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Abstract— Designing control policies for large, distributed
systems is challenging, especially in the context of critical,
temporal logic based specifications (e.g., safety) that must be
met with high probability. Compositional methods for such
problems are needed for scalability, yet relying on worst-case
assumptions for decomposition tends to be overly conservative.
In this work, we use the framework of Constrained Markov
Decision Processes (CMDPs) to provide an assume-guarantee
based decomposition for synthesizing decentralized control poli-
cies, subject to logical constraints in a multi-agent setting. The
returned policies are guaranteed to satisfy the constraints with
high probability and provide a lower bound on the achieved
objective reward. We empirically find the returned policies
to achieve near-optimal rewards while enjoying an order of
magnitude reduction in problem size and execution time.

I. INTRODUCTION

Our increasingly connected and “smart” world calls for
compositional methods to design control policies for large,
distributed systems in a scalable manner. Smart power grids
and intersections are applications in which a single, central-
ized approach is not possible [1], [2]. Moreover, these are
critical systems, which must be carefully controlled to realize
their intended behavior. Constrained Markov decision pro-
cesses (CMDPs) [3], [4] are a powerful mathematical model
for representing sequential decision-making tasks subject to
certain constraints under uncertainty, making them a viable
choice to model such systems. CMDPs can be infused with
mission specifications, expressed in logic languages such as
finite linear temporal logic (LTLf ) [5], [6], [7], to ensure
that returned policies respect and achieve the mission to
a user-specified probability threshold. However, centralized
approaches to solve CMDPs with multiple agents suffer
from the combinatorial explosion of the global state space.
Directly solving the monolithic CMDP entails solving an
expanding constrained optimization problem, which, even for
two agents, quickly becomes untenable for larger problems.

Approaches to decompose the monolithic optimization
problem into more manageable pieces are of significant
interest [8]. Worst-case or robust control decomposes the
problem in an adversarial manner, where each agent assumes
the worst-case behavior of the other agents with respect to
(w.r.t.) some objective function [9], [10]. The opposite is
to optimistically assume cooperation among agents to de-
compose the joint optimization problem [11]. These methods
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are most commonly seen in the context of multi-agent, un-
constrained optimal control and reinforcement learning [12].
Compositional methods capable of handling logical spec-
ifications, however, have received scant attention. To the
best of our knowledge, this paper is the first to provide a
compositional strategy to solve logically constrained Markov
decision processes (MDPs) in the multi-agent setting.

Neither worst-case nor pure optimism are decomposi-
tion paradigms reflective of real-world interactions between
agents, as perfect cooperation is often unrealizable and
fully adversarial methods tend to be overly conservative.
Instead, our approach takes a middle-ground approach in-
spired by assume-guarantee (AG) reasoning and contract-
based design [13], [14]. Consider the scenario for a pair
of agents. In our framework, each agent assumes that the
other will obey its corresponding logical constraints with
some high probability. Under this assumption, the ego agent
finds an optimal policy by considering worst-case behavior
of its partner w.r.t. the joint objective reward, subject to
the before mentioned constraint. The returned policies are
guaranteed to satisfy the ego agent’s logical constraints with
high probability and provide a lower bound on the achieved
joint reward. Mutual understanding of undesirable outcomes
enables efficient synthesis of provably safe, optimal policies
with an empirically tight optimality gap.

In this paper, we (1) introduce a novel, AG-based decom-
position of the monolithic CMDP formulation, (2) show how
this formulation can be efficiently transformed and solved
as a linear program (LP), and (3) validate our methodology
on two case studies to demonstrate the computational ad-
vantages of our modular optimal policy synthesis approach
while ensuring provable logical constraint satisfaction.

II. PRELIMINARIES

Notation: Real and natural numbers are denoted by R
and N, respectively. General probabilities are specified by
P, while transition probability functions use P . We use
h 2 [i : j] (where [i : j] is the inclusive sequence of integers
from i to j) to denote a time step inside an episode. The
indicator function 1s1(s) evaluates to 1 when s = s1 and 0
otherwise. The probability simplex over the set S is denoted
by �S . For a string s, |s| denotes the length of the string. The
Cartesian product over sets is defined by ⇥, while · is used
for standard multiplication. Superscripts on MDP elements
denote the agent index and product status, while subscripts
denote the current time step.
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A. Labeled Finite-Horizon MDPs
We consider labeled finite-horizon MDPs [3], formally

defined by a tuple M = (S,A,H, s1, P, r, AP,L), where S

and A denote the finite state and action spaces, respectively.
The agent interacts with the environment in episodes of
length H , with each episode starting from the same initial
state s1. The non-stationary transition probability is P , where
Ph(s0|s, a) is the probability of transitioning to state s

0

upon taking action a in state s at time step h 2 [1 : H].
The deterministic, non-stationary reward of taking action
a in state s at time step h is rh(s, a). AP is a set of
atomic propositions, e.g., indicators of the truth value for the
presence of an obstacle or goal. L : S ! 2AP is a labeling
function which indicates the set of atomic propositions which
hold true in each state, e.g., L(s) = {y} indicates that only
the atomic proposition y is true in state s.

A non-stationary randomized policy ⇡ = (⇡1, . . . ,⇡H) 2
⇧, where ⇡i : S ! �A, maps each state to a probability
distribution over the action space. A run ⇠ of the MDP is
the sequence of states and actions (s1, a1) . . . (sH , aH). The
total expected reward of an episode associated with a policy
⇡ and reward function r is given by

RM
⇡

(r) = EM
⇡

"
HX

i=1

ri(si, ai)

#
. (1)

In this paper, we will make use of constrained MDPs
(CMDPs) [4], which additionally include a constraint reward
function ch(s, a) at each time step h. The total expected
constraint reward in an episode under a policy ⇡ is defined
in the same manner as (1) with rh replaced by ch. The goal
of the CMDP problem is to find a policy ⇡

⇤ that maximizes
the objective total reward RM

⇡
(r) while ensuring that the

total constraint reward is above a threshold l, i.e.,

⇡
⇤ = argmax

⇡2⇧
RM

⇡
(r)

s.t. RM
⇡

(c) � l.

(2)

B. Occupancy Measures
Occupancy measures [4], [15] allow for an alternative rep-

resentation of the set of non-stationary, randomized policies
and the expected return of such policies. CMDPs can be
solved in terms of occupancy measures, as they enable the
search for an optimal policy (2) to be rewritten as a linear
program (LP). The occupancy measure q

⇡ of a policy ⇡ in
a finite-horizon MDP is defined as the expected number of
visits to a state-action pair (s, a) in an episode at time step
h. Formally, q⇡

h
(s, a) = P [Sh = s,Ah = a|S1 = s1,⇡].

The occupancy measure q
⇡ of a policy ⇡ satisfies linear

constraints expressing non-negativity, the conservation of
probability flow through the states, and the initial state
conditions. The space of the occupancy measures satisfying
these constraints is denoted by QM and is convex [4]. A
policy ⇡ generates an occupancy measure q 2 QM if

⇡h(a|s) =
qh(s, a)P
b
qh(s, b)

, 8(s, a, h). (3)

Thus, there exists a non-stationary, randomized policy for
each occupancy measure in QM and vice versa. Further,
the total expected reward of an episode under policy ⇡ with

respect to reward function r can be expressed in terms of the
occupancy measure as RM

⇡
(r) =

P
h,s,a

q
⇡

h
(s, a)rh(s, a).

C. Finite Linear Temporal Logic Specification
We use LTLf [5], a temporal extension of propositional

logic. This is a variant of linear temporal logic (LTL) [16]
interpreted over finite traces. LTLf is flexible enough to
express complex finite-duration task specifications, while
remaining unambiguous and computer readable. These traits
make it an attractive candidate for incorporation with reward
functions in a specify-then-synthesize design paradigm [17],
[18]. Given a set AP of atomic propositions, LTLf formulae
are constructed inductively as follows:

' := true | a | ¬' | '1 ^ '
2 | X' | '1U'

2
,

where a 2 AP ; ', '
1, and '

2 are LTLf formulae; ^
and ¬ are the logic conjunction and negation; and U and
X are the until and next temporal operators. Additional
temporal operators such as eventually (F) and always (G)
are derived as F' := trueU' and G' := ¬F¬'. Formulae
are interpreted over finite-length words w = w1 . . . w|w|,
where each letter wi ✓ AP . When ' is true for w at step
i 2 [1 : |w|], we write w, i |= '. A formula ' is true in w,
written w |= ', iff w, 1 |= '.

Given an MDP M and an LTLf formula ', a run ⇠ =
(s1, a1) . . . (sH , aH) of the MDP under policy ⇡ is said
to satisfy ' if the word w = L(s1) . . . L(sH) 2 (2AP )

H

generated by the run satisfies '. The probability that a run
of M satisfies ' under policy ⇡ is denoted by PM

⇡
(').

D. Deterministic Finite Automaton (DFA)
The language defined by an LTLf formula, i.e., the set

of words satisfying the formula, can be captured by a
Deterministic Finite Automaton (DFA) [6]. We denote a DFA
by a tuple A = (Q,⌃, q0, �, F ), where Q is a finite set
of states, ⌃ is a finite alphabet, q0 2 Q is an initial state,
� : Q ⇥ ⌃ ! Q is a transition function, and F ✓ Q is
the set of accepting states. A run ⇠A of A over a finite
word w = w1 . . . wn (with wi 2 ⌃) is a sequence of
states q0q1 . . . qn 2 Q

n+1 such that qi+1 = �(qi, wi+1) for
i = 0, . . . , n � 1. A run ⇠A is accepting if and only if (iff)
qn 2 F . A word w is accepted by A iff the run ⇠A of A
on w is accepting. Finally, we say that an LTLf formula
is equivalent to a DFA A iff the language defined by the
formula is the set of words accepted by A . For any LTLf

formula ' over AP , we can construct an equivalent DFA
with input alphabet 2AP .

III. PROBLEM FORMULATION

We first describe the optimal policy synthesis problem
under LTLf constraints for one agent and then present our
2-player problem formulation.

Single Player MDP: Given a labeled finite-horizon MDP
M and an LTLf specification ', our objective is to design
a policy ⇡ that maximizes the total expected reward RM

⇡
(r)

while ensuring that the probability PM
⇡

(') of satisfying the
specification ' is at least 1 � �. More formally, we would
like to solve the following constrained optimization problem:

LTLf -MDP: max
⇡

RM
⇡

(r),

s.t. PM
⇡

(') � 1� �.

(P1)
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2-Player MDP: Extending to the 2-player setting, we
consider two MDPs M i = (Si

, A
i
, H, s

i

1, P
i
, AP

i
, L

i),
for i 2 {1, 2}, with independent transition probabilities.
The two MDPs are connected by a joint reward function
r
J

h
: (S1 ⇥ S

2)⇥ (A1 ⇥ A
2) ! R, where r

J

h
(sJ

h
, a

J

h
) is the

reward of taking joint action a
J

h
= (a1

h
, a

2
h
) in joint state

s
J

h
= (s1

h
, s

2
h
) at time step h. Atomic propositions AP

i are
assumed disjoint without loss of generality.

The objective of the 2-player problem is to design a joint
policy ⇡

J that maximizes the total expected objective reward
while satisfying the joint specification '

J with probability
at least 1 � �. The joint specification is the conjunction of
the two single-player specifications: '

J = '
1 ^ '

2, where
'
i is a specification defined over the run of M i.

LTLf -MDP-2-Player: max
⇡

RMJ

⇡
(rJ),

s.t. PMJ

⇡J ('J) � 1� �.

(P2)

We use M J to denote the joint MDP which incorporates the
states, actions, and transitions of the component MDPs M 1

and M 2. Details of this construction follow in Section IV-A.

IV. SOLUTION APPROACH

We first describe the monolithic approach to solve the
joint problem formulation P2. This method combines the
two agents to obtain a centralized policy over the joint
state-action space. This approach yields an LP by utilizing
occupancy measures and product CMDP to join the logically
specified DFA with the probabilistic MDP [7]. Our AG-
based, decentralized approach follows in Section IV-C.

A. Framing 2-Player MDP as Joint MDP

Two CMDPs (M 1
,M 2) corresponding to the agents in

the 2-player setting can be transformed in a single, joint
MDP M J by the following procedure. The joint state and
action spaces are computed by the Cartesian product of the
component state and action spaces, i.e., SJ = S

1⇥S
2, AJ =

A
1⇥A

2. The initial state s
J

1 is similarly defined. Leveraging
the independent transitions of the two MDPs, the joint
transition model can be computed by direct multiplication:

Ph

⇥
s
J

h+1|sJh , aJh
⇤

= Ph

⇥
(s1

h+1, s
2
h+1)|(s1h, s2h), (a1h, a2h)

⇤

= Ph

⇥
s
1
h+1, |s1h, a1h

⇤
· Ph

⇥
s
2
h+1, |s2h, a2h

⇤
.

(4)

The joint labeling function is defined as the union of the
component MDP labels as follows:

L
J(sJ) = L

J((s1, s2)) = L
1(s1) [ L

2(s2). (5)

The joint LTLf specification '
J is converted into a DFA,

enabling the computation of the joint product CMDP M J⇥

which encapsulates the joint objective and constraint rewards.
With this joint MDP representing both agents, an optimal

policy can be found by applying the single player procedure
detailed in Section IV-B.

B. Solution Procedure for a Single Player MDP
Given the labeled finite-horizon MDP M and a DFA A

capturing the LTLf formula ', we construct a constrained
product MDP M⇥ = (S⇥

, A
⇥
, H

⇥
, s

⇥
1 , P

⇥
, r

⇥
, c

⇥) which
incorporates the transitions of M and A , the reward function
of M , and the acceptance set of A .

In the constrained product MDP M⇥, S⇥ = (S⇥Q) is the
set of states, A⇥ = A is the action set, and s

⇥
1 = (s1, q0) is

the initial state. The horizon length H
⇥ is H + 1. For each

s, s
0 2 S; q, q

0 2 Q; and a 2 A, we define the transition
function P

⇥
h
((s0, q0)|(s, q), a) at time-step h 2 [1 : H] as

P
⇥
h
((s0, q0)|(s, q), a) =

(
Ph(s0|s, a), if q0 = �(q, L(s))

0, otherwise.
(6)

The reward functions are defined as

r
⇥
h
((s, q), a) =

(
rh(s, a), 8s, q, a, h 2 [1 : H]

0 if h = H + 1
(7)

c
⇥
h
((s, q), a) =

(
1, if h = H + 1 and q 2 F

0 otherwise.
(8)

We thus define the two total expected reward functions
on the product MDP: (i) an expected objective reward
RM⇥

⇡
(r⇥) associated with the original MDP M , and (ii)

an expected constraint reward RM⇥

⇡
(c⇥) associated with

reaching an accepting state in the DFA A . For the con-
strained product MDP M⇥, we are interested in solving the
following constrained optimization problem:

C-MDP: max
⇡

RM⇥

⇡
(r⇥)

s.t. RM⇥

⇡
(c⇥) � 1� �.

(P3)

Theorem 1 (Equivalence of Problems (P1) and (P3)). For
any policy ⇡, we have

RM⇥

⇡
(r⇥) = RM

⇡
(r) (9)

RM⇥

⇡
(c⇥) = PM

⇡
('). (10)

Therefore, a policy ⇡
⇤ is an optimal solution in Problem (P1)

if and only if it is an optimal solution to Problem (P3).

1) Linear Programming Formulation: As described in
Section II-B, the constraints corresponding to the occupancy
measure definition are created as (11), (12), (13) below:

qh(s, a) � 0 8s 2 S
⇥
, 8a 2 A

⇥
, 8h 2 [1 : H⇥], (11)

X

a2A⇥

qh(s, a) =
X

s02S⇥,a02A⇥

P
⇥
h�1(s|s

0
, a

0)qh�1(s
0
, a

0),

8s 2 S
⇥
, 8h 2 [2 : H⇥], (12)

X

a2A⇥

q1(s, a) = 1
s
⇥
1
(s), 8s 2 S

⇥
. (13)

Additionally, the constraint reward should achieve the spec-
ified threshold, i.e.,

X

s2S⇥,a2A⇥,h2[1:H⇥]

c
⇥
h
(s, a)qh(s, a) � 1� �. (14)
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Finally, the LP to maximize the expected reward becomes

q
⇤ = argmax

q

X

s2S⇥,a2A⇥,h2[1:H⇥]

r
⇥
h
(s, a)qh(s, a), (15)

s.t. (11), (12), (13), (14)

The optimal solution q
⇤ of the above LP can be used to

obtain the optimal policy ⇡
⇤ using (3).

C. Assume-Guarantee Transformation

When applied in the 2-player setting, the policies obtained
by the approach of Section IV-A are necessarily centralized,
where each agent must know the current state of all agents.
The dimension of the occupancy measure in M J⇥ at each
time grows rapidly:

N = |S1| · |S2| · |A1| · |A2| · |QJ |, (16)

resulting in significantly larger problems. To overcome the
computational burden and the need for centralization in the
joint MDP approach, we introduce an (AG) approach to
decompose the 2-player CMDP problem into two, smaller
optimization problems. Instead of synthesizing a single joint
policy ⇡

J that controls both agents, our approach produces
two decentralized policies ⇡

1
,⇡

2 corresponding to each
agent. These smaller, modular policies allow each agent to
act only on local information for independent operation.
Decentralized control tends to confer additional benefits such
as reduced latency [19], [20].

Decomposition for decentralized policy synthesis is often
done by assuming the worst-case policy for the other agent.
However, this approach tends to produce overly conservative
policies. The key difference of our approach is the use
of logical constraints, in an AG framework, to reduce this
conservatism. The ego agent is aware of its own logical
constraints as well as those specified on the other agent. By
assuming that the other agent will obey its constraints, the
size of possible policy choices for the other agent is limited.
The understanding of this restriction on the other agent’s
behavior mitigates the conservatism that typically hinders
worst-case decomposition [9].

This semi-cooperative, semi-competing framework natu-
rally captures many realistic scenarios between agents. For
example, two cars interacting at an intersection can be
modeled in this way. Each agent assumes that the other will
obey the traffic laws (i.e., each agent’s specification) with
some high probability, but each agent or driver selfishly looks
to minimize its own commute time (objective reward).

D. Formalization of Assume-Guarantee Decomposition

We describe the AG procedure through the lens of one
agent, as the product CMDP M 1⇥ = M 1⇥A 1 where A 1 is
the DFA corresponding to the specification '

1. The mirrored
procedure can be inferred for the second agent M 2⇥.

Independent AG Policy Synthesis: The agent M 1⇥ as-
sumes M 2⇥ will follow some unknown policy ⇡

2 which
satisfies the specification '

2 with probability at least 1� �
2.

We guarantee that the returned policy ⇡
1 for M 1⇥ satisfies

its logical constraint '1 with probability at least 1 � �
1 by

construction, i.e.,

Assume 1 : RM2⇥

⇡2 (cM2⇥
) � 1� �

2

Guarantee 1 : RM1⇥

⇡1 (cM1⇥
) � 1� �

1
(P4)

The second agent takes a symmetric view, i.e.,

Assume 2 : RM1⇥

⇡1 (cM1⇥
) � 1� �

1

Guarantee 2 : RM2⇥

⇡2 (cM2⇥
) � 1� �

2
.

(P5)

Notice that (P4) and (P5) are consistent, in the sense
that Guarantee 1 ensures that Assume 2 is valid and
Guarantee 2 ensures that Assume 1 is valid.

Theorem 2 (Soundness of AG Policy Composition). Let ⇡1

and ⇡
2 be solutions to (P4) and (P5), respectively, with �

1
, �

2

and � such that �
1 + �

2  �. Then, the joint execution of
the independent policies as ⇡ = (⇡1

,⇡
2) is guaranteed to

satisfy the conjoined specification '
J for the joint CMDP

M J⇥ with probability at least 1� �, i.e.,

RMJ

⇡
(cMJ⇥

) � 1� �. (17)

Proof. Recall from Theorem 1 that RM⇥

⇡
(c⇥) = PM

⇡
(').

We find the probability of failure for the joint specification:

PJ⇥
⇡

(¬'J) = PJ⇥
⇡

(¬('1 ^ '
2)) = PJ⇥

⇡
(¬'1 _ ¬'2)

 P1⇥
⇡1 (¬'1) + P2⇥

⇡2 (¬'2)  �
1 + �

2  �.

The joint specification is met w.p. at least �.

The construction of the independent, AG policy proceeds
as follows. Taking xh(s, a) and yh(s, a) to be the occupancy
measures corresponding to agents M 1⇥ and M 2⇥, the
optimization problem can be written as an “adversarial”
maxmin formulation. In the outer problem, constraints
ensuring the occupancy measure validity are equivalent
to (11)–(13) when replacing q, S

⇥
, A

⇥
, H

⇥
, P

⇥
, and s

⇥
1 ,

by x, S
1⇥

, A
1⇥

, H
1⇥

, P
1⇥

, and s
1⇥
1 , respectively. They are

written as o1, o2, and o3 for brevity. The constraint enforc-
ing the satisfaction of the logical specification is z1, and it is
found by making the same replacements and additionally re-
placing c

⇥
h
, � with c

1⇥
h

, �
1 in (14). Together, these constraints

complete the outer optimization to yield

max
x

f(x), (18)

s.t. o1, o2, o3, z1

The objective function f(x) of (18) is found by solving
the inner optimization problem. Constraints for the inner
problem are similarly formed from (11)–(13) by replacing
q with y and by replacing the M⇥ elements with those
corresponding to the second agent M 2⇥, e.g., S⇥ with S

2⇥,
to yield occupancy measure constraints o4, o5, and o6 and
mission constraint z2. The inner problem becomes:

f(x) = min
y

g(x, y), (19)

s.t. o4, o5, o6, z2

where g(x, y) is

g(x, y) =
X

s12S1⇥,a12A1⇥,

s22S2⇥,a22A2⇥,h2[1:H⇥]

r
⇥
h
(s1, s2, a1, a2)xh(s

1
, a

1)yh(s
2
, a

2). (20)
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From the perspective of M 1⇥, this minimization of the
joint objective reward corresponds to the worst-case behavior
of M 2⇥ subject to the constraint that '2 is satisfied by M 2⇥.
The inclusion of the of logical constraint z2 effectively blunts
the worst-case by restricting the policy space of agent M 2⇥.

Solving (18) for M 1⇥ yields an AG optimal policy ⇡
1⇤,

induced by occupancy measure x
⇤, and an associated optimal

value v
⇤
x

. Similarly, solving an analogous problem for M 2⇥

yields ⇡
2⇤, occupancy measure y

⇤, and optimal value v
⇤
y
.

Theorem 3 (Lower Bound on the Achieved Objective Re-
ward). The objective rewards v

⇤
x

and v
⇤
y

returned by the AG
optimization problems for M 1⇥ and M 2⇥ each provide a
lower bound on the joint reward achieved when executing
policy ⇡ = (⇡1⇤

,⇡
2⇤).

The proof, omitted for brevity, follows from the adversar-
ial, maxmin formulation of (18).

E. Policy Synthesis as a Linear Program
The nested maxmin formulation is computationally diffi-

cult to solve [21]. This challenge is overcome by computing
the Lagrangian dual [22] of the inner min LP, allowing
the adversarial problem (18) to be rewritten as a single
maximization. We obtain the dual of the inner minimiza-
tion (19) in terms of the new dual variables �

1
h
(s),�2(s),

and �
3 corresponding to the constraints o5, o6, and z2 of

the primal problem, respectively. The dual constraints are
`1, `2, and `3. Putting together the original outer problem
constraints, the dualized inner constraints, and the dualized
inner objective, the final LP formulation to find the optimal,
independent AG policy for agent M 1 becomes (21).

max
x,�3�0,�1,�2

�
2(s2⇥1 ) + (1� �

2)�3
, (21)

s.t. o1, o2, o3, z1

`1, `2, `3

F. Linear Program Size Comparison
We compare the scaling of the LP size for the AG

approach against the monolithic construction. Because two
optimization problems are solved in the AG framework, the
number of variables scales with the larger of the product
state-action spaces of the two agents. Assuming that M 1⇥

has the larger state-action space, the order of the number of
LP variables is given below for each approach.

AG: H · |S1| · |A1| · |Q1|
Monolithic: H · |S1| · |S2| · |A1| · |A2| · |QJ |

In the worst case, the maximum size of |QJ | is given by
|Q1| · |Q2| [23]. The AG approach has the same number of
constraints as variables. In the monolithic case, the number
of constraints does not depend on the action space, so the
constraints scale with H · |S1| · |S2| · |QJ |.

V. EXPERIMENTAL RESULTS

We evaluate our compositional solution to the joint prob-
lem against the monolithic approach of Section IV-B in two

experiments. Our solution achieves near-optimal objective
rewards while improving the execution time by an order of
magnitude and maintaining guarantees on constraint satis-
faction. The speedup results from avoiding the combinatorial
explosion of considering multiple agents in a monolithic way,
as evidenced by the size of the LPs used for policy synthesis.

The runtimes include both the time required to create and
the time to solve the optimization problems, and the AG
runtimes account for the two optimization problems (one for
each agent). Gurobi is used to solve the LPs; MONA is used
to convert LTLf formulae into DFAs [24]. Results for both
experiments are in Table I.

A. Experiment 1: Reach-Avoid Task on Gridworld

Policy synthesis for a reach-avoid task on the gridworld
depicted in Fig. 1a is the first point of comparison. In this
example, the two agents M 1 and M 2 initially start in the
“northwest” corner of the gridworld at location (0, 0). The
objective of M 1 is to eventually reach its goal state marked
by a while avoiding the obstacle at location b. Similarly,
M 2 attempts to reach c while avoiding d. These missions
are formalized by the LTLf specifications:

'
1 : F(a) ^G(¬b)

'
2 : F(c) ^G(¬d).

(22)

The probability satisfaction thresholds are chosen as (1�
�
1) = (1 � �

2) = 0.9 for the individual agents, while a
threshold of (1� �) = 0.8 is set for the conjoined specifica-
tion. At every time step, agents have five available actions:
four movement actions aligned to the cardinal directions (N,
E, S, W) and a fifth STAY action. On taking the STAY
action, the agent remains in the same location w.p. 1. For
every movement action taken, let the probability of the agent
actually moving in that direction be p?. The agent moves in
each adjacent direction of the chosen action w.p. (1�p?)/2.
It is impossible to move directly opposite to the chosen
action. If the agent tries to move in a direction that is not
possible (i.e., facing into edge of the gridworld), then the
agent remains in its original location. Agent M 1 has a p?

value of 0.9, while M 2 is slightly less reliable with p? = 0.8.
The rewards are defined jointly and encourage exploration

by returning greater rewards for joint states in which M 1 and
M 2 occupy different locations as shown

rh(s
1
, s

2
, a

1
, a

2) =

(
2 if s1 6= s

2

1 if s1 = s
2 8 h, a

1
, a

2
. (23)

The episode length (H) is 15 for the 4⇥ 4 sized gridworld,
and it is incremented by one for every additional row added
to the gridworld. For the larger gridworlds, the locations of
the objectives and starting agent positions change to keep
the same configuration with respect to the “edges” for the
gridworld, i.e., a is always in the southwest corner with b

located one space to the north. The same holds for c and the
northeast corner. We assess the scalability of our solution by
varying the size of the gridworld and comparing the policy
synthesis time against the monolithic solution approach.
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Gridworld Size LP Size (vars, cons) Runtime (s) Achieved Reward
Monolithic AG Monolithic AG Speedup Monolithic AG Relative Optimality

4x4 (512000, 20481) (4609, 4609) 111.23 2.18 50.96 ⇥ 30.95 30.29 97.86 %
5x5 (1328125, 53126) (7651, 7651) 692.42 4.96 139.64 ⇥ 32.95 32.29 97.99 %
6x6 (2916000, 116641) (11665, 11665) 3094.31 11.47 269.68 ⇥ 34.95 34.32 98.20 %
7x7 (5702375, 228096) (16759, 16759) 10983.09 22.76 482.49 ⇥ 36.95 36.37 98.42 %
8x8 (10240000, 409601) (23041, 23041) 34181.37 57.47 594.75 ⇥ 38.95 38.40 98.59 %

4x4 (1024000, 40961) (6145, 6145) 426.96 3.59 119.08 ⇥ 32.00 31.56 98.62 %
5x5 (2656250, 106251) (10201, 10201) 2685.76 8.29 323.90 ⇥ 34.00 33.84 99.54 %
6x6 (5832000, 233281) (15553, 15553) 12393.80 18.06 686.18 ⇥ 36.00 35.94 99.84 %

TABLE I: Comparison of AG approach to monolithic for Experiment 1 (top) and Experiment 2 (bottom)

(a) Experiment 1. (b) Experiment 2.

Fig. 1: Gridworlds used in the 4⇥4 experiments. Goal (reach) and
obstacle (avoid) states corresponding to the LTLf specification are
denoted by stars and triangles, respectively. Locations with fewer
stars should be visited first. The starting positions of the agents are
marked by the stick figures. Positions corresponding to M 1 are
marked in green, while those for M 2 are shown in light blue.

B. Experiment 2: Ordered-Goal Navigation
The second gridworld experiment features the same tran-

sition dynamics and episode lengths as Experiment 1, and
the notable locations (initial positions and labeled locations)
shift in the same manner as the grid size increases. In this
experiment, both agents have p? set to 0.95. The probability
satisfaction thresholds are set to (1� �

1) = (1� �
2) = 0.95

and (1 � �) = 0.9. The mission specification for M 1 is to
first visit a, then proceed to location b while always avoiding
c, as shown below:

'
1 : F(b) ^G(¬c) ^ (¬b U a)

'
2 : F(e) ^G(¬f) ^ (¬e U d).

(24)

This simulates autonomous agents collecting and moving
items to a new location (e.g., cargo to a warehouse) while
navigating around various obstacles. The reward function is
unchanged from the first experiment (23), again encouraging
separation of the agents to avoid over-crowding.

All experimental results demonstrate a relatively small op-
timality gap between the AG-based decomposition solution
and the monolithic approach. Furthermore, this optimality
gap is shown to tighten as the problem size grows, while the
speedup enjoyed by the AG approach continues to improve
with respect to the monolithic problem.

VI. CONCLUSION

We have introduced a novel, assume-guarantee (AG) based
methodology to split and solve logically constrained MDPs
for multi-agent systems with significant scalability improve-
ments and an empirically tight optimality gap. The AG
decomposition blunts the conservatism while providing prov-
able guarantees on logical constraint satisfaction. Analytical

quantification of the optimality gap and the extension to
unknown transition dynamics remain as future work.
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