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Solution of the wave equations for a cylindrical whistler duct
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The coupled equations governing whistler waves propagating along a duct with cylindrical
cross section are derived and then solved numerically. These equations are expressed in
terms of magnetic and current flux functions and show that it is possible to have a solution
where the waves are finite in the duct and decay exponentially outside the duct. This
solution has the property of having zero radial Poynting flux everywhere so, as required
for whistler waves to bounce back and forth losslessly between magnetically conjugate
terrestrial hemispheres, no wave power leaks from the duct. The coupled equations are
solved numerically for a tangible realistic situation by dividing the radial domain into an
inner and an outer region where the interface between these regions is at a mode conversion
location where fast and slow modes inside the duct merge and effectively reflect. The result
of this effective reflection is that there are fast and slow standing waves in the duct. In the
region external to the duct, the wave solutions are also a form of standing waves, but
with a strong exponential decay and a radial wavelength that is intermediate between that
of the fast and slow waves in the duct. The numerical solution is shown to be in good
quantitative agreement with estimates made from analytic models. Detailed examination
of the solutions in the vicinity of the mode conversion location shows that the classic plane

wave assumption fails to describe the true nature of the modes.
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I. INTRODUCTION

Wave propagation in a magnetized plasma has been studied for a century and thousands of
papers have been written on this subject. These waves have also been discussed in many books

such as Stix!, Swansonz, and Bellan®.

A wave of particular interest is the whistler wave which was first observed in a terrestrial context
and has since been observed by spacecraft in Earth’s magnetosphere and in the magnetospheres
of other planets. Whistler waves have also been observed and studied extensively in laboratory
plasmas. Magnetospheric whistler waves play an important role in pitch-angle scattering of ener-
getic electrons trapped in Earth’s Van Allen radiation belts causing some electrons to leak into the

loss-cone of Earth’s magnetic field and then impact Earth’s upper atmosphere to form aurora.

Previous work on whistler waves will now be summarized. The first published report of whistler
wave observation was by Barkhausen* in 1919 who stated that during the First World War unex-
pected audio frequency waves were detected from telephone lines at the front. These telephone
lines were connected to high-gain amplifiers and an audible signal was heard that sounded like
"shells flying". The signal was a descending audio tone lasting about a second. At first it was
thought that these waves were related to a meteorological feature, but Barkhausen stated this was
refuted because the telephone wires were underground. Barkhausen concluded that the cause of

these waves was inexplicable and hoped that an understanding would be achieved in the future.

The cause of whistler waves remained unexplained until 1953 when Storey?, using detailed ob-
servations of the geographical and temporal properties of whistler waves, concluded that whistler
waves were excited by terrestrial lightning bolts. Storey postulated that these waves reflect back
and forth between magnetically conjugate locations in the northern and southern hemispheres.
This postulation was remarkable for two reasons: First, the required plasma density greatly ex-
ceeded the value assumed by then-existing models for the space regions through which the waves
would have to propagate. Second, even if the waves could travel along the proposed path, they
would be expected to have such a large geometrical divergence that their amplitude would be-
come negligible after traveling from one hemisphere to the other. Storey boldly predicted that the
plasma density along the wave trajectory must be much higher than what was then assumed; this
prediction was later confirmed by spacecraft measurements in what is now known as the plasma-
sphere. However, the lack of geometric divergence could only be explained if the whistler waves

were somehow channeled along a magnetic field line when bouncing between hemispheres. Such
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channeling implies existence of some kind of waveguide or ‘duct’ connecting the two hemispheres
so that the wave is confined to this duct.

Early models of whistler wave ducting invoked wave ray descriptions. An important example
is that by Gendrin® who used a ray description to show that, for certain parameters, the wave group
velocity would align exactly along the background magnetic field so that a wave would bounce
between hemispheres along the background magnetic field with no power flow perpendicular to the

magnetic field. However, it was later realized™!!

that a ray description is inappropriate because
the ray description (‘geometric optics’) is a form of the WKB approximation and so is based
on the assumption that wave properties change very gradually over a wavelength. The whistler
dispersion relation becomes quite complicated at the location where the reflection from the ‘duct
walls’ is supposed to occur, and this complexity invalidates a ray description. In particular, as
noted by Karpman'2, the assumption that wave properties change gradually (WKB approximation)
is violated at the duct walls. Thus, a so-called ‘full-wave’ description must be used where the
actual field differential equations are solved directly without invoking a geometric-optics WKB
approximation.

Stenzel observed that high power whistler waves could effectively dig their own ducts!3; the
nonlinear ponderomotive force associated with the wave was seen to create a density depletion
along the magnetic field in a laboratory plasma. The whistler wave maintained a constant ampli-
tude as it propagated away from the excitation source, a behavior that contrasts with the non-duct
situation where it was observed that wave amplitude decreased with distance from the source be-
cause of geometric divergence. Kostrov et al.'* showed that ducts can also appear due to plasma
heating because of a redistribution of the plasma away from the heated region by thermally driven
diffusion.

Plasma wave models typically use a Cartesian geometry {x,y,z} where z denotes the direction
of the background magnetic field, x denotes the direction of density or background magnetic field
inhomogeneity, and y is an ignorable coordinate so no quantity depends on y. However, instead of
using Cartesian geometry, Kostrov et al.!4, Pasmanik and Trakhtengerts®, Bakharev et al.'>, Ku-

.16 and Nassiri-Mofakham'” used a cylindrical coordinate system {r,¢,z} where z again

drin et al
denotes the background magnetic field, but now r denotes the distance from the magnetic field line
that is the axis of a duct. Here ¢ is ignorable on the basis that the duct is azimuthally symmetric.

118

Zudin et al."® considered both Cartesian and cylindrical models of whistler propagation.

Cho'® and Nejad and Streltsov!! independently concluded that whistler ducting involves a si-
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multaneous mode conversion of a fast wave into a slow wave and mode conversion of a slow wave
into a fast wave. Linear mode conversion (see Chapter 13 of Stix!) is a wave process that occurs
when a wave equation is fourth order and, for a given frequency and parallel wavenumber, two
distinct modes exist having perpendicular wavevectors that are normally distinct from each other,
but become identical at a certain critical location. The two modes are labelled as ‘fast’ and ‘slow’
referring to the wave phase velocity in the direction perpendicular to the background magnetic
field. For example, a fast mode propagating from left to right in a certain geometry and approach-
ing the critical location converts into a slow mode that then propagates from right to left; there is
also an associated ‘tunneling’ field to the right of the mode conversion location. Similarly, an ap-
proaching slow mode propagating from left to right converts into a fast mode that then propagates
in the reverse direction and again there is an associated ‘tunneling’ field to the right of the mode
conversion location. Thus, mode conversion is akin to reflection except that the reflected wave has
been converted from fast to slow or vice versa. This simultaneous fast to slow and slow to fast
mode conversion thus effectively acts as a mirror at the inside wall of the duct and so confines the
whistler wave to the duct interior. Cho used cylindrical geometry, considered laboratory plasmas
where the waves are called helicons and characterized the waves in terms of Hankel functions.
Nejad and Streltsov used Cartesian geometry, compared their numerically calculated results to
spacecraft measurements, called the process ‘mode switching’ and showed via numerical solu-
tions that the mode switching would occur at a density dip. They also reported more complicated
processes2 that would occur where there is a local abrupt change in the magnetic field or in the
density and called these locations density or magnetic shelves. These other more complicated
processes appeared to be leaky because they appeared to have waves escaping the ‘shelf’.

Maggs et al.2! created a duct in a laboratory plasma and saw evidence of the co-existence of fast
and slow waves. Streltsov et al.'® have modeled a laboratory ducting experiment. The possibility

d22

of whistler waves in the solar corona has been considered?? as well as in the solar wind?>.

Verkhoglyadova et al>* have shown that the magnetic field of an oblique whistler wave is

circularly polarized and that in certain limits becomes a Gendrin mode. Loi et al?® directly imaged
actual ducts using the Murchison Widefield Array radio telescope. Huba et al*® have proposed that
ducts can be produced by atmospheric gravity waves and provided models showing a plasmasphere

with a corrugated density. Harid et al.”’

used a ray tracing code to model detailed spacecraft
measurements but acknowledged that ray tracing fails at the location where the wave reflects. Gu

et al.?8 have made a statistical study of duct size using 7 years of Van Allen spacecraft data.
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Lewis and Bellan®® showed that the requirement that physically measurable variables be non-
singular coupled with cylindrical symmetry provided constraints on allowed dependence of vari-
ables; these regularity constraints provide insights into the nature of solutions to equations before
solving these equations.

This paper begins by summarizing the uniform plasma model (i.e., dispersion relation) of
whistler wave propagation and its WKB-like extension to a non-uniform plasma. The paper then
derives an accurate pair of coupled differential equations that provide a ‘full-wave’ description of
whistler wave propagation in a cylindrical duct and relates the solution of these equations to the
simpler, but inaccurate, uniform plasma dispersion relation and WKB solutions. Although incor-
rect for a non-uniform plasma in the critical situation of interest, the uniform plasma dispersion
relation and the related WKB solution serve as useful intuitive guides for interpretation of the
accurate, but much more complicated, full-wave description.

The paper is organized as follows: Section II summarizes the uniform plasma whistler wave
model expressed as a dispersion relation predicting two wave modes (fast and slow) that exist si-
multaneously while having the same parallel wavelength but different perpendicular wavelengths.
The discussion further shows that there is a critical density, called the Gendrin density, at which
the fast and slow waves have the same perpendicular wavelength and that for this density, the wave
has the peculiar property of having zero energy flux perpendicular to the magnetic field. Section
III derives the two coupled differential equations which constitute the full-wave description in the
cylindrical geometry appropriate for a pipe-like duct. Section IV considers the Poynting vector in
the context of the full wave equations and shows that the nature of these equations implies that
there is zero energy flux perpendicular to the magnetic field at all radii in a non-uniform plasma;
this result is a much stronger statement than the Gendrin density property of the uniform plasma
analysis. Section V shows that the full-wave description can be reduced to the uniform plasma de-
scription and Section VI shows that this reduction retrieves the well-known limits of the uniform
plasma description for propagation exactly parallel to or exactly perpendicular to the magnetic
field (right and left hand circularly polarized for pure parallel propagation, ordinary and extraordi-
nary modes for pure perpendicular propagation). Section VIII shows that in a radially non-uniform
plasma, the parallel refractive index is determined by the location where the fast and slow modes
coalesce. Section VIII points out physically important differences between cylindrical geometry
and Cartesian geometry. Section IX prescribes a reference azimuthally symmetric case where an

inner uniform-density plasma is connected to an outer higher-density region by a non-uniform
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density region. Whistler waves in this situation are examined by pushing the uniform plasma de-
scription up to and, what is later shown, beyond its limits; while the results are later shown to
be inexact, they nevertheless provide useful initial insights and benchmarks. Section X presents
the numerical solution of the full-wave equations and relates this exact solution to the inexact but
intuitive analytic results of Section IX. Section X then describes in detail the numerical method
and its complexities, shows that the results indeed solve the equations and addresses an interesting
issue related to the failure of the geometric-optics WKB approximation at the location where the
fast and slow modes coalesce. The resolution of this issue reveals a new and unexpected type of
solution that exists in the vicinity of the mode coalescence location. Section XI presents three
cases differing from the reference case so as to demonstrate how the full-wave solution depends
on the location of the mode coalescence and on frequency. Section XII presents a conclusion that

summarizes the main results.

II. SUMMARY OF DISPERSION RELATION METHODS

SI units will be used. The plasma is assumed to have a background magnetic field B = ByZ and
the wave amplitude is assumed to be so small that a linear description can be used. The wave fields
obey Maxwell’s equations and the charged particles obey the Lorentz force equation. The wave is
assumed to have a parallel phase velocity greatly exceeding both electron and ion thermal veloci-
ties and the particle temperatures are assumed to be sufficiently low that finite Larmor orbit effects
can be neglected so the wave can be considered to be a cold plasma wave. The cold plasma wave
dispersion relations are obtained from the determinant of a 3 X 3 matrix that multiplies the vector
electric field and these dispersion relations are conveniently categorized by the CMA (Clemmo-
Mullaly-Allis) diagram'. The CMA diagram is based on Cartesian geometry {x,y,z} and all wave
field components are assumed (e.g., see page 4 of Stix') to have a plane-wave dependence given

by
E(x,y,2,1), B(x,y,z,1) ~ eftika=ior (1)

where @ is assumed to be real and positive. Equation 1 is called the *plane wave assumption’ and is
only strictly true if the plasma is spatially uniform. If the plasma is non-uniform in some direction,
which in this paper will be the x direction, then in certain situations, the plane wave assumption

may be generalized by the WKB approximation which allows for a spatially dependent k,(x), but
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this generalization requires that k,(x) change very gradually in a wavelength and this requirement
is violated in the situation of most interest here. Despite this breakdown, it is useful to consider
the predictions of the plane wave and WKB solutions in a non-uniform plasma as these predictions
provide useful insight. Thus, plane wave and WKB solutions will be discussed with appropriate
warnings regarding where and how these solutions fail.

Plane waves are deemed to be "propagating" if k> = k2 +kZ2 > (. The CMA diagram shows that
thirteen qualitatively different regions exist for plane waves in a two-dimensional parameter space’
and in each CMA region there can be zero, one, or two propagating wave modes. The ek=<tikez—ior
dependence is invoked in Maxwell’s equations and in the particle equations of motion to obtain
a dispersion relation @ = (k) that characterizes the mode properties. The refractive index N =
ck/®, a parameter comparing waves in plasma to waves in vacuum, provides a convenient way
to classify propagating modes as being fast (small N) or slow (large N). The whistler wave exists
in the CMA region where ®pe, Wce > @ >> @, ®p;. An unexpected and important result of the
analysis presented here is a demonstration that the seemingly innocuous assumption prescribed
by Eq.1 fails in the vicinity of the mode conversion location; this demonstration will be given in

Sec. X D.

The whistler dispersion relation is a simpler form of the rather complicated dispersion relations
produced by the CMA analysis. This involves algebraic manipulations that produce the general
Appleton-Hartree dispersion relation! and then further simplification based on assumptions re-

garding a parameter 6 defined by N,/N = cos 6. This simpler form is

2
Wpe

N2 = 14—
o (|@ce| N;/N — @)

@)
the absolute value bars are used because ., = g.B/m, is negative. As conventionally defined,
here a)ge = ng?/eom, is the square of the electron plasma frequency while 7 is the electron den-
sity. O is conventionally interpreted as a geometric angle between N and Z so that cos 6 < 1.
However, when discussing mode conversion, this interpretation turns out to be inadequate because
it omits the physically realistic and important situation where 6 is complex so there is no geo-
metric interpretation. The whistler regime typically has a)l%e sufficiently large that the ”1” on the
right hand side (displacement current) can be discarded. We will alternate between using Eq.2
with displacement current dropped and using the full cold plasma dielectric tensor because useful

insights are obtained from both these approaches and from comparing them.
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On discarding displacement current, Eq.2 reduces to

2

2_ Bpe .

= 3)

C()(‘(Dce|NZ/N— (0)
discarding displacement current means that the upper hybrid resonance can no longer be described.
It is now more convenient to use k = wN/c instead of N so Eq.3 becomes
_ 0w,/
|@cel bz /k— 0

2

“

Equation 4 can be arranged as

w
k§+k§—|w—£‘wkﬂ/k§+k§+%:04 ®)

Streltsov and colleagues have shown that Eq.5 can be solved for k2 to give two modes, denoted

slow (subscript ‘s’) and fast (subscript ‘f”),

2 o [ ®ce\? n\’
K2 = i [(m) (H‘“TG) —1} ©)
2 52 Wee \2 n 2
Ky =k [(m) <1* 1*@) 1} @

where ng, called the Gendrin density, is given by

1 gym, &>
nG:ZSO e N2 ®)
SO " R
®,, N,
pe z
= atn = 3 9
0: 4 n=ne ©)

If the plasma is spatially uniform and has a density n = n¢ the fast and slow modes become indis-
tinguishable. On the other hand, if the plasma is spatially non-uniform so that there is a specific x
at which n(x) = ng, then the situation develops an inherent paradox. The paradox results because
the location where the two plane wave modes become indistinguishable is precisely the location
where the plane wave model (and its WKB generalization) break down. Resolving this paradox
is one of the main results of this paper. The plane wave approximation and its WKB extension
will be used to the extent that they provide useful intuition and the cause of the breakdown will
be examined. The nature of the breakdown will be compared to the correct full-wave solution.

Thus, the prediction that the plane wave solutions become indistinguishable in a non-uniform
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plasma at n(x) = ng is formally meaningless because the plane wave assumption and the resulting
concept of dispersion relations are not permissible at n(x) = ng. Despite this, it is nevertheless
helpful to intuition to be aware of the predictions of the plane wave/WKB model and its associated
dispersion relations; these predictions, while not correct, serve as a guide/benchmark/insight for
understanding what actually happens. Thus, the uniform plasma prediction that the fast and slow
modes become indistinguishable at n = ng provides the insight that in a non-uniform plasma the
fast and slow modes strongly interact at n(x) = ng.

The dispersion relation can be expressed in terms of ‘natural’ parameters by defining

D = 0|0 (10)
de = c/Wpe (11)
k, = kd, (12)
ke = kd, 13)

where d, is the electron skin depth. Using these definitions, Eq.5 reduces to

R +1=kk./®. (14)

In the k, — 0 limit, k, — k and the dispersion relation reduces to

- [ @

This can be expressed in terms of the axial wavelength A, = 27 /k, the quantity typically measured

in experiments, as

Azzfi fife—l (16)
pe .

so if for example f/ f.. = 1/2, then A, = ¢/ fpe; here f = w/2m and f,, = |@.|/27. Equivalently,

Eq.14 can be expressed as ~
f_ R
Jee  K+1

a relation verified experimentally in Fig.6 of Stenzel’® where d, = ¢/ @p, = 1.07 cm on using

Ope/Wce = 19 and |@.|/2w = 235 MHz. This shows that for 0.2 < f/f.. < 0.6, a typical range

a7

for whistler experiments and observations, the axial wavelength ranges from half to one and a
half times ¢/ f,.. For purposes of rough estimation, the A, of a whistler wave in the range 0.2 <

S/ fee < 0.6 can be considered to scale approximately inversely with frequency with the condition
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that A, = ¢/ fpe when f/f.. = 1/2. These approximations are true only if the radial wavelength
is much larger than A; and since the radial wavelength is of the order of the device radius lgeyice,
this requires ;... to be much larger than 27d,, a condition that places a lower bound on the
electron density. Thus, to satisfy these conditions it is necessary to have lgeyice > 27¢/ @, Which
corresponds to requiring n > 4m°m,/ (yoqujem). For example, if the device radius is lgeypice =
0.5 m, then the electron density should satisfy 7 > 4 x 10> m~3. In lab experiments reporting
whistler wave observations, this condition is typically satisfied by a margin of about 10%.
Another point of view is obtained by squaring and expanding Eq.5 which becomes the quadratic

equation in k2,
. I . 4 oo (R
k§+(2k§—@—3+2)k§+(kﬁ—kg(@—g—z)ﬂ):o. (18)

Solving for k2 gives the two roots

_ - 1 1 1 4(1_)2
2 2
kx—kz (—1—}-2_2—]_{22:&2_21[1—]_(%). (19)

These roots merge when I_cg = 4®” which corresponds to the Gendrin relation, Eq.9. The value of

the merged root is
_ - 1
2 _72
(kx)merged - kZ <4(D2 - 1) : 20)
In order for this merged root to be positive and hence associated with propagating modes just
before merging, it is necessary to have @ < 1/2.

Equation 20 indicates that (k2) = k? when ® = 1/+/8 = 0.353 in which case wave phase

merged
fronts would propagate at a 45 degrege angle relative to the magnetic field. This 45 degree angle
was observed by Stenzel and Urrutia’! in a laboratory experiment having B =5 x 107* T so
fee = 1.4 x 107 Hz and the wave frequency was f =5 MHz so @ = f/f.. = 0.357 ~ 1/+/8. This
experiment had an axial wavelength A, = 0.14 m so N; = ¢/(fA;) = 429. Equation 8 predicts that
the Gendrin density will then be

_ 1gB?

4 m,

nG N?=1.1x10"m™? @1

which is in good agreement with the reported density of 10'7 m~3.

Another constraint, to be justified below, is that for the fast mode to exist, it is necessary to have

2 2
2 wpe/wce
N < &i-a)

in the limit that displacement current can be neglected. The conditions for having
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fast and slow modes exist and then merge at some location are summarized as

1
D < = 22
® <3 (22)
40?2 0?2,/ w2
pe 2 pe! Wee
< NE< —/—0— 23
0% T e(l-o) 23)

When Eqs.22 and 23 are satisfied, the fast and slow modes are distinct and both Ni, and Nf y

are pure real. The fast mode has an electromagnetic character and is right hand circularly polarized
whereas the slow mode has an electrostatic character.

As shown by Gendrin®, Helliwell®?, and Verhoglyadova et al.?*

, there is a special situation,
called the ‘Gendrin mode’ where the z components of the wave group and phase velocities are
equal. This equality has been experimentally validated (see Fig. 8c of Urratia and Stenzel®?).

To derive the Gendrin mode, Eq.4 is re-arranged as

2
c
0= wT(‘wceMZk*wkz)- (24)
pe

By taking the derivative of Eq.24 with respect to k,, the x component of the group velocity is seen

to be )
do ¢ dk
= = —5 (|0ce| k; —200k) =—. 25
akx wge (| LE‘ r4 )akx ( )
In the situation where
|@xce| K,
=— 26
2o (26)
it is seen that d@/dky, = 0 so the group velocity is only in the z direction.
Using Eq.26 to substitute for k in Eq.24 gives
2 ) 2 k2
== |0k @7
0y, 40
which upon rearrangement shows that the z direction phase velocity is
O |l
— 2Tl 28
k;  20p. 28)
This can be expressed as
c| el
= k; 29
20pe 29)
which implies
d0  c|o]
2= el 30
ok, 2ap. G0

Thus, the group velocity in the z direction equals the phase velocity in z the direction.
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Equation 26 can be written as
() 1

R
|@ce| 2k T

(3D

=[5
| =

which constrains @ for the Gendrin mode.

This discussion of group and phase velocities is only appropriate for a uniform plasma. In a
plasma that is non-uniform in x but uniform in z a full-wave description must be used to analyze
wave behavior. This is because the group velocity is equivalent to the geometric optics ray concept
and so depends on the WKB assumption k;ldkx/dx <&k, which fails at the mode conversion
location because at this location dky/dx — oo. For example, if the density n depends on x, then
taking the derivative of Eq.6 or of Eq.7 with respect to x shows that dk,/dx — oo at the location
where n(x) — ng. Although the concept of group velocity in the x direction, i.e., vy = d@/dk,
fails at the mode conversion location, the concept of group velocity in the z direction,i.e., vy, =
d®/dk, remains valid at all positions.

This breakdown of the group velocity concept at the mode conversion location can also be seen
from consideration of the standard derivation of group velocity, as exemplified by Jackson>* where
the derivation has a logic progressing from Eq.7.6 (p.296, equivalent to Eq.1 here), to Eq. 7.80
(superposition of Eq.1 solutions in a Fourier integral) to Eq.7.84 (coherent phase mixing on the
group velocity trajectory). It will be shown in Section X D of this paper that the Eq.1 assumption
is inadequate at the mode conversion location so the logical progression summarized above fails
because of the failure of the first assumption in this logical progression, namely the assumption

that propagation is completely prescribed by Eq.1.

III. FUNDAMENTAL EQUATIONS INSTEAD OF DISPERSION RELATIONS

Instead of assuming a uniform plasma which enables use of the dispersion relations summarized
in the previous section, we now use the original wave partial differential equations. However,
we will also refer back to the dispersion relation results as they provide useful benchmarks and
insights regarding the more fundamental differential equation analysis. Cold plasma waves are
traditionally described using the wave electric field vector E as the fundamental parameter. The
wave dispersion relation is then derived from the determinant of a 3 x 3 matrix that multiplies E
and results from combining Ampere’s law, Faraday’s law and the Lorentz force equation. Knowing

E, the wave magnetic field B can then be determined from Faraday’s law. In Bellan® it was shown
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that simpler and more transparent forms of dispersion relations can be obtained by optimal choice
of the fundamental parameter. Following this approach, we will use the wave magnetic field B
as the fundamental parameter. This provides a significant advantage because the zero-divergence
property of the magnetic field means that the wave magnetic field can be characterized by just
two scalar parameters whereas the wave electric field requires three quantities. Furthermore, we
assume that both the wave and the environment are cylindrically axisymmetric so the coordinate
system is cylindrical with coordinates {r,¢,z} where the z axis passes through the source and the
wave has no ¢ dependence. This axisymmetric wave assumption precludes consideration of waves
having exp(im¢) spatial dependence where m is a non-zero integer; effectively it is assumed that
the wave has m = 0 azimuthal dependence. The assumption of axisymmetry for the environment
is the natural coordinate system of a pipe or tube with axis on a magnetic field line linking a
location in Earth’s northern hemisphere to a magnetically conjugate location in Earth’s southern
hemisphere. The virtue of {r,¢,z} cylindrical geometry compared to {x,y,z} Cartesian geometry
is that ¢ has the finite domain from O to 27 which relates to a real physical geometry whereas y has
an infinite domain, namely —eo < y < o which does not correspond to a real physical geometry.
We now derive two coupled equations involving the wave magnetic field. The equations pre-
sented here are mathematically equivalent to the conventional electric-field cold plasma plane-
wave description but incorporate certain insights and practical advantages.
—iot

As before, we assume a time dependence e so Faraday’s and Ampere’s laws are

VxE = ioB (32)
VxB = —i9K-E 33)
C

where the plasma dielectric tensor K is such that
K-E=SE, +iDZxE, +PE.Z; (34)

here | means in the direction perpendicular to 2. The cold plasma dielectric tensor elements are'

2 2 2
Oy (0% O O
S=1=3 —rerD=) St P=1-) 5 (35)
o=i,e (4o o=i,e (4o o=i,e

We have used Stix’s notation for the dielectric tensor elements because of convenience of the

mnemonics: S = sum, D= difference, P = parallel with associated quantities R =right and L = left
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s0 S = (R+L)/2 (sum) and D = (R— L) /2 (difference). Thus,

R=S+D (36)
L =S-D. 37
We define
r=ro/c (38)
and
-
V=—-V 3
P (39)
so Eqs.32 and 33 become
VxE = icB (40)
VxcB = —iK-E. 41)

Because the wave fields do not depend on ¢, the wave magnetic field can be expressed in the
general two-parameter form

B=VyxVo+ xV¢ (42)

where y is proportional to the wave poloidal magnetic flux and ) is proportional to the wave
poloidal magnetic current consisting of the sum of the wave plasma and displacement currents.
Here Vo = ¢ /7, poloidal refers to vectors in the r,z plane, and toroidal refers to a vector in the
¢ direction. Equation 42 shows that B-Vy = 0 indicating that poloidal magnetic field lines are
contours of constant Y. Equation 42 is the most general form for an axisymmetric magnetic field
because it depends on two independent scalar functions and automatically satisfies V- B = 0 since
V. (@l// X 6(])) =0 for arbitrary y and V- (xﬁ(b) = xV?¢ = 0 for arbitrary x(7,Z). The condition
V.B = 0 implies that a magnetic field depends on only two scalar functions because once any two
components of B are specified, the third component is determined from V-B = 0. This situation is
not true for the electric field because V - E can be non-zero. y(7,Z) has the physical interpretation
of being the magnetic flux (except for a constant coefficient) passing through a circle about the Z
axis having radius 7 and axial position Z. Similarly, ) (7,Z) has the physical interpretation of being
the current (plasma and displacement) passing through a similar circle, again except for a constant
coefficient. Equivalently, )y can be interpreted as an expression of Ampere’s law which states that

By ~ I/F where I is the current passing through a circle of radius 7.
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The wave magnetic field components are then

1dy
B = ———
! Fc 97
_x
B¢ o rc
1 dy
B — =T
57 Fe dF

Taking the curl of Eq.42 gives

so Egs. 40 and 41 can be expressed as

VXE = iVx (yVe)+ixVe

_ 1= _ _ _
—PV. (ﬁvw) Vo +Vy xVo = —iSE| + DixE| —iPE_3.

_ /1= _ _ _
VxcB=—RV. (ﬁvw) Vo+VyxVe

(43)
(44)

(45)

(46)

(47)
(48)

Because the curl of a poloidal vector is toroidal and vice versa, decomposing Eq.47 into toroidal

and poloidal components gives

VxE,, = ixVe
VxE;pr = iVx (yVe).

Integration of Eq.50 gives

E/or = iyVo
SO
N4
Ey=i—.
=17
Dotting Eq.49 with ¢ gives
OE, OE. _ix
dz  JF F

Dotting Eq.48 with 7, ,2 successively gives

10y

- = iSE,+ DE
7oz _ SEr+ DE
_ 1 .- )
—FV. (ﬁvw) = —iSEs +DE,
idy
-=£ = PE,.
7 OF ¢
15

(49)
(50)

(51)

(52)

(53)

(54)

(55)
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Substituting for Ey in Eqs.54 and 55 and substituting for E; in Eq.53 provides

9% _ sgy DY 57)
7oz 7

—7V. (_%Wf) = Sg+DE,. (58)

I r

JE, d (1dxy\ ix
oz 'or (PF af> TR 9

Solving Eq.57 for E, gives
__ i (x_,

E =— sr( - lD![/) (60)

and substituting this into Eqs. 58 and 59 gives two coupled partial differential equations involving

v and ), namely

0 [(1dy\ d*y Szf *iDdyx

ToF (F ar) azz * V= 5oz ©D
d [ 1dy 19y .0 (D

Tor (ﬁﬁ) ( ) -5 (EW) | ©

If we now assume that there is an exp(ik,z) = exp(iN,Z) dependence where N, = ck./® and Z =

z®/c, Eqs.61 and 62 become

20 (Loy -p* )\ D
ar (r ar)+( S _NZ) Yy = _Nzgx (63)

_d [ 19dy NA\ D
F (ﬁﬁ) + (1 7 )x = _NZEW' (64)

These two equations are equivalent to the determinant of the 3 x 3 matrix associated with

the CMA diagram but have the advantages of: (i) involving only two quantities, namely y and
X, (i) involve cylindrical geometry, (iii) allow for both density and background magnetic field
radial gradients, and (iv) provide regularity constraints that are missing from a Cartesian geometry
model.

By using Eq.52 to give y = —irEy and ) = 7FcBy, Eqs.63 and 64 become identical to
Eqs.18(a,b) in Kostrov et al.'*. Kostrov solved the equations by assuming a Bessel function
solution for an inner uniform density region and a Hankel function solution for an outer, but dif-
ferent, uniform density region and then used boundary conditions at the step interface to connect
the inner and outer solutions. Kostrov et al. stated that there were no discernible differences
between the step solution and a solution, not presented in Kostrov et al., having a more realistic

smooth transition. Close examination of the solutions shown in Figs. 9 and 10 of Kostrov et al.

16



AIP
é Publishing

show discontinuities in the radial component of the wave electric field at the location where fast
and slow modes merge; there are also discontinuities in the radial derivative of the axial electric
field. As noted in the caption of Fig. 9 in Kostrov et al., these discontinuities are a consequence
of the step approximation. The discontinuity in E, implies a non-physical surface charge density
at the merging location. The analysis presented here will not assume a step interface and so is not
constrained by the simplifying step assumption inherent in Figs. 9 and 10 in Kostrov et al.

We note that instead of using Eqs.63 and 64 the cold plasma wave equations can be expressed as
a pair of coupled equations in E; and B, but this alternative representation is far more complicated
as seen from examination of Eqgs.(81) and (82) in Bellan3® and Egs.(6) and (7) in Bakharev et al.ls,

An important and consequential feature of Eqs.63 and 64 is that all coefficients in these equa-
tions are real. This means that y and ) can be considered to both be pure real without loss of
generality as real parts of y interact only with real parts of ¥ and imaginary parts of y inter-
act only with imaginary parts of ). Furthermore, it is impossible to have a solution where either
one of y or x is zero everywhere if N.D/S # 0. Thus, the system is a true fourth order system
where both y and y must be finite. Equations 63 and 64 are notationally somewhat simpler than
corresponding equations that describe the problem in terms of electric and magnetic fields (for ex-
ample, compare Eqs.63 and 64 here to Egs. (4) and (5) in Nassiri-Mofakham!? or to Eqgs.18(a,b)
in Kostrov et al'4,

Using Eqs. 43, 45, 52, 56, and 60 the electric and magnetic field components are thus deter-

mined from y and ) as
1

E, = E(NZX_DW)
_ .y
E¢ = l}7
i dy
5= por
iN,
B, = ——
Fc
X
By = ~
¢ rc
B = LV (65)
Fc OF

Because E;,Ey, B, By must all vanish at 7 = 0, it is necessary that both y and y satisfy the reg-
ularity condition of being proportional to 7 at small 7. Contours of y show the projection of the
magnetic field in the r,z plane while contours of ) show projections of the wave current vector

(plasma and displacement) in the r, z plane.

17



ing

AlIP
lﬁ_ Publish

IV. POYNTING VECTOR

The conclusion in the previous section that ¥ and )} may be assumed to be real has impor-
tant implications for the wave energy flux. For electromagnetic fields having time-dependence

exp(—iwt) the time-averaged wave energy flux is given by the Poynting vector
M= - Re(ExB") 66)
=—Re .
210

It should be noted that for a cold plasma wave as discussed here, the Poynting flux vector IT and
the group velocity vector are collinear (see Eq.27 in Chapter 4 of Stix'). Since being real implies

y* =y and x* =y, on using Eq.65, the Poynting vector components are

1 ooy ixdx\

I = 2”2l Re (l Vor par) " 67
1 D Jdy 1dx x oy

Mo = Socm, (Swaf _NZ<P VT sor ©8%)
__ (D 2 2

- o (e (v E)) ®

Both ITy and IT; are finite and depend on the sign of N so the wave energy flux follows a helix
about the z axis. However, Eq. 67 shows that IT, = 0 which means that the radial component of
the group velocity is zero at all radii. This is a much stronger statement than Gendrin’s observation
that the group velocity vanishes when the fast and slow mode coalesce. If waves are confined to
a duct, then it would be necessary to have IT, = 0 everywhere. Equation 67 thus indicates that
a ducting solution is possible for solutions to Eqs. 63 and 64 where y and y are both real and
obey physically allowable boundary conditions, namely regularity at # = 0 and vanishing at 7 = co.
It was mentioned earlier that the concept of radial group velocity and the geometric-optics WKB
approximation fail at the Gendrin density (location where fast and slow modes coalesce). However,
this failure is not an issue for Eq.66 and in particular for Eq.67 which are always valid and so can

be considered to be more fundamental.

V. UNIFORM PLASMA SOLUTIONS

Before addressing the ducting problem, we consider the simpler situation where S, P, and D are
spatially uniform. The solutions of Eqs.63 and 64 are then of the form y, x ~ 7.J; (N,7) where J is

a Bessel’s equation of order 1 and N, is determined by a dispersion relation. Although 7Y; (N,F) is
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also a mathematically valid solution of Eqs.63 and 64, this solution is discarded because at small
7, Y1 (N,F) ~ 1/F which would predict the non-physical behavior of B, ~ 1/F near 7 = 0. Similarly,
Hankel function solutions are not allowed as these involve linear combinations of J; and Y;. Since

a Bessel function of order 1 satisfies

£n an 1
ds?  sds s?

evaluation of y and y using Eq.70 shows that

_d (ldy\

FE (%ﬁ) = N

_d [ldx\ 5

"oF (? 87) = Nex an

Using Eq.71 and defining § = S — NZZ, Eqs.63 and 64 reduce to

Ji=-A (70)

(-SN?+S§-D*)y = —N.Dx (72)
(- SN* +8P) x = —N.PDy. (73)

Setting the determinant of these coupled equations to zero gives
SN}~ (S(S+P)—D*)N?+P(§* -D*) =0 (74)

a dispersion relation for N> which corresponds to the Cartesian plane wave dispersion in Puri and

Tutter?’.

VI. REVERSION TO KNOWN LIMITS

Equations 63 and 64 revert to known limits for pure parallel and pure perpendicular propaga-

tion. If there is no dependence on 7 so d/d7 = 0, these equations reduce to

(52;1)2 fo) y = szgx (75)
(l - N?Zz) X = fNZBSy/. (76)
Substituting for y from Eq.76 in Eq.75 gives
(S—N2)* = D2 a7
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SO
S—N?>=+D (78)

implying the well-known result for pure parallel propagation

N?=R,L. (79)
If N, is assumed zero, then upon use of Eq.71, Eqs. 63 and 64 become
S2 _ D2
—N3w+( S )v/ =0 (80)
N2
—"ﬁx+x::0. (81)

Thus if y is finite and ) is zero, the dispersion relation is
$2-Dp* RL
N2 = =—
S S

which is the ‘extra-ordinary’ dispersion while if ¥ is finite and y is zero, the dispersion relation is

(82)

N2=P (83)

r

which is the ‘ordinary’ dispersion. Equation 65 gives the polarizations of the electric and magnetic

fields of these modes.

VII. WHAT DETERMINES N,

The experiments and magnetosphere are presumed to be infinitely long in the z direction so
there are no direct boundary conditions to determine N,. However, the dimensions are presumed
to be finite in the  direction and so boundary conditions associated with r determine N, or radial
behavior. The ducted and non-ducted situations differ with regards to radial boundary conditions.
In a plasma experiment where the plasma is radially uniform and the radius of the vacuum chamber
is much larger than the electron skin depth, the radial wavelength is of the order of the chamber
radius, i.e., d/JF is near zero and the dispersion relation is given by Eq.79. Because L < 0, the
only propagating mode is N, >~ R, which corresponds to Eqs.15-17 and gives A to be of the order
of ¢/ fpe-

However, if there is a duct, then /N, is determined by Eq.8. This is because the ducting depends
on there being a coalescence of the fast and slow modes which, as shown in Egs. 6 and 7, occurs
at the location where n = ng. Because Eq.8 shows that ng is proportional to Nz2, this means that

sz is determined by the location where the fast and slow modes coalesce, i.e., where n = ng.
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VIII. IMPLICATION OF CYLINDRICAL GEOMETRY COMPARED TO
CARTESIAN GEOMETRY

The N, refractive index component in cylindrical geometry corresponds to an N, refractive
index in Cartesian geometry. In Cartesian geometry it would be possible to have an isolated e/
solution which would correspond to having a wave propagating in the positive % direction. The
corresponding cylindrical situation would be a wave propagating in the positive 7 direction and
such a wave would involve a Hankel function 7H |(1) (N,7). However, since H 1(1) (N,7) = J1 (N, F) +
i) (N,7) and since Y; (N,F) is forbidden because it diverges at 7 = 0, the only possibility is to have
a function of the form 7 (Hlm (N,F) +H1(2) (N,-f)) ~ 7J1(N,;7). Thus, there must always be equal
amounts of inward and outward waves, or equivalently, the requirement that field components are
finite at 7 = O implies that there must be a standing wave in the radial direction. This conclusion is

consistent with Eq.67 which indicates that there is no radial Poynting flux and with the condition

that both y and Y are real.

IX. WHISTLER REGIME AND RELATION BETWEEN EQS.74 AND 18

Because we are interested in whistler wave ducting, we restrict consideration to the whistler
regime where ion motion can be neglected. A set of relevant parameters and relationships will
be established in this section, and for purposes of later comparison with a numerical calculation,
quantitative values will be assigned, and then used to calculate intermediate quantities that can
then be compared with the numerical calculation. To make it convenient to refer to results derived
across sections when comparing the numerical solution to analytic predictions, quantitative values
of relevant intermediate quantities are listed in Table 1 which will be filled in as the discussion
proceeds.

An important parameter in the whistler regime is

02

pe
= 84
8 o7 (34)

and typically g >> 1 in the whistler regime. The definition given by Eq.84 shows that g can depend
on both density (via a)ge) and on magnetic field (via @Z2). In this paper we assume that the magnetic
field is spatially uniform whereas the density is radially non-uniform so g depends only on the

density profile.
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The whistler regime is defined by the wave frequency being much higher than the lower hybrid

frequency in which case ions make negligible contribution to the dielectric tensor elements which

become
- 8
s =1+ 2 (85)
I g
D= —
@ (1—a?) (86)
8
R=1+—5 _ (8%)
o(l—a)
8
L=1—-—7"—.
(D(1+d)) (89)

If g > 1, displacement current can also be neglected so the dielectric tensor elements further

reduce to
§= == (90)
D= %ﬁ ©1)
P = % 92)
R = ﬁ 93)
L:faﬁﬁ. (94)

To make the analysis more general, displacement current will be retained in the numerical calcu-
lations, as no additional effort is required to do so.

To relate to the Cartesian analysis in Section II, we note that for large 7 and uniform density,
the cylindrical and Cartesian analyses are related by

]}2

k2
2 X
N ¢

Zzé&W: (95)

where k, and k, are defined by Egs.12 and 13. It can be demonstrated after a fair amount of
algebraic manipulation that Eqs.4 and 74 (with displacement current neglected) are identical so
any result derived using Eqs.4-20 also applies to Eq.74. In particular, the advantage of the Eq.18
representation is simplicity but this representation is only useful if the plasma has uniform density
because distances are scaled to the electron skin depth d, which depends on density. Thus, Eq.18

cannot be used for a plasma with a non-uniform density. The virtue of the Eq.74 representation is
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FIG. 1. Plot of N? versus N> from Eq.74 for three values of g = wﬁe J @2,

that it is scaled to the vacuum wavelength which is independent of density and so can be used for a
plasma with a non-uniform density. However, as will be discussed in Section XI, care is required
when the frequency is varied because 7 depends on frequency.

Partial insight into the wave behavior is provided by Fig.1. This figure plots N? versus sz
as determined by Eq.74 for g = 25,30, and 35 and, for reference to the numerical calculation
provided later, there is a dashed vertical line at the location where sz =121.742. It is seen that the
plot of Nf intersects the dashed line at two locations for g = 25, at one location for g = 30 and at
no locations for g = 35. The plasma is assumed to be uniform in the z direction so N, is the same
everywhere.

However, if the density depends on 7, then N, will vary with 7 and so different 7 locations will
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be associated with different curves in Fig.1. The up-slanting part of a curve in Fig.1 is called the

slow mode (large N,) and the down-slanting lower part is called the fast mode (small N,).

To understand the structure of Eqs.63 and 64 we write these equations in a more compact form

as
Ly(v)+ary = biy (96)
Ly (X)+ax = by 97
where
2 2
@ =3P 2 98)
s
D
b= —N.g (99)
N2
ay = P(lf?“) (100)
by = —NZD—;J (101)
and
02 10
Ly (y) = T:’: —;8—"; (102)
. Py (1 19P\ dy
%0 =G (74 5% ) % (109

The coefficients ay,b,az,b, depend on S, P, and D which in turn depend on 7 via g. At this
point, it is important to take into account that the density is a function of r rather than of 7 so
adjustments will have to be made if @ is changed. Combination of Eqs.10 and 38 shows that
r|@ce|/c = F/®.

For nominal terrestrial equatorial plane parameters at six Earth radii, ¢/| .| ~ 1000 km which
corresponds to the nominal width of whistler wave ducts reported in a statistical study by Gu et
al.?8. This indicates that 7/ @ will be of the order of unity at a duct edge.

To model a duct, we define p; as the value of r|@.|/c at the start of the density rise from the
duct bottom, p, as the value of r|w,|/c at the conclusion of this density rise, and p3 as a proxy
for p = . Since 7 rather than r is the independent variable in Eqs.102 and 103, it is necessary

to express P and hence g as a function of 7 rather than as function of r. Using the py,p2,p3
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definitions, the g(F) profile is thus prescribed by

8duct for0 <r < [o]o]]
8(7) =3 auer+3 (14 sin (g2 (7= 22572))) for @py <7 < @ps (104)
8duct A for @py < 7 < @p3

where g4, denotes the value of g in the duct, A is the depth of the duct, the width of the transition
region from inside the duct to outside is @(p2 — p1), and p3 is a proxy for 7 = e . This profile
has dg/dr =0 for both 7/® < p; and 7/® > p>. We choose p; =4, p» =8 and p3 = 40. This
definition of g has the necessary property that g has a fixed profile when plotted as a function of
r. However, g will have an @-dependent profile when plotted as a function of 7 because of the @

-dependence of 7. Combination of Eqs.92 and 104 shows that

0 for 0 <7 < @p

P A  ale o

=== fﬁ((pzfm)cos(@(m’im) (rf w(p'z p2)>> for @p; <7< @p> (105)
0 for wpr <7 < @ps.

This expression is used in the evaluation of Eq.103.

Figure 2 plots g for 0 < 7/® < 12 for the situation where @ = 0.25. The region 12 < 7/® < 40
is not plotted as g is constant with the same value it has at 7/ @ = 12; including this 12 <7/w < 40
region in the numerical computations is necessary for accuracy. The bottom horizontal axis in Fig.
2 is 7 which is frequency-dependent while the top horizontal axis is 7/@ which is not frequency-
dependent. The right-hand vertical axis shows 4g and indicates the predicted value of N, at the
mode conversion location (neglecting the small effect of displacement current).

The g profile has two uniform-density regions smoothly joined by a transition region. These
three regions have N? determined by the three curves in Fig.1. The virtue of having the uniform
density g =25 and g = 35 regions is that behavior in these regions can be quantitatively compared
to the calculated predictions of uniform-density analytic models associated with Fig.1. The reason
for having a smooth joining characterized by dg/dF = 0 at p; and p; is to avoid sharp disconti-
nuities that might cause reflections. The transition region must be examined numerically as the
analytic models are based on the density being uniform.

To allow for a determination of parametric dependence, we will examine four situations; the
first three situations are indicated in Fig.2. The first situation, called the reference situation, has
® = 0.25 and p,,c = 6 where the subscript ‘mc’ stands for ‘mode conversion’, i.e., the location

where the fast and slow modes coalesce. The second and third situations also have @ = 0.25
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0<r<1 F=15 2<7<10 Equation reference

2 25 30 35 84,104
S 27.6667 33 38.3333 85

D 106.667 128 149.333 86

P —399.0 —479 -559 87

N2 806.185 - - 74,111
N 28.3934 "

NZ 452166 - - "

Ny 6.72433 - - "

r - 351437 - 112
r2 . 18.7467 - "

a - - —665.159 98
by - - —42.9833 99
a - - 1216.31 100
by - - 24027.7 101
a - - 473.02 126
B - - 0.9488856 127
N, - - 19.3468 132
% - - 9.93588 133
n - - 23.6432 137
5 - - —0.387962 138

TABLE I. Parameters relevant for comparing with the reference situation numerical solution using N2 =

121.742 and @ = 0.25, ®p; = 1, @ppe = 1.5, @p> =2, @p3 = 10.

but now have p,,. =5 and p,, = 7 respectively to reveal the dependence on p,.. Since Eq.9
showed that at the mode conversion location N,> = 4g (neglecting displacement current), showing
this dependence on p,y is tantamount to showing the dependence on N2 (see right hand scale of
Fig.2). The fourth situation has p,,. = 6 as in the reference situation but now has @ = 0.20 to show
the dependence on frequency. The reference situation will be discussed in this section. Because of
the length and complexity of this discussion, the discussion of situations two, three, and four will

be deferred to Sec.XI.
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FIG. 2. Plot of g(F) as prescribed by Eq. 104 for @ = 0.25. The values of N are calculated using Eq. 117,

and are approximately given by N2 = 4g(r,) (see Eqs.9 and 120).

Using pye = 6 gives Fiue = @Pme = 1.5 and g(7me) = 30. Thus Eqs.85, 86 and 87 give S = 33,
D =128, and P = —479 at 7 = Fye.

The four boundary conditions for the fourth order system comprised by Eqs.96 and 97 are
(i) both y,x scale as 7 for small 7 and (ii) both .y decay exponentially to zero at large 7.
It is thus not feasible to start the numerical integration of Eqs.96 and 97 at 7 = 0 because such
an integration would require nontrivial Neumann or nontrivial Dirichlet boundary conditions but
regularity requires both y = y =0 at 7 =0 and dy/dF = dy/dF = 0 at 7 = 0. Similarly, it is not
feasible to start the integration at some large value of 7 used as a proxy for infinity. To overcome

these issues, the 7 domain is divided into an inner and an outer region where 7y, defines the

27
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boundary between these two regions.

Boundary conditions for the inner region are specified at 7 = 0 and at 7,,,.. Boundary conditions
for the outer region are specified at 7, and at 7 = p3@® which serves as a proxy for infinity.
Equations 63 and 64 are written in a form suitable for use in the code described in Bellan3® which
provides a single-pass method for solving these types of equations using boundary conditions on

y and yx at the inner and outer boundaries of an 7 domain. The location 7, is defined to be where

v 'Ly (y)=-T" (106)
1L () =-T° (107)

and I"% corresponds to the two roots of N2 being identical at 7, where the fast and slow modes

coalesce. At 7, Eqs.96 and 97 become

(-TP+a))y = biyg (108)
(- +a)y = by. (109)

Multiplying the left sides of these equations by the right hand sides gives the quadratic equation
inI?

I‘47F2(a1+a2)+a1a27b1b220 (110)

which is the same as Eq.74 with N> — I'? but has a subtly different interpretation. Equation Eq.74

described a set of uniform plasmas having different densities whereas Eq.110 describes a specific

single plasma with a spatially varying density. The two solutions of Eq.111 are

2
1"2— (a1+a2):t\/(alfa2) +4b1b2. (111)

N 2

The situation can be understood by supposing that I'? is also defined away from the mode
conversion location and so is the same as N? in Eq.74. Using this WKB point of view shows that
for 7 < 7y, there are distinct fast and slow modes and that these merge at 7 = 7.

For 7 > Fye, N7 is complex. Figure 3 shows a plot of these modes and shows that to the left of
the mode conversion location, the slow mode N? (red, + chosen in Eq.111) is pure real and much
larger than the fast mode N> (green, — chosen in Eq.111). The situation is very different in the
outer region, 7 > 7, as now N? is complex. The real parts of what were the slow and fast modes
now have identical value, and the imaginary part of what was the slow mode on the left is positive

(cyan) while the imaginary part of what was the fast mode on the left is now negative (blue). For
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FIG. 3. Plot of N? versus position assuming that at each position the plasma is uniform; reference situation
parameters are used, i.e., @ = 0.25 and p,,. = 6 0 7, = 1.5. The assumption that the plasma is uniform
is true for 0 < 7 < wp; and for p,® < 7 but not for p; < 7/@ < p, which is where a numerical solution
is essential. However, despite not being accurate in this intermediate region, the plot gives some intuition

regarding the wave behavior and shows that the fast and slow modes merge at 7yc = @Pimc-

completeness, these blue and cyan lines are also shown on the left and are at zero, indicating that
N? is pure real for both modes in this region.
At 7y where S = 33, D = 128, P = —479 the term involving the square root vanishes so the &

solutions are identical in Eq.111 and are denoted by

2 - ay+ap

me="" (112)
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Equation 109 shows that at 7 = 7,¢

b 2b
A___ 22 _ (113)
v I +a a—a
The requirement that the square root term in Eq.111 vanishes implies that
(a1 —az)* +4b1by = 0 (114)
which on substituting for ay,by,a;, B, becomes
((S(S=N2) = D?) = P(S—N2)) +4N2D?P = 0. (115)
Equation 115 is a quadratic equation in sz with the two roots
(P—5)2s— (P+S)D212D\/PS (D2 (P-5)?)
N2 = (116)
Z (P _ S)2

The positive sign choice corresponds to NZ2 > 1 which is the root of interest while the negative

sign gives sz < 1 which is not of interest. Hence we choose

(P—S)2S— (P+S)D*+2D, | PS (DL (PfS)2>

N2 = . 117
‘ (P—5)? )

Equation 117 gives sz = 121.742, close to the value 4g,,. predicted by Eq.9, the slight difference
resulting from the inclusion of displacement current in the definitions of S and P. This gives N, =
11.0337. Because the negative sign choice gives sz ~ 0, the magnitude of the square root term is

nearly equal to the other term in the numerator, that is

2D, /PS (DZ—(P—S)2> ~(P—$)?2S—(P+5)D? (118)
SO )
Nfgzs—zm. (119)
(P—S5)

If displacement current is ignored and Eqs. 90-92 are used, Eq.119 reduces to
N2 = 4gme (120)

which corresponds to Eq.9. This shows again that for a ducting situation, sz is determined by the

plasma parameters at the mode conversion location in the duct. In the analysis presented here the
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location of the mode conversion is specified and the corresponding sz is calculated. One could
invert this approach by specifying NZ2 and then use Eq.120 to determine the density and hence
location of the mode conversion. On taking into account the g profile and hence density profile in
Fig.2, Eq.120 indicates that sz could range from 100 to 140 since g ranges from 25 to 35. The
mode conversion location would then be at the location in Fig.2 where Eq.120 is satisfied.

Consider the region 7 > p,®. By having dg/dr = 0 at 7 = p;, the uniform plasma solution is
valid at this location and there are no discontinuities in any derivatives so all quantities should be
continuous at this location.

In the 7 > po® region, g = 35 and the dielectric tensor elements now have the values S =
38.3333, D = 149.333 and P = —559 and are uniform. This uniformity means that I" can be

interpreted as being a uniform N? so Eq.111 can be written as

ar+az) £/ (a1 — az)* +4b1by
PR (R o

where again the solutions y, ¥ are of the form 7/; (N,7). However, in this region \/ (a) — a)* -+ 4b by

is imaginary so Eq.121 can be expressed as

N>=W=+iH (122)
where
W = M (123)
2
\/7 (a1 — a2)2 74b1b2
H = . (124)
2
Equation 121 can be expressed in a form suitable for later taking a square root, namely as
w H
N = « <7+ -1 Pi7>
VW24 H? =D VW2 +H?
— aexp(i(~1)’B) (125)

where p = 1,2 and

o = VW2+H? (126)
B = tan"'(H/W). 127
Taking the square root gives
N, = (=1)7a'?exp (i(—1)"B/2) (128)
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where ¢ = 0, 1. There are thus four possible solutions given by {p,q} = {1,1}, {1,0}, {0,1},
{0,0}. Numerical values of a1, by,az,b2,W,H, ., B are listed in the py < 7 < Fyq¢ column of Table
1.

Solutions that vanish at infinity require the imaginary part of N, to be positive and so are

restricted to the solutions having {p,q} = {0,0},{1,0}, that is

N, = +a'?cos(B/2)+ia'/*sin(B/2) (129)

N, = —a'cos(B/2)+io'/*sin(B/2). (130)

The real parts of these two solutions have equal magnitudes but opposite signs while the imaginary
parts have equal magnitudes and the same signs. If cylindrical geometry effects are neglected, the
solution has an exp(iN,7) dependence. If cylindrical geometry effects are included, then the solu-
tion will be the form of a Bessel function having complex argument. Since the Bessel function and
exp(iN,F) dependence become similar at large 7 as cylindrical geometry effects become small, we
will consider the exp(iN,7) approximation which is more easily understood. Because y and y are
assumed to be real, they each must be a linear combination of cos (al/ Zcos(B/2) 7) e~ sin(B/2)7
and sin (al/z cos (/2) f) ¢~@"*sin(B/2)7 This means that the solution for v in the py < 7 < Fax

region must be of the form
W () = Wocos(N; (7 — 7p))e k770 (131)
where ¥ = Yy at ¥ = iy with tunneling coefficients denoted by subscript ‘t” given as

N, = Re(N,) = a'*cos(B/2) (132)
K = Im(N,) = a'?sin(B/2)). (133)

Thus, N, is the refractive index (normalized wave number) and k; is the exponential decay rate of
a spatially oscillating, decaying y in the region py < 7 < Fpgy-

Because cylindrical geometry terms are being neglected, Eq.96 can be written
1 [d%y
F)=—| =5 . 134
Z(r) by ( o2 +GIW) ( )

Evaluating 92y /d7 using Eq.131 for v gives

2
38:2' = o [(K? — N?) cos(N; (7 — Fo)) + 2N, K sin(N; (7 — o)) | e 770, (135)
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Using Eq.135 in Eq.134 gives

% (F) = nyocos (N, (F— ) — §) e 7—70) (136)

where

(K2 —N?+a;)” + 4K>N?

n = (137)
bt
5 = tan*zz%. (138)
Kf —N, “+a

The numerical values in Table 1 give 11 = 23.6432 and 6 = —0.387962. This value of §
indicates that the phase of ¥ should lead the phase of y by || /27 = 0.06 wavelengths.

X. NUMERICAL SOLUTION
A. Numerical solution: results

Equations 96 and 97 are solved numerically. Results of this numerical solution are presented in
Fig.4. We discuss features of this figure in this subsection, then in the next subsection discuss the
rather intricate details of the numerical method, and then in a following subsection demonstrate
that the numerical solutions are valid. The discussions of the numerical method reveal an important
issue that at first appears to be a purely numerical problem, but then is realized to be associated
with a failure of the Eq.1 plane wave assumption in the vicinity of the mode conversion layer. It
is shown that Eq.1 omits a required new type of solution that is intrinsic to the fourth-order nature
of the system.

Figure 4 plots y/(7), and x(7) normalized to their values at 7 = 1.5 with y =1 at 7 = 1.5.
It shows that y,y — 0 at r = 0 and at 7 — . The numerical solutions (solid black and green
lines) are fit to Bessel function solutions in the region 0 < 7 < p; where the density is uniform
as prescribed by Eq.104 and shown in Fig.2. The fitted solution for y is determined by assum-
ing W(F) = F(c1J1(NwsF) + €241 (NifF) + Y1 (NyyF) 4 &Y (Ny£7)) and then solving for the four
coefficients ¢y, c2,¢1, 62 by using the numerical solution to give y at 4 different values of 7 so as
to have four equations in four unknowns. Solution of this system of four equations shows that
the coefficients ¢1,¢, of the ¥; Bessel functions are negligible as expected (see first paragraph of

Section V). The function 7 (c1J; (NysF) + 21 (N,¢F)) is plotted as the dashed red line in Fig.2. It
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is seen that this dashed red line lies on top of the black line showing that in the region 0 < 7 < p;
the numerical solution is, as expected, a sum of a slow and a fast wave where each has a Bessel
function dependence. A similar process shows that y is also a sum of a slow and a fast Bessel
function in the 0 < 7 < p; region. These solutions in the 0 < 7 < p; region are the sum of a short
wavelength solution (slow mode) and a long wavelength solution (fast mode) as seen by the short
wavelength waves riding on the long wavelength wave.

Figure 4 shows that on approaching 7 = 1.5, there is no longer a short wavelength wave riding
on a long wavelength wave, but instead there is only one wavelength for both y and ) and this
wavelength is intermediate between the short and long wavelengths seen in the 0 < 7 < p; region.

9.7(F—2.4)

Figure 4 also plots 4000ye in the range 2.4 < 7 < 3 as a dotted black line and shows

that in this region y is both spatially oscillating and exponentially decaying. Similarly, Fig. 4

also plots 200xe9‘7<F*2‘4)

in the range 2.4 < 7 < 3 as a dashed green line. Using the numerical
values listed in Table 1 and Eqs.132,133 it is seen that the predicted wavenumber is N; = 19.
3 and the predicted spatial exponential decay rate is k; = 9.93. The constant amplitude of these

plots show that ¥ and y are decaying by a factor e 97"

which is in good agreement with the
K; = 9.93 predicted by Eq.133. As shown by the horizontal blue arrow at the top right of Fig. 4
the wavelength of these y and y plots is 0.32 corresponding to a wavenumber 27/0.32 = 19.6
which is in good agreement with the predicted N; = 19.3. Thus, the wavelength and spatial decay
rate determined from the 7 > 2.4 region of Fig.4 agree reasonably well with the analytic model
predictions, the small discrepancies presumably resulting from neglecting cylindrical geometry
terms of order 1/7 in Eqs.132,133. Furthermore, in agreement with Eq.138 it is seen that the phase
of x leads the phase of y by 0.07 wavelengths, i.e., by A7 = 0.02. The fact that the magnified plots
of ¥ and ) shown as dotted and dashed lines on the right of Fig. 4 have a relative magnification
ratio ¥ /y = 4000,/200 = 20 and appear in the plot with a ) /y amplitude ratio of 1.17 indicates
that  /y ~ 23.4 which is consistent with 1 = 23.64 where 7 is given by Eq.137.

Figures 5 and 6 provide checks on the validity of the numerical solution. These are plots of
the numerically calculated y and x substituted into Eqs.96 and 97. The left hand side of these
equations is plotted as a black line and the right hand side is plotted as a dashed red line. The
observed overlay of the dashed red line on the black line indicates that the right hand side equals
the left hand side and so shows that the equations have been solved.

Figures 7 and 8 show the electric and magnetic field components calculated from y and y using

Eq.65.
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FIG. 4. Numerical solution of Eqs.96 and 97 for reference situation (@ = 0.25, p1 =4, puec =6, p2 =8,
p3 = 40). The black and green lines show y and ) normalized to their respective values at 7 = 7. =
1.5 = ®py. The dashed red and orange lines show Bessel solutions with coefficients chosen to match the
numerical solution in the uniform density 0 < 7 < 1 region. The dotted black line and dashed green line
indicate that y and y have a spatial periodicity and rate of decay consistent with analytic model predictions

in the 2 < 7 < 3 region.

B. Summary of numerical method

The boundary conditions that y, ¥, dy/dF and d)/JF all vanish at 7 = 0 and at F = e means
that the equations cannot be solved by starting an integration at the boundaries. Instead of inte-

grating from the boundaries, a numerical method is used that is a form of the ‘shoot first and then
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FIG. 5. Black line shows numerical solution for numerically calculated y substituted into the left hand side

of Eq.96 and dashed red line shows right hand side of this equation using calculated .
relax later” strategy advocated in Section 18.0 of Press et al. °. The method is summarized as:

1. A large value of 7,4, is chosen to serve as a proxy for infinity. The domain from 7 = 0 to

F = Fay 1s discretized into N = 4000 equal steps separated by A, = Fpqy/N. The discrete
values of 7 are labeled by j = 0, N. The mode conversion location is at the step j = M where
M = NFye [ Finax Where . is the location of the mode conversion. The value of y at position

7= jA, will be denoted y; and similarly for y.

2. An error metric € is defined, the minimization of which corresponds to having a better

solution to Eqgs.63 and 64.
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FIG. 6. Black line shows numerical solution for y substituted into the left hand side of Eq.97 and dashed

red line shows right hand side using calculated y.

3. Because the problem is linear, y)y is set to be unity and maintained at this value throughout

the calculation.
4. A first guess for )y is prescribed by Eq.113.

5. The method described in Bellan’® is used to solve Egs.63 and 64 in the inner subdomain

from j=0to j =M.

6. It is assumed that 9%y /97> and 9%y /97 change very little when j — j -+ 1 so that the

values of these second derivatives at j = M can be estimated using their values at j =M — 1.

ing
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FIG. 7. Electric field components calculated using Eq.65

7. These estimated second derivatives are used to calculate estimated values for w4 and
Xm+1 and these values provide the inner boundary conditions for the outer subdomain which
spans from j =M +1to j = N. The method described in Bellan® is used to solve Eqs.63

and 64 in the outer subdomain.

8. It is found that this method produces significant spikes in derivatives of y and y at j =M
and at j = M + 1 and the magnitude of these spikes depends on the value assumed for ;.
A shooting method is used to find the yj, that minimizes the error metric €. Equation 113
provides the initial guess for Y. Figure 9 shows the variation of € with y)s and that € has
a minimum when )y is approximately 86 percent of the value prescribed by Eq.113. This

minimum value of € corresponds to minimization of the spikes in y and x at j = M and at
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FIG. 8. Magnetic field components calculated using Eq.65

Jj =M+ 1. Although the spikes are minimized, they are unacceptably large.

. To further reduce the spikes, a relaxation procedure is used that begins with the results of

the shooting method in steps 1-8. This relaxation procedure maintains Y, = 1 but otherwise
repeatedly recalculates y; and y; for all other 0 < j < N. Each recalculation uses informa-
tion from nearest neighbors in a discretized form of Eqs.63 and 64. This relaxation reduces
£ from 0.18 to about 0.018 in about 10? relaxation steps so that the spikes are no longer
visible. Plots (see Figs. 5,6) show there is no difference between the left and right hand

sides of each of Eqgs.63 and 64 so these equations are deemed to be solved.
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FIG. 9. Dependence of € on guess for y for reference situation. The value of )y, that minimizes € is

different for each of situations reference, two, three, and four.

C. Details of numerical method

The following fixed prescriptions are made:
L yw=0,2=0yw=0,xv=0
2. Yy = 1,

3. initially yu is prescribed by Eq. 113 but then yy, is repeatedly recalculated as the solution

proceeds.
Using these boundary conditions Eqgs. 63 and 64 are solved in the inner subdomain from j =0 to
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j=M.

The inner boundary conditions for the outer subdomain are next determined. The second order
difference operator 92y /972 = (W41 + yj_1 —2y;) /A% is used to calculate 9y /d7 at location
j =M — 1. The inner subdomain solution provides Wy,_>, Wa—1 and yy,. It is then assumed that
9y /d7* has nearly the same value at j = M and is used estimate Wy, 1 using Wy and yy. The
same procedure is followed to obtain J,,11. These values of Wy, and s+ are used as the inner
boundary conditions for the outer subdomain. The method described in Bellan3® is now used to
solve Eqs.63 and 64 in the outer subdomain from j =M +1to j=N.

Using the definitions given by Eqs.102,103 the error metric is defined as

2 (139)
A (g2 3]

This definition has the properties that (i) € = 0 if Eqs.63 and 64 are satisfied at j = M and at
j=M+1 and (i1)) € > 0. To the extent that the solution is nearly exact, € will be a positive
number much less than unity since € has been constructed from the difference between quantities
that are of the order of unity, namely y minus the rest of the terms in the differential equations.
The shooting method for finding the minimum of € consists of defining a function de/dxy as a
function of Y, and then using a Newton-Raphson method?® to find the xum that is the root of this
function. The solutions for y and y associated with this €-minimizing choice of y), provide the
initial guess for the relaxation scheme.

The relaxation scheme is constructed by writing Eqs.96 and 97 in difference form as

Viel T Vi1 =2y 1 i — i

= biy;— i 140
A2 A oA 1Xj — a1y ( )
X1 +xj-1—-2%; 1 FOP\ Xjt1— Xj-1
= = = (14 == | = by, — i 141
A2 JA P or A QY — @) ( )
We define
. 2
ap = ay p (142)
" 2
a, = GQ—E (143)
FopP
I+ 144
V= por (144)
41



AIP
é Publishing

and

Vet + Wit — 55 (Wit — ¥j-1)

51 = N (145)
Xj+1 +xj-1 = 25 (X1 — Xj-
5 = A TAT ifz( A ‘). (146)

Solving Eqgs.140 and 141 for new y; and new ) in terms of values of nearest neighbors then gives

soby +S1[l§

ow LTS 147
v aiay—biby’ (147)

new s1by +s02a]

ew . N19277 5241 148
X aias—biby (148)

Each step in the relaxation procedure consists of calculating new y; and x; for j=1to j =
N — 1 with the exception that yj, is maintained at unity. The relaxation procedure is then repeated
so long as € decreases. It is found that of the order of 10? relaxation steps are required for £ to
reach a minimum. For the reference situation, this relaxation procedure reduces € from 0.2 to

0.018.

D. Numerical solution: an issue and its resolution

The numerical method results in the surprising result (see Fig.9) that the ;s prescribed by
Eq.113 differs from the yy for which € — 0; this indicates that there is something wrong with
Eq.113 as it only predicts the order of magnitude of xjs but not the precise value. Resolving this
puzzle demonstrates not just a numerical issue, but an interesting and important physical property.
To understand this issue, we now invoke two simplifications. The first simplification is to replace
cylindrical geometry by more easily understood Cartesian geometry so we temporarily consider

the pair of coupled equations

32
T;;IZ/J”’“” = bix (149)
92
—a;g +ay = by (150)

These equations have X replace 7 and would lead to Eq.74 if the fields behaved according to Eq.1.
The second simplification is to assume that aj, ap, and by are all spatially uniform but b, =
by(%). We define X = 0 as the mode conversion location and define by as the value of b, at this

location. Thus, in the vicinity of the mode conversion location
by (%) = byo + bhx. (151)
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Solving for x in Eq.149 gives

1 (d%y
X*bfl(ﬁ'f‘al'l/) (152)
and substituting this into Eq.150 gives
oty I’y _
y*‘r(ﬂl+HZ)W+(Gla27blb2(x))lI/—O. (153)

We first attempt to solve Eq.153 using the WKB approximation, that is we replace d/dx every-

where in this equation by ik, (x) to obtain
ke (x) = (@1 + @) kY (x) + (@102 = b1 b2 (%)) = 0. (154)

Equation 154 is a quadratic equation in k2(x) having the two roots

2 _
() = ayt+axy* \/(al +a2)2 —4(ayap — blbz(x))' (1s5)

The two roots coalesce at some location where (a; +a;)* — 4 (ayjaz — b1by (%)) = 0 and we

define the value of the coalesced root to be

ke =4 ;az- (156)

Since by is defined as the value of by (x) where coalescence occurs, the condition (a +as)* —

4 (ayaz — bibyy) = 0 implies that
(a1 —a)?

4b;

To examine behavior in the mode conversion vicinity without invoking the WKB approximation

by = — (157)

(i.e., without replacing d/dx by ik(x)), the wave equation Eq.153 is expressed as
oty %y }
Wﬂaﬁaz)ﬁﬂalarbl (b2o +b5%)) w =0. (158)

From Eq.156 and Eq.157 it is seen that

ayaz —bibyy =k (159)
so Eq.153 becomes
94 92
T;f +2kﬁ,ca—x‘§' + (K4, — bybhT) w = 0. (160)
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We now consider Eq.160 in the vicinity of the mode conversion location, i.e., we consider Eq.

160 in the region |%| < k./|b1b5|. In this region, Eq.160 reduces to

Ity 9’y
e +2k3nc—ax2 + Kby =0 (161)
which is a uniform plasma equation that can also be expressed as
02 A’y
(ﬁ +k,%u.) (TxZ +k,2m.1//> =0. (162)

The width of the region where this uniform plasma approximation is valid is inversely proportional
to b}, and so this width becomes infinite when b, — 0, i.e., when the plasma becomes fully uniform.
Equation 161 and its equivalent form Eq. 162 are fourth-order ordinary differential equations with

the four linearly independent solutions

y= eFikmeE g getikme (163)
To see why Tet™n* is a valid solution to Eq.162, note that
92 0 T
(ﬁ +kl%1c) ()Eeilkm"x) _ :tzl-kmceitk,,,cx (164)

SO
2? 2 0 2 = ik : 9’ 2 Likinc
(W +k,m.> (ﬁ +k,m.> (xe e ) = ke <W +kmc> eHhnet — 0. (165)
It must be emphasized that even though the plasma is non-uniform, the solution of Eq.153
in the vicinity of the mode conversion location is just the solution for a uniform plasma having
parameters identical to those of the mode conversion location.

The solution xe*kme*

violates the prescription given by Eq.1, yet is a valid solution for Eqs.149
and 150 in a non-uniform plasma in the vicinity of the mode conversion location. The WKB
assumption that d/dx can be replaced everywhere by ik,(x) is inappropriate for Eq.162 because

+ikyek Eikne® golution.

such a replacement only pertains to the e solution and does not work for the xe
Since y is presumed real and is set to unity at X = 0, the general form of y in the region
] < ke / 1153 i

Y (%) = cos (kyeX) + Hj sin (kpeX) + Hpx cos (keX) + Hax sin (kpeX) (166)

where each term satisfies Eq.161 and y(0) = 1; here H;, H,, H3 are constants. Equation 166 gives

I’y 2 - 207 o -
e —N; cos (kyeX) — NZH sin (kycx)
—H, (kac sin (kpmeX) + )Ek,zm. cos (kmci))
+Hs (2kyne €08 (k%) — T sin (k) ) (167)
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SO

(i‘é,)x_o = —kine + 2Hskne (168)
in which case
x(0) = bil (—kpe+ 2Hskine +ay) - (169)
Using Eq.156 gives
2(0) = bil (al ;az +2H3kmc) : (170)

If H3 = 0, then Eq.170 reverts to Eq.113 since 2by/(az — a1) = (a1 — a2)/2b; as indicated by
Eq.157.

The numerical solution initially invoked Eq.113 which is a consequence of assuming solutions
to equations analogous to (88722 —O—k,znc) x =0 and (5722 +k,2,w> y = 0. This invocation of Eq.113

ikne¥ solution that exists in the region |¥| < k./|b1b)].

thus failed to take into account the Xe
Thus, the assumption that Eqs.108 and 109 provide a complete description of the problem is
incorrect because these equations do not predict fet#*n¥ type of solutions. Because Eq.113 is
derived from Eqs.108 and 109 which have been shown to provide an insufficient description, it is
inferred that Eq.113 also provides an insufficient description and so cannot predict the value of ),

that minimizes €.

XI. VARIATION OF p;, AND VARIATION OF @

The previous section considered the reference situation where p,,c = 6 and @ = 0.25. This
section will consider the effect of changing these parameters. Situations two and three involve
having the mode conversion occurring at values of p,. that are respectively larger and smaller than
for the reference situation and so g at the mode conversion location will be respectively larger and
smaller than for the reference situation (see Fig.2). Since N, 2 4g(Fpe) if displacement current
is neglected, this means that the values of N> for situations two and three will be respectively
larger and smaller than for the reference situation. Note that N2 is precisely defined by Eq.
117 (displacement current included) and approximately defined by Eq.120 (displacement current
ignored); the N.? values in Fig.2 are calculated using Eq. 117.

Figure 10 plots y and y for situation two which has p,,. = 7 while Fig 11 plots y and y for
situation three which has p,,c = 5.

These situation two and three plots show that N> changes in accordance with the prediction

that N,? = 4g(Fc) (to the extent that displacement current is neglected). Thus, situation two has
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FIG. 10. Plot of y and y for situation two (@ = 0.25 and p,, = 7). Here there is larger difference between

the wavelengths of the fast and slow modes compared to the reference situation.

a larger N,? than the reference situation while situation three has a smaller N,? than the reference
situation. Since N2 is the same for all 7, N;2 will also be larger in the uniform plasma region
7 < @p; than the N, of the reference case. Increase of N> corresponds to moving the vertical
dashed line in Fig.1 to the right so the two interception points of this dashed line with the fast
mode and slow mode parts of the g = 25 curve will move to the right. Thus increasing N> has
the dual effect of reducing the value of N, for the fast mode (lower part of g = 25 curve) and
increasing the value of N, for the slow mode (upper part of the g = 25 curve). Thus, compared
to the reference situation, situation two will have a longer wavelength fast mode and a shorter

wavelength slow mode in the uniform plasma region 7 < @p;. In a similar fashion, situation three
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FIG. 11. Plot of y and y for situation three (@ = 0.25 and p,,c = 5). Here there is a smaller difference

between the wavelengths of the fast and slow modes compared to the reference situation.

has a smaller N2 than the reference situation and so situation three has a shorter wavelength fast
mode and a longer wavelength slow mode than the reference situation so situation three has much
less difference between the wavelengths of the fast and slow modes.

This comparison of the reference situation with situations two and three can equivalently be
interpreted as providing the dependence on N2 for fixed @. The interpretation is that so long as
4min(g(7)) < N,;2 < 4max(g(7)) there will be a mode conversion at a location where N,> = 4g(7)
and larger values of N;> will have a greater difference between the wavelengths of the fast and

slow mode in the low density interior of the duct.

Situation four has the same value of p,,. as the reference situation but has @ = 0.20 instead
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FIG. 12. Plot of g for situation four (@ = 0.20 and p,, = 6). Compare to Fig.2 and note the difference in

the scale of the frequency-dependent 7 axis but not in the scale of the frequency-independent 7/® axis.

of @ = 0.25 of the reference situation. The change in frequency has the effect of redefining g(F)
as shown in Fig. 12 so 7, = 1.2 now compared to 1.5 for the reference situation. Since actual
distance is measured in terms of r|@.|/c = F/@® rather than in terms of the frequency-dependent
F, it is critical to plot ¥ and y as functions of r|@.|/c = F/®. Figure 13 plots y and ) using
the same r|@c.|/c = F/® scale as in Fig.4 and comparison of these two figures shows that the
wave profiles differ even though they have the same N,? = 4g at the mode conversion location
(displacement current ignored).

However, because Eqs.90-92 depend on @, the values of S, D, and P for situation four differ

from the corresponding values for the reference situation. The fact that situation four and the ref-

48

(without displacement current correction)
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FIG. 13. Same as Fig.4, except ® = 0.20. Note that the plots of y and ) differ from the corresponding

plots in Fig.4 even though Nz? is the same.

erence situation have the same N2 but different frequencies might lead to the naive and erroneous
conclusion that the system is non-dispersive, i.e., has behavior independent of frequency. In fact,
the system is dispersive because the reference situation and situation four have different radial
wavelengths. Comparison of Fig.14 with Fig.3 shows this difference. These differences show a
dependence of the wave behavior on @ even though N,? does not depend on @; thus the wave is

dispersive despite N, being ‘non-dispersive’.
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FIG. 14. Plot of N, for situation four (@ = 0.20 and p,,. = 6); Compare to Fig.3 and note the fast and slow
roots of N, are larger in situation four than in the reference situation even though both situations four and

the reference situation have the same N.2.

XII. CONCLUSION

We have shown that the coupled equations describing whistler propagation in a density duct
can be solved numerically subject to the constraints that the poloidal wave flux y and the poloidal

wave electric current y are both real, that both scale as 7>

near 7 = 0 and that both decay exponen-
tially at large 7 in the region outside the duct. Satisfying these constraints shows that the solution
is physically realizable. Furthermore, the condition that both y and y are pure real indicates that

there is no power flow in the radial direction, whereas there is axial and azimuthal power flow.
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These properties show the existence of a wave guided along the duct with no radial power leak-
age. The y and yx solutions in a uniform density region inside the duct are each the sum of two
Bessel functions where one Bessel function is a standing slow wave and the other Bessel function
is a standing fast wave. The y and y solutions in the uniform density region outside the duct
are decaying spatially oscillating standing waves having a single radial wavelength intermediate
between the fast and slow wavelengths in the duct. The phase of the y spatially decaying standing
wave slightly leads the phase of the y spatially decaying standing wave. The rate of decay in
the region outside the duct is large so these waves decay to infinitesimal amplitude in a radial
distance of the order of the duct radius. The classic plane wave assumption prescribed by Eq.1
fails in the vicinity of the mode conversion location as there exists a previously ignored solution

that in Cartesian coordinates has an fe™™+* dependence.

We have shown that the wave behavior depends on the location of the mode conversion location
(which is equivalent to a dependence on N,? ) and also on the wave frequency. Furthermore, situ-
ations having the same N,? but different @ will have different radial wavelengths. This dispersive
behavior of the wave can be seen by dividing Egs.6 and 7 by ®? which shows that changing @ will
change N,? even if N, is kept constant. This change is such that both fast and slow waves have a

larger N,2 when @ is decreased.

We note that, as shown by Bakharev et al.'>, a situation could occur with appropriate density
profile where the situation shown in Fig.3 is generalized to having a region of finite radial extent
where real values of N2 are located between inner and outer regions having complex conjugate
values of N2 in which case there would be a surface mode effectively trapped between a pair of

mode conversion locations at two different radii.

We also note that if the plasma parameters have a gentle non-uniformity in the z direction, then
N, would have a gentle variation according to a WKB prescription. Similarly, collisions or Landau
damping would cause attenuation but this would be extremely weak as whistler waves are observed
to bounce along a duct from hemisphere to hemisphere several times with little attenuation as

shown in the twelve-bounce train in Fig.7 of Storey>.
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