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The coupled equations governing whistler waves propagating along a duct with cylindrical

cross section are derived and then solved numerically. These equations are expressed in

terms of magnetic and current flux functions and show that it is possible to have a solution

where the waves are finite in the duct and decay exponentially outside the duct. This

solution has the property of having zero radial Poynting flux everywhere so, as required

for whistler waves to bounce back and forth losslessly between magnetically conjugate

terrestrial hemispheres, no wave power leaks from the duct. The coupled equations are

solved numerically for a tangible realistic situation by dividing the radial domain into an

inner and an outer region where the interface between these regions is at a mode conversion

location where fast and slow modes inside the duct merge and effectively reflect. The result

of this effective reflection is that there are fast and slow standing waves in the duct. In the

region external to the duct, the wave solutions are also a form of standing waves, but

with a strong exponential decay and a radial wavelength that is intermediate between that

of the fast and slow waves in the duct. The numerical solution is shown to be in good

quantitative agreement with estimates made from analytic models. Detailed examination

of the solutions in the vicinity of the mode conversion location shows that the classic plane

wave assumption fails to describe the true nature of the modes.

a)pbellan@caltech.edu

1

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
8
8
5
7
2



I. INTRODUCTION

Wave propagation in a magnetized plasma has been studied for a century and thousands of

papers have been written on this subject. These waves have also been discussed in many books

such as Stix1, Swanson2, and Bellan3.

A wave of particular interest is the whistler wave which was first observed in a terrestrial context

and has since been observed by spacecraft in Earth’s magnetosphere and in the magnetospheres

of other planets. Whistler waves have also been observed and studied extensively in laboratory

plasmas. Magnetospheric whistler waves play an important role in pitch-angle scattering of ener-

getic electrons trapped in Earth’s Van Allen radiation belts causing some electrons to leak into the

loss-cone of Earth’s magnetic field and then impact Earth’s upper atmosphere to form aurora.

Previous work on whistler waves will now be summarized. The first published report of whistler

wave observation was by Barkhausen4 in 1919 who stated that during the First World War unex-

pected audio frequency waves were detected from telephone lines at the front. These telephone

lines were connected to high-gain amplifiers and an audible signal was heard that sounded like

"shells flying". The signal was a descending audio tone lasting about a second. At first it was

thought that these waves were related to a meteorological feature, but Barkhausen stated this was

refuted because the telephone wires were underground. Barkhausen concluded that the cause of

these waves was inexplicable and hoped that an understanding would be achieved in the future.

The cause of whistler waves remained unexplained until 1953 when Storey5, using detailed ob-

servations of the geographical and temporal properties of whistler waves, concluded that whistler

waves were excited by terrestrial lightning bolts. Storey postulated that these waves reflect back

and forth between magnetically conjugate locations in the northern and southern hemispheres.

This postulation was remarkable for two reasons: First, the required plasma density greatly ex-

ceeded the value assumed by then-existing models for the space regions through which the waves

would have to propagate. Second, even if the waves could travel along the proposed path, they

would be expected to have such a large geometrical divergence that their amplitude would be-

come negligible after traveling from one hemisphere to the other. Storey boldly predicted that the

plasma density along the wave trajectory must be much higher than what was then assumed; this

prediction was later confirmed by spacecraft measurements in what is now known as the plasma-

sphere. However, the lack of geometric divergence could only be explained if the whistler waves

were somehow channeled along a magnetic field line when bouncing between hemispheres. Such
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channeling implies existence of some kind of waveguide or ‘duct’ connecting the two hemispheres

so that the wave is confined to this duct.

Early models of whistler wave ducting invoked wave ray descriptions. An important example

is that by Gendrin6 who used a ray description to show that, for certain parameters, the wave group

velocity would align exactly along the background magnetic field so that a wave would bounce

between hemispheres along the background magnetic field with no power flow perpendicular to the

magnetic field. However, it was later realized7–11 that a ray description is inappropriate because

the ray description (‘geometric optics’) is a form of the WKB approximation and so is based

on the assumption that wave properties change very gradually over a wavelength. The whistler

dispersion relation becomes quite complicated at the location where the reflection from the ‘duct

walls’ is supposed to occur, and this complexity invalidates a ray description. In particular, as

noted by Karpman12, the assumption that wave properties change gradually (WKB approximation)

is violated at the duct walls. Thus, a so-called ‘full-wave’ description must be used where the

actual field differential equations are solved directly without invoking a geometric-optics WKB

approximation.

Stenzel observed that high power whistler waves could effectively dig their own ducts13; the

nonlinear ponderomotive force associated with the wave was seen to create a density depletion

along the magnetic field in a laboratory plasma. The whistler wave maintained a constant ampli-

tude as it propagated away from the excitation source, a behavior that contrasts with the non-duct

situation where it was observed that wave amplitude decreased with distance from the source be-

cause of geometric divergence. Kostrov et al.14 showed that ducts can also appear due to plasma

heating because of a redistribution of the plasma away from the heated region by thermally driven

diffusion.

Plasma wave models typically use a Cartesian geometry {x,y,z} where z denotes the direction

of the background magnetic field, x denotes the direction of density or background magnetic field

inhomogeneity, and y is an ignorable coordinate so no quantity depends on y. However, instead of

using Cartesian geometry, Kostrov et al.14, Pasmanik and Trakhtengerts8, Bakharev et al.15, Ku-

drin et al.16, and Nassiri-Mofakham17 used a cylindrical coordinate system {r,φ ,z} where z again

denotes the background magnetic field, but now r denotes the distance from the magnetic field line

that is the axis of a duct. Here φ is ignorable on the basis that the duct is azimuthally symmetric.

Zudin et al.18 considered both Cartesian and cylindrical models of whistler propagation.

Cho19 and Nejad and Streltsov11 independently concluded that whistler ducting involves a si-
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multaneous mode conversion of a fast wave into a slow wave and mode conversion of a slow wave

into a fast wave. Linear mode conversion (see Chapter 13 of Stix1) is a wave process that occurs

when a wave equation is fourth order and, for a given frequency and parallel wavenumber, two

distinct modes exist having perpendicular wavevectors that are normally distinct from each other,

but become identical at a certain critical location. The two modes are labelled as ‘fast’ and ‘slow’

referring to the wave phase velocity in the direction perpendicular to the background magnetic

field. For example, a fast mode propagating from left to right in a certain geometry and approach-

ing the critical location converts into a slow mode that then propagates from right to left; there is

also an associated ‘tunneling’ field to the right of the mode conversion location. Similarly, an ap-

proaching slow mode propagating from left to right converts into a fast mode that then propagates

in the reverse direction and again there is an associated ‘tunneling’ field to the right of the mode

conversion location. Thus, mode conversion is akin to reflection except that the reflected wave has

been converted from fast to slow or vice versa. This simultaneous fast to slow and slow to fast

mode conversion thus effectively acts as a mirror at the inside wall of the duct and so confines the

whistler wave to the duct interior. Cho used cylindrical geometry, considered laboratory plasmas

where the waves are called helicons and characterized the waves in terms of Hankel functions.

Nejad and Streltsov used Cartesian geometry, compared their numerically calculated results to

spacecraft measurements, called the process ‘mode switching’ and showed via numerical solu-

tions that the mode switching would occur at a density dip. They also reported more complicated

processes20 that would occur where there is a local abrupt change in the magnetic field or in the

density and called these locations density or magnetic shelves. These other more complicated

processes appeared to be leaky because they appeared to have waves escaping the ‘shelf’.

Maggs et al.21 created a duct in a laboratory plasma and saw evidence of the co-existence of fast

and slow waves. Streltsov et al.10 have modeled a laboratory ducting experiment. The possibility

of whistler waves in the solar corona has been considered22 as well as in the solar wind23.

Verkhoglyadova et al24 have shown that the magnetic field of an oblique whistler wave is

circularly polarized and that in certain limits becomes a Gendrin mode. Loi et al25 directly imaged

actual ducts using the Murchison Widefield Array radio telescope. Huba et al26 have proposed that

ducts can be produced by atmospheric gravity waves and provided models showing a plasmasphere

with a corrugated density. Harid et al.27 used a ray tracing code to model detailed spacecraft

measurements but acknowledged that ray tracing fails at the location where the wave reflects. Gu

et al.28 have made a statistical study of duct size using 7 years of Van Allen spacecraft data.
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Lewis and Bellan29 showed that the requirement that physically measurable variables be non-

singular coupled with cylindrical symmetry provided constraints on allowed dependence of vari-

ables; these regularity constraints provide insights into the nature of solutions to equations before

solving these equations.

This paper begins by summarizing the uniform plasma model (i.e., dispersion relation) of

whistler wave propagation and its WKB-like extension to a non-uniform plasma. The paper then

derives an accurate pair of coupled differential equations that provide a ‘full-wave’ description of

whistler wave propagation in a cylindrical duct and relates the solution of these equations to the

simpler, but inaccurate, uniform plasma dispersion relation and WKB solutions. Although incor-

rect for a non-uniform plasma in the critical situation of interest, the uniform plasma dispersion

relation and the related WKB solution serve as useful intuitive guides for interpretation of the

accurate, but much more complicated, full-wave description.

The paper is organized as follows: Section II summarizes the uniform plasma whistler wave

model expressed as a dispersion relation predicting two wave modes (fast and slow) that exist si-

multaneously while having the same parallel wavelength but different perpendicular wavelengths.

The discussion further shows that there is a critical density, called the Gendrin density, at which

the fast and slow waves have the same perpendicular wavelength and that for this density, the wave

has the peculiar property of having zero energy flux perpendicular to the magnetic field. Section

III derives the two coupled differential equations which constitute the full-wave description in the

cylindrical geometry appropriate for a pipe-like duct. Section IV considers the Poynting vector in

the context of the full wave equations and shows that the nature of these equations implies that

there is zero energy flux perpendicular to the magnetic field at all radii in a non-uniform plasma;

this result is a much stronger statement than the Gendrin density property of the uniform plasma

analysis. Section V shows that the full-wave description can be reduced to the uniform plasma de-

scription and Section VI shows that this reduction retrieves the well-known limits of the uniform

plasma description for propagation exactly parallel to or exactly perpendicular to the magnetic

field (right and left hand circularly polarized for pure parallel propagation, ordinary and extraordi-

nary modes for pure perpendicular propagation). Section VIII shows that in a radially non-uniform

plasma, the parallel refractive index is determined by the location where the fast and slow modes

coalesce. Section VIII points out physically important differences between cylindrical geometry

and Cartesian geometry. Section IX prescribes a reference azimuthally symmetric case where an

inner uniform-density plasma is connected to an outer higher-density region by a non-uniform
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density region. Whistler waves in this situation are examined by pushing the uniform plasma de-

scription up to and, what is later shown, beyond its limits; while the results are later shown to

be inexact, they nevertheless provide useful initial insights and benchmarks. Section X presents

the numerical solution of the full-wave equations and relates this exact solution to the inexact but

intuitive analytic results of Section IX. Section X then describes in detail the numerical method

and its complexities, shows that the results indeed solve the equations and addresses an interesting

issue related to the failure of the geometric-optics WKB approximation at the location where the

fast and slow modes coalesce. The resolution of this issue reveals a new and unexpected type of

solution that exists in the vicinity of the mode coalescence location. Section XI presents three

cases differing from the reference case so as to demonstrate how the full-wave solution depends

on the location of the mode coalescence and on frequency. Section XII presents a conclusion that

summarizes the main results.

II. SUMMARY OF DISPERSION RELATION METHODS

SI units will be used. The plasma is assumed to have a background magnetic field B = B0ẑ and

the wave amplitude is assumed to be so small that a linear description can be used. The wave fields

obey Maxwell’s equations and the charged particles obey the Lorentz force equation. The wave is

assumed to have a parallel phase velocity greatly exceeding both electron and ion thermal veloci-

ties and the particle temperatures are assumed to be sufficiently low that finite Larmor orbit effects

can be neglected so the wave can be considered to be a cold plasma wave. The cold plasma wave

dispersion relations are obtained from the determinant of a 3×3 matrix that multiplies the vector

electric field and these dispersion relations are conveniently categorized by the CMA (Clemmo-

Mullaly-Allis) diagram1. The CMA diagram is based on Cartesian geometry {x,y,z} and all wave

field components are assumed (e.g., see page 4 of Stix1) to have a plane-wave dependence given

by

E(x,y,z, t), B(x,y,z, t)∼ eikxx+ikzz−iωt (1)

where ω is assumed to be real and positive. Equation 1 is called the ’plane wave assumption’ and is

only strictly true if the plasma is spatially uniform. If the plasma is non-uniform in some direction,

which in this paper will be the x direction, then in certain situations, the plane wave assumption

may be generalized by the WKB approximation which allows for a spatially dependent kx(x), but
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this generalization requires that kx(x) change very gradually in a wavelength and this requirement

is violated in the situation of most interest here. Despite this breakdown, it is useful to consider

the predictions of the plane wave and WKB solutions in a non-uniform plasma as these predictions

provide useful insight. Thus, plane wave and WKB solutions will be discussed with appropriate

warnings regarding where and how these solutions fail.

Plane waves are deemed to be "propagating" if k2 = k2
x +k2

z > 0. The CMA diagram shows that

thirteen qualitatively different regions exist for plane waves in a two-dimensional parameter space1

and in each CMA region there can be zero, one, or two propagating wave modes. The eikxx+ikzz−iωt

dependence is invoked in Maxwell’s equations and in the particle equations of motion to obtain

a dispersion relation ω = ω(k) that characterizes the mode properties. The refractive index N =

ck/ω, a parameter comparing waves in plasma to waves in vacuum, provides a convenient way

to classify propagating modes as being fast (small N) or slow (large N). The whistler wave exists

in the CMA region where ωpe,ωce ≫ ω ≫ ωci,ωpi. An unexpected and important result of the

analysis presented here is a demonstration that the seemingly innocuous assumption prescribed

by Eq.1 fails in the vicinity of the mode conversion location; this demonstration will be given in

Sec.X D.

The whistler dispersion relation is a simpler form of the rather complicated dispersion relations

produced by the CMA analysis. This involves algebraic manipulations that produce the general

Appleton-Hartree dispersion relation1 and then further simplification based on assumptions re-

garding a parameter θ defined by Nz/N = cosθ . This simpler form is

N2 = 1+
ω2

pe

ω (|ωce|Nz/N −ω)
; (2)

the absolute value bars are used because ωce = qeB/me is negative. As conventionally defined,

here ω2
pe = nq2

e/ε0me is the square of the electron plasma frequency while n is the electron den-

sity. θ is conventionally interpreted as a geometric angle between N and ẑ so that cosθ ≤ 1.

However, when discussing mode conversion, this interpretation turns out to be inadequate because

it omits the physically realistic and important situation where θ is complex so there is no geo-

metric interpretation. The whistler regime typically has ω2
pe sufficiently large that the ”1” on the

right hand side (displacement current) can be discarded. We will alternate between using Eq.2

with displacement current dropped and using the full cold plasma dielectric tensor because useful

insights are obtained from both these approaches and from comparing them.

7

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
8
8
5
7
2



On discarding displacement current, Eq.2 reduces to

N2 =
ω2

pe

ω (|ωce|Nz/N −ω)
; (3)

discarding displacement current means that the upper hybrid resonance can no longer be described.

It is now more convenient to use k = ωN/c instead of N so Eq.3 becomes

k2 =
ωω2

pe/c2

|ωce|kz/k−ω
. (4)

Equation 4 can be arranged as

k2
x + k2

z −
|ωce|

ω
kz

√

k2
x + k2

z +
ωpe2

c2
= 0. (5)

Streltsov and colleagues have shown that Eq.5 can be solved for k2
x to give two modes, denoted

slow (subscript ‘s’) and fast (subscript ‘f’),

k2
xs = k2

z

[

(ωce

2ω

)2
(

1+

√

1− n

nG

)2

−1

]

(6)

k2
x f = k2

z

[

(ωce

2ω

)2
(

1−
√

1− n

nG

)2

−1

]

(7)

where nG, called the Gendrin density, is given by

nG =
1

4

ε0meω2
ce

e2
N2

z (8)

so
ω2

pe

ω2
ce

=
N2

z

4
at n = nG. (9)

If the plasma is spatially uniform and has a density n = nG the fast and slow modes become indis-

tinguishable. On the other hand, if the plasma is spatially non-uniform so that there is a specific x

at which n(x) = nG, then the situation develops an inherent paradox. The paradox results because

the location where the two plane wave modes become indistinguishable is precisely the location

where the plane wave model (and its WKB generalization) break down. Resolving this paradox

is one of the main results of this paper. The plane wave approximation and its WKB extension

will be used to the extent that they provide useful intuition and the cause of the breakdown will

be examined. The nature of the breakdown will be compared to the correct full-wave solution.

Thus, the prediction that the plane wave solutions become indistinguishable in a non-uniform
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plasma at n(x) = nG is formally meaningless because the plane wave assumption and the resulting

concept of dispersion relations are not permissible at n(x) = nG. Despite this, it is nevertheless

helpful to intuition to be aware of the predictions of the plane wave/WKB model and its associated

dispersion relations; these predictions, while not correct, serve as a guide/benchmark/insight for

understanding what actually happens. Thus, the uniform plasma prediction that the fast and slow

modes become indistinguishable at n = nG provides the insight that in a non-uniform plasma the

fast and slow modes strongly interact at n(x) = nG.

The dispersion relation can be expressed in terms of ‘natural’ parameters by defining

ω̄ = ω/ |ωce| (10)

de = c/ωpe (11)

k̄z = kzde (12)

k̄x = kxde (13)

where de is the electron skin depth. Using these definitions, Eq.5 reduces to

k̄2 +1 = k̄k̄z/ω̄. (14)

In the k̄x → 0 limit, k̄z → k̄ and the dispersion relation reduces to

k̄ =

√

ω̄

1− ω̄
. (15)

This can be expressed in terms of the axial wavelength λz = 2π/kz, the quantity typically measured

in experiments, as

λz =
c

fpe

√

fce

f
−1 (16)

so if for example f/ fce = 1/2, then λz = c/ fpe; here f = ω/2π and fce = |ωce|/2π . Equivalently,

Eq.14 can be expressed as

f

fce
=

k̄2

k̄2 +1
(17)

a relation verified experimentally in Fig.6 of Stenzel30 where de = c/ωpe = 1.07 cm on using

ωpe/ωce = 19 and |ωce|/2π = 235 MHz. This shows that for 0.2 < f/ fce < 0.6, a typical range

for whistler experiments and observations, the axial wavelength ranges from half to one and a

half times c/ fpe. For purposes of rough estimation, the λz of a whistler wave in the range 0.2 <

f/ fce < 0.6 can be considered to scale approximately inversely with frequency with the condition
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that λz = c/ fpe when f/ fce = 1/2. These approximations are true only if the radial wavelength

is much larger than λz and since the radial wavelength is of the order of the device radius ldevice,

this requires ldevice to be much larger than 2πde, a condition that places a lower bound on the

electron density. Thus, to satisfy these conditions it is necessary to have ldevice ≫ 2πc/ωpe which

corresponds to requiring n ≫ 4π2me/(µ0q2
e l2

device). For example, if the device radius is ldevice =

0.5 m, then the electron density should satisfy n ≫ 4× 1015 m−3. In lab experiments reporting

whistler wave observations, this condition is typically satisfied by a margin of about 102.

Another point of view is obtained by squaring and expanding Eq.5 which becomes the quadratic

equation in k̄2
x ,

k̄4
x +

(

2k̄2
z −

k̄2
z

ω̄2
+2

)

k̄2
x +

(

k̄4
z − k̄2

z

(

k̄2
z

ω̄2
−2

)

+1

)

= 0. (18)

Solving for k̄2
x gives the two roots

k̄2
x = k̄2

z

(

−1+
1

2ω̄2
− 1

k̄2
z

± 1

2ω̄2

√

1− 4ω̄2

k̄2
z

)

. (19)

These roots merge when k̄2
z = 4ω̄2 which corresponds to the Gendrin relation, Eq.9. The value of

the merged root is

(

k̄2
x

)

merged
= k̄2

z

(

1

4ω̄2
−1

)

. (20)

In order for this merged root to be positive and hence associated with propagating modes just

before merging, it is necessary to have ω̄ < 1/2.

Equation 20 indicates that
(

k̄2
x

)

merged
= k̄2

z when ω̄ = 1/
√

8 = 0.353 in which case wave phase

fronts would propagate at a 45 degree angle relative to the magnetic field. This 45 degree angle

was observed by Stenzel and Urrutia31 in a laboratory experiment having B = 5× 10−4 T so

fce = 1.4×107 Hz and the wave frequency was f = 5 MHz so ω̄ = f/ fce = 0.357 ≈ 1/
√

8. This

experiment had an axial wavelength λz = 0.14 m so Nz = c/( f λz) = 429. Equation 8 predicts that

the Gendrin density will then be

nG =
1

4

ε0B2

me
N2

z = 1.1×1017m−3 (21)

which is in good agreement with the reported density of 1017 m−3.

Another constraint, to be justified below, is that for the fast mode to exist, it is necessary to have

N2
z <

ω2
pe/ω2

ce

ω̄(1−ω̄) in the limit that displacement current can be neglected. The conditions for having

10
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fast and slow modes exist and then merge at some location are summarized as

ω̄ <
1

2
(22)

4ω2
pe

ω2
ce

< N2
z <

ω2
pe/ω2

ce

ω̄ (1− ω̄)
. (23)

When Eqs.22 and 23 are satisfied, the fast and slow modes are distinct and both N2
⊥s and N2

⊥ f

are pure real. The fast mode has an electromagnetic character and is right hand circularly polarized

whereas the slow mode has an electrostatic character.

As shown by Gendrin6, Helliwell32, and Verhoglyadova et al.24, there is a special situation,

called the ‘Gendrin mode’ where the z components of the wave group and phase velocities are

equal. This equality has been experimentally validated (see Fig. 8c of Urratia and Stenzel33).

To derive the Gendrin mode, Eq.4 is re-arranged as

ω =
c2

ω2
pe

(|ωce|kzk−ωk2). (24)

By taking the derivative of Eq.24 with respect to kx, the x component of the group velocity is seen

to be
∂ω

∂kx
=

c2

ω2
pe

(|ωce|kz −2ωk)
∂k

∂kx
. (25)

In the situation where

k =
|ωce|kz

2ω
(26)

it is seen that ∂ω/∂kx = 0 so the group velocity is only in the z direction.

Using Eq.26 to substitute for k in Eq.24 gives

ω =
c2

ω2
pe

|ωce|2 k2
z

4ω
(27)

which upon rearrangement shows that the z direction phase velocity is

ω

kz
=

c |ωce|
2ωpe

. (28)

This can be expressed as

ω =
c |ωce|
2ωpe

kz (29)

which implies
∂ω

∂kz
=

c |ωce|
2ωpe

. (30)

Thus, the group velocity in the z direction equals the phase velocity in z the direction.
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Equation 26 can be written as

ω

|ωce|
=

1

2

kz

k
≤ 1

2
(31)

which constrains ω for the Gendrin mode.

This discussion of group and phase velocities is only appropriate for a uniform plasma. In a

plasma that is non-uniform in x but uniform in z a full-wave description must be used to analyze

wave behavior. This is because the group velocity is equivalent to the geometric optics ray concept

and so depends on the WKB assumption k−1
x dkx/dx ≪ kx which fails at the mode conversion

location because at this location dkx/dx → ∞. For example, if the density n depends on x, then

taking the derivative of Eq.6 or of Eq.7 with respect to x shows that dkx/dx → ∞ at the location

where n(x)→ nG. Although the concept of group velocity in the x direction, i.e., vg,x = ∂ω/∂kx

fails at the mode conversion location, the concept of group velocity in the z direction,i.e., vg,z =

∂ω/∂kz remains valid at all positions.

This breakdown of the group velocity concept at the mode conversion location can also be seen

from consideration of the standard derivation of group velocity, as exemplified by Jackson34 where

the derivation has a logic progressing from Eq.7.6 (p.296, equivalent to Eq.1 here), to Eq. 7.80

(superposition of Eq.1 solutions in a Fourier integral) to Eq.7.84 (coherent phase mixing on the

group velocity trajectory). It will be shown in Section X D of this paper that the Eq.1 assumption

is inadequate at the mode conversion location so the logical progression summarized above fails

because of the failure of the first assumption in this logical progression, namely the assumption

that propagation is completely prescribed by Eq.1.

III. FUNDAMENTAL EQUATIONS INSTEAD OF DISPERSION RELATIONS

Instead of assuming a uniform plasma which enables use of the dispersion relations summarized

in the previous section, we now use the original wave partial differential equations. However,

we will also refer back to the dispersion relation results as they provide useful benchmarks and

insights regarding the more fundamental differential equation analysis. Cold plasma waves are

traditionally described using the wave electric field vector E as the fundamental parameter. The

wave dispersion relation is then derived from the determinant of a 3× 3 matrix that multiplies E

and results from combining Ampere’s law, Faraday’s law and the Lorentz force equation. Knowing

E, the wave magnetic field B can then be determined from Faraday’s law. In Bellan35 it was shown

12
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that simpler and more transparent forms of dispersion relations can be obtained by optimal choice

of the fundamental parameter. Following this approach, we will use the wave magnetic field B

as the fundamental parameter. This provides a significant advantage because the zero-divergence

property of the magnetic field means that the wave magnetic field can be characterized by just

two scalar parameters whereas the wave electric field requires three quantities. Furthermore, we

assume that both the wave and the environment are cylindrically axisymmetric so the coordinate

system is cylindrical with coordinates {r,φ ,z} where the z axis passes through the source and the

wave has no φ dependence. This axisymmetric wave assumption precludes consideration of waves

having exp(imφ) spatial dependence where m is a non-zero integer; effectively it is assumed that

the wave has m = 0 azimuthal dependence. The assumption of axisymmetry for the environment

is the natural coordinate system of a pipe or tube with axis on a magnetic field line linking a

location in Earth’s northern hemisphere to a magnetically conjugate location in Earth’s southern

hemisphere. The virtue of {r,φ ,z} cylindrical geometry compared to {x,y,z} Cartesian geometry

is that φ has the finite domain from 0 to 2π which relates to a real physical geometry whereas y has

an infinite domain, namely −∞ < y < ∞ which does not correspond to a real physical geometry.

We now derive two coupled equations involving the wave magnetic field. The equations pre-

sented here are mathematically equivalent to the conventional electric-field cold plasma plane-

wave description but incorporate certain insights and practical advantages.

As before, we assume a time dependence e−iωt so Faraday’s and Ampere’s laws are

∇×E = iωB (32)

∇×B = −i
ω

c2
K ·E (33)

where the plasma dielectric tensor K is such that

K ·E = SE⊥+ iDẑ×E⊥+PEzẑ; (34)

here ⊥ means in the direction perpendicular to ẑ. The cold plasma dielectric tensor elements are1

S = 1− ∑
σ=i,e

ω2
pσ

ω2 −ω2
cσ

, D = ∑
σ=i,e

ωcσ

ω

ω2
pσ

ω2 −ω2
cσ

, P = 1− ∑
σ=i,e

ω2
pσ

ω2
. (35)

We have used Stix’s notation for the dielectric tensor elements because of convenience of the

mnemonics: S = sum, D= difference, P = parallel with associated quantities R =right and L = left

13
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so S = (R+L)/2 (sum) and D = (R−L)/2 (difference). Thus,

R = S+D (36)

L = S−D. (37)

We define

r̄ = rω/c (38)

and

∇̄ =
c

ω
∇ (39)

so Eqs.32 and 33 become

∇̄×E = icB (40)

∇̄× cB = −iK ·E. (41)

Because the wave fields do not depend on φ , the wave magnetic field can be expressed in the

general two-parameter form

cB = ∇̄ψ × ∇̄φ + χ∇̄φ (42)

where ψ is proportional to the wave poloidal magnetic flux and χ is proportional to the wave

poloidal magnetic current consisting of the sum of the wave plasma and displacement currents.

Here ∇̄φ = φ̂/r̄, poloidal refers to vectors in the r,z plane, and toroidal refers to a vector in the

φ direction. Equation 42 shows that B·∇̄ψ = 0 indicating that poloidal magnetic field lines are

contours of constant ψ. Equation 42 is the most general form for an axisymmetric magnetic field

because it depends on two independent scalar functions and automatically satisfies ∇̄ ·B = 0 since

∇̄ ·
(

∇̄ψ × ∇̄φ
)

= 0 for arbitrary ψ and ∇̄ ·
(

χ∇̄φ
)

= χ∇̄2φ = 0 for arbitrary χ(r̄, z̄). The condition

∇̄ ·B = 0 implies that a magnetic field depends on only two scalar functions because once any two

components of B are specified, the third component is determined from ∇̄ ·B = 0. This situation is

not true for the electric field because ∇̄ ·E can be non-zero. ψ(r̄, z̄) has the physical interpretation

of being the magnetic flux (except for a constant coefficient) passing through a circle about the z̄

axis having radius r̄ and axial position z̄. Similarly, χ(r̄, z̄) has the physical interpretation of being

the current (plasma and displacement) passing through a similar circle, again except for a constant

coefficient. Equivalently, χ can be interpreted as an expression of Ampere’s law which states that

Bφ ∼ I/r̄ where I is the current passing through a circle of radius r̄.
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The wave magnetic field components are then

Br = − 1

r̄c

∂ψ

∂ z̄
(43)

Bφ =
χ

r̄c
(44)

Bz =
1

r̄c

∂ψ

∂ r̄
. (45)

Taking the curl of Eq.42 gives

∇̄× cB =−r̄2∇̄ ·
(

1

r̄2
∇̄ψ

)

∇̄φ + ∇̄χ × ∇̄φ (46)

so Eqs. 40 and 41 can be expressed as

∇̄×E = i∇̄×
(

ψ∇̄φ
)

+ iχ∇̄φ (47)

−r̄2∇̄ ·
(

1

r̄2
∇̄ψ

)

∇̄φ + ∇̄χ × ∇̄φ = −iSE⊥+ Dẑ×E⊥− iPEzẑ. (48)

Because the curl of a poloidal vector is toroidal and vice versa, decomposing Eq.47 into toroidal

and poloidal components gives

∇̄×Epol = iχ∇̄φ (49)

∇̄×Etor = i∇̄×
(

ψ∇̄φ
)

. (50)

Integration of Eq.50 gives

Etor = iψ∇̄φ (51)

so

Eφ = i
ψ

r̄
. (52)

Dotting Eq.49 with φ̂ gives

∂Er

∂ z̄
− ∂Ez

∂ r̄
=

iχ

r̄
. (53)

Dotting Eq.48 with r̂, φ̂ , ẑ successively gives

1

r̄

∂ χ

∂ z̄
= iSEr + DEφ (54)

−r̄∇̄ ·
(

1

r̄2
∇̄ψ

)

= −iSEφ +DEr (55)

i

r̄

∂ χ

∂ r̄
= PEz. (56)
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Substituting for Eφ in Eqs.54 and 55 and substituting for Ez in Eq.53 provides

− i

r̄

∂ χ

∂ z̄
= SEr + D

ψ

r̄
(57)

−r̄∇̄ ·
(

1

r̄2
∇̄ψ

)

= S
ψ

r̄
+DEr. (58)

∂Er

∂ z̄
− i

∂

∂ r̄

(

1

Pr̄

∂ χ

∂ r̄

)

=
iχ

r̄
. (59)

Solving Eq.57 for Er gives

Er =− i

Sr̄

(

∂ χ

∂ z̄
− iDψ

)

(60)

and substituting this into Eqs. 58 and 59 gives two coupled partial differential equations involving

ψ and χ, namely

r̄
∂

∂ r̄

(

1

r̄

∂ψ

∂ r̄

)

+
∂ 2ψ

∂ z̄2
+

S2 −D2

S
ψ =

iD

S

∂ χ

∂ z̄
(61)

r̄
∂

∂ r̄

(

1

Pr̄

∂ χ

∂ r̄

)

+
∂

∂ z̄

(

1

S

∂ χ

∂ z̄

)

+χ = i
∂

∂ z̄

(

D

S
ψ

)

. (62)

If we now assume that there is an exp(ikzz) = exp(iNzz̄) dependence where Nz = ckz/ω and z̄ =

zω/c, Eqs.61 and 62 become

r̄
∂

∂ r̄

(

1

r̄

∂ψ

∂ r̄

)

+

(

S2 −D2

S
−N2

z

)

ψ = −Nz
D

S
χ (63)

r̄
∂

∂ r̄

(

1

Pr̄

∂ χ

∂ r̄

)

+

(

1− N2
z

S

)

χ = −Nz
D

S
ψ. (64)

These two equations are equivalent to the determinant of the 3 × 3 matrix associated with

the CMA diagram but have the advantages of: (i) involving only two quantities, namely ψ and

χ, (ii) involve cylindrical geometry, (iii) allow for both density and background magnetic field

radial gradients, and (iv) provide regularity constraints that are missing from a Cartesian geometry

model.

By using Eq.52 to give ψ = −irEφ and χ = r̄cBφ , Eqs.63 and 64 become identical to

Eqs.18(a,b) in Kostrov et al.14. Kostrov solved the equations by assuming a Bessel function

solution for an inner uniform density region and a Hankel function solution for an outer, but dif-

ferent, uniform density region and then used boundary conditions at the step interface to connect

the inner and outer solutions. Kostrov et al. stated that there were no discernible differences

between the step solution and a solution, not presented in Kostrov et al., having a more realistic

smooth transition. Close examination of the solutions shown in Figs. 9 and 10 of Kostrov et al.
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show discontinuities in the radial component of the wave electric field at the location where fast

and slow modes merge; there are also discontinuities in the radial derivative of the axial electric

field. As noted in the caption of Fig. 9 in Kostrov et al., these discontinuities are a consequence

of the step approximation. The discontinuity in Er implies a non-physical surface charge density

at the merging location. The analysis presented here will not assume a step interface and so is not

constrained by the simplifying step assumption inherent in Figs. 9 and 10 in Kostrov et al.

We note that instead of using Eqs.63 and 64 the cold plasma wave equations can be expressed as

a pair of coupled equations in Ez and Bz but this alternative representation is far more complicated

as seen from examination of Eqs.(81) and (82) in Bellan36 and Eqs.(6) and (7) in Bakharev et al.15.

An important and consequential feature of Eqs.63 and 64 is that all coefficients in these equa-

tions are real. This means that ψ and χ can be considered to both be pure real without loss of

generality as real parts of ψ interact only with real parts of χ and imaginary parts of ψ inter-

act only with imaginary parts of χ. Furthermore, it is impossible to have a solution where either

one of ψ or χ is zero everywhere if NzD/S ̸= 0. Thus, the system is a true fourth order system

where both ψ and χ must be finite. Equations 63 and 64 are notationally somewhat simpler than

corresponding equations that describe the problem in terms of electric and magnetic fields (for ex-

ample, compare Eqs.63 and 64 here to Eqs. (4) and (5) in Nassiri-Mofakham17 or to Eqs.18(a,b)

in Kostrov et al14.

Using Eqs. 43, 45, 52, 56, and 60 the electric and magnetic field components are thus deter-

mined from ψ and χ as

Er =
1

Sr̄
( Nzχ −Dψ)

Eφ = i
ψ

r̄

Ez =
i

r̄P

∂ χ

∂ r̄

Br = − iNz

r̄c
ψ

Bφ =
χ

r̄c

Bz =
1

r̄c

∂ψ

∂ r̄
. (65)

Because Er,Eφ ,Br,Bφ must all vanish at r̄ = 0, it is necessary that both ψ and χ satisfy the reg-

ularity condition of being proportional to r̄2 at small r̄. Contours of ψ show the projection of the

magnetic field in the r,z plane while contours of χ show projections of the wave current vector

(plasma and displacement) in the r,z plane.
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IV. POYNTING VECTOR

The conclusion in the previous section that ψ and χ may be assumed to be real has impor-

tant implications for the wave energy flux. For electromagnetic fields having time-dependence

exp(−iωt) the time-averaged wave energy flux is given by the Poynting vector

Π=
1

2µ0
Re(E×B∗) . (66)

It should be noted that for a cold plasma wave as discussed here, the Poynting flux vector Π and

the group velocity vector are collinear (see Eq.27 in Chapter 4 of Stix1). Since being real implies

ψ∗ = ψ and χ∗ = χ, on using Eq.65, the Poynting vector components are

Πr =
1

2r̄2cµ0
Re

(

i ψ
∂ψ

∂ r̄
− iχ

P

∂ χ

∂ r̄

)

= 0 (67)

Πφ =
1

2r̄2cµ0

(

D

S
ψ

∂ψ

∂ r̄
−Nz

(

1

P

∂ χ

∂ r̄
ψ +

χ

S

∂ψ

∂ r̄

))

(68)

Πz =
1

2r̄2cµ0

(

−D

S
ψχ +Nz

(

ψ2 +
χ2

S

))

. (69)

Both Πφ and Πz are finite and depend on the sign of Nz so the wave energy flux follows a helix

about the z axis. However, Eq. 67 shows that Πr = 0 which means that the radial component of

the group velocity is zero at all radii. This is a much stronger statement than Gendrin’s observation

that the group velocity vanishes when the fast and slow mode coalesce. If waves are confined to

a duct, then it would be necessary to have Πr = 0 everywhere. Equation 67 thus indicates that

a ducting solution is possible for solutions to Eqs. 63 and 64 where χ and ψ are both real and

obey physically allowable boundary conditions, namely regularity at r̄ = 0 and vanishing at r̄ = ∞.

It was mentioned earlier that the concept of radial group velocity and the geometric-optics WKB

approximation fail at the Gendrin density (location where fast and slow modes coalesce). However,

this failure is not an issue for Eq.66 and in particular for Eq.67 which are always valid and so can

be considered to be more fundamental.

V. UNIFORM PLASMA SOLUTIONS

Before addressing the ducting problem, we consider the simpler situation where S,P, and D are

spatially uniform. The solutions of Eqs.63 and 64 are then of the form ψ,χ ∼ r̄J1(Nr r̄) where J1 is

a Bessel’s equation of order 1 and Nr is determined by a dispersion relation. Although r̄Y1(Nr r̄) is

18
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also a mathematically valid solution of Eqs.63 and 64, this solution is discarded because at small

r̄, Y1(Nr r̄)∼ 1/r̄ which would predict the non-physical behavior of Br ∼ 1/r̄ near r̄ = 0. Similarly,

Hankel function solutions are not allowed as these involve linear combinations of J1 and Y1. Since

a Bessel function of order 1 satisfies

d2J1

ds2
+

1

s

dJ1

ds
− 1

s2
J1 =−J1 (70)

evaluation of ψ and χ using Eq.70 shows that

r̄
∂

∂ r̄

(

1

r̄

∂ψ

∂ r̄

)

= −N2
r ψ,

r̄
∂

∂ r̄

(

1

r̄

∂ χ

∂ r̄

)

= −N2
r χ. (71)

Using Eq.71 and defining S̄ = S−N2
z , Eqs.63 and 64 reduce to

(

−SN2
r +SS̄−D2

)

ψ = −NzDχ (72)

(

− SN2
r + S̄P

)

χ = −NzPDψ. (73)

Setting the determinant of these coupled equations to zero gives

SN4
r −

(

S̄ (S+P)−D2
)

N2
r +P

(

S̄2 −D2
)

= 0 (74)

a dispersion relation for N2
r which corresponds to the Cartesian plane wave dispersion in Puri and

Tutter37.

VI. REVERSION TO KNOWN LIMITS

Equations 63 and 64 revert to known limits for pure parallel and pure perpendicular propaga-

tion. If there is no dependence on r̄ so ∂/∂ r̄ = 0, these equations reduce to

(

S2 −D2

S
−N2

z

)

ψ = −Nz
D

S
χ (75)

(

1− N2
z

S

)

χ = −Nz
D

S
ψ. (76)

Substituting for χ from Eq.76 in Eq.75 gives

(

S−N2
z

)2
= D2 (77)
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so

S−N2
z =±D (78)

implying the well-known result for pure parallel propagation

N2
z = R,L. (79)

If Nz is assumed zero, then upon use of Eq.71, Eqs. 63 and 64 become

−N2
r ψ +

(

S2 −D2

S

)

ψ = 0 (80)

−N2
r

P
χ +χ = 0. (81)

Thus if ψ is finite and χ is zero, the dispersion relation is

N2
r =

S2 −D2

S
=

RL

S
(82)

which is the ‘extra-ordinary’ dispersion while if χ is finite and ψ is zero, the dispersion relation is

N2
r = P (83)

which is the ‘ordinary’ dispersion. Equation 65 gives the polarizations of the electric and magnetic

fields of these modes.

VII. WHAT DETERMINES Nz

The experiments and magnetosphere are presumed to be infinitely long in the z direction so

there are no direct boundary conditions to determine Nz. However, the dimensions are presumed

to be finite in the r direction and so boundary conditions associated with r determine Nr or radial

behavior. The ducted and non-ducted situations differ with regards to radial boundary conditions.

In a plasma experiment where the plasma is radially uniform and the radius of the vacuum chamber

is much larger than the electron skin depth, the radial wavelength is of the order of the chamber

radius, i.e., ∂/∂ r̄ is near zero and the dispersion relation is given by Eq.79. Because L < 0, the

only propagating mode is Nz ≃ R, which corresponds to Eqs.15-17 and gives λz to be of the order

of c/ fpe.

However, if there is a duct, then Nz is determined by Eq.8. This is because the ducting depends

on there being a coalescence of the fast and slow modes which, as shown in Eqs. 6 and 7, occurs

at the location where n = nG. Because Eq.8 shows that nG is proportional to N2
z , this means that

N2
z is determined by the location where the fast and slow modes coalesce, i.e., where n = nG.
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VIII. IMPLICATION OF CYLINDRICAL GEOMETRY COMPARED TO

CARTESIAN GEOMETRY

The Nr refractive index component in cylindrical geometry corresponds to an Nx refractive

index in Cartesian geometry. In Cartesian geometry it would be possible to have an isolated eiNxx̄

solution which would correspond to having a wave propagating in the positive x̄ direction. The

corresponding cylindrical situation would be a wave propagating in the positive r̄ direction and

such a wave would involve a Hankel function r̄H
(1)
1 (Nr r̄). However, since H

(1)
1 (Nr r̄) = J1(Nr r̄)+

iY1(Nr r̄) and since Y1(Nr r̄) is forbidden because it diverges at r̄ = 0, the only possibility is to have

a function of the form r̄
(

H
(1)
1 (Nr r̄)+H

(2)
1 (Nr r̄)

)

∼ r̄J1(Nr r̄). Thus, there must always be equal

amounts of inward and outward waves, or equivalently, the requirement that field components are

finite at r̄ = 0 implies that there must be a standing wave in the radial direction. This conclusion is

consistent with Eq.67 which indicates that there is no radial Poynting flux and with the condition

that both ψ and χ are real.

IX. WHISTLER REGIME AND RELATION BETWEEN EQS.74 AND 18

Because we are interested in whistler wave ducting, we restrict consideration to the whistler

regime where ion motion can be neglected. A set of relevant parameters and relationships will

be established in this section, and for purposes of later comparison with a numerical calculation,

quantitative values will be assigned, and then used to calculate intermediate quantities that can

then be compared with the numerical calculation. To make it convenient to refer to results derived

across sections when comparing the numerical solution to analytic predictions, quantitative values

of relevant intermediate quantities are listed in Table 1 which will be filled in as the discussion

proceeds.

An important parameter in the whistler regime is

g =
ω2

pe

ω2
ce

(84)

and typically g ≫ 1 in the whistler regime. The definition given by Eq.84 shows that g can depend

on both density (via ω2
pe) and on magnetic field (via ω2

ce). In this paper we assume that the magnetic

field is spatially uniform whereas the density is radially non-uniform so g depends only on the

density profile.

21

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
8
8
5
7
2



The whistler regime is defined by the wave frequency being much higher than the lower hybrid

frequency in which case ions make negligible contribution to the dielectric tensor elements which

become

S = 1+
g

1− ω̄2
(85)

D =
1

ω̄

g

(1− ω̄2)
(86)

P = 1− g

ω̄2
(87)

R = 1+
g

ω̄ (1− ω̄)
(88)

L = 1− g

ω̄ (1+ ω̄)
. (89)

If g ≫ 1, displacement current can also be neglected so the dielectric tensor elements further

reduce to

S =
g

1− ω̄2
(90)

D =
1

ω̄

g

(1− ω̄2)
(91)

P = − g

ω̄2
(92)

R =
g

ω̄ (1− ω̄)
(93)

L = − g

ω̄ (1+ ω̄)
. (94)

To make the analysis more general, displacement current will be retained in the numerical calcu-

lations, as no additional effort is required to do so.

To relate to the Cartesian analysis in Section II, we note that for large r̄ and uniform density,

the cylindrical and Cartesian analyses are related by

N2
z =

k̄2
z

ω̄2
g, N2

r =
k̄2

x

ω̄2
g (95)

where k̄z and k̄x are defined by Eqs.12 and 13. It can be demonstrated after a fair amount of

algebraic manipulation that Eqs.4 and 74 (with displacement current neglected) are identical so

any result derived using Eqs.4-20 also applies to Eq.74. In particular, the advantage of the Eq.18

representation is simplicity but this representation is only useful if the plasma has uniform density

because distances are scaled to the electron skin depth de which depends on density. Thus, Eq.18

cannot be used for a plasma with a non-uniform density. The virtue of the Eq.74 representation is
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FIG. 1. Plot of N2
r versus N2

z from Eq.74 for three values of g = ω2
pe/ω2

ce.

that it is scaled to the vacuum wavelength which is independent of density and so can be used for a

plasma with a non-uniform density. However, as will be discussed in Section XI, care is required

when the frequency is varied because r̄ depends on frequency.

Partial insight into the wave behavior is provided by Fig.1. This figure plots N2
r versus N2

z

as determined by Eq.74 for g = 25,30, and 35 and, for reference to the numerical calculation

provided later, there is a dashed vertical line at the location where N2
z = 121.742. It is seen that the

plot of N2
r intersects the dashed line at two locations for g = 25, at one location for g = 30 and at

no locations for g = 35. The plasma is assumed to be uniform in the z direction so Nz is the same

everywhere.

However, if the density depends on r̄, then Nr will vary with r̄ and so different r̄ locations will
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be associated with different curves in Fig.1. The up-slanting part of a curve in Fig.1 is called the

slow mode (large Nr) and the down-slanting lower part is called the fast mode (small Nr).

To understand the structure of Eqs.63 and 64 we write these equations in a more compact form

as

Lψ (ψ)+a1ψ = b1χ (96)

Lχ (χ)+a2χ = b2ψ. (97)

where

a1 =
S2 −D2

S
−N2

z (98)

b1 = −Nz
D

S
(99)

a2 = P

(

1− N2
z

S

)

(100)

b2 = −Nz
DP

S
(101)

and

Lψ (ψ) =
∂ 2ψ

∂ r̄2
− 1

r̄

∂ψ

∂ r̄
(102)

Lχ (χ) =
∂ 2χ

∂ r̄2
−
(

1

r̄
+

1

P

∂P

∂ r̄

)

∂ χ

∂ r̄
. (103)

The coefficients a1,b1,a2,b2 depend on S,P, and D which in turn depend on r̄ via g. At this

point, it is important to take into account that the density is a function of r rather than of r̄ so

adjustments will have to be made if ω̄ is changed. Combination of Eqs.10 and 38 shows that

r|ωce|/c = r̄/ω̄ .

For nominal terrestrial equatorial plane parameters at six Earth radii, c/|ωce| ≈ 1000 km which

corresponds to the nominal width of whistler wave ducts reported in a statistical study by Gu et

al.28. This indicates that r̄/ω̄ will be of the order of unity at a duct edge.

To model a duct, we define ρ1 as the value of r|ωce|/c at the start of the density rise from the

duct bottom, ρ2 as the value of r|ωce|/c at the conclusion of this density rise, and ρ3 as a proxy

for ρ = ∞. Since r̄ rather than r is the independent variable in Eqs.102 and 103, it is necessary

to express P and hence g as a function of r̄ rather than as function of r. Using the ρ1,ρ2,ρ3
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definitions, the g(r̄) profile is thus prescribed by

g(r̄) =



















gduct for 0 ≤ r̄ ≤ ω̄ρ1

gduct +
∆
2

(

1+ sin
(

π
ω̄(ρ2−ρ1)

(

r̄− ω̄(ρ1+ρ2)
2

)))

for ω̄ρ1 ≤ r̄ ≤ ω̄ρ2

gduct +∆ for ω̄ρ2 ≤ r̄ ≤ ω̄ρ3

(104)

where gduct denotes the value of g in the duct, ∆ is the depth of the duct, the width of the transition

region from inside the duct to outside is ω̄(ρ2 −ρ1), and ρ3 is a proxy for r̄ = ∞ . This profile

has dg/dr = 0 for both r̄/ω̄ ≤ ρ1 and r̄/ω̄ ≥ ρ2. We choose ρ1 = 4, ρ2 = 8 and ρ3 = 40. This

definition of g has the necessary property that g has a fixed profile when plotted as a function of

r. However, g will have an ω̄-dependent profile when plotted as a function of r̄ because of the ω̄

-dependence of r̄. Combination of Eqs.92 and 104 shows that

∂P

∂ r̄
=



















0 for 0 ≤ r̄ ≤ ω̄ρ1

− ∆
2ω̄3 (

π
(ρ2−ρ1)

cos
(

π
ω̄(ρ2−ρ1)

(

r̄− ω̄(ρ1+ρ2)
2

))

for ω̄ρ1 ≤ r̄ ≤ ω̄ρ2

0 for ω̄ρ2 ≤ r̄ ≤ ω̄ρ3.

(105)

This expression is used in the evaluation of Eq.103.

Figure 2 plots g for 0 ≤ r̄/ω̄ ≤ 12 for the situation where ω̄ = 0.25. The region 12 ≤ r̄/ω̄ ≤ 40

is not plotted as g is constant with the same value it has at r̄/ω̄ = 12; including this 12 ≤ r̄/ω ≤ 40

region in the numerical computations is necessary for accuracy. The bottom horizontal axis in Fig.

2 is r̄ which is frequency-dependent while the top horizontal axis is r̄/ω̄ which is not frequency-

dependent. The right-hand vertical axis shows 4g and indicates the predicted value of Nz
2 at the

mode conversion location (neglecting the small effect of displacement current).

The g profile has two uniform-density regions smoothly joined by a transition region. These

three regions have N2
r determined by the three curves in Fig.1. The virtue of having the uniform

density g = 25 and g = 35 regions is that behavior in these regions can be quantitatively compared

to the calculated predictions of uniform-density analytic models associated with Fig.1. The reason

for having a smooth joining characterized by dg/dr̄ = 0 at ρ1 and ρ2 is to avoid sharp disconti-

nuities that might cause reflections. The transition region must be examined numerically as the

analytic models are based on the density being uniform.

To allow for a determination of parametric dependence, we will examine four situations; the

first three situations are indicated in Fig.2. The first situation, called the reference situation, has

ω̄ = 0.25 and ρmc = 6 where the subscript ‘mc’ stands for ‘mode conversion’, i.e., the location

where the fast and slow modes coalesce. The second and third situations also have ω̄ = 0.25
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0 ≤ r̄ ≤ 1 r̄ = 1.5 2 ≤ r̄ ≤ 10 Equation reference

g 25 30 35 84,104

S 27.6667 33 38.3333 85

D 106.667 128 149.333 86

P −399.0 −479 −559 87

N2
rs 806.185 - - 74,111

Nrs 28.3934 "

N2
r f 45.2166 - - "

Nr f 6.72433 - - "

Γ - 351.437 - 112

Γ1/2 - 18.7467 - "

a1 - - −665.159 98

b1 - - −42.9833 99

a2 - - 1216.31 100

b2 - - 24027.7 101

α - - 473.02 126

β - - 0.9488856 127

Nt - - 19.3468 132

κt - - 9.93588 133

η - - 23.6432 137

δ - - −0.387962 138

TABLE I. Parameters relevant for comparing with the reference situation numerical solution using N2
z =

121.742 and ω̄ = 0.25, ω̄ρ1 = 1, ω̄ρmc = 1.5, ω̄ρ2 = 2, ω̄ρ3 = 10.

but now have ρmc = 5 and ρmc = 7 respectively to reveal the dependence on ρmc. Since Eq.9

showed that at the mode conversion location Nz
2 = 4g (neglecting displacement current), showing

this dependence on ρmc is tantamount to showing the dependence on Nz
2 (see right hand scale of

Fig.2). The fourth situation has ρmc = 6 as in the reference situation but now has ω̄ = 0.20 to show

the dependence on frequency. The reference situation will be discussed in this section. Because of

the length and complexity of this discussion, the discussion of situations two, three, and four will

be deferred to Sec.XI.
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FIG. 2. Plot of g(r̄) as prescribed by Eq. 104 for ω̄ = 0.25. The values of N2
z are calculated using Eq. 117,

and are approximately given by N2
z = 4g(rmc) (see Eqs.9 and 120).

Using ρmc = 6 gives r̄mc = ω̄ρmc = 1.5 and g(r̄mc) = 30. Thus Eqs.85, 86 and 87 give S = 33,

D = 128, and P =−479 at r̄ = r̄mc.

The four boundary conditions for the fourth order system comprised by Eqs.96 and 97 are

(i) both ψ,χ scale as r̄2 for small r̄ and (ii) both ψ,χ decay exponentially to zero at large r̄.

It is thus not feasible to start the numerical integration of Eqs.96 and 97 at r̄ = 0 because such

an integration would require nontrivial Neumann or nontrivial Dirichlet boundary conditions but

regularity requires both ψ = χ = 0 at r̄ = 0 and dψ/dr̄ = dχ/dr̄ = 0 at r̄ = 0. Similarly, it is not

feasible to start the integration at some large value of r̄ used as a proxy for infinity. To overcome

these issues, the r̄ domain is divided into an inner and an outer region where r̄mc defines the
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boundary between these two regions.

Boundary conditions for the inner region are specified at r̄ = 0 and at r̄mc. Boundary conditions

for the outer region are specified at r̄mc and at r̄ = ρ3ω̄ which serves as a proxy for infinity.

Equations 63 and 64 are written in a form suitable for use in the code described in Bellan38 which

provides a single-pass method for solving these types of equations using boundary conditions on

ψ and χ at the inner and outer boundaries of an r̄ domain. The location r̄mc is defined to be where

ψ−1
Lψ (ψ) =−Γ2 (106)

χ−1
Lχ (χ) =−Γ2 (107)

and Γ2 corresponds to the two roots of N2
r being identical at r̄mc where the fast and slow modes

coalesce. At r̄mc Eqs.96 and 97 become

(

−Γ2 +a1

)

ψ = b1χ (108)

(

−Γ2 +a2

)

χ = b2ψ. (109)

Multiplying the left sides of these equations by the right hand sides gives the quadratic equation

in Γ2

Γ4 −Γ2 (a1 +a2)+a1a2 −b1b2 = 0 (110)

which is the same as Eq.74 with N2
r → Γ2 but has a subtly different interpretation. Equation Eq.74

described a set of uniform plasmas having different densities whereas Eq.110 describes a specific

single plasma with a spatially varying density. The two solutions of Eq.111 are

Γ2 =
(a1 +a2)±

√

(a1 −a2)
2 +4b1b2

2
. (111)

The situation can be understood by supposing that Γ2 is also defined away from the mode

conversion location and so is the same as N2
r in Eq.74. Using this WKB point of view shows that

for r̄ < r̄mc there are distinct fast and slow modes and that these merge at r̄ = r̄mc.

For r̄ > r̄mc, N2
r is complex. Figure 3 shows a plot of these modes and shows that to the left of

the mode conversion location, the slow mode N2
r (red, + chosen in Eq.111) is pure real and much

larger than the fast mode N2
r (green, − chosen in Eq.111). The situation is very different in the

outer region, r̄ > r̄mc as now N2
r is complex. The real parts of what were the slow and fast modes

now have identical value, and the imaginary part of what was the slow mode on the left is positive

(cyan) while the imaginary part of what was the fast mode on the left is now negative (blue). For
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FIG. 3. Plot of N2
r versus position assuming that at each position the plasma is uniform; reference situation

parameters are used, i.e., ω̄ = 0.25 and ρmc = 6 so r̄mc = 1.5. The assumption that the plasma is uniform

is true for 0 < r̄ < ωρ1 and for ρ2ω̄ < r̄ but not for ρ1 < r̄/ω̄ < ρ2 which is where a numerical solution

is essential. However, despite not being accurate in this intermediate region, the plot gives some intuition

regarding the wave behavior and shows that the fast and slow modes merge at r̄mc = ω̄ρmc.

completeness, these blue and cyan lines are also shown on the left and are at zero, indicating that

N2
r is pure real for both modes in this region.

At r̄mc where S = 33,D = 128, P =−479 the term involving the square root vanishes so the ±
solutions are identical in Eq.111 and are denoted by

Γ2
mc =

a1 +a2

2
. (112)
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Equation 109 shows that at r̄ = r̄mc

χ

ψ
=

b2

−Γ2
mc +a2

=
2b2

a2 −a1
. (113)

The requirement that the square root term in Eq.111 vanishes implies that

(a1 −a2)
2 +4b1b2 = 0 (114)

which on substituting for a1,b1,a2,B2 becomes

((

S
(

S−N2
z

)

−D2
)

−P
(

S−N2
z

))2
+4N2

z D2P = 0. (115)

Equation 115 is a quadratic equation in N2
z with the two roots

N2
z =

(P−S)2
S− (P+S)D2 ±2D

√

PS
(

D2 − (P−S)2
)

(P−S)2
. (116)

The positive sign choice corresponds to N2
z ≫ 1 which is the root of interest while the negative

sign gives N2
z ≪ 1 which is not of interest. Hence we choose

N2
z =

(P−S)2
S− (P+S)D2 +2D

√

PS
(

D2 − (P−S)2
)

(P−S)2
. (117)

Equation 117 gives N2
z = 121.742, close to the value 4gmc predicted by Eq.9, the slight difference

resulting from the inclusion of displacement current in the definitions of S and P. This gives Nz =

11.0337. Because the negative sign choice gives N2
z ≈ 0, the magnitude of the square root term is

nearly equal to the other term in the numerator, that is

2D

√

PS
(

D2 − (P−S)2
)

≃ (P−S)2
S− (P+S)D2 (118)

so

N2
z ≃ 2S−2

(P+S)D2

(P−S)2
. (119)

If displacement current is ignored and Eqs. 90-92 are used, Eq.119 reduces to

N2
z = 4gmc (120)

which corresponds to Eq.9. This shows again that for a ducting situation, N2
z is determined by the

plasma parameters at the mode conversion location in the duct. In the analysis presented here the
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location of the mode conversion is specified and the corresponding N2
z is calculated. One could

invert this approach by specifying N2
z and then use Eq.120 to determine the density and hence

location of the mode conversion. On taking into account the g profile and hence density profile in

Fig.2, Eq.120 indicates that N2
z could range from 100 to 140 since g ranges from 25 to 35. The

mode conversion location would then be at the location in Fig.2 where Eq.120 is satisfied.

Consider the region r̄ ≥ ρ2ω̄. By having dg/dr = 0 at r̄ = ρ2, the uniform plasma solution is

valid at this location and there are no discontinuities in any derivatives so all quantities should be

continuous at this location.

In the r̄ ≥ ρ2ω̄ region, g = 35 and the dielectric tensor elements now have the values S =

38.3333, D = 149.333 and P = −559 and are uniform. This uniformity means that Γ can be

interpreted as being a uniform N2
r so Eq.111 can be written as

N2
r =

(a1 +a2)±
√

(a1 −a2)
2 +4b1b2

2
(121)

where again the solutions ψ,χ are of the form r̄J1 (Nr r̄). However, in this region

√

(a1 −a2)
2 +4b1b2

is imaginary so Eq.121 can be expressed as

N2
r =W ± iH (122)

where

W =
a1 +a2

2
(123)

H =

√

−(a1 −a2)
2 −4b1b2

2
. (124)

Equation 121 can be expressed in a form suitable for later taking a square root, namely as

N2
r = α

(

W√
W 2 +H2

+(−1)pi
H√

W 2 +H2

)

= α exp(i(−1)pβ ) (125)

where p = 1,2 and

α =
√

W 2 +H2 (126)

β = tan−1 (H/W ) . (127)

Taking the square root gives

Nr = (−1)qα1/2 exp(i(−1)pβ/2) (128)
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where q = 0,1. There are thus four possible solutions given by {p,q} = {1,1}, {1,0}, {0,1},
{0,0}. Numerical values of a1,b1,a2,b2,W,H,α,β are listed in the ρ2 ≤ r̄ ≤ r̄max column of Table

1.

Solutions that vanish at infinity require the imaginary part of Nr to be positive and so are

restricted to the solutions having {p,q}= {0,0},{1,0}, that is

Nr = +α1/2 cos(β/2)+ iα1/2 sin(β/2) (129)

Nr = −α1/2 cos(β/2)+ iα1/2 sin(β/2) . (130)

The real parts of these two solutions have equal magnitudes but opposite signs while the imaginary

parts have equal magnitudes and the same signs. If cylindrical geometry effects are neglected, the

solution has an exp(iNr r̄) dependence. If cylindrical geometry effects are included, then the solu-

tion will be the form of a Bessel function having complex argument. Since the Bessel function and

exp(iNr r̄) dependence become similar at large r̄ as cylindrical geometry effects become small, we

will consider the exp(iNr r̄) approximation which is more easily understood. Because ψ and χ are

assumed to be real, they each must be a linear combination of cos
(

α1/2 cos(β/2) r̄
)

e−α1/2 sin(β/2)r̄

and sin
(

α1/2 cos(β/2) r̄
)

e−α1/2 sin(β/2)r̄. This means that the solution for ψ in the ρ2 ≤ r̄ ≤ r̄max

region must be of the form

ψ(r̄) = ψ0 cos(Nt (r̄− r̄0))e
−κt(r̄−r̄0) (131)

where ψ = ψ0 at r̄ = r̄0 with tunneling coefficients denoted by subscript ‘t’ given as

Nt = Re(Nr) = α1/2 cos(β/2) (132)

κt = Im(Nr) = α1/2 sin(β/2)). (133)

Thus, Nt is the refractive index (normalized wave number) and κt is the exponential decay rate of

a spatially oscillating, decaying ψ in the region ρ2 ≤ r̄ ≤ r̄max.

Because cylindrical geometry terms are being neglected, Eq.96 can be written

χ(r̄) =
1

b1

(

∂ 2ψ

∂ r̄2
+a1ψ

)

. (134)

Evaluating ∂ 2ψ/∂ r̄2 using Eq.131 for ψ gives

∂ 2ψ

∂ r̄2
= ψ0

[(

κ2
t −N2

t

)

cos(Nt (r̄− r̄0))+2Ntκt sin(Nt (r̄− r̄0))
]

e−κt(r̄−r̄0). (135)

32

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
8
8
5
7
2



Using Eq.135 in Eq.134 gives

χ(r̄) = ηψ0 cos(Nt (r̄− r̄0)−δ )e−κt(r̄−r̄0) (136)

where

η =

√

√

√

√

(

κ2
t −N2

t +a1

)2
+4κ2

t N2
t

b2
1

(137)

δ = tan−1 2κtNt

κ2
t −N2

t +a1

. (138)

The numerical values in Table 1 give η = 23.6432 and δ = −0.387962. This value of δ

indicates that the phase of χ should lead the phase of ψ by |δ |/2π = 0.06 wavelengths.

X. NUMERICAL SOLUTION

A. Numerical solution: results

Equations 96 and 97 are solved numerically. Results of this numerical solution are presented in

Fig.4. We discuss features of this figure in this subsection, then in the next subsection discuss the

rather intricate details of the numerical method, and then in a following subsection demonstrate

that the numerical solutions are valid. The discussions of the numerical method reveal an important

issue that at first appears to be a purely numerical problem, but then is realized to be associated

with a failure of the Eq.1 plane wave assumption in the vicinity of the mode conversion layer. It

is shown that Eq.1 omits a required new type of solution that is intrinsic to the fourth-order nature

of the system.

Figure 4 plots ψ(r̄), and χ(r̄) normalized to their values at r̄ = 1.5 with ψ = 1 at r̄ = 1.5.

It shows that ψ ,χ → 0 at r = 0 and at r̄ → ∞. The numerical solutions (solid black and green

lines) are fit to Bessel function solutions in the region 0 ≤ r̄ ≤ ρ1 where the density is uniform

as prescribed by Eq.104 and shown in Fig.2. The fitted solution for ψ is determined by assum-

ing ψ(r̄) = r̄
(

c1J1(Nrsr̄)+ c2J1(Nr f r̄
)

+ c̃1Y1(Nrsr̄) + c̃2Y1(Nr f r̄)) and then solving for the four

coefficients c1,c2, c̃1, c̃2 by using the numerical solution to give ψ at 4 different values of r̄ so as

to have four equations in four unknowns. Solution of this system of four equations shows that

the coefficients c̃1, c̃2 of the Y1 Bessel functions are negligible as expected (see first paragraph of

Section V). The function r̄
(

c1J1(Nrsr̄)+ c2J1(Nr f r̄
)

) is plotted as the dashed red line in Fig.2. It
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is seen that this dashed red line lies on top of the black line showing that in the region 0 ≤ r̄ ≤ ρ1

the numerical solution is, as expected, a sum of a slow and a fast wave where each has a Bessel

function dependence. A similar process shows that χ is also a sum of a slow and a fast Bessel

function in the 0 ≤ r̄ ≤ ρ1 region. These solutions in the 0 ≤ r̄ ≤ ρ1 region are the sum of a short

wavelength solution (slow mode) and a long wavelength solution (fast mode) as seen by the short

wavelength waves riding on the long wavelength wave.

Figure 4 shows that on approaching r̄ = 1.5, there is no longer a short wavelength wave riding

on a long wavelength wave, but instead there is only one wavelength for both ψ and χ and this

wavelength is intermediate between the short and long wavelengths seen in the 0 ≤ r̄ ≤ ρ1 region.

Figure 4 also plots 4000ψe9.7(r̄−2.4) in the range 2.4 ≤ r̄ ≤ 3 as a dotted black line and shows

that in this region ψ is both spatially oscillating and exponentially decaying. Similarly, Fig. 4

also plots 200χe9.7(r̄−2.4) in the range 2.4 ≤ r̄ ≤ 3 as a dashed green line. Using the numerical

values listed in Table 1 and Eqs.132,133 it is seen that the predicted wavenumber is Nt = 19.

3 and the predicted spatial exponential decay rate is κt = 9.93. The constant amplitude of these

plots show that ψ and χ are decaying by a factor e−9.7r̄ which is in good agreement with the

κt = 9.93 predicted by Eq.133. As shown by the horizontal blue arrow at the top right of Fig. 4

the wavelength of these ψ and χ plots is 0.32 corresponding to a wavenumber 2π/0.32 = 19.6

which is in good agreement with the predicted Nt = 19.3. Thus, the wavelength and spatial decay

rate determined from the r̄ > 2.4 region of Fig.4 agree reasonably well with the analytic model

predictions, the small discrepancies presumably resulting from neglecting cylindrical geometry

terms of order 1/r̄ in Eqs.132,133. Furthermore, in agreement with Eq.138 it is seen that the phase

of χ leads the phase of ψ by 0.07 wavelengths, i.e., by ∆r̄ = 0.02. The fact that the magnified plots

of ψ and χ shown as dotted and dashed lines on the right of Fig. 4 have a relative magnification

ratio χ/ψ = 4000/200 = 20 and appear in the plot with a χ/ψ amplitude ratio of 1.17 indicates

that χ/ψ ≃ 23.4 which is consistent with η = 23.64 where η is given by Eq.137.

Figures 5 and 6 provide checks on the validity of the numerical solution. These are plots of

the numerically calculated ψ and χ substituted into Eqs.96 and 97. The left hand side of these

equations is plotted as a black line and the right hand side is plotted as a dashed red line. The

observed overlay of the dashed red line on the black line indicates that the right hand side equals

the left hand side and so shows that the equations have been solved.

Figures 7 and 8 show the electric and magnetic field components calculated from ψ and χ using

Eq.65.
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FIG. 4. Numerical solution of Eqs.96 and 97 for reference situation (ω̄ = 0.25, ρ1 = 4, ρmc = 6, ρ2 = 8,

ρ3 = 40). The black and green lines show ψ and χ normalized to their respective values at r̄ = r̄mc =

1.5 = ω̄ρmc. The dashed red and orange lines show Bessel solutions with coefficients chosen to match the

numerical solution in the uniform density 0 ≤ r̄ ≤ 1 region. The dotted black line and dashed green line

indicate that ψ and χ have a spatial periodicity and rate of decay consistent with analytic model predictions

in the 2 ≤ r̄ ≤ 3 region.

B. Summary of numerical method

The boundary conditions that ψ , χ , ∂ψ/∂ r̄ and ∂ χ/∂ r̄ all vanish at r̄ = 0 and at r̄ = ∞ means

that the equations cannot be solved by starting an integration at the boundaries. Instead of inte-

grating from the boundaries, a numerical method is used that is a form of the ‘shoot first and then
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FIG. 5. Black line shows numerical solution for numerically calculated ψ substituted into the left hand side

of Eq.96 and dashed red line shows right hand side of this equation using calculated χ .

relax later’ strategy advocated in Section 18.0 of Press et al. 39 . The method is summarized as:

1. A large value of r̄max is chosen to serve as a proxy for infinity. The domain from r̄ = 0 to

r̄ = r̄max is discretized into N = 4000 equal steps separated by ∆r = r̄max/N. The discrete

values of r̄ are labeled by j = 0,N. The mode conversion location is at the step j = M where

M = Nr̄mc/r̄max where r̄mc is the location of the mode conversion. The value of ψ at position

r̄ = j∆r will be denoted ψ j and similarly for χ .

2. An error metric ε is defined, the minimization of which corresponds to having a better

solution to Eqs.63 and 64.
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FIG. 6. Black line shows numerical solution for χ substituted into the left hand side of Eq.97 and dashed

red line shows right hand side using calculated ψ .

3. Because the problem is linear, ψM is set to be unity and maintained at this value throughout

the calculation.

4. A first guess for χM is prescribed by Eq.113.

5. The method described in Bellan38 is used to solve Eqs.63 and 64 in the inner subdomain

from j = 0 to j = M.

6. It is assumed that ∂ 2ψ/∂ r̄2 and ∂ 2χ/∂ r̄2 change very little when j → j + 1 so that the

values of these second derivatives at j = M can be estimated using their values at j = M−1.
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FIG. 7. Electric field components calculated using Eq.65

7. These estimated second derivatives are used to calculate estimated values for ψM+1 and

χM+1 and these values provide the inner boundary conditions for the outer subdomain which

spans from j = M +1 to j = N. The method described in Bellan38 is used to solve Eqs.63

and 64 in the outer subdomain.

8. It is found that this method produces significant spikes in derivatives of ψ and χ at j = M

and at j = M +1 and the magnitude of these spikes depends on the value assumed for χM.

A shooting method is used to find the χM that minimizes the error metric ε . Equation 113

provides the initial guess for χM. Figure 9 shows the variation of ε with χM and that ε has

a minimum when χM is approximately 86 percent of the value prescribed by Eq.113. This

minimum value of ε corresponds to minimization of the spikes in ψ and χ at j = M and at
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FIG. 8. Magnetic field components calculated using Eq.65

j = M+1. Although the spikes are minimized, they are unacceptably large.

9. To further reduce the spikes, a relaxation procedure is used that begins with the results of

the shooting method in steps 1-8. This relaxation procedure maintains ψM = 1 but otherwise

repeatedly recalculates ψ j and χ j for all other 0 < j < N. Each recalculation uses informa-

tion from nearest neighbors in a discretized form of Eqs.63 and 64. This relaxation reduces

ε from 0.18 to about 0.018 in about 102 relaxation steps so that the spikes are no longer

visible. Plots (see Figs. 5,6) show there is no difference between the left and right hand

sides of each of Eqs.63 and 64 so these equations are deemed to be solved.
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FIG. 9. Dependence of ε on guess for χM for reference situation. The value of χM that minimizes ε is

different for each of situations reference, two, three, and four.

C. Details of numerical method

The following fixed prescriptions are made:

1. ψ0 = 0, χ0 = 0,ψN = 0, χN = 0

2. ψM = 1,

3. initially χM is prescribed by Eq. 113 but then χM is repeatedly recalculated as the solution

proceeds.

Using these boundary conditions Eqs. 63 and 64 are solved in the inner subdomain from j = 0 to
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j = M.

The inner boundary conditions for the outer subdomain are next determined. The second order

difference operator ∂ 2ψ/∂ r̄2 = (ψ j+1+ψ j−1−2ψ j)/∆2
r is used to calculate ∂ 2ψ/∂ r̄2 at location

j = M−1. The inner subdomain solution provides ψM−2, ψM−1 and ψM. It is then assumed that

∂ 2ψ/∂ r̄2 has nearly the same value at j = M and is used estimate ψM+1 using ψM−1 and ψM. The

same procedure is followed to obtain χm+1. These values of ψM+1 and χM+1 are used as the inner

boundary conditions for the outer subdomain. The method described in Bellan38 is now used to

solve Eqs.63 and 64 in the outer subdomain from j = M+1 to j = N.

Using the definitions given by Eqs.102,103 the error metric is defined as

ε =

√

√

√

√

√

√

√

√

M+1

∑
j=M











(

[

ψ − b1
a1

χ + 1
a1

r̄ ∂
∂ r

(

1
r̄

∂ψ
∂ r

)]

j

)2

+

(

[

ψ − a2
b2

χ − r̄P
b2

∂
∂ r

(

1
rP

∂ χ
∂ r

)]

j

)2











. (139)

This definition has the properties that (i) ε = 0 if Eqs.63 and 64 are satisfied at j = M and at

j = M + 1 and (ii) ε ≥ 0. To the extent that the solution is nearly exact, ε will be a positive

number much less than unity since ε has been constructed from the difference between quantities

that are of the order of unity, namely ψ minus the rest of the terms in the differential equations.

The shooting method for finding the minimum of ε consists of defining a function ∂ε/∂ χM as a

function of χM and then using a Newton-Raphson method39 to find the χM that is the root of this

function. The solutions for ψ and χ associated with this ε-minimizing choice of χM provide the

initial guess for the relaxation scheme.

The relaxation scheme is constructed by writing Eqs.96 and 97 in difference form as

ψ j+1 +ψ j−1 −2ψ j

∆2
− 1

j∆

ψ j+1 −ψ j−1

2∆
= b1χ j −a1ψ j (140)

χ j+1 +χ j−1 −2χ j

∆2
− 1

j∆

(

1+
r̄

P

∂P

∂ r̄

)

χ j+1 −χ j−1

2∆
= b2ψ j −a2χ j. (141)

.

We define

a∗1 = a1 −
2

∆2
(142)

a∗2 = a2 −
2

∆2
(143)

ν = 1+
r̄

P

∂P

∂ r̄
(144)
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and

s1 =
ψ j+1 +ψ j−1 − 1

2 j

(

ψ j+1 −ψ j−1

)

∆2
(145)

s2 =
χ j+1 +χ j−1 − ν

2 j

(

χ j+1 −χ j−1

)

∆2
. (146)

Solving Eqs.140 and 141 for new ψ j and new χ j in terms of values of nearest neighbors then gives

ψnew
j =− s2b1 + s1a∗2

a∗1a∗2 −b1b2
, (147)

χnew
j =− s1b2 + s2a∗1

a∗1a∗2 −b1b2
. (148)

Each step in the relaxation procedure consists of calculating new ψ j and χ j for j = 1 to j =

N−1 with the exception that ψM is maintained at unity. The relaxation procedure is then repeated

so long as ε decreases. It is found that of the order of 102 relaxation steps are required for ε to

reach a minimum. For the reference situation, this relaxation procedure reduces ε from 0.2 to

0.018.

D. Numerical solution: an issue and its resolution

The numerical method results in the surprising result (see Fig.9) that the χM prescribed by

Eq.113 differs from the χM for which ε → 0; this indicates that there is something wrong with

Eq.113 as it only predicts the order of magnitude of χM but not the precise value. Resolving this

puzzle demonstrates not just a numerical issue, but an interesting and important physical property.

To understand this issue, we now invoke two simplifications. The first simplification is to replace

cylindrical geometry by more easily understood Cartesian geometry so we temporarily consider

the pair of coupled equations

∂ 2ψ

∂ x̄2
+a1ψ = b1χ (149)

∂ 2χ

∂ x̄2
+a2χ = b2ψ. (150)

These equations have x̄ replace r̄ and would lead to Eq.74 if the fields behaved according to Eq.1.

The second simplification is to assume that a1, a2, and b1 are all spatially uniform but b2 =

b2(x̄). We define x̄ = 0 as the mode conversion location and define b20 as the value of b2 at this

location. Thus, in the vicinity of the mode conversion location

b2(x̄) = b20 +b′2x̄. (151)
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Solving for χ in Eq.149 gives

χ =
1

b1

(

∂ 2ψ

∂ x̄2
+a1ψ

)

(152)

and substituting this into Eq.150 gives

∂ 4ψ

∂x4
+(a1 +a2)

∂ 2ψ

∂x2
+(a1a2 −b1b2(x̄))ψ = 0. (153)

We first attempt to solve Eq.153 using the WKB approximation, that is we replace ∂/∂x every-

where in this equation by ikx(x) to obtain

k4
x(x)− (a1 +a2)k2

x(x)+(a1a2 −b1b2(x̄)) = 0. (154)

Equation 154 is a quadratic equation in k2
x(x) having the two roots

k2
x(x) =

a1 +a2 ±
√

(a1 +a2)
2 −4(a1a2 −b1b2(x̄))

2
. (155)

The two roots coalesce at some location where (a1 +a2)
2 − 4(a1a2 −b1b2(x̄)) = 0 and we

define the value of the coalesced root to be

k2
mc =

a1 +a2

2
. (156)

Since b20 is defined as the value of b2(x) where coalescence occurs, the condition (a1 +a2)
2 −

4(a1a2 −b1b20) = 0 implies that

b20 =−(a1 −a2)
2

4b1
. (157)

To examine behavior in the mode conversion vicinity without invoking the WKB approximation

(i.e., without replacing ∂/∂x by ikx(x)), the wave equation Eq.153 is expressed as

∂ 4ψ

∂x4
+(a1 +a2)

∂ 2ψ

∂x2
+
(

a1a2 −b1

(

b20 +b′2x̄
))

ψ = 0. (158)

From Eq.156 and Eq.157 it is seen that

a1a2 −b1b20 = k4
mc (159)

so Eq.153 becomes

∂ 4ψ

∂x4
+2k2

mc

∂ 2ψ

∂x2
+
(

k4
mc −b1b′2x̄

)

ψ = 0. (160)
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We now consider Eq.160 in the vicinity of the mode conversion location, i.e., we consider Eq.

160 in the region |x̄| ≪ k4
mc/ |b1b′2| . In this region, Eq.160 reduces to

∂ 4ψ

∂x4
+2k2

mc

∂ 2ψ

∂x2
+ k4

mcψ = 0 (161)

which is a uniform plasma equation that can also be expressed as
(

∂ 2

∂x2
+ k2

mc

)(

∂ 2ψ

∂x2
+ k2

mcψ

)

= 0. (162)

The width of the region where this uniform plasma approximation is valid is inversely proportional

to b′2 and so this width becomes infinite when b′2 → 0, i.e., when the plasma becomes fully uniform.

Equation 161 and its equivalent form Eq. 162 are fourth-order ordinary differential equations with

the four linearly independent solutions

ψ = e±ikmcx̄ and x̄e±ikmcx̄. (163)

To see why x̄e±ikmcx̄ is a valid solution to Eq.162, note that
(

∂ 2

∂x2
+ k2

mc

)

(

x̄e±ikmcx̄
)

=±2ikmce±ikmcx̄ (164)

so
(

∂ 2

∂x2
+ k2

mc

)(

∂ 2

∂x2
+ k2

mc

)

(

x̄e±ikmcx̄
)

=±2ikmc

(

∂ 2

∂x2
+ k2

mc

)

e±ikmcx̄ = 0. (165)

It must be emphasized that even though the plasma is non-uniform, the solution of Eq.153

in the vicinity of the mode conversion location is just the solution for a uniform plasma having

parameters identical to those of the mode conversion location.

The solution x̄e±ikmcx̄ violates the prescription given by Eq.1, yet is a valid solution for Eqs.149

and 150 in a non-uniform plasma in the vicinity of the mode conversion location. The WKB

assumption that ∂/∂x can be replaced everywhere by ikx(x) is inappropriate for Eq.162 because

such a replacement only pertains to the e±ikmcx̄ solution and does not work for the x̄e±ikmcx̄ solution.

Since ψ is presumed real and is set to unity at x̄ = 0, the general form of ψ in the region

|x̄| ≪ k4
mc/ |b1b′2| is

ψ (x̄) = cos(kmcx̄) +H1 sin(kmcx̄)+H2x̄cos(kmcx̄)+H3x̄sin(kmcx̄) (166)

where each term satisfies Eq.161 and ψ(0) = 1; here H1,H2,H3 are constants. Equation 166 gives

∂ 2ψ

∂x2
= −N2

x cos(kmcx̄)−N2
x H1 sin(kmcx̄)

−H2

(

2kmc sin(kmcx̄)+ x̄k2
mc cos(kmcx̄)

)

+H3

(

2kmc cos(kmcx̄)− x̄k2
mc sin(kmcx̄)

)

(167)
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so
(

∂ 2ψ

∂x2

)

x̄=0

=−k2
mc +2H3kmc (168)

in which case

χ(0) =
1

b1

(

−k2
mc +2H3kmc +a1

)

. (169)

Using Eq.156 gives

χ(0) =
1

b1

(

a1 −a2

2
+2H3kmc

)

. (170)

If H3 = 0, then Eq.170 reverts to Eq.113 since 2b20/(a2 − a1) = (a1 − a2)/2b1 as indicated by

Eq.157.

The numerical solution initially invoked Eq.113 which is a consequence of assuming solutions

to equations analogous to
(

∂ 2

∂x2 + k2
mc

)

χ = 0 and
(

∂ 2

∂x2 + k2
mc

)

ψ = 0. This invocation of Eq.113

thus failed to take into account the x̄e±ikmcx̄ solution that exists in the region |x̄| ≪ k4
mc/ |b1b′2|.

Thus, the assumption that Eqs.108 and 109 provide a complete description of the problem is

incorrect because these equations do not predict x̄e±ikmcx̄ type of solutions. Because Eq.113 is

derived from Eqs.108 and 109 which have been shown to provide an insufficient description, it is

inferred that Eq.113 also provides an insufficient description and so cannot predict the value of χM

that minimizes ε .

XI. VARIATION OF ρmc AND VARIATION OF ω̄

The previous section considered the reference situation where ρmc = 6 and ω̄ = 0.25. This

section will consider the effect of changing these parameters. Situations two and three involve

having the mode conversion occurring at values of ρmc that are respectively larger and smaller than

for the reference situation and so g at the mode conversion location will be respectively larger and

smaller than for the reference situation (see Fig.2). Since Nz
2 = 4g(r̄mc) if displacement current

is neglected, this means that the values of Nz
2 for situations two and three will be respectively

larger and smaller than for the reference situation. Note that Nz
2 is precisely defined by Eq.

117 (displacement current included) and approximately defined by Eq.120 (displacement current

ignored); the Nz
2 values in Fig.2 are calculated using Eq. 117.

Figure 10 plots ψ and χ for situation two which has ρmc = 7 while Fig 11 plots ψ and χ for

situation three which has ρmc = 5.

These situation two and three plots show that Nz
2 changes in accordance with the prediction

that Nz
2 = 4g(r̄mc) (to the extent that displacement current is neglected). Thus, situation two has
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FIG. 10. Plot of ψ and χ for situation two (ω̄ = 0.25 and ρmc = 7). Here there is larger difference between

the wavelengths of the fast and slow modes compared to the reference situation.

a larger Nz
2 than the reference situation while situation three has a smaller Nz

2 than the reference

situation. Since Nz
2 is the same for all r̄, Nz

2 will also be larger in the uniform plasma region

r̄ < ω̄ρ1 than the Nz
2 of the reference case. Increase of Nz

2 corresponds to moving the vertical

dashed line in Fig.1 to the right so the two interception points of this dashed line with the fast

mode and slow mode parts of the g = 25 curve will move to the right. Thus increasing Nz
2 has

the dual effect of reducing the value of Nr
2 for the fast mode (lower part of g = 25 curve) and

increasing the value of Nr
2 for the slow mode (upper part of the g = 25 curve). Thus, compared

to the reference situation, situation two will have a longer wavelength fast mode and a shorter

wavelength slow mode in the uniform plasma region r̄ < ω̄ρ1. In a similar fashion, situation three
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FIG. 11. Plot of ψ and χ for situation three (ω̄ = 0.25 and ρmc = 5). Here there is a smaller difference

between the wavelengths of the fast and slow modes compared to the reference situation.

has a smaller Nz
2 than the reference situation and so situation three has a shorter wavelength fast

mode and a longer wavelength slow mode than the reference situation so situation three has much

less difference between the wavelengths of the fast and slow modes.

This comparison of the reference situation with situations two and three can equivalently be

interpreted as providing the dependence on Nz
2 for fixed ω̄ . The interpretation is that so long as

4min(g(r̄))< Nz
2 < 4max(g(r̄)) there will be a mode conversion at a location where Nz

2 = 4g(r̄)

and larger values of Nz
2 will have a greater difference between the wavelengths of the fast and

slow mode in the low density interior of the duct.

Situation four has the same value of ρmc as the reference situation but has ω̄ = 0.20 instead
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FIG. 12. Plot of g for situation four (ω̄ = 0.20 and ρmc = 6). Compare to Fig.2 and note the difference in

the scale of the frequency-dependent r̄ axis but not in the scale of the frequency-independent r̄/ω̄ axis.

of ω̄ = 0.25 of the reference situation. The change in frequency has the effect of redefining g(r̄)

as shown in Fig. 12 so r̄mc = 1.2 now compared to 1.5 for the reference situation. Since actual

distance is measured in terms of r|ωce|/c = r̄/ω̄ rather than in terms of the frequency-dependent

r̄, it is critical to plot ψ and χ as functions of r|ωce|/c = r̄/ω̄ . Figure 13 plots ψ and χ using

the same r|ωce|/c = r̄/ω̄ scale as in Fig.4 and comparison of these two figures shows that the

wave profiles differ even though they have the same Nz
2 = 4g at the mode conversion location

(displacement current ignored).

However, because Eqs.90-92 depend on ω̄ , the values of S, D, and P for situation four differ

from the corresponding values for the reference situation. The fact that situation four and the ref-
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FIG. 13. Same as Fig.4, except ω̄ = 0.20. Note that the plots of ψ and χ differ from the corresponding

plots in Fig.4 even though Nz2 is the same.

erence situation have the same Nz
2 but different frequencies might lead to the naive and erroneous

conclusion that the system is non-dispersive, i.e., has behavior independent of frequency. In fact,

the system is dispersive because the reference situation and situation four have different radial

wavelengths. Comparison of Fig.14 with Fig.3 shows this difference. These differences show a

dependence of the wave behavior on ω̄ even though Nz
2 does not depend on ω̄; thus the wave is

dispersive despite Nz
2 being ‘non-dispersive’.
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FIG. 14. Plot of Nr
2 for situation four (ω̄ = 0.20 and ρmc = 6); Compare to Fig.3 and note the fast and slow

roots of Nr
2 are larger in situation four than in the reference situation even though both situations four and

the reference situation have the same Nz
2.

XII. CONCLUSION

We have shown that the coupled equations describing whistler propagation in a density duct

can be solved numerically subject to the constraints that the poloidal wave flux ψ and the poloidal

wave electric current χ are both real, that both scale as r̄2 near r̄ = 0 and that both decay exponen-

tially at large r̄ in the region outside the duct. Satisfying these constraints shows that the solution

is physically realizable. Furthermore, the condition that both ψ and χ are pure real indicates that

there is no power flow in the radial direction, whereas there is axial and azimuthal power flow.
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These properties show the existence of a wave guided along the duct with no radial power leak-

age. The ψ and χ solutions in a uniform density region inside the duct are each the sum of two

Bessel functions where one Bessel function is a standing slow wave and the other Bessel function

is a standing fast wave. The ψ and χ solutions in the uniform density region outside the duct

are decaying spatially oscillating standing waves having a single radial wavelength intermediate

between the fast and slow wavelengths in the duct. The phase of the χ spatially decaying standing

wave slightly leads the phase of the ψ spatially decaying standing wave. The rate of decay in

the region outside the duct is large so these waves decay to infinitesimal amplitude in a radial

distance of the order of the duct radius. The classic plane wave assumption prescribed by Eq.1

fails in the vicinity of the mode conversion location as there exists a previously ignored solution

that in Cartesian coordinates has an x̄e±iNxx̄ dependence.

We have shown that the wave behavior depends on the location of the mode conversion location

(which is equivalent to a dependence on Nz
2 ) and also on the wave frequency. Furthermore, situ-

ations having the same Nz
2 but different ω̄ will have different radial wavelengths. This dispersive

behavior of the wave can be seen by dividing Eqs.6 and 7 by ω̄2 which shows that changing ω̄ will

change Nr
2 even if Nz

2 is kept constant. This change is such that both fast and slow waves have a

larger Nr
2 when ω̄ is decreased.

We note that, as shown by Bakharev et al.15, a situation could occur with appropriate density

profile where the situation shown in Fig.3 is generalized to having a region of finite radial extent

where real values of N2
r are located between inner and outer regions having complex conjugate

values of N2
r in which case there would be a surface mode effectively trapped between a pair of

mode conversion locations at two different radii.

We also note that if the plasma parameters have a gentle non-uniformity in the z direction, then

Nz would have a gentle variation according to a WKB prescription. Similarly, collisions or Landau

damping would cause attenuation but this would be extremely weak as whistler waves are observed

to bounce along a duct from hemisphere to hemisphere several times with little attenuation as

shown in the twelve-bounce train in Fig.7 of Storey5.
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