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Abstract

Directed evolution makes mutant lineages compete in climbing complicated
sequence-function landscapes. Given this underlying complexity it is unclear how
selection stringency, a ubiquitous parameter of directed evolution, impacts the outcome.
Here we approach this question in terms of the fitnesses of the candidate variants at
each round and the heterogeneity of their distributions of fitness effects. We show that
even if the fittest mutant is most likely to yield the fittest mutants in the next round of
selection, diversification can improve outcomes by sampling a larger variety of fitness
effects. We find that heterogeneity in fitness effects between variants, larger population
sizes, and evolution over a greater number of rounds all encourage diversification.

Introduction 1

A common bioengineering goal is to create a protein that performs a specific function. 2

One approach to this challenge is to use an existing protein as a template and apply 3

biochemical reasoning to modify it such that it performs the new function [1]. An 4

alternative and now widely used approach is directed evolution [2, 3], in which an 5

experimenter starts from a template or set of templates, mutagenizes them randomly, 6

selects from these mutants a new set of variants with improved function, and then 7

repeats the process. Over multiple rounds, this process leads to the accumulation of 8

multiple mutations that improve function, without the experimenter needing to 9

characterize how they do so. In this sense, directed evolution is a step-by-step analog of 10

natural selection, and has proved to be a powerful tool for bioengineering [2, 4] and 11

understanding natural evolution [5]. Directed evolution has, for example, yielded 12

enzymes more efficient than synthetic catalysts [6], experimentally useful fluorescence 13

proteins [7], and insights into affinity maturation of broadly neutralizing antibodies [8]. 14

In addition to proteins, this approach has also been used to engineer RNAs [9], 15

synthetic genetic polymers [10], and genetic circuits [11]. 16

A common way to implement directed evolution is to encode an initial protein 17

sequence on a plasmid and then use error-prone PCR to create a plasmid library 18

containing many variants of this initial protein [12]. This diverse library of protein 19

variants is then transformed into a cellular display system [13], which couples the desired 20

protein activity to cellular fluorescence in some way [14]. One can then use fluorescence 21
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activated cell sorting to select the best-performing cells [8, 15], extract the plasmids 22

from these cells, perform another round of error-prone PCR, and repeat the process. 23

While this basic workflow — repeated mutagenesis and selection — is the core of 24

any directed evolution approach, there are numerous possible variations [3]. For 25

example, lower-throughput methods in which each protein variant is spatially 26

separated [16] (e.g. across microplate wells) can provide more control of how they are 27

selected and mutagenized. Other approaches trade control for speed and automation, 28

for example in systems that allow cells to be selected via competition and mutagenized 29

continuously [17, 18]. 30

Regardless of the details of how the experimental workflow is implemented, directed 31

evolution is blind to the underlying map from sequence to function [19]. Rather than 32

using biochemical reasoning to choose the next sequences to test, the experimenter 33

chooses the parameters of a population’s evolution. As with evolutionary adaptation in 34

any system, the dynamics and outcomes of directed evolution depend on these choices. 35

One key parameter is the mutation rate [20]. One wishes to generate variation that 36

includes beneficial mutations, but not so much variation that these beneficial mutations 37

are too often linked with and weighed down by deleterious mutations, which are 38

typically more likely to occur [5]. Another choice is the number of mutants to generate 39

at each round, which is typically determined by a tradeoff between practical constraints 40

on the number of mutants that can be screened and the desire to have larger population 41

sizes that help to discover more beneficial mutations at each round. 42

Here, we focus on a third key parameter [21] of directed evolution experiments: how 43

stringently to select for improved function in each round. Selection stringency defines 44

the likelihood that each variant is selected for mutagenesis in the next round (e.g. what 45

defines the cutoff for “best-performing cells” in the workflow described above). For 46

example, we might select the top half, top one percent, or even just the single best 47

variant at each round. Or alternatively, we might select in some more complex way, for 48

example by seeding the next round primarily with mutants of the fittest variant in the 49

previous round, but also with a smaller number of mutants of less-fit variants. On the 50

one hand, we must impose some form of selection or there would be no pressure for 51

variants to climb to greater fitness through successive rounds. On the other hand, 52

imposing too harsh a selection pressure limits our ability to explore the 53

sequence-function landscape, and could potentially lead to the process becoming 54

trapped at a local optimum (this reasoning has parallels in population genetics, where 55

in some circumstances small populations can outperform larger ones by accumulating 56

more variable sets of mutations that avoid local optima [22,23]). The optimal choice of 57

selection stringency is unclear, but it must involve some balance between greedy 58

exploitation of the fittest variants versus a more relaxed selection that allows for 59

broader exploration of the landscape [24]. 60

Work in adjacent fields has developed a variety of approaches to this question. For 61

example, in computer science, active learning approaches integrate available 62

sequence-function data to create a computational model of the landscape that is then 63

used to choose the set of sequences to screen at the next round in a way that will 64

optimize fitness gains while gaining additional information about the landscape [25, 26]. 65

These methods can be powerful and efficient, but they rely on high-throughput direct 66

measurements of sequence-function relationships, along with the construction of custom 67

libraries of specific chosen variants. Instead, we consider here the simpler approach of 68

directed evolution by random mutagenesis. This is analogous to analysis of the 69

short-term effects of selection stringency in population genetics, which have historically 70

been studied in the context of plant and animal breeding [27], considering mediating 71

factors such as heritability, inbreeding, and frequencies of standing variants [28]. More 72

recently, studies of protein evolution have described responses to selection 73
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stringency [20, 24, 29] and the biophysical mechanisms explaining different outcomes [30] 74

in specific systems. 75

Here, we focus instead on the general problem of how the structure of the 76

sequence-function landscape affects the optimal choice of selection stringency. In 77

practical experimental settings, there is noise in the measurement of function and 78

therefore in our estimates of the relative fitness of each variant. However, we will 79

consider the idealized case in which measurement noise can be neglected, and instead 80

characterize the optimal selection when the exact fitness of each variant is known. One 81

straightforward strategy, especially in this idealized case, is to select only the single 82

fittest variant at each round. This strategy is optimal if the sequence-function landscape 83

is perfectly smooth, meaning there are no non-additive interactions between the fitness 84

effects of different mutations (i.e. no epistasis). On a perfectly smooth landscape, a 85

given mutation will have the same effect on function regardless of which variant it 86

occurs in, so greedily selecting the fittest variant at each round will tend to yield the 87

fastest improvement in function. On the other hand, if the sequence-function landscape 88

is rugged, the effect of a given mutation can vary greatly by sequence context. The 89

magnitude of improvements available to different variants can vary dramatically and the 90

fittest variant is not guaranteed to have the best evolutionary prospects. In this case, 91

greedily selecting the fittest variant in each round may not be optimal, and less 92

stringent selection that allows for more exploration of the landscape may be preferable. 93

This reasoning suggests that the ruggedness of the landscape is critical to 94

determining the optimal selection stringency. Extensive prior work has attempted to 95

quantify this ruggedness by empirically characterizing protein sequence-function 96

landscapes. Broadly speaking, much of this work finds that epistasis is widespread and 97

that sequence-function landscapes are at least to some degree rugged [31,32]. For 98

example, studies have created combinatorially complete libraries that consist of all 99

possible combinations of some set of mutations separating two variants of a 100

protein [33–36]. This work has shown that there are numerous “idiosyncratic” epistatic 101

interactions between specific mutations, which constrain the potential trajectories that 102

evolution could have taken. Other studies have assayed the effects of libraries of specific 103

mutations on different ancestral sequences, again typically finding numerous epistatic 104

interactions between the background sequence and mutational effects [37, 38]. However, 105

there are also counter-examples [35], and the complexity of protein sequence-function 106

landscapes remains controversial [39, 40]. Thus the overall extent to which epistasis 107

creates ruggedness in protein sequence-function landscapes, and how this ruggedness 108

affects the optimal selection stringency in directed evolution, remains unclear. 109

An alternative body of work has used theoretical models of fitness landscapes to 110

explore how selection stringency and other parameters affect the statistics of 111

evolutionary trajectories. For example, extensive work has analyzed adaptive walks in 112

the NK model [41, 42], which parameterizes the landscape in terms of the number of 113

epistatic interactions each locus participates in. Other work has analyzed evolutionary 114

dynamics in numerous other types of theoretical landscapes [43]. These landscape 115

models are typically parameterized in terms of some set of genetic loci, their effects, and 116

the epistatic interactions between them. In other words, they generate the landscape 117

“microscopically” [44], in terms of specific epistatic interactions between particular loci. 118

An alternative class of models are defined geometrically (e.g. Fisher’s geometric 119

model [45] or the Rough Mount Fuji [46] models), or relatedly based on phenotypic 120

correlations that decay with genetic distance (e.g. [47]). 121

In principle, one can use these existing theoretical landscape models as the basis for 122

investigating the effects of selection stringency on the dynamics and outcomes of a 123

directed evolution experiment (see e.g. recent work focusing on the NK model [24]). 124

However, the effect of selection stringency does not depend on all of the complex details 125
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of microscopic epistasis or the full geometric structure of the landscape. Instead, the key 126

question is how the spectrum of potential adaptive mutations varies across different 127

genetic backgrounds. In other words, how does the accumulation of one mutation (or a 128

combination of mutations) change the distribution of fitness effects (DFE) of potential 129

future adaptive mutations? This effect has been termed “macroscopic” epistasis [44]. 130

While macroscopic epistasis ultimately arises from the collective effects of many 131

microscopic interactions, the effects of ruggedness on the dynamics of directed evolution 132

are more clearly described in terms of the former. 133

Motivated by this, we investigate here the effects of selection stringency on directed 134

evolution in several simple models of macroscopic epistasis. Specifically, we imagine that 135

each variant has some DFE which is in some way changed by mutation. There are many 136

possible models of these changes in the DFE, including for example the general pattern 137

of diminishing returns epistasis that has been observed experimentally in several 138

systems [48–50]. However, while this form of macroscopic epistasis leads to a systematic 139

trend of declining adaptability as fitness increases, it does not lead to ruggedness that 140

strongly favors exploration in directed evolution, because all equally fit sequences suffer 141

equally. We therefore focus instead on other, more rugged patterns of macroscopic 142

epistasis, in which mutations idiosyncratically change DFEs. We measure how the 143

optimal selection stringency for directed evolution depends on the ruggedness of the 144

model of macroscopic epistasis, as quantified by the heterogeneity in the DFEs of 145

candidate variants. We begin in the next section by analyzing a toy model of selection 146

among two variants in a single round of a directed evolution experiment. We then 147

expand this model in subsequent sections to analyze selection among an arbitrary 148

number of variants and over multiple rounds of directed evolution. 149

Results 150

Diversification can help explore heterogeneous DFEs 151

We begin by imagining that we have a set of variants (either our starting library or the 152

variants generated from a previous round of directed evolution) and we now need to 153

select the ones that pass the selection threshold and serve as the basis for mutagenesis 154

in the next round of directed evolution. Among this set of variants, one of them is the 155

fittest. Since it already has the most successful sequence, it is natural to ask: why not 156

simply select only this one? In other words, why not impose the maximum possible 157

stringency of selection? In this section, we will ask why it might be favorable to adopt a 158

less stringent selection pressure, and instead select a more diverse pool of variants. We 159

do so in the context of a toy scenario, in which we select among only two variants of 160

different fitness, to illustrate the essential tension between exploration and exploitation 161

of the sequence-function landscape (Fig. 1A). 162

Specifically, starting from these two variants, imagine we are limited by experimental 163

constraints to construct and screen a total of n mutants in the next round. However, we 164

can decide how many mutants of each variant will compose that screen. The question is 165

thus how many mutants to “draw” from each variant. Imagine that we take nhigh 166

mutants of the fittest variant and the remaining nlow = n� nhigh mutants from the 167

less-fit variant. Our goal is to understand how the fitness of the fittest variant in the 168

next round depends on nlow. If this next-round fitness is maximized with nlow = 0, then 169

maximal selection stringency is preferred, i.e. only the most-fit variant is selected for 170

mutagenesis in the next round. However, if some nlow > 0 is better, then it means that 171

less stringency is preferred (up to a maximum of nlow = n/2, which means that the two 172

variants are equally mutagenized and hence corresponds to the largest possible 173

diversification in this toy model). 174
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Fig 1. The immediate effect of selection stringency on fitness while
drawing mutants from two parents. (A) Schematic of our two-parent model, in
which we assume that we generate mutants for the next round (here a total of n = 5
mutants) from two parental variants of different fitness. In this model, the selection
stringency is determined by the number of mutants we draw from the lower-fitness
parent, which has a fitness disadvantage of �x compared to the higher-fitness parent.
We assume that each parent has an exponential DFE, with parameter � that is drawn
at random as described in the text. (B) Simulations of the two-parent model (with
�x = 1) showing how the maximum fitness of the mutants depends on the selection
stringency, i.e. the fraction of the mutants drawn from the less-fit parent. Note that the
advantage of diversification increases with n and with the degree of heterogeneity
between the DFEs of the parents.

It is natural to suppose that mutants of higher-fitness variants tend on average to be 175

more fit than mutants of lower-fitness variants. Thus at first glance it may appear that 176

choosing nlow = 0 (i.e. maximal selection stringency in which we mutagenize only the 177

fittest variant) might be optimal. However, it is possible that in some cases mutations 178

on the background of the most-fit variant are less favorable than on that of the less-fit 179

variant. For example, two proteins of similar fitness may differ greatly in evolvability if 180

one is quite stable and the other only marginally so [51]. This difference in stability 181

could arise for example due to some apparently neutral mutation [52]. Indeed, it is often 182

the apparently neutral (from the standpoint of the fitness assay) but stabilizing 183

mutations that go on to enable performance of a function [52]. While stability is likely 184

to be a key molecular phenotype underlying evolvability, other molecular 185

phenotypes [53] such as the structural organization of the protein fold [54] and 186

conformational diversity [55] might also play similar roles. 187

Regardless of the origins of differences in evolvability, the important point is that 188

even a small number of mutations can significantly alter the effects of other mutations 189

and therefore the evolutionary prospects of variants [56, 57]. Thus, even if on average 190

mutants of higher-fitness variants tend to be more fit, the opposite can also sometimes 191

be true. Even if this is only rarely the case, it can be advantageous to devote some 192

resources to mutagenizing the lower-fitness variant as well. The extent to which this is 193

true (and hence the best choice of nlow) will depend on how often and to what degree 194

genetic backgrounds differ in their favorability to mutation. 195

To analyze this situation of selecting among two starting variants more 196

quantitatively, we introduce a simple toy two-parent model (Fig 1A, Methods). By 197

definition, the fittest variant has greater fitness than the less-fit variant. We will assume 198

this fitness difference is �x. The larger �x, the greater the advantage of sampling the 199

fittest variant; that is, the greater the advantage of exploitation. However, we assume 200

that the distributions of fitness effects (DFEs) available to the two variants can also 201

differ. For the sake of concreteness, we assume that the DFEs of beneficial mutations 202

for both variants are exponential, with rate (i.e. inverse scale) parameters �low and 203

�high, respectively. Thus the fitnesses (x1, . . . , xnlow) of the mutants of the lower-fitness 204

variants are drawn independently as Exponential(�low)��x, while the mutants of the 205

higher-fitness variants (xnlow+1, . . . , xn) are drawn independently as Exponential(�high). 206

The outcome we measure is the resulting maximum fitness of the new population of n 207

mutants, M = max(x1, . . . , xn). 208

If �low = �high, there would be no advantage to diversification, as the two variants 209

have the same DFE but the higher-fitness variant enjoys an initial fitness advantage. In 210

this case nlow = 0 clearly maximizes M . However, suppose that there is some random 211

variation in � between the variants. Even if on average �low = �high, we will sometimes 212

have �low < �high. This can create an advantage to diversification, such that nlow > 0 213
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maximizes M . The key point is that there are diminishing returns to drawing more 214

mutants from a single exponential distribution: the expected maximum of n 215

independent random variables distributed exponentially with rate � is
Pn

i=1 1/�i, so if 216

we are already drawing i� 1 samples, including an additional one only improves the 217

expected maximum by 1/�i. This can make it advantageous to draw fewer mutants 218

from the most-fit variant and instead devote some resources to sampling from a second 219

DFE with a different �, even if this comes at the price of starting at an initially lower 220

fitness. Whether this is true will depend on the typical scale of variation in � (which 221

determines the potential advantage of sampling from a second DFE), the difference in 222

fitness between the variants �x (which determines the penalty we pay for starting from 223

a less-fit variant), and the total number of the mutants we are screening n (which 224

determines the extent to which there are diminishing returns to drawing additional 225

mutations from the first DFE). 226

To illustrate this point, we can quantify the variation in DFEs by assuming that �low 227

and �high are themselves random. Specifically, we consider the case where they are 228

independently drawn from exponential distributions with parameter ↵. Here ↵ 229

parameterizes the degree to which DFEs tend to differ between variants: the mean 230

effect of a beneficial mutation (and the standard deviation of these effects) has an 231

interquartile range of approximately 2.8↵ (S1 Appendix). In other words, the 232

heterogeneity of the DFEs increases with ↵ (and because the � are drawn independently, 233

each variant is equally likely to have the more favorable DFE). We note that since � 234

controls both the mean and variance of the exponential DFE, in the context of this 235

model it is both these moments that are heterogeneous between DFEs. More broadly, 236

any heterogeneity in DFEs that impacts the expected maximum is relevant with respect 237

to the effect of stringency. 238

In Fig. 1B, we show how the maximum fitness of the mutants in the next round 239

depends on the degree of diversification nlow for several different values of ↵ and n 240

(note that as an extreme value statistic, the convergence of the expected maximum M is 241

sensitive to model details, so we instead plot how the expected logM depends on these 242

parameters). For sampling mutants from the lower-fitness variant to be advantageous, 243

its DFE must be more favorable to such a degree that it overcomes its �x fitness 244

disadvantage. This becomes more likely as ↵ becomes larger relative to �x. Thus as ↵ 245

increases, the optimal number of samples to draw from the less-fit variant also increases 246

up to the point of maximal diversification, nlow = n/2 (because it is equally likely that 247

the DFE of the more-fit parent is more or less favorable than the DFE of the less-fit 248

parent, it is never optimal to increase nlow beyond this point). 249

The optimal number of samples to draw from the less-fit variant also depends on the 250

number of mutants that can be screened, n. Particularly for larger n, it is optimal to 251

diversify somewhat (i.e. the optimal nlow > 0) even when ↵ is small compared to �x. 252

In these cases, it is very unlikely that the DFE of the less-fit variant is sufficiently more 253

favorable than the DFE of the more-fit variant to overcome its initial fitness 254

disadvantage. Nevertheless, because of the diminishing returns of continuing to sample 255

more mutants from the DFE of the more-fit variant, given sufficient n and ↵ it is still 256

optimal to spare some samples for a second DFE: the chance this DFE is anomalously 257

favorable is larger than the chance that an additional sample from the DFE of the 258

more-fit variant will be more fit than all previous samples. For this reason, for 259

sufficiently large n it can even be optimal to favor maximal diversification (i.e. 260

nlow = n/2) even when ↵ is small compared to �x. 261

We can quantify this effect by calculating the ↵⇤ at which it becomes advantageous 262

to reduce stringency to nlow = n/2. We can think of this threshold ↵⇤ as an upper 263

bound on the ↵ that would justify more moderate diversification. When n = 2, a 264

straightforward calculation of the expected M as a function of nlow shows that ↵⇤ = �x 265
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(S1 Appendix). Thus, when sampling a small number of mutants from two parents, the 266

variation in their DFEs must be on the order of the fitness differences between them to 267

justify diversification. However, as we can see in Fig. 2, ↵⇤ rapidly declines as n 268

increases (e.g. ↵⇤ = �x when n = 2 but decreases to ↵⇤ ⇡ 0.29�x at just n = 4). 269

Fig 2. DFE heterogeneity required to justify maximal diversification. The
↵⇤ at which it becomes more advantageous to diversify maximally than to not diversify
at all in our two-parent model (where the DFE rate parameters � are distributed as
Exponential(↵)). Note that, for small n, the DFE heterogeneity ↵ must be roughly on
the order of the fitness difference between parents �x to justify maximum
diversification. However, as n increases, maximal diversification can be favorable even
when ↵ is substantially less than �x.

The benefits of sampling a wider range of DFEs 270

Thus far we have analyzed the effects of diversification in the context of a simple toy 271

model involving only two parental variants. In this model, we could quantify the degree 272

of selection stringency entirely in terms of the fraction of n mutants that are drawn 273

from the less-fit parent. However, in practice we typically have more flexibility: if we 274

screen a total of n mutants in a given round of directed evolution, we can select any 275

subset of these as parents for the next round. 276

In this section, we consider this more general case. Specifically, we imagine that out 277

of the n mutants in the current round, we select the most-fit k variants as parents for 278

the next round (since we will assume the DFE of each variant is drawn independently, 279

there is never an advantage to omitting some of the fitter variants in favor of less-fit 280

ones). In principle we could imagine that mutants for the next round are drawn in some 281

complex way from these k parental variants. However, for simplicity and concreteness 282

(and consistent with the practical constraints of many directed evolution workflows), we 283

imagine that we draw mutants for the next round about equally from each of these 284

parents for a total of n variants in the next round. Our goal is to understand how the 285

maximum fitness, M , of these n total variants depends on k. If k = 1 is optimal, we 286

should maximize selection stringency by drawing all mutants from the most-fit variant 287

in the current round. If on the other hand M is maximized for some k > 1, then at least 288

some diversification is favorable, up to the maximal possible diversification of k = n. 289

We illustrate this scenario, which we call the k-parent model, in Fig. 3A. As in the 290

two-parent model, we assume that the DFE of each parent is exponential with some 291

parameter �. As before, we model random heterogeneity in the DFEs by assuming that 292

� is drawn independently for each parent from an exponential distribution with 293

parameter ↵, so larger ↵ corresponds to greater heterogeneity in DFEs between variants. 294

We could make a variety of assumptions about the relative fitness differences between 295

the k parental variants. For simplicity, we assume here that the most-fit variant is �x 296

fitter than the other k � 1 variants, which are of equal fitness. This choice ensures that 297

the benefit of diversifying among k variants that we observe will be a lower bound on 298

the true benefit in a more complex model in which �x is the difference between the 299

fittest and least-fit of the k variants (with the other variants intermediate between 300

them). Of course, in practice the value of �x will tend to increase with k, so we can 301

also interpret �x as determining the best choice of k, by setting the bound on the 302

extent to which we want to diversify among less-fit variants. 303

In Fig. 3B, we show how the maximum fitness of the mutants in the next round 304

depends on the choice of selection stringency k, for several different values of n and ↵. 305

Our results in this k-parent model are qualitatively similar to those from the two-parent 306

model: the advantage of diversification increases with the number of mutants, n, and 307
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Fig 3. The effect of selection stringency in the k-parent model. (A)
Schematic of the k-parent model, here with n = 6 and k = 3. (B) Simulations of the
k-parent model (with �x = 1) showing how the maximum fitness of the mutants
depends on the selection stringency, i.e. the fraction of variants selected as parents for
the next round, k/n. Note that the advantage of diversification increases with n and
with the degree of heterogeneity between the DFEs of the parents.

with the degree of heterogeneity between the parental DFEs, ↵. They are qualitatively 308

similar for the same essential reason: there are diminishing returns from sampling many 309

mutants from a single DFE, so provided that the total number of mutants and the 310

degree of heterogeneity between DFEs are sufficiently large, the cost of starting from 311

less-fit parents is outweighed by the advantage of sampling from more than one DFE. 312

We also note that this result is not specific to the details of how we model DFEs and 313

the heterogeneity between them: the same basic dynamic is recapitulated in a model in 314

which DFEs are normally distributed and ↵ controls the distribution of their means, or 315

in which ↵ controls the distribution of their variances (Fig 1 in S1 Appendix). 316

Inherited changes in DFEs can augment the value of 317

diversification 318

Thus far, we have analyzed the effects of selection stringency on the maximum fitness of 319

a set of mutants in a single round of directed evolution. If we assume that the dynamics 320

at each round are identical and independent, then the optimal selection stringency 321

across multiple rounds of directed evolution should simply be repeated use of the 322

optimal single-round stringency. However, it may often be the case that variation in 323

DFEs is not independent across multiple rounds. For example, if a particular protein 324

variant has a less-favorable DFE because it is barely stable, most of its descendants are 325

also likely to be barely stable and hence also have less-favorable DFEs, and vice 326

versa [51]. In other words, among proteins of similar fitness, the DFEs of more stable 327

proteins can be expected not only to be superior in the current round of evolution, but 328

one might also expect the DFEs of their mutants to be superior to the DFEs of mutants 329

of less stable proteins. 330

To analyze these effects of heritability in DFEs, which violate the assumption that 331

the dynamics at each round are identical and independent, we consider here an 332

extension of our k-parent model. In this k-parent inheritance model, each variant 333

continues to have two properties: a current fitness and a DFE for mutations in the 334

subsequent round. However, we now assume that the DFE parameters � for each 335

variant are not drawn at random in each round, and instead are inherited (but 336

imperfectly, to maintain some model of the generation of heterogeneity). Specifically, 337

rather than being drawn at random for each variant, we assume that all variants 338

initially have identical DFEs, which are inherited by their offspring. However, each DFE 339

has some constant probability of becoming heritably less favorable at each round (for 340

example because that particular adaptive mutation has a destabilizing effect on the 341

protein). In this setting, maintaining some diversity at each round can be beneficial not 342

only in maximizing fitness in the immediately following round, but also in maintaining 343

high-evolvability lineages that promote adaptation in the future. 344

To implement this model, we assume that all variants have an exponential DFE with 345

scale parameter �, which is initially identical for all variants. At each round, mutants 346

inherit their parental DFE, with some chance p that their � decreases by an amount d 347

(though because the exponential distribution must have positive scale, we set a 348

minimum � of 1/100; once this limit is reached the DFE cannot continue to degrade). 349

Subsequent selection is performed similarly to the k-parent model, and we quantify the 350
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selection stringency using the parameter k as before. We find that the value of 351

diversification generally increases as the probability of degradation of the DFE goes up 352

or as we consider directed evolution across a larger number of rounds (Fig. 4). Because 353

these two factors control the extent of heterogeneity in the DFEs, this is analogous to 354

our results from the two-parent and k-parent models (though we note that the 355

dependence on the number of rounds suggests that, instead of enforcing a constant 356

selection stringency k, decreasing k at each round would improve the outcome). 357

Fig 4. Effects of selection stringency in the k-parent inheritance model. (A)
Examples of the dynamics across four rounds of directed evolution in our k-parent
inheritance model for three different probabilities p of DFE degradation. Here d = 0.5,
n = 100, and the selection stringency is k = 5. For variants not among the fittest k,
color reflects the average � in that bin. Edges indicate parentage, though edges to
variants below the top k are not shown. (B) At a population size of n = 100, the
average maximum fitness at the end of 5, 10, and 20 rounds of directed evolution as a
function of selection stringency k and the features of DFE inheritance (p and d).

In Fig. 4A, we show specific examples of evolution at different rates of DFE 358

degradation to illustrate these general trends. When p is low, occasional lineages with 359

unfavorable DFEs are effectively purged, and several of the top variants in each round 360

are viable because of the stability of DFEs. However, at moderate p, only some lineages 361

remain viable and the fittest variant at the end of the evolution has an ancestry widely 362

ranging in fitness rank, not being descended from the fittest variant at each round. This 363

indicates that maintaining evolvability of the DFE plays a critical role, making it 364

important to retain several candidate variants at each round. Finally, at even higher p, 365

diversification is able to retain the most evolvable lineages for a short time, but DFEs 366

quickly deteriorate to a minimum and diversification becomes futile. This reflects the 367

fact that in our model DFEs become monotonically less favorable over time. If we allow 368

for some small probability that mutations can occasionally improve the DFE (e.g. by 369

improving stability [51, 58]), diversification can also be favorable because it helps to cast 370

a larger net for mutations that improve evolvability (Fig 2 in S1 Appendix). If k = 1, 371

for example, there is only one chance in each round for the parental DFE to have 372

improved. In contrast, at the cost of retaining some variants of comparatively lower 373

fitness and unfavorable DFEs, diversifying increases the probability of a DFE 374

improvement that can underlie fitness improvements over several subsequent rounds. 375

Discussion 376

In directed evolution, some number of mutants can be screened at each round. Mutants 377

modify the genetic sequence of their parental variants, thus exploring their DFEs — the 378

effects of mutations on those backgrounds. Since there is a dropoff in fitness between 379

the fittest variant and the rest, if the variants were equally evolvable, there should be no 380

advantage to selecting any variant other than the fittest. By selecting less-fit variants, 381

one would only sacrifice samples that could be used to better exploit the genetic 382

background of the fittest variant. However, if the statistics of adaptation in the 383

landscape around variants vary, reflecting idiosyncratic patterns of macroscopic 384

epistasis, then there can be an advantage to diversifying. The advantage depends on the 385

form of this variance and the number of mutants available to sample it. Our results 386

show that as the heterogeneity in the DFEs relative to the magnitude of the fitness 387

dropoff increases, so does the value of diversification. At sufficiently large population 388

sizes, the DFEs of less-fit variants can be explored with the expectation that some of 389

their mutants will often be fitter than those of the fittest ones. Imperfect heritability of 390
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DFEs leads naturally to this heterogeneity, with greater risks to the favorability of a 391

DFE calling for more diversification. 392

In more realistic settings, there may be additional, higher-order heterogeneities in 393

evolvability than are reflected in our simple models. For example, in our multi-round 394

model (the k-parent inheritance model) we assume that DFEs are inherited variably, 395

either perfectly or imperfectly. The probability of imperfect inheritance and the 396

corresponding magnitude of the DFE degradation were assumed the same across all 397

variants. However, one can imagine that a mutation on a particular background could, 398

for example, impact not only the DFE but the rate and magnitude of future mutational 399

effects on DFEs. Indeed, theoretical modeling of fitness landscapes has shown that the 400

evolutionary history of two sequences can be an important differentiating factor of the 401

evolvability of two sequences, even if their DFEs are similar [47]. The presence of such 402

higher-order heterogeneities would seem to encourage greater diversification. 403

Throughout our analysis, we assumed DFEs are exponentially distributed, consistent 404

with many previous theoretical studies which model beneficial fitness effects [59, 60]. 405

The empirical evidence for exponential fitness effects of beneficial mutations is 406

mixed [61], as is the evidence for whether the theoretical conditions underlying the 407

exponential assumption [62] are satisfied [5, 63, 64]. In assuming exponentially 408

distributed fitness effects, we also assumed that all effects are beneficial. We chose to 409

focus on beneficial effects since they are the ones that drive directed evolution; mutants 410

are typically not selected if they do not improve. However, although we made these 411

assumptions for concreteness and tractability, we believe our general conclusions are 412

robust to the specific choice of DFE model. For instance, we found that we could 413

reproduce a core set of results with an alternative model relying on a different set of 414

distributional assumptions (Fig 1 in S1 Appendix). However, quantitative interpretation 415

of the parameters and results will vary from experiment to experiment. For example, 416

typically fitness effects are mostly deleterious [5, 65]. One should therefore interpret the 417

population size parameter n as a fraction of a larger population size that also contains 418

deleterious mutants. In proteins, this fraction is likely to be small (e.g. less than 1% [5]). 419

Throughout, we have also implicitly assumed a fixed mutation rate. As the mutation 420

rate increases, many beneficial mutations may become linked to deleterious ones, 421

leading to an effective change in the DFE. The balance between beneficial and 422

deleterious mutations in such a setting will depend on the structure of epistasis and the 423

set of mutants that happen to be generated. For example, it has been observed that 424

high mutation rate causes greater variance in outcomes, sometimes leading to superior 425

outcomes while risking inferior ones [20]. Future theoretical work could consider the role 426

of this critical parameter on the course of directed evolution more generally. 427

While our results help quantify how optimal selection stringency depends on 428

patterns of idiosyncratic macroscopic epistasis, it is less clear what these patterns are in 429

any specific setting. Some inferences can be drawn from previous observations of the 430

effects of selection stringency. For example, in prior simulated [29] and 431

experimental [20, 21, 66] work, high stringency has typically corresponded to better 432

outcomes than low stringency, indicating that DFEs between competitive variants were 433

not consistently of great heterogeneity. The advantage of some degree of diversification 434

has, however, also been recognized. For example, it has been observed that extreme 435

stringency “is likely to be detrimental” [29], and suggested that low stringency at a low 436

mutation rate might be useful in early rounds to produce diverse, viable variants [20]. 437

To apply this work to design and optimize directed evolution experiments, the 438

heterogeneity of DFEs during adaptation must be better understood. Such information 439

should be easier to derive experimentally than sequence-function maps, as only the 440

distribution of the phenotype of interest need be measured, as opposed to paired data 441

consisting of the phenotype of each sequence. The heterogeneity will depend on, among 442
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other factors, the particular protein and the assay, but at least such experiments would 443

sketch the possible range of heterogeneity and may indicate general behavior of DFEs 444

over protein evolution. 445

Methods 446

Average maximum fitnesses for each parameter setting were computed using 100,000 447

samples for the two-parent and k-parent models, and 2,000 samples for the k-parent 448

inheritance model. We describe the three main models used in this paper below. 449

Two-parent model 450

In the two-parent model, we assume there are two variants with a �x > 0 fitness 451

difference between them, the fitter parent of fitness 0 and the other of fitness ��x. We 452

assume a total of n mutants can be screened in the next round of directed evolution, 453

nlow mutants drawn from the less-fit parent and the remaining n� nlow drawn from the 454

fitter parent. We consider only the effects of beneficial mutations, which are drawn from 455

exponential DFEs: the DFE of the fitter parent is Exponential(�high) while that of the 456

less-fit parent is Exponential(�low). We assume that the DFE rate parameters are 457

themselves random and drawn as �low,�high
i.i.d.⇠ Exponential(↵). 458

k-parent model 459

Our k-parent model extends the two-parent model. We now assume there are n initial 460

variants with a fitness difference of �x between the fittest and all of the n� 1 remaining 461

variants. We consider a single round of directed evolution, in which we select the top k 462

parents (the fittest and a random subset of the k � 1 remaining variants). Each parent 463

gives rise to bn/kc mutants, with the remaining n mod k mutants assigned randomly 464

without replacement. Mutant fitnesses are calculated as in the two-parent model, with 465

each DFE being determined by a rate parameter drawn i.i.d. as Exponential(↵). 466

k-parent inheritance model 467

The k-parent inheritance model extends the k-parent model, with mutants becoming 468

parents in the following round of directed evolution. We assume that the initial 469

population is seeded by a single variant which has an exponential DFE with scale 470

parameter � = 1. This initial variant is mutagenized to yield the starting population of 471

n variants. At this and all subsequent rounds, a mutant inherits its parental scale 472

parameter except with a certain probability p that its DFE scale � decreases by d 473

(down to a minimum possible scale parameter of � = 1/100). At each round, we select 474

the fittest k variants, and draw mutants from among these variants, with the number 475

drawn from each parent multinomially distributed with equal sampling probabilities. In 476

the illustrated examples, the number of mutants is divided equally between the parents. 477

Supporting information 478

S1 Appendix. Supplementary mathematical explanations and figures. 479
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60. Schiffels S, Szöllősi GJ, Mustonen V, Lässig M. Emergent neutrality in adaptive 626

asexual evolution. Genetics. 2011;189(4):1361–1375. 627

61. Bataillon T, Bailey SF. Effects of new mutations on fitness: insights from models 628

and data. Annals of the New York Academy of Sciences. 2014;1320(1):76–92. 629

62. Orr HA. The distribution of fitness effects among beneficial mutations. Genetics. 630

2003;163(4):1519–1526. 631

63. Orr HA. The distribution of fitness effects among beneficial mutations in Fisher’s 632

geometric model of adaptation. Journal of Theoretical Biology. 633

2006;238(2):279–285. 634

64. Martin G, Lenormand T. The distribution of beneficial and fixed mutation 635

fitness effects close to an optimum. Genetics. 2008;179(2):907–916. 636

65. Johnson MS, Martsul A, Kryazhimskiy S, Desai MM. Higher-fitness yeast 637

genotypes are less robust to deleterious mutations. Science. 638

2019;366(6464):490–493. 639

66. Neuenschwander M, Butz M, Heintz C, Kast P, Hilvert D. A simple selection 640

strategy for evolving highly efficient enzymes. Nature Biotechnology. 641

2007;25(10):1145–1147. 642

December 12, 2025 15/15


