 reintensify out of an ERC pushing the secondary peak to higher intensities. By linking storm
88 structural dynamics with statistical intensity distributions, our results provide new insights into the
89 drivers of the bimodal LMI distribution and underscore the pivotal role of ERCs in TC intensity
90 forecasting.

91 2. Data and methods

92 2.1 Datasets

93 This study employs several datasets to characterize TC intensity, structure, and environmental
94 variables. Storm position, 10-m maximum sustained wind speed, and radius of maximum wind
95 (RMW) were obtained from the International Best Track Archive for Climate Stewardship
96 (IBTrACS; Knapp et al., 2010; Gahtan et al., 2024). We analyze the influence of ERCs on the LMI
97 distribution over the period 1 July 2001–2023, which corresponds to the period of globally
98 consistent RMW estimates (Landsea & Franklin, 2013), excluding 2004 due to incomplete RMW
99 data.

100 Environmental variables were drawn from the Statistical Hurricane Intensity Prediction
101 Scheme (SHIPS) archive (DeMaria et al., 2005). Because SHIPS records are available only for

102 2002–2003 and 2005–2021 globally, and from 1 July 2001 onward for the western North Pacific,
103 our environmental analysis is limited to these intervals. From SHIPS we extract sea surface
104 temperature (SST), vertical wind shear (VWS), mid-level relative humidity (RH), oceanic heat
105 content (OHC), and maximum potential intensity (MPI). We also compute the fractional MPI
106 (FMPI), the ratio of a storm’s instantaneous intensity to its theoretical MPI, which serves as a proxy
107 for how close a storm is to its thermodynamic ceiling and thus its capacity for reintensification
108 after the ERC.

109 To calibrate and validate our ERC detection, we rely on an independent dataset of secondary
110 eyewall formation (SEF) events in western North Pacific TCs during 1999–2020, derived from
111 microwave satellite imagery (Wang et al., 2025). This SEF catalog guided the development and
112 tuning of our best-track-based ERC algorithm (Section 2.2).

113 *2.2 Methods*

114 ERCs represent structural transitions in TCs typically identified via high resolution satellite
115 or microwave imagery. Because such imagery is not available uniformly across basins or through
116 historical records, we developed a best-track RMW-based detection algorithm to perform long-
117 term analysis across all TC basins. This approach is justified by the fact that ERCs almost
118 invariably produce an abrupt jump in the RMW as the outer eyewall becomes dominant (Kossin &
119 Sitkowski, 2009; Yang et al., 2024; Jiang & Wang, 2024). Algorithm design and tuning were
120 guided by a curated SEF dataset for western North Pacific storms (Wang et al., 2025).

121 Our algorithm first finds each instance where the RMW increases between consecutive 6-hour
122 points in the best-track file. Our ERC detection procedure applies five filters to the best-track RMW
123 time series. To be considered an ERC case by the algorithm the RMW increase must feature: 1) an
124 intensity dependent RMW increase between the two consecutive data points of ≥ 15 nm for storms
125 with winds of 65–75 kt at the point of RMW increase, ≥ 10 nm for 80–95 kt, and ≥ 5 nm for ≥ 100
126 kt; 2) no intensification in the points prior to the RMW increase of >5 kt/6h or 10 kt/12h for storms
127 with winds of ≤ 95 kt at the point of RMW increase, (and >10 kt/6h or 15 kt/12h for ≥ 100 kt storms),
128 since ERCs rarely coincide with strong intensification phases; 3) ≥ 65 kt winds at the time of the

129 RMW increase, in line with prior SEF studies; 4) the RMW jump occurring within 30° latitude of
130 the equator to exclude extratropical transition cases; and 5) a minimum distance of 200 km from
131 land, excluding SEF cases that fail to complete ERC before landfall and terrain-induced RMW
132 fluctuations. This algorithm captures the hallmark RMW signature of ERCs while minimizing false
133 positives from rapid intensification or extratropical processes.

134 To validate the algorithm, each SEF event in the Wang et al. (2025) reference dataset occurring
135 within the RMW best-track dataset's bound of 2001–2003 and 2005–2020 was manually reviewed
136 and assigned as either an ERC case or a non-ERC case, with the latter being done in cases where
137 the storm was too close to land to complete an ERC. The remainder of the storms within the
138 dataset's period that were not listed as SEF storms in the microwave-based dataset were also
139 reviewed via geostationary imagery. Several storms with clear ERC signatures were assigned as
140 ERC cases, while the rest remained non-ERC cases. It was found that of the 275 total storm cases
141 in the SEF dataset, our algorithm correctly identified 152 non-ERC cases and 102 ERC cases, with
142 8 non-ERC cases being incorrectly identified as having an ERC and 13 ERC cases being missed
143 by our algorithm, which we will call false ERC and false non-ERC cases. We then assessed the
144 algorithm's performance using accuracy, precision and recall, which are defined as follows:

$$145 \quad Accuracy = \frac{(True\ ERC + True\ Non\ ERC)}{(All\ Cases)} \quad (1)$$

$$146 \quad Precision = \frac{(True\ ERC)}{(True\ ERC + False\ ERC)} \quad (2)$$

$$147 \quad Recall = \frac{(True\ ERC)}{(True\ ERC + False\ Non-ERC)} \quad (3)$$

148 Our algorithm produced accuracy, precision and recall values of 0.924, 0.927, and 0.887
149 respectively, suggesting that our algorithm is acceptable. After computing the fraction of storms in
150 each Saffir-Simpson Hurricane Wind Scale category that underwent ERC, it was found that our
151 algorithm suggested a slightly higher albeit comparable ERC frequency to that given by Huang et
152 al. (2023) for all five intensity categories. This is deemed reasonable, as Huang et al. (2023)
153 suggested that a dataset incorporating cases identified by geostationary imagery would include
154 more storms than one solely utilizing microwave imagery, which is capable of missing short-

duration ERC events. Although there remains some inconsistency between our adjusted dataset and the best-track-based dataset, the metrics suggest our best-track-based algorithm provides a reasonable representation of the set of ERC storms.

In our analysis, storms flagged as Category E (ERC cases) were further divided based on their post-ERC intensity evolution. Category EI (ERC, intensifying) includes storms that reintensified after an ERC, whereas Category ED (ERC, decaying) comprises storms that did not. To elucidate different evolutionary pathways, we subdivided Category EI into two timing-based groups: Category EIB (ERC, Intensifying, before LMI) where the first ERC occurred before the storm reached its LMI, and Category EIA (ERC, intensifying, after LMI) where the first ERC occurred after the storm attained its LMI.

ERC Classification Flowchart

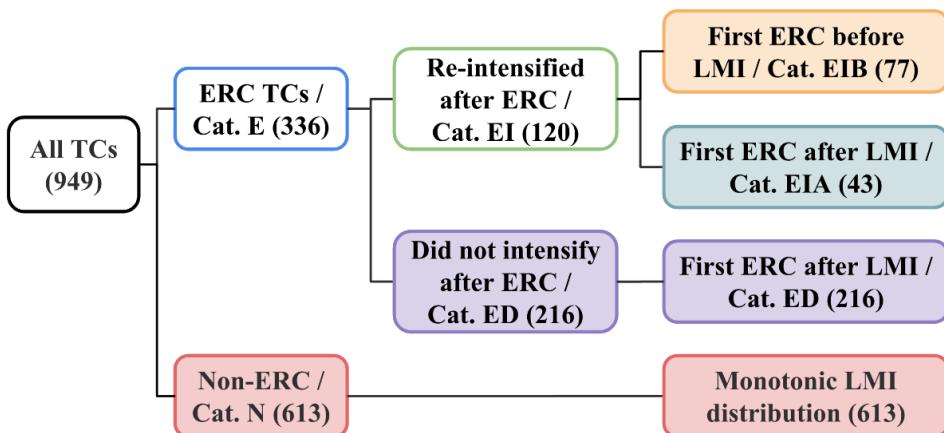


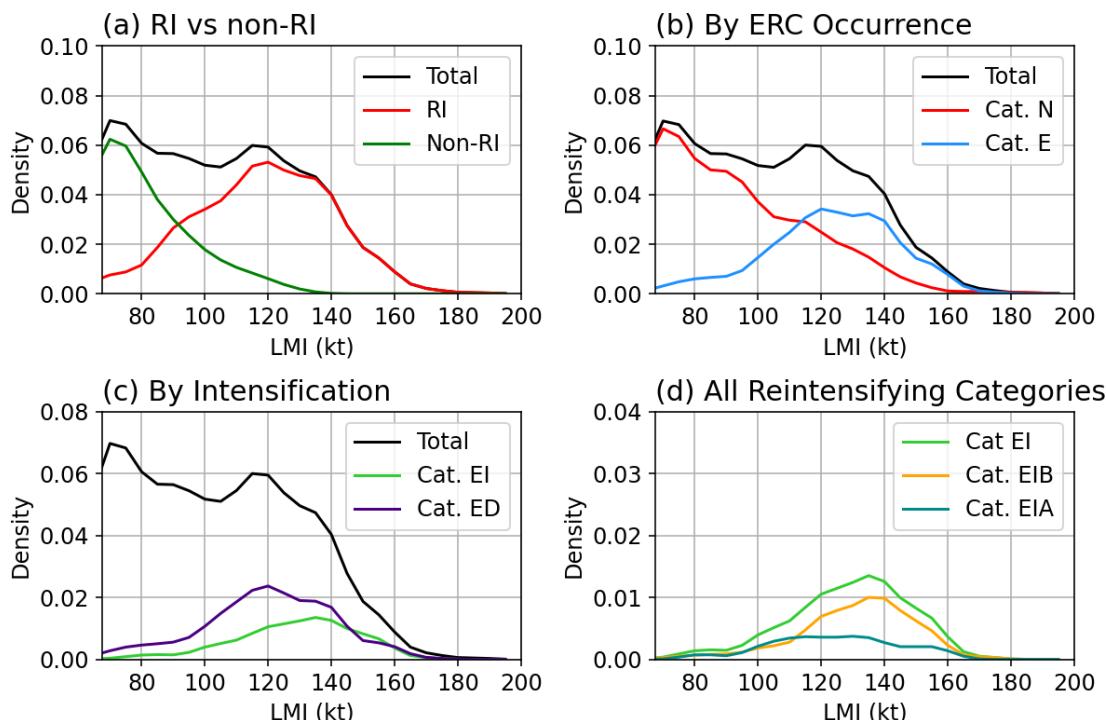
Figure 1. Flowchart showing the storm classification scheme used in this study. The number of storms in each category within the LMI dataset is given in parentheses.

We also defined two additional pairings to examine environmental influences across the LMI spectrum and varying reintensification potentials. By FMPI at the completion of ERC, we considered EIL (ERC, intensifying, low FMPI) and EDL (ERC, decaying, low FMPI) for $FMPI < 0.7$ (storms well below their thermodynamic limit), and EIH (ERC, intensifying, high FMPI) and EDH (ERC, decaying, high FMPI) for $FMPI \geq 0.7$ (storms approaching their thermodynamic ceiling). By LMI bin, we considered low $LMI < 85$ kt (primary peak in the LMI probability density),

174 medium LMI 85–105 kt (local trough in the LMI distribution), and high LMI>105 kt (secondary
 175 peak in the LMI distribution). This scheme allows us to isolate how ERC timing, thermodynamic
 176 state, and ultimate storm intensity jointly govern post-ERC evolution.

177 Figure 1 summarizes all major classification categories. These groupings enable a systematic
 178 evaluation of the environmental conditions and evolutionary pathways associated with each ERC
 179 type, offering new insights into the processes that shape the LMI distribution.

180 **3. Results**



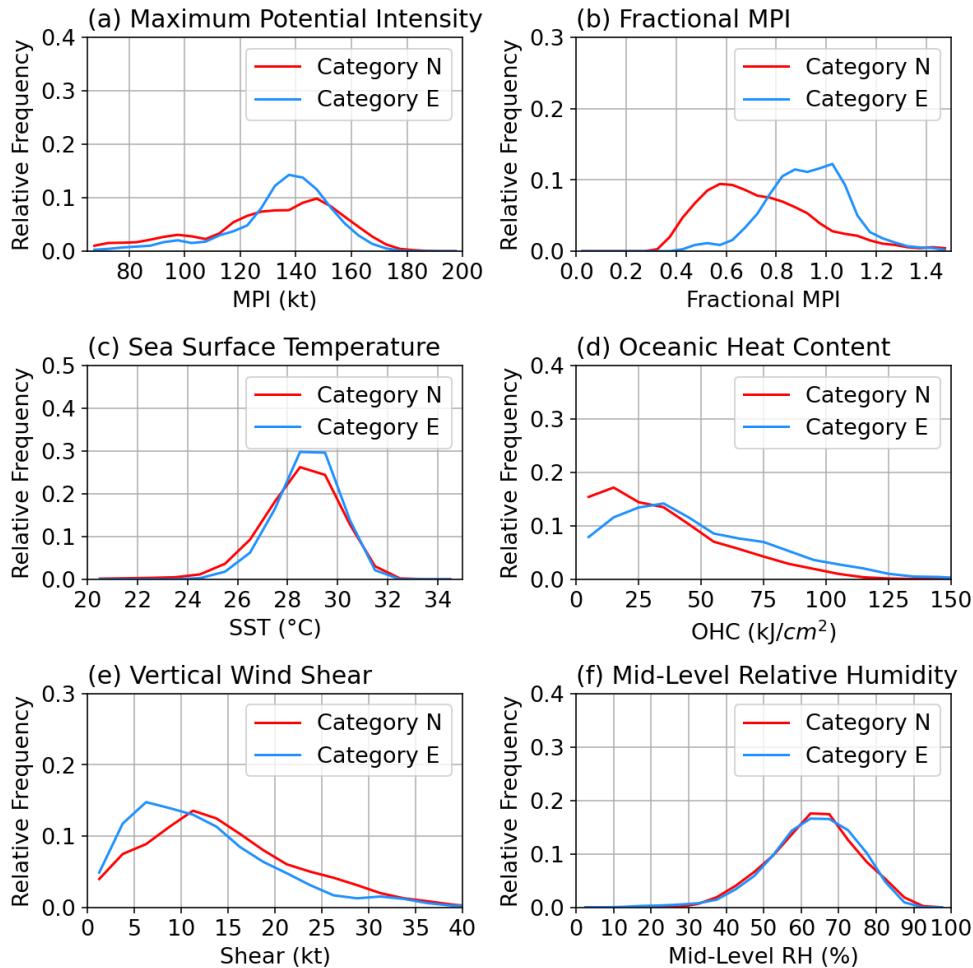
181
 182 Figure 2. Components of the LMI probability density function (PDF): (a) all storms, RI and non-
 183 RI subsets; (b) all storms, ERC (E) and non-ERC (N) subsets; (c) ERC storms divided into
 184 reintensifying (EI) and non-reintensifying (ED) cases; and (d) EI storms subdivided into those
 185 undergoing ERC before (EIB) and after (EIA) LMI. The dataset includes 2001–2023 globally,
 186 plus the second half of 2001 in the western North Pacific. RI is defined as ≥ 35 kt/24 h following
 187 Lee et al. (2016). All curves are smoothed using a 5-bin weighted moving average.

188 Figure 2a reaffirms the bimodal structure of the LMI probability density function (PDF), with
 189 pronounced peaks at both low and high intensities, consistent with earlier findings (Lee et al., 2016;
 190 Song et al., 2018; Xiang et al., 2025). In good agreement with Lee et al. (2016), rapid intensification

191 (RI) storms in our dataset show a strong connection with the secondary LMI peak. Because many
192 ERC storms undergo RI prior to secondary eyewall formation, it is not surprising that ERC storms
193 (Category E) contribute to the secondary peak and the higher intensities in the LMI distribution
194 (Figure 2b). By contrast, non-ERC storms (Category N), like non-RI storms, dominate the lower-
195 intensity peak.

196 Further disaggregation of Category E storms shows that both reintensifying (Category EI) and
197 non-reintensifying (Category ED) cases contribute to the secondary LMI peak (Figure 2c). ED
198 storms peak near 120 kt, decrease gradually toward 140 kt, and drop off rapidly thereafter, closely
199 matching the LMI distribution around the secondary peak in Figure 2b. This indicates that ED
200 storms contribute more strongly to the secondary peak than EI storms, whose LMI peaks around
201 135 kt. These results demonstrate that the ERC process interrupts RI and prevents storms from
202 reaching higher intensities. Splitting EI storms into those experiencing their first ERC before LMI
203 (Category EIB) versus after LMI (Category EIA) reveals that EIB storms dominate the EI
204 distribution, peaking near 135 kt and tapering gradually at higher intensities. In contrast, relatively
205 few storms undergo ERC after their LMI (EIA). This suggests that reintensification after ERCs is
206 critical in enabling storms to achieve higher LMIs, and identifying the key factors that support
207 post-ERC reintensification is therefore essential.

208 We first compared environmental parameters at each storm's LMI between ERC (Category E)
209 and non-ERC (Category N) cases. Mean MPI was modestly higher for ERC storms (133.9 kt) than
210 for non-ERC storms (128.6 kt) (Figure 3a). The abundance of high MPI, non-ERC cases likely
211 reflects regions with dense storm tracks, such as the Philippine Sea, Caribbean Sea, and Gulf of
212 Mexico, where storms often make landfall before an ERC can occur. Fractional MPI (FMPI) values
213 were even more divergent: ERC storms were strongly skewed toward FMPI=0.8–1.0, indicating
214 that they frequently approach their theoretical thermodynamic limit (Figure 3b).

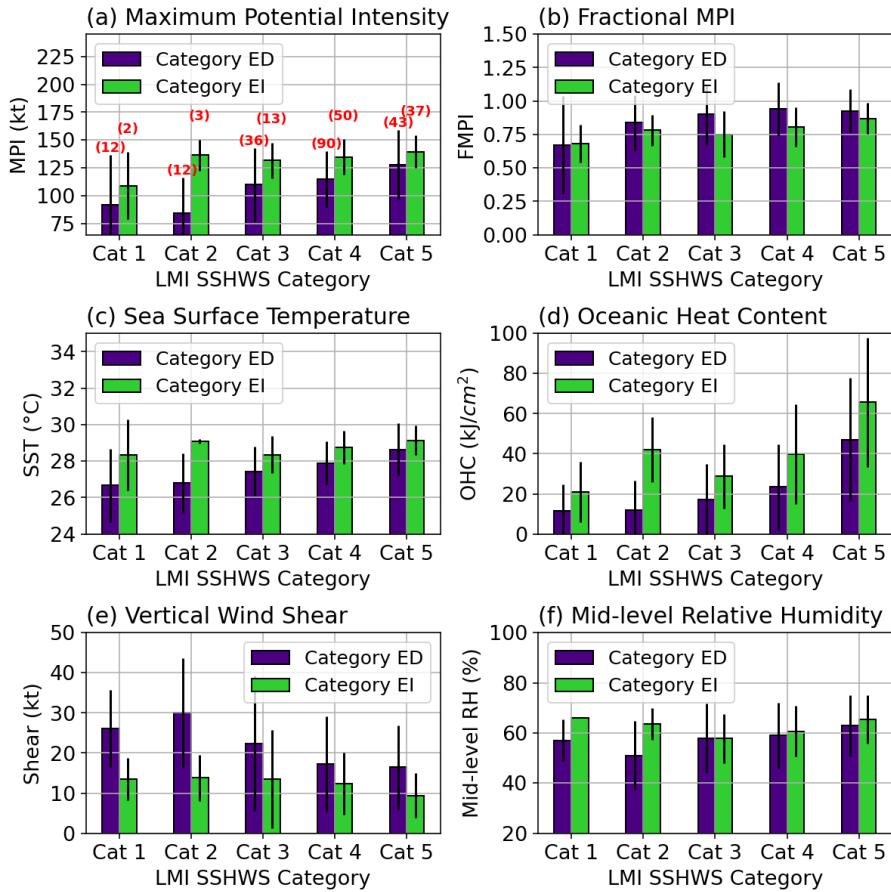


215
216
217
218
219

Figure 3. Probability density functions of environmental variables at the time of LMI for non-ERC (N) and ERC (E) storms. Variables shown are: (a) MPI, (b) fractional MPI, (c) SST, (d) ocean heat content (OHC), (e) vertical wind shear (VWS), and (f) midlevel relative humidity (RH). Distributions are smoothed using a 3-bin weighted average.

220
221
222
223
224
225
226

Other environmental variables at LMI showed smaller but statistically significant differences. Mean SST and midlevel RH were similar between categories (~28.4–28.7°C and ~62.6–62.8%, respectively), but ERC storms experienced substantially higher OHC (~46 vs. 32 kJ cm^{-2}) and lower vertical wind shear (~12 vs. 14.5 kt) (Figures 3c–3f). Student's T-tests ($\alpha=0.05$) confirm that MPI, FMPI, SST, OHC, and shear differ significantly between ERC and non-ERC groups, underscoring the role of enhanced thermodynamic and reduced shear environments in facilitating ERCs.



227
228 Figure 4. Mean (bars) and one standard deviation (lines) of potential intensity and environmental
229 variables at the completion of ERC for ED and EI storms. Variables include: (a) MPI, (b)
230 fractional MPI, (c) SST, (d) OHC, (e) VWS, and (f) midlevel RH. Outlier FMPI values >1.5
231 were omitted. The number of cases in each LMI category is indicated in (a).

232 To evaluate post-ERC reintensification potential, we compared environmental parameters at
233 the time of completion of ERC between the reintensifying (Category EI) and non-reintensifying
234 (Category ED) storms. Category EI storms exhibited narrower MPI distributions (Figure 4a) and
235 FMPI values predominantly in the 0.6–0.8 range, conditions conducive to further intensification.
236 By contrast, many Category ED storms clustered near FMPI=1.0, indicating they had effectively
237 reached their thermodynamic ceiling and lacked the potential for additional strengthening (Figure
238 4b).

239 Environmental contrasts at the completion of ERC were even more pronounced than those at
240 the time of LMI. Category EI storms had higher SSTs (mean 28.8°C vs. 27.8°C , Figure 4c), nearly
241 twice the OHC (47.2 vs. 26.1 kJ cm^{-2} , Figure 4d), lower wind shear (11.5 vs. 19.4 kt , Figure 4e),

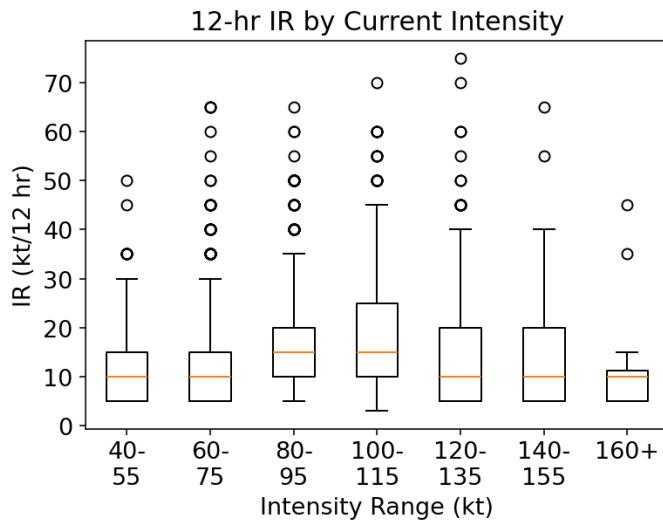
242 and slightly higher RH (62.1% vs. 59.0%, Figure 4f) compared to Category ED, with
243 reintensification being consistently associated with more favorable conditions through all intensity
244 ranges. These results emphasize the role of environmental favorability in supporting
245 reintensification after the ERC. Three of the four environmental variables differed significantly
246 between the Category ED and EI groups, with P-values on the order of 10^{-8} to 10^{-10} for SST, OHC
247 and shear, while the RH difference was marginally significant ($p=0.033$). It should be noted that a
248 limited sample size may limit the robustness of generalizations for these groups, particularly for
249 Category EI storms below Category 3 intensity, only 6 such cases had LMIs below this strength.

250 Subgrouping by FMPI highlights further contrasts. Storms in the low FMPI category (EIL;
251 FMPI<0.7) experienced markedly more favorable environments than their non-reintensifying peers
252 (EDL), with higher SSTs ($\sim 28.9^{\circ}\text{C}$), greater OHC ($\sim 41.2 \text{ kJ cm}^{-2}$), lower shear ($\sim 15 \text{ kt}$), and
253 elevated RH ($\sim 62.6\%$). Notably, even among high FMPI cases (EIH vs. EDH), reintensification
254 occurred under exceptional conditions: EIH storms exhibited the highest OHC and the lowest shear
255 of all four FMPI-based subgroups, demonstrating that strong thermodynamic and shear
256 environments can overcome the proximity to the MPI ceiling.

257 Finally, stratifying by LMI bins reveals how environmental constraints shape the bimodal PDF.
258 Low LMI ($<85 \text{ kt}$) storms occur in marginal, highly unfavorable environments. In the medium LMI
259 ($85\text{--}105 \text{ kt}$) range, which corresponds to the PDF's trough, storms are scarce and still face
260 unfavorable but less hostile conditions than those in the low LMI range. Conversely, high LMI
261 ($>105 \text{ kt}$) storms consistently experience the most supportive environments, whether they
262 reintensify or simply sustain their peak intensity for ERC storms. These contrasts underscore that
263 the LMI bimodality reflects distinct environmental limitations across intensity regimes.

264 TCs that undergo ERCs tend to be intense and often experience RI prior to eyewall
265 replacement. Consequently, the secondary peak in the bimodal LMI distribution is statistically
266 linked to both RI and ERC events. Intensification rates typically maximize in the $90\text{--}115 \text{ kt}$ range
267 (Figure 5), driving storms in this band to intensify further. This explains the trough at intermediate
268 intensities and the emergence of a secondary peak at higher intensities. However, RI alone cannot

269 explain the precise intensity at which the secondary peak occurs. By contrast, ERC storms,
 270 especially those that do not reintensify, exhibit a broad peak between 120–140 kt, closely aligned
 271 with the secondary maximum in the LMI distribution (Figures 2b,c). This demonstrates that the
 272 ERC process interrupts RI and prevents storms from reaching higher intensities, anchoring the
 273 secondary peak at lower values than would be expected if RI proceeded without interruption. Thus,
 274 while RI establishes the conditions for a secondary peak, its exact shape and upper-tail extension
 275 are governed by the distinct evolutionary pathways of ERC storms.



276
 277 Figure 5. Box-whisker plots of centered 12-hour intensification rates (IRs), grouped by 20-kt
 278 intensity bins. Only positive IRs are included. Boxes show the 25th–75th percentiles, whiskers
 279 denote the 5th–95th percentiles, and horizontal orange lines mark the medians.

280 4. Conclusions and discussion

281 This study provides new insights into the mechanisms shaping the bimodal distribution of TC
 282 LMI. By developing and applying a best-track-based algorithm to detect ERCs, we show that these
 283 structural transitions are central to the emergence and form of the high-intensity peak. While RI
 284 drives storms swiftly through the intermediate 85–105 kt range, ERCs, by halting, sustaining, or
 285 permitting renewed strengthening, determine both the placement and the shape of the secondary
 286 peak.

287 Our analysis reveals that both reintensifying (EI) and non-reintensifying (ED) ERC storms

288 cluster at high intensities. ED storms, which fail to strengthen further, tend to peak between 120–
289 140 kt, anchoring the secondary maximum in the LMI distribution. In contrast, EI storms extend
290 the distribution’s upper tail by reintensifying after an ERC, with their evolution tightly linked to
291 environmental favorability. Specifically, higher sea surface temperatures, elevated ocean heat
292 content, and reduced vertical wind shear consistently distinguish EI storms from their ED
293 counterparts. Fractional maximum potential intensity further separates storms that are near their
294 thermodynamic limit from those that retain capacity to intensify, offering a useful diagnostic for
295 post-ERC outcomes.

296 Stratification by intensity bins highlights the distinct physical regimes underlying the
297 bimodality. Low-LMI storms (<85 kt) arise in marginal environments that limit growth. The trough
298 in the 85–105 kt range reflects the fact that storms rarely end their intensification there; both
299 observations and theory (Wang et al., 2021a,b, 2022, 2023; Xu et al., 2022, 2023) show that
300 maximum intensification rates typically occur at intermediate intensities, propelling storms upward.
301 Above this stage, pathways diverge: storms either sustain RI into higher categories or undergo an
302 ERC. Because ERCs become increasingly common as intensity rises, they act as the principal
303 regulator of the high-intensity population. Favorable environments enable post-ERC
304 reintensification, extending the distribution toward the thermodynamic ceiling, while unfavorable
305 environments lock storms near the secondary peak.

306 These results clarify the complementary roles of RI and ERCs in shaping the LMI probability
307 density function. RI alone explains the trough at mid-intensities, but not the exact placement or
308 gradual decline of the high-intensity peak. ERCs, by interrupting RI and modulating subsequent
309 recovery, provide the structural mechanism needed to reproduce both the secondary maximum and
310 its upper-tail behavior. This perspective helps reconcile earlier studies emphasizing RI thresholds
311 (e.g., Lee et al., 2016) with more recent work documenting increased variability in storm intensities.

312 Nevertheless, several caveats remain. Our ERC detection is limited by the resolution of best-
313 track RMW data and may miss short-lived or subtle events. Sample sizes are particularly
314 constrained in the intermediate and lower-intensity bins, which limits the robustness of subgroup

315 statistics. Broader and more consistent ERC datasets, including those derived from high-resolution
316 satellite records, will be critical to confirming and extending these findings.

317 In summary, ERCs emerge as a pivotal structural process governing the distribution of TC
318 maximum intensity. By anchoring the secondary peak and modulating the high-intensity tail, ERCs
319 explain features of the LMI distribution that RI alone cannot. Incorporating ERC dynamics into
320 intensity statistics and forecast models is therefore essential for improving prediction of the most
321 destructive storms and for better anticipating the risks associated with future TC extremes.

322 **Acknowledgments:** This research was supported by NSF Grant AGS-1834300 and AGS-2521424.

323 **Open Research**

324 The IBTrACS best-track data used for TC ERC detection in the study are available at Gahtan
325 et al. (2024). The SHIPS datasets used in this study are available at
326 https://rammb2.cira.colostate.edu/research/tropical-cyclones/ships/development_data/

327 **Conflict of Interest Statement**

328 The authors have no conflicts of interest to disclose.

329 **References**

- 330 Cheung, A. A., Slocum, C. J., Knaff, J. A., & Razin, M. N. (2024). Documenting the progressions
331 of secondary eyewall formations. *Weather and Forecasting*, 39 (1), 19–40.
332 <https://doi.org/10.1175/WAF-D-23-0047.1>
- 333 Currier, J. W., Jr., & Preston, A. D. (2024). The Pairing of Rapid Intensification Events and Eyewall
334 Replacement Cycles in Tropical Cyclones in the Atlantic Basin from 2015 to 2020.
335 *Atmosphere*, 15 (1), 53. <https://doi.org/10.3390/atmos15010053>
- 336 DeMaria, M., Mainelli, M., Shay, L. K., Knaff, J. A., & Kaplan, J. (2005). Further improvements
337 to the statistical hurricane intensity prediction scheme (SHIPS). *Weather and Forecasting*, 20
338 (4), 531–543. <https://doi.org/10.1175/WAF862.1>
- 339 Fischer, M. S., Rogers, R. F., & Reasor, P. D. (2020). The rapid intensification and eyewall
340 replacement cycles of Hurricane Irma (2017). *Monthly Weather Review*, 148(3), 981–1004.
341 <https://doi.org/10.1175/MWR-D-19-0185.1>
- 342 Gahtan, J., Knapp, K. R., Schreck, C. J., Diamond, H. J., Kossin, J. P., & Kruk, M. C. (2024).
343 International best track archive for climate stewardship (IBTRACS) project, version 4.01.
344 [Dataset]. NOAA National Centers for Environmental Information.

- 345 <https://doi.org/10.25921/82ty-9e16>.
- 346 Huang, X., Lu, P., Zhang, B., Lin, Y.-L., & Huang, X.-M. (2023). Transformer aided construction
347 of a long-term tropical cyclone concentric eyewalls dataset. *IEEE Journal of Selected Topics
348 in Applied Earth Observations and Remote Sensing*, 1–9.
349 <https://doi.org/10.1109/JSTARS.2023.3281727>
- 350 Jiang, J., & Wang, Y. (2024). The roles of moat width and outer eyewall contraction in affecting
351 the timescale of eyewall replacement cycle. *Journal of Geophysical Research–Atmospheres*.
352 129 (19), e2024JD041488, <https://doi.org/10.1029/2024JD041488>.
- 353 Kaplan, J., & DeMaria, M. (2003). Large-scale characteristics of rapidly intensifying tropical
354 cyclones in the north Atlantic basin. *Weather and Forecasting*, 18 (6), 1093–1108.
355 [https://doi.org/10.1175/1520-0434\(2003\)018<1093:LCORIT>2.0.CO;2](https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2)
- 356 Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J. (2010). The
357 international best track archive for climate stewardship (IBTRACS): Unifying tropical
358 cyclone best track data. *Bulletin of the American Meteorological Society*, 91 (3), 363–376.
359 <https://doi.org/10.1175/2009BAMS2755.1>
- 360 Kossin, J. P., Olander, T. L., & Knapp, K. R. (2013). Trend analysis with a new global record of
361 tropical cyclone intensity. *Journal of Climate*, 26 (24), 9960–9976.
362 <https://doi.org/10.1175/JCLI-D-13-00262.1>
- 363 Kossin, J. P., & Sitkowski, M. (2009). An objective model for identifying secondary eyewall
364 formation in hurricanes. *Monthly Weather Review*, 137 (3), 876–892.
365 <https://doi.org/10.1175/2008MWR2701.1>
- 366 Kuo, H.-C., Chang, C.-P., Yang, Y.-T., & Jiang, H.-J. (2009). Western North Pacific Typhoons wit
367 h Concentric Eyewalls. *Monthly Weather Review*, 137(11), 3758-3770. <https://doi.org/10.117>
368 [5/2009MWR2850.1](https://doi.org/10.1175/2009MWR2850.1)
- 369 Landsea, C. W., & Franklin, J. L. (2013). Atlantic hurricane database uncertainty and presentation
370 of a new database format. *Monthly Weather Review*, 141 (10), 3576–3592.
371 <https://doi.org/10.1175/MWR-D-12-00254.1>
- 372 Lee, C.-Y., Tippett, M. K., Sobel, A. H., & Camargo, S. J. (2016). Rapid intensification and the
373 bimodal distribution of tropical cyclone intensity. *Nature communications*, 7 (1), 10265.
374 <https://doi.org/10.1038/ncomms10625>
- 375 Sitkowski, M., Kossin, J. P., & Rozoff, C. M. (2011). Intensity and structure changes during
376 hurricane eyewall replacement cycles. *Monthly Weather Review*, 139 (12), 3829–3847.
377 <https://doi.org/10.1175/MWR-D-11-00034.1>
- 378 Soloviev, A. V., Lukas, R., Donelan, M. A., Haus, B. K., & Ginis, I. (2014). The air sea interface
379 and surface stress under tropical cyclones. *Scientific reports*, 4 (1), 5306.
380 <https://doi.org/10.1038/srep05306>
- 381 Song, J., Klotzbach, P. J., Tang, J., & Wang, Y. (2018). The increasing variability of tropical cyclone
382 lifetime maximum intensity. *Scientific reports*, 8 (1), 16641. <https://doi.org/10.1038/s41598->
383 [018-35131-x](https://doi.org/10.1038/s41598-018-35131-x)
- 384 Wang, Y.-F., Qiu, X., & Tan, Z.-M. (2025). Investigating the environmental characteristics of
385 intense tropical cyclones with concentric eyewalls over the western north pacific. *Monthly*

- 386 *Weather Review*, 153 (4), 717–733. <https://doi.org/10.1175/MWR-D-24-0091.1>
- 387 Wang, Y., Li, Y., Xu, J., Tan, Z.-M., & Lin, Y. (2021a). The intensity dependence of tropical cyclone
388 intensification rate in a simplified energetically based dynamical system model. *Journal of*
389 *the Atmospheric Sciences*, 78 (7), 2033–2045. <https://doi.org/10.1175/JAS-D-20-0393.1>
- 390 Wang, Y., Li, Y., & Xu, J. (2021b). A new time-dependent theory of tropical cyclone intensification.
391 *Journal of the Atmospheric Sciences*, 78 (12), 3855–3865. <https://doi.org/10.1175/JAS-D-21-0169.1>
- 392 Wang, Y., Xu, J., & Tan, Z.-M. (2022). Contribution of dissipative heating to the intensity-
393 dependence of tropical cyclone intensification. *Journal of the Atmospheric Sciences*, 79 (8),
394 2169–2180. <https://doi.org/10.1175/JAS-D-22-0012.1>
- 395 Wang, Y., Tan, Z.-M., & Li, Y. (2023). Some refinements to the most recent simple time-dependent
396 theory of tropical cyclone intensification and sensitivity. *Journal of the Atmospheric Sciences*,
397 80(1), 321–335. <https://doi.org/10.1175/JAS-D-22-0135.1>
- 398 Willoughby, H. E., Clos, J. A., & Shoreibah, M. G. (1982). Concentric Eye Walls, Secondary Wind
399 Maxima, and The Evolution of the Hurricane vortex. *Journal of Atmospheric Sciences*, 39(2),
400 395–411. [https://doi.org/10.1175/1520-0469\(1982\)039<0395:CEWSWM>2.0.CO;2](https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2)
- 401 Xiang, Q., Zhao, H., Klotzbach, P. J., Su, T., Wang, C., & Wu, L. (2025). Amplified bimodal
402 distribution of western north pacific tropical cyclone lifetime maximum intensity.
403 *Geophysical Research Letters*, 52 (2), e2024GL111637.
404 <https://doi.org/10.1029/2024GL111637>
- 405 Xu, J., & Wang, Y. (2022). Potential intensification rate of tropical cyclones in a simplified
406 energetically based dynamical system model: an observational analysis. *Journal of the*
407 *Atmospheric Sciences*, 79 (4), 1045–1055. <https://doi.org/10.1175/JAS-D-21-0217.1>
- 408 Xu, J., Wang, Y., & Yang, C. (2023). Quantifying the Environmental Effects on Tropical Cyclone
409 Intensity Change Using a Simple Dynamically Based Dynamical System Model. *Journal of*
410 *the Atmospheric Sciences*, 80 (12), 2897–2913. <https://doi.org/10.1175/JAS-D-23-0058.1>
- 411 Yang, X.-W., Wang, Y., Wang, H., Xu, J., and Zhan, R.-F. (2024). Effect of the initial vortex
412 structure on intensity change during eyewall replacement cycle of tropical cyclones: A
413 numerical study. *Journal of Tropical Meteorology*, 30 (2), 106–117,
414 <https://doi.org/10.3724/j.1006-8775.2024.011>
- 415 Yang, Y.-T., Kuo, H.-C., Hendricks, E. A., & Peng, M. S. (2013). Structural and intensity changes
416 of concentric eyewall typhoons in the western North Pacific basin. *Monthly Weather Review*,
417 141(8), 2632–2648. <https://doi.org/10.1175/MWR-D-12-00251.1>
- 418 Yang, Y.-T., Kuo, H.-C., Tsujino, S., Chen, B.-F., & Peng, M. S. (2021). Characteristics of the long-
419 lived concentric eyewalls in tropical cyclones. *Journal of Geophysical Research: Atmospheres*,
420 126(11), e2020JD033703. <https://doi.org/10.1029/2020JD033703>
- 421