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ABSTRACT Demographic inference methods in population genetics typically assume that the ancestry of a sample can be
modeled by the Kingman coalescent. A defining feature of this stochastic process is that it generates genealogies that are
binary trees: no more than two ancestral lineages may coalesce at the same time. However, this assumption breaks down
under several scenarios. For example, pervasive natural selection and extreme variation in offspring number can both generate
genealogies with “multiple-merger” events in which more than two lineages coalesce instantaneously. Therefore, detecting
violations of the Kingman assumptions (e.g. due to multiple mergers) is important both for understanding which forces have
shaped the diversity of a population and for avoiding fitting misspecified models to data. Current methods to detect deviations
from Kingman coalescence in genomic data rely primarily on the site frequency spectrum (SFS). However, the signatures
of some non-Kingman processes (e.g. multiple mergers) in the SFS are also consistent with a Kingman coalescent with a
time-varying population size. Here, we present a new statistical test for determining whether the Kingman coalescent with any
population size history is consistent with population data. Our approach is based on information contained in the two-site joint
frequency spectrum (2-SFS) for pairs of linked sites, which has a different dependence on the topologies of genealogies than
the SFS. Our statistical test is global in the sense that it can detect when the genome-wide genetic diversity is inconsistent with
the Kingman model, rather than detecting outlier regions, as in selection scan methods. We validate this test using simulations,
and then apply it to demonstrate that genomic diversity data from Drosophila melanogaster is inconsistent with the Kingman
coalescent.
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It is therefore crucial to understand the limits of population ge-

Introduction netics models and to assess when a model is appropriate for a

The genetic diversity within a population reflects its demo- particular data set.
graphic and evolutionary history. Learning about this history
from contemporary sequence data is the domain of modern pop-
ulation genetics (see Hahn (2018)). The fundamental tools of
the trade are simplified mathematical models, which connect
unobserved quantities such as the population size to observable
features of genetic data. However, populations are complicated
and, moreover, vary in their complications. No simple model
can capture the processes governing every species’ evolution,
and a misspecified model will generate misleading inferences.

One of the most widely used models is the Kingman co-
alescent (Kingman 1982a,b; Hudson 1983; Tajima 1983). The
Kingman coalescent is a stochastic process that generates gene
genealogies: trees representing the patterns of shared ancestry of
sampled individuals. Inference methods use these genealogies
as latent variables linking demographic parameters to genetic
data (Rosenberg and Nordborg 2002). The Kingman coalescent
has a number of convenient properties that facilitate both ana-
lytical calculations (e.g., Tajima (1989)) and efficient stochastic
simulations (e.g., Hudson (2002)): tree topologies are indepen-
Manuscript compiled: Friday 12 December, 2025 dent of waiting times; waiting times are generated by a Markov
*Corresponding author: mdesai@oeb.harvard.edu process; and neutral mutations are modeled as a Poisson process
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conditionally independent of the tree. Moreover, the model can
be extended to study a variety of biological phenomena includ-
ing recombination, population structure, and variation in sex
ratios or ploidy (see generally Wakeley (2009)).

An important application of the Kingman coalescent is infer-
ring historical population sizes from genetic data (Schraiber and
Akey 2015). In its simplest form, the model has a single param-
eter, the coalescent rate, which determines the branch lengths
of genealogies (Kingman 1982a). Under many conditions, the
coalescent rate is inversely proportional to the population size
(Kingman 1982b). Accordingly, a growing or shrinking pop-
ulation may be modeled by a time-varying coalescence rate
(Griffiths and Tavaré 1994, 1998). Patterns of genetic diversity
depend on the ratio of the coalescent rate to other evolutionary
rate parameters. For example, the site frequency spectrum (SFS)—
the number of mutations segregating at different frequencies
in a sample—is determined by the ratio of the mutation rate to
the (time-varying) coalescent rate. Kingman-coalescent-based
inference methods solve the inverse problem of determining the
population size history that best explains particular features of
the data, such as the SFS (e.g., Bhaskar et al. (2015)) or varia-
tions in heterozygosity along a chromosome (e.g., Li and Durbin
(2011)).

A serious problem for this class of inference methods is that
different models of evolution generate different relationships
between historical population sizes and genetic diversity. For
example, one of the basic assumptions of the Kingman coales-
cent is that natural selection is negligible in determining the
distribution of genealogies. When this assumption is violated,
Kingman-based inference methods are misspecified (Gillespie
2000a,b, 2001). For instance, when a beneficial mutation in-
creases rapidly in frequency, it distorts the genealogies at nearby
sites (see e.g., Coop and Ralph (2012)). If these “selective sweeps”
occur regularly, they may be the dominant factor determining
the distribution of genealogies. In this case, the average coales-
cent rate is proportional to the number of beneficial mutations
introduced per generation, which is itself directly, rather than
inversely, proportional to the population size. It follows that
the relationship between the population size and the expected
number of neutral mutations in a sample is inverted: larger
populations will be less diverse than smaller populations.

While the example above is extreme, it is well established
that violations of the neutrality assumption can distort or mask
the signatures of population size changes. For example, Schrider
et al. (2016) and Johri et al. (2021) demonstrated that several
popular inference methods give misleading results in the pres-
ence of selective sweeps and background selection. In a similar
vein, Cvijovié et al. (2018) showed that reduction of genetic di-
versity by purifying selection is accompanied by distortions in
the SFS, leading to a false signal of population growth. More-
over, genomic evidence from multiple species suggests that such
violations of neutrality may be widespread (Sella et al. 2009;
Corbett-Detig et al. 2015; Kern and Hahn 2018; Johri et al. 2020).

An important extension of the Kingman coalescent is a family
of models known as multiple-merger coalescents (Pitman 1999; Sag-
itov 1999; Donnelly and Kurtz 1999; Eldon 2016), which arise in
a variety of contexts both with and without selection. Whereas
in the Kingman coalescent lineages may coalesce only pairwise,
multiple-merger coalescents permit more than two lineages to co-
alesce in a single event. The more general class of simultaneous-
multiple-merger coalescents (Schweinsberg 2000; Mohle and
Sagitov 2001; Sagitov 2003) permits more than one distinct
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multiple-merger event at the same time. Multiple-merger and
simultaneous-multiple-merger models are relevant for species
with “sweepstakes” reproductive events (Eldon and Wakeley
2006; Sargsyan and Wakeley 2008), fat-tailed offspring number
distributions (Schweinsberg 2003; Hallatschek 2018), recurring
selective sweeps at linked sites (Durrett and Schweinsberg 2005;
Coop and Ralph 2012), rapid adaptation (Neher and Hallatschek
2013; Desai et al. 2013), and purifying selection at sufficiently
many sites (Seger et al. 2010; Nicolaisen and Desai 2012; Good
et al. 2014; Cvijovic et al. 2018).

In each of these contexts, the coalescent timescale is not nec-
essarily proportional to the population size. For example, with
fat-tailed offspring distributions, the rate of coalescence is a
power law in the population size (Schweinsberg 2003), while
with linked sweeps it is determined by the rate of linked sweeps,
as described above (Durrett and Schweinsberg 2005). In these
settings, interpreting the level of genetic diversity in terms of an
“effective population size” is misleading, and inferences based on
the Kingman coalescent may be qualitatively and quantitatively
incorrect.

It is therefore important to determine whether the Kingman
model is appropriate for a given data set before performing de-
mographic inference. This task is distinct from “selection scan”
methods designed to detect particular regions of the genome
that are under selection (see Vitti et al. (2013)). Selection scan
methods typically assume that most of the genome is evolving
neutrally and that the genome-wide distribution of summary
statistics reflects demographic factors. Genomic regions that
are outliers from this distribution are presumed to be under
selection. In contrast, we are interested in detecting when the
genome-wide background itself is not well-modeled by the King-
man coalescent.

There has been much recent interest in identifying in genomic
data departures from the Kingman coalescent caused by mul-
tiple mergers. One approach is to use the SFS as a summary
statistic. To this end, Birkner ef al. (2013), Blath et al. (2016),
and Spence ef al. (2016) derived methods for computing the
expected SFS of (simultaneous) multiple-merger coalescents.
Further, Eldon ef al. (2015) showed that it is possible to use the
SFS to distinguish beta and Dirac (multiple-merger) coalescents
from Kingman coalescents with strictly exponential or algebraic
growth. Koskela (2018) and Koskela and Wilke Berenguer (2019)
extended this work and used the SFS to distinguish multiple
mergers caused by selection from those caused by sweepstakes
reproduction. In a related approach, Rodelsperger et al. (2014) de-
tected widespread linked selection in the nematode Pristionchus
pacificus by demonstrating that the SFS is non-monotonic, a
signature of multiple mergers (Neher and Hallatschek 2013;
Birkner et al. 2013). Several more recent papers have used this
non-monotonicity in the SFS to identify departures from the
Kingman coalescent in Atlantic cod (Arnason et al. 2023) and
a variety of other organisms (Freund et al. 2023). In other re-
cent work, Freund and Siri-Jégousse (2021) have introduced a
new statistic, the minimum observable clade size, and used it,
along with SFS-derived statistics, to discriminate between sev-
eral coalescent models (including multiple-merger and Kingman
coalescents both with and without population growth) using
an approximate Bayesian computation (ABC) framework. Sev-
eral other recent papers have used related combinations of link-
age disequilibrium and SFS-derived statistics in a similar ABC
framework to detect evidence for multiple-merger genealogies
(Menardo et al. 2021) or to jointly infer the action of demography
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and selection (Johri et al. 2020, 2021; Lepers et al. 2021).

However, methods that derive their power primarily from the
SFS are limited in their ability to distinguish multiple mergers
from general models of population-size change. While previous
work has demonstrated that the SFS does contain information
that can discriminate multiple-mergers from particular forms
of the Kingman coalescent, a Kingman coalescent with a more
general model of population size change can accurately fit many
aspects of the multiple-merger SFS (Myers et al. 2008; Bhaskar
and Song 2014). This fundamentally limits the ability to dis-
criminate between population models using SFS-based statistics
alone. The non-monotonic SFS identified by Rodelsperger et al.
(2014), Arnason et al. (2023), and Freund et al. (2023) is a more
robust signature of multiple mergers, but identifying that the
SFS increases at high frequencies requires both knowledge of
the ancestral allele at each site and a large enough sample size
to accurately sample rare, high-frequency alleles, and either
condition may be violated in real-world data.

Here, we propose that statistics based on the two-site fre-
quency spectrum (2-SFS)—the generalization of the SFS to pairs
of nearby sites (Hudson 2001; Ferretti et al. 2018)—are useful for
distinguishing between the Kingman coalescent with population
growth and multiple-merger coalescents. This is fundamentally
different from approaches based primarily on the single-site SFS
(e.g. Birkner et al. (2013); Blath et al. (2016); Spence et al. (2016);
Eldon ef al. (2015); Freund and Siri-Jégousse (2021); Freund et al.
(2023)) because 2-SFS-based statistics depend on tree topolo-
gies and coalescent rates in a manner unique from SFS-based
statistics. Thus these 2-SFS statistics introduce new information
not contained in the SFS that can be used to discriminate mod-
els that produce same SFS. Furthermore, these statistics may
be calculated efficiently from single-nucleotide-polymorphism
(SNP) data, do not require recombination maps or ancestral
allele identification, and are informative even with small sam-
ple sizes. Together, these properties make the 2-SFS useful for
demographic model-checking in a wide range of species.

In this paper, we show that 2-SFS-based statistics can be used
to discriminate Kingman from non-Kingman coalescence. By
validating with simulations, we demonstrate high power to
reject incorrect Kingman population-size-change models for bio-
logically realistic sample sizes. We present a Snakemake pipeline
for analyzing real-world population data and demonstrate our
pipeline using genomic data from Drosophila melanogaster (Lack
et al. 2015).

Definitions and Background

Following the notation of Fu (1995), we define the SFS of a sam-
ple of n haploid genomes as ¢, where ¢; is the number of sites
containing a mutation with derived allele count i in the sam-
ple (1 < i < n—1). When the ancestral allele is unknown,
mutations at frequency n — i are indistinguishable from mu-
tations at frequency i, and the folded SFS, 7, is used instead,
where 7; is the number of sites with minor allele count i in the
sample, {n; =&+ (1 —;n—i) Cn—i: 1 < i< [n/2]}. Here 6y
is the Kronecker delta (6, y = 1if k = £ and 0 otherwise). The
SFS and folded SFS can be calculated from a set of SNPs without
knowing the physical location of the SNPs.

In contrast, the 2-SFS, ¢, is a statistic of pairs of sites. We define

the 2-SFS, {‘Pij(d) :d>0;1<{i,j} <n-— 1}, as the number of

pairs of polymorphic sites separated by d bases for which there
is a mutation with derived allele count 7 at one site and a second

mutation with derived allele count j at the other site. Note that
$ij(d) = ¢;i(d) by symmetry. The 2-SFS has been studied for
non-recombining sites by Ferretti et al. (2018) in a neutral model
and by Xie (2011) in a model with selection. When the ancestral
allele is unknown, we define the folded 2-SFS, ¢, by analogy
to the folded SFS: ¢;;(d) represents the number of pairs of sites
separated by d bases in which one site has minor allele count i
and the other has minor allele count j (1 < {i,j} < |n/2]). For
non-recombining sites, the 2-SFS is independent of the distance,
so we will suppress the d in our notation when considering the
nonrecombining case.

In the limit of low per-site mutation rate (1 — 0) and no
recombination, all polymorphic sites are bi-allelic and the ex-
pected SFS and 2-SFS are related to moments of the genealogical
branch length distribution by

(¢i) = u(m) 1)
(¢ij) = (1), 2)

where T; is the total length of branches subtending i leaves of
a gene genealogy and (-) represents the expectation over the
distribution of gene genealogies defined by a coalescent model.
Thus, the SFS and 2-SFS depend on the distribution of coales-
cent times as well as the distribution of tree topologies. In the
opposite limit of high recombination between sites (i.e., fully un-
linked loci), the genealogies of the sites come from independent
draws of the generating coalescent model, and the 2-SFS can be
determined directly from the SFS: (¢;;) = y2<‘q)<rj> = (Gi)(&))-
Thus, for a recombining population, the 2-SFS is a function of the
genomic distance d between sites and only contains information
not found in the SFS for nearby, linked sites.

Fu (1995) calculated the first and second moments of the
branch-length distribution for a non-recombining infinite-sites
locus under the standard time-homogeneous Kingman coales-
cent. He found that (7;7;) < (7;)(7)) forall j & {i, (n —i)}. This
result, combined with Eq. (1) and Eq. (2), implies a negative
correlation between mutations at different frequencies: trees
generating a mutation with derived allele count i are less likely
than average to generate a second mutation with derived allele
count j ¢ {i, (n —i)}. (There are positive correlations between
mutations at complementary frequencies induced by genealo-
gies whose root node partitions the tree into subtrees of size i
and n —i.)

Birkner et al. (2013) extended Fu’s calculation to a family
of multiple-merger coalescents called beta coalescents. This
one-parameter family interpolates between the Kingman coales-
cent and the Bolthausen-Sznitman coalescent (Bolthausen and
Sznitman 1998) as the parameter, &, ranges from 2 to 1. Beta coa-
lescents arise in models with fat-tailed offspring distributions
(Schweinsberg 2003; Steinriicken et al. 2013), and the Bolthausen-
Sznitman coalescent is the limiting distribution of genealogies in
populations that are rapidly adapting or experiencing extensive
purifying selection (Neher and Hallatschek 2013). The calcula-
tions of Birkner et al. (2013) show positive correlations between
giand ¢ for j € {i,n — i} (Figures 5 and 6 of Birkner et al. (2013).
Thus, unlike the standard Kingman coalescent, the beta coales-
cent can generate positive associations between mutations with
different minor allele counts. Together, these results suggest that
the differences in associations between mutations at different fre-
quencies (i.e. differences in the 2-SFS) can be used to distinguish
multiple-merger coalescents from the Kingman coalescent.
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A 2-SFS-based test for the Kingman coalescent

Motivated by this reasoning, we developed a method to use
information in the 2-SFS to determine whether a Kingman coa-
lescent (with any demographic history) is consistent with real-
world genomic data. The basic idea is to first use the observed
SFS to determine the best-fit demographic history within the
Kingman model. We then simulate the expected 2-SFS pre-
dicted by this best-fit Kingman demographic history, and use
a goodness-of-fit statistic to determine whether this expected
2-SFS is consistent with the data. We illustrate this pipeline in
Fig. 1 and describe each step in more detail below.

Computing the SFS and 2-SFS from population data

We begin by generating the folded SFS and 2-SFS, ;7;.1’”“ and
qp’{i.”m

o)
practice we will often restrict our analysis to patterns at fourfold
degenerate sites, since these are regarded as more likely to be
selectively neutral. We therefore typically only consider values
of d that are multiples of 3. If the ancestral allele is known,
the unfolded SFS and 2-SFS can be used instead. To increase
computational efficiency, we lump alleles with frequency larger
than ky,qy into one high-frequency bin, choosing k;;.x by eye
such that the high-frequency tail of the SFS is low noise (though
we note that the pipeline is robust to the exact choice of kj;ax,
(see Fig. S1), and can be implemented without this lumping if
preferred).

(d), using sequence data from a sampled population. In

Inferring the best-fit Kingman demography

We next use the observed SFS to infer the best-fit Kingman de-
mographic model. To do so, we fit a 5-epoch piecewise-constant
Kingman demography, N,,;; (t), to the lumped SFS of the data
using a modification of the fastNeutrino algorithm (Bhaskar
et al. 2015). As in fastNeutrino, we find the N,,,,;;(¢) that min-
imizes the Kullback-Leibler (KL) divergence between the ex-
pected and observed SFS using the L-BFGS-B algorithm with
automatic differentiation. Unlike fastNeutrino, we apply L,
regularization to the vector of log population sizes. Regulariza-
tion helps the solver find well-behaved solutions by penalizing
very short epochs with very large population sizes, which do not
affect the SFS. We note that the specific choice of demographic
fitting algorithm is not crucial, and any demographic inference
method that accurately predicts the SFS (as this algorithm does,
see Fig. 2) could be substituted without altering downstream
analyses. Python implementation of the fitting algorithm, which
we refer to as fitsfs, is available in a Github repository at
https://github.com/desai-lab/twosfs.

Our choice of this 5-epoch model is designed to be conserva-
tive in allowing for highly flexible Kingman population histories,
as compared to more restrictive assumptions such as a piece-
wise constant model with only one or two epochs, or models
which make assumptions about the shape of past population
growth. As we will see below, the inferred 5-epoch Kingman
demographic model is typically an excellent fit to the observed
SFS, even when the underlying model is very different (this
is precisely why the SFS alone has limited power to test the
Kingman assumptions).

Null 2-SFS and recombination rate

Once the best-fit demography has been inferred from the SFS,
we generate the 2-SFS predicted by the Kingman coalescent

4 Fenton et al.

n

with that demography, which we refer to as 9"1‘]‘”” (d;r), by sim-
ulating genealogies using msprime. We note that this predicted
2-SFS depends on the recombination rate r, which determines
how quickly the 2-SFS decays towards the product of the corre-
sponding SFSs as a function of d. However, the correct choice
of recombination rate may often be unknown. One possible
approach would be to restrict our analysis to pairs of sites that
belong to segments that have not recombined in the history of
the sample. However, errors in our inferences of the boundaries
of these non-recombined blocks could lead to incorrect rejection
of the Kingman model. Therefore, to be conservative in the face
of uncertainty in the recombination rate, we instead simulate
multiple candidate null 2-SFS with different recombination rates,
and choose the recomination rate that minimizes our ability to
reject the Kingman model (as described in more detail below).

Statistic for comparing expected and observed 2-SFS

We wish to compare the expected 2-SFS under the best-fit King-
man demographic model, qoz«”” (d;r), to the 2-SFS observed

in the data, (p%”t“ ().
mogorov-Smirnov (KS) distance (Kolmogorov 1933; Smirnov
1948) generalized to three variables (i, j, and d; we treat r as a
constant here), by implementing the procedure described in Gos-
set (1987). The multidimensional KS distance is a nonparametric
statistic that measures the degree to which an empirical distribu-
tion (here (p?j‘”“ (d)) matches a proposed generating distribution
(here q);}”l !(d)). In summary, it is the maximum absolute distance

To do so, we use a form of the Kol-

between the cumulative distribution functions (CDFs) generated
by (p%“t” (d;r) and (p;}””(d), maximized again over all eight cu-
mulation directions when defining the multidimensional CDF
(iie. Pri < IANj < JAd <D),Pr(i >INj<]JAd<D),
etc). We direct readers to Gosset (1987) for a more thorough
description of this statistic.

Null KS distribution and p-value

We next wish to determine whether the observed multidimen-
sional KS distance is consistent with gafjﬂt“ being drawn from

(p;}””. In other words, is the observed 2-SFS consistent with

the 2-SFS expected based on the best-fit Kingman demographic
model? The complex natures of our KS statistic and the noise as-
sociated with mutation accumulation and population sampling
mean that it is not possible to derive an analytic expression for
a range of “typical” KS distances to be expected assuming the
null model is correct. Therefore, we approximate the null KS
distribution through a resampling procedure. Specifically, we
generate a low-noise null 2-SFS distribution by averaging 10*
demographic simulations under the null demographic model.
At every genomic distance d, we draw PD(d) multinomial sam-
ples from this null distribution, where the pair density PD(d)
is the number of pairs of sites at distance d in the sample. This
generates a resampled 2-SFS, (p:;samp , that has the same number
of pairs of sites at distance d as the sampled data, but with an
expectation value at every d equal to q)?j“” (d). Intuitively, this
resampled 2-SFS distribution can be thought of as a version of
the null 2-SFS “noised” to the level of the sampled data. We
repeat the multinomial sampling (but not the simulations) 1000
resamp,m

times to generate 1000 resampled 2-SFS distributions, ¢; i
(1 < m <1000). By calculating the KS distance between each

resamp;m 1 . C .
ij and ¢!'*', we generate an approximate null KS distri-
data

i
bution to which the KS distance between ¢?* and ¢ ]

null

i can be
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Figure 1 Schematic of the model-checking pipeline. The pipeline follows the red arrows from a to h. Briefly, after data collection
and cleaning (a), we construct the SFS and 2-SFS (b) and fit a Kingman demography (the null model) to the SFS (c). We simulate
the 2-SFS expected from a Kingman model with this null demography for several values of the recombination rate and choose the
recombination rate, 7, that maximizes the p-value for rejecting the Kingman model based on the KS distance between the 2-SFS of
the data and the null (d-f). We then resample q)?jl‘” (d;?) (g) and compute the KS distance between these resampled distributions

and qof}”” (d;7) to generate a null KS distribution. We compare the KS distance between q)%“t“ (d) and cp?j“” (d;7) to this null KS distri-

bution to generate a p-value (h).

compared. We then use this comparison to generate a p-value
for the rejection of the Kingman model.

As noted above, (p?j”” (d;r) depends on the recombination
rate, which is often unknown. We therefore compute this mul-
tidimensional KS statistic and use it to generate a p-value to
compare (pf}“” (d;r) with (p?j"t” (d) for a range of different values
of r. We then choose the value of the recombination rate, #, which
maximizes the p-value (i.e. minimizes our chance of rejecting
Kingman coalescence). This ensures that we are conservative in
rejecting the Kingman model in the face of uncertainty about the
recombination rate.

To efficiently find 7, we choose candidate recombination rates
using a golden-section search (Kiefer 1953). Starting with conser-
vative lower and upper bounds for 7, the golden-section search
algorithm iteratively proposes new candidate recombination
rates and narrows the bounds on # through sequential evalua-
tions of the KS distance between gog»”” (d;r) and (pg-”m (d). The
algorithm can be run for a given number of iterations or until
some other stopping criteria is met; in this paper, we run the
algorithm for five iterations.

Model-checking pipeline

We have implemented this 2-SFS based model checking proce-
dure in a Snakemake pipeline which can be used to test whether
any real-world or simulated population data is consistent with
the Kingman coalescent, publicly available in a Github repos-

itory at https:/github.com/desai-lab/twosfs. This repository has
code to reproduce all results and figures from this manuscript
and is straightforward to edit to test parameter values ouside
those explored in this paper. Users wishing to test real-world
data using the pipeline must supply a JSON file containing the
locations of all polymorphic sites and their associated derived
or minor allele counts. This file uses a specific custom format,
though we supply code for conversion from both VCF and text
file formats. The pipeline further requires an upper and lower
bound for the recombination rates and contains flags for various
data cleanup choices. We direct readers to the README located
in our Github repository for further details and instructions.
Computational requirements for all steps in the model-checking
pipeline are available in Table S1.

Validation of our 2-SFS based test with simulations

To test the performance of our model checking procedure, we
simulated coalescent histories using msprime (Baumdicker et al.
2022) and SLiM (Haller et al. 2019) under four classes of models:
(1) the neutral, constant-size Kingman coalescent; (2) a neu-
tral, exponentially growing Kingman coalescent; (3) a neutral,
constant-size beta coalescent; and (4) a constant-size population
undergoing positive selection at many sites along the genome.
For each type of simulation, we tested a range of relevant pa-
rameter values, as shown in Table 1.
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Model Parameter range

Constant-size, N/A

neutral Kingman

Growth rate y: 0.25 - 2.0 per T
Growth time ty: 0.5-2.0 T

Exponential
growth

a:1.05-1.95

Selective coefficient s: 0.005 — 0.08%
Rate of selective mutations p: 10710 —
10~ per site per genome per genera-
tion

Diploid population size N = 10,000
Genome length L = 5,000

Beta coalescent

Positive Selection

Table 1 Models and parameter ranges for simulated coales-
cent processes. Note that the characteristic timescale T is an
arbitrary scaling factor that does not affect tree topologies, as
the total population growth is controlled by the product of
and typ. We do not specify a neutral mutation rate for any of
the models because neutral diversity is added after the simu-
lations finish in both msprime and SLiM (see Baumdicker ef al.
(2022); Haller et al. (2019) for more details).

A flexible Kingman demography reproduces features of a non-
Kingman SFS

For every model-parameter combination, we first simulated the
expected folded SFS of 100 samples. Because of the stochas-
ticity at higher frequencies, we combined all mutations with
frequency k > kyax = 20 into one “lumped” high-frequency
bin. As described above, we then used fitsfs to fit a piecewise-
constant neutral demographic model to each lumped, folded
SFS. We show one example of the resulting SFS from each of
the four types of models we simulated, along with the corre-
sponding fitsfs fits, in Fig. 2. We see that the observed site
frequency spectra deviate strongly from the constant-size King-
man expectation for the three examples where this was not the
underlying model. However, we find that a Kingman coalescent
with a flexible population size can be fit to all four spectra nearly
perfectly. This implies that any statistics based solely on the
SFS, or transformations thereof, will have minimal power to dis-
tinguish the non-Kingman scenarios (here beta coalescent and
positive selection models) from a sufficiently flexible Kingman
demography.

The 2-SFS can distinguish demographic models with matching
SFS

By contrast, we expect that the 2-SFS should allow us to distin-
guish non-Kingman scenarios from a Kingman demographic
model that generates an identical SFS. To show this, we used
msprime to simulate the Kingman coalescent with the piecewise-
constant demographic histories inferred by fitsfs for the sim-
ulated models described above. This produced a set of pairs
of simulations, each consisting of an original (potentially non-
Kingman) model, along with the corresponding Kingman model
with the piecewise-constant demographic history that is the best
fit to the SFS from the original model.

By construction, these simulated Kingman coalescents pro-
duce nearly identical SFS as the corresponding original mod-
els. We then compared the 2-SFS produced by these simulated
Kingman coalescents to those produced by our simulations of
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Figure 2 (a) Simulated site frequency spectra for example
constant-size-Kingman, beta coalescent, positive-selection,
and exponential population size growth models, compared to
the expectations from the corresponding best-fit Kingman de-
mographic models. The examples shown here are for « = 1.3
(beta coalescent); s = 0.55, u = 10-10 (positive selection);
and tp = 0.5, v = 2.0 (exponential growth). Note that site
frequency spectra are shifted vertically relative to each other to
aid in visibility (thus while relative frequencies in each curve
are accurate, the overall normalization is not). (b) The inferred
best-fit Kingman demographic models for each of the four ex-
amples shown in (a). Population size and time in the past have
units of an arbitrary coalescent timescale.

the original models. To visualize this comparison, in Fig. 3 we
plot four examples of the log-ratio of the 2-SFS produced by
the original models to those produced by the best-fit Kingman
demographic model. We see that for the beta and positive selec-
tion cases, where the original model is not Kingman, there is a
striking visual difference with the 2-SFS of the corresponding
Kingman demographic model, despite the near-perfect fit to
the SFS. On the other hand, the constant-size and exponentially
growing Kingman coalescents show signal consistent with sim-
ulation noise. Taken together, these results imply that the 2-SFS
can distinguish between Kingman and non-Kingman coalescent
models, even when the SFS fails to do so.

Power analysis of our model checking procedure

The examples shown above demonstrate visually that there is
information in the 2-SFS that can potentially be used to distin-
guish Kingman from non-Kingman coalescent processes. To
determine whether the statistical test we introduced above effec-
tively uses this information, we validated our model-checking
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Figure 3 Log-ratio of the 2-SFS of the four example models
shown in Fig. 2 with the 2-SFS expected under the correspond-
ing best-fit piecewise-constant Kingman demographies.

pipeline with the simulated models from Table 1. Proper vali-
dation requires several replicate simulated SFS and 2-SFS (i.e.
multiple simulations of 797 and ¢??), which are computation-
ally expensive to generate from scratch for the large number of
models we simulate. Therefore, to save computational resources,
we re-employed the resampling method described earlier. For
each model-parameter combination, we generated 100 simu-
lated 2-SFS, ¢*"i!, by resampling the low-noise 2-SFS 100 times
at PD(d) = 10,000 for genomic distances d = {3, 6, ..., 24},
approximately matching the pair density of fourfold degenerate
sites in the D. melanogaster dataset we describe below. Again,
each of these ¢*"! can be thought of as a 2-SFS whose expecta-
tion value matches the simulated coalescent model but is noised
to mimic real-world data. We ran our model-checking pipeline
independently for each ¢*", generating 100 validation runs of
the procedure for every model-parameter combination.

We plot the power to reject Kingman coalescence at a p-
value threshold of 0.05 in Fig. 4. As seen in Fig. 4a-c, we have
high power to reject Kingman coalescence for models that in-
volve highly skewed offspring distributions and strong positive
selection and low false-rejection rates for neutral exponential
growth for biologically realistic sample sizes. In other words, we
correctly reject Kingman coalescence whenever the underlying
model involves sufficiently strong non-Kingman processes, but
do not incorrectly reject the model in any of the scenarios in-
volving exponential growth. This trend holds despite the three
model classes spanning similar levels of distortion of the SFS, as
measured by Tajima’s D (Fig. 4d).

Real-world genomic data often has complexities not directly
included in simulated data — for example, sequencing noise can
have a significant impact on measured diversity. Furthermore,
pairs of SNPs, particularly those at close distances, may not come
from two independent mutations (as we assume in this analysis)
but rather a single, complex mutation. Researchers may there-
fore wish to exclude pairs of sites at d = 3 (e.g. to minimize the
effect of complex mutations) or reduce the maximum genomic
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Figure 4 (a-c) Power to reject Kingman coalescence in simu-
lations across a range of parameter values for several differ-
ent classes of models. For the beta coalescent and positive
selection, power increases as simulations move away from
neutrality, as expected. In exponentially growing Kingman
coalescents, false rejection rates remain low for all parameter
values. (d) Tajima’s D, which is a measure of the degree to
which the SFS is distorted relative to its expectation under a
constant-size Kingman model, versus power to reject Kingman
coalescence. Each point is the average Tajima’s D for all simu-
lations of a specific model-parameter combination. Note that
our model-checking pipeline demonstrates high power to de-
tect non-Kingman coalescence and low false-rejection rates for
Kingman models with non-constant population size history,
despite similar distortions to the SFS as measured by Tajima’s
D.

distance analyzed (e.g. to reduce the impact of larger structural
variation). We therefore reran the simulated data through our
model-checking pipeline after artificially adding varying levels
of sequencing noise (Fig. S2), dropping pairs of sites at genomic
distance d = 3 from the 2-SFS (Fig. S3), or varying the maximum
distance of pairs of sites included in the analysis (Fig. S4). Our
model-checking pipeline maintains high power and low false-
rejection rates in all cases except the largest level of sequencing
noise we tested.

Analysis of D. melanogaster data

We next applied our method to analyze sequence data from the
DPGP3 data set, which consists of haploid consensus sequences
from ~150 flies, obtained via the haploid embryo method of
Langley et al. (2011). The SNP calls that characterize these se-
quences were subjected to a variety of quality filters as described
in Lack et al. (2015). We obtained the DPGP3 consensus se-
quence files version 1.1 for the 2L, 2R, 3L, and 3R chromosome
arms from www.johnpool.net/genomes.html. These files contain
sequence alignments of all flies in the sample on all chromo-
some arms. We also downloaded the Nov. 3, 2016 spreadsheet

Testing Kingman with two-site frequency spectra 7

37
38
39
40
41
42
43
44

45

46

47

48

49

50

51

52

53

54

55

56


www.johnpool.net/genomes.html

a. Empirical and fit one-SFS

. ]
A ]
= -4
@
“ ]
(o]
5 1071 o
+~ 3
19 4
(] p
k= ]
o ]
2 |
-
o
g 1072 E
™ T T —T T
10° 10! 20+
Site frequency
b. Best-fit Kingman demographies
Chromosome Arm
- — 2L — 3L
>
L"-, 1.0 ] I 2R 3R
[0]
N
@ -
C
© 0.6
© I
S - 1]
o
o
o 0.4+
T ——— ——r
1072 1071 10°

Time in the past (a.u.)

Figure 5 (a) Observed and fit SFS for the four D. melanogaster
chromosome arms investigated in this study. Note that SFS
of each chromosome arm are shifted vertically to improve
visibility. The SFS of the fit demographies closely match those
from the data. The demographic models that produce the fit
site frequency spectra are plotted in (b).

of inversions available at the same link. For each chromosome
arm, we excluded any samples with an inversion in that arm
and then randomly down-sampled to n = 100 flies. As a result,
the data for each chromosome arm is from a different subset of
individuals.

To ensure our analyses focused on putatively neutral varia-
tion, we filtered called SNPs to fourfold degenerate sites. We
then calculated the average pairwise diversity, 11, as a func-
tion of position for each autosomal chromosome arm. Pairwise
diversity is high in the middle of each chromosome arm and
lower near the centromeres and telomeres, in agreement with
calculations by Corbett-Detig et al. (2015). Our modeling — and
coalescent-based demographic inference in general — assumes
that the distribution of gene genealogies is homogeneous along
the chromosome. Therefore, we selected a 13-16 Mb “central”
region of each arm with relatively homogeneous values of IT for
further analysis. The boundary positions of these central regions
are given in Table 2.

In order to ensure that the segregating mutations reflect true
genetic diversity and not variation in calling errors, we excluded
sites with fewer than 90 of the 100 genotypes called. This leaves
over 90% of all sites and does not substantially alter the frac-
tion of polymorphic sites (Table 2). For remaining sites with
missing calls, we probabilistically imputed missing genotypes
as either the major or minor allele based on the proportion of
called genotypes at that site. Every missing read was assigned
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Chromosome | Central region | Fraction of sites kept
arm analyzed

2L 1-17Mb 0.916

2R 6-19 Mb 0.928

3L 1-17 Mb 0.928

3R 10-26 Mb 0.912

Table 2 Central regions and fraction of sites above 90% cov-
erage for the four D. melanogaster chromosome arms ana-
lyzed in this study. The cutoff positions of central regions
are referenced to the DPGP3 reference genome available at
http://www.johnpool.net/genomes.html.

the minor allele with probability p and the major allele with
probability 1 — p, with p equal to the minor allele fraction of
called genotypes at that site.

We ran each chromosome arm independently through our
model testing pipeline, fitting Kingman demographies to the
SFS and comparing the 2-SFS of the data to the fit demographies.
We plot these results in Fig. 5. For all chromosome arms, the
best-fit Kingman demographies closely match the observed SFS
(Fig. 5a) and show a recent roughly doubling of the population
size (Fig. 5b). However, the 2-SFS of our inferred demographies
do not match the 2-SFS observed in the data (Fig. 6), as can be
seen visually (Fig. 6a-d) and verified numerically using our KS
statistic (Fig. 6e). This implies that this D. melanogaster data is
inconsistent with the Kingman coalescent, and that the best-fit
Kingman demographies are not an accurate representation of
the effective population size history but are instead fitting the
effects of other types of non-Kingman processes. Our finding is
consistent with recent work by Freund et al. (2023), who argue
that the unfolded SFS in this population is inconsistent with a
Kingman model (though that study is limited to considering
models with exponential growth).

Discussion

We have shown that the 2-SFS is sensitive to multiple mergers,
but largely invariant to population growth in the Kingman coa-
lescent, making it well-suited for coalescent model checking. We
developed and validated a model-checking procedure that uses
this information to discriminate Kingman from non-Kingman
coalescence, and demonstrated the power of our approach in
simulated data. We then applied this method to data from D.
melanogaster, which is believed to be strongly shaped by natural
selection, and found evidence that population growth alone can-
not explain the correlation structure in the 2-SFS in this system.

We emphasize that our 2-SFS-based test is fundamentally dif-
ferent from approaches based on the SFS or on statistics derived
from the SFS. For example, several recent studies have devel-
oped methods to use the SFS to distinguish multiple-merger
coalescents from Kingman models with specific forms of popula-
tion growth (Birkner ef al. 2013; Blath et al. 2016; Spence et al. 2016;
Eldon et al. 2015; Koskela 2018; Koskela and Wilke Berenguer
2019; Arnason et al. 2023; Freund et al. 2023). Many of these
methods rely on signal in the unfolded SFS (because deviations
from Kingman models create a “U-shaped” SFS), and are there-
fore sensitive to orientation errors. In contrast to this work, our
approach uses the SFS to infer the best-fit Kingman demographic
model, and then asks whether this best-fit Kingman model is
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Figure 6 (a-d) Log-ratios between the observed 2-SFS and the
2-SFS expected from a Kingman coalescent fit to the SFS for
each of the D. melanogaster chromosome arms investigated

in this study. Note the clear visual mismatch between the ob-
served and expected 2-SFS. (e) Empirical null KS distributions
(shaded regions) and measured KS distances between the data
and the Kingman fit (stars) for each of the chromosome arms
investigated. All 2-SFS deviate significantly from the null dis-
tributions (p < 1073).

consistent with the different information contained in the joint
frequency spectrum of pairs of sites. This takes advantage of
information about genealogies that is not present in the SFS, and
also avoids the sensitivity to orientation errors that is inherent to
unfolded data. The relationship between our method and other
more recent work (Freund and Siri-Jégousse 2021; Menardo et al.
2021; Johri et al. 2020; Lepers et al. 2021; Arnason et al. 2023)
that uses an approximate Bayesian computation framework to
distinguish between coalescent models is more complex. These
studies make use of several SFS-derived statistics as well as addi-
tional statistics related to clade size and linkage disequilibrium.
These additional statistics are not directly related to the 2-SFS
but may contain some related information.

We can get an intuitive understanding for why 2-SFS-based
statistics are useful in distinguishing between coalescent models
by considering how the 2-SFS depends on the distribution of
branch lengths and tree topologies. Mathematically, the expected
2-SFS, (§;;) = P(f1 =i, f» = j) can be directly related to the set

Y of tree topologies allowed by the coalescent model:

@ij) =Y P(fi=ifo=jly)P(y), 3)

pey

where f(; 51 denote the frequencies of mutations at some sites 1
and 2 and ¢ is a particular tree topology. We note here that the
first term in this equation, P(f; =i, fo = j|¢), depends only on
the distribution of branch lengths (which can be manipulated
arbitrarily using an appropriate choice of historical population
size). On the other hand, the second term, P(y), reflects only the
distribution of tree topologies, which depends heavily on the
particular coalescent model. This expression for the 2-SFS can
be further expanded as:

(@ij) = Y P(a=jli=0i9)P(i=i¢)P(y). (4

pey

Using Bayes’ Theorem, we can rewrite this as:

(@) = LP(2=jli=i9)PYlfi=D)P(fi=1i). ()

We note again that the first term, P(f, = j|¢, fi = i), depends
only on the distribution of branch lengths, while the last term,
P(f1 = i), is just the expected SFS, (¢;). As argued above, by
allowing the population size (and thus the coalescent rate) to
be explicitly time-dependent, the SFS can be made arbitrarily
similar between the Kingman coalescent and broad classes of
multiple-merger coalescents. Therefore, we find a condition for
two coalescent models to be theoretically distinguishable using
the 2-SFS:

Prodel A(¥]f1 = i) # Pmodel B(Y]f1 = 1) (6)

In summary, the dependence of the 2-SFS on tree topologies
contains a term that depends on the coalescent model but not on
the SFS. In other words, the 2-SFS distinguishes between models
with identical SFS when the trees used to generate the SFS differ
between models.

We can further see from the above discussion why the 2-SFS
is particularly useful in distinguishing Kingman from multiple-
merger coalescents. In any coalescent model, the presence of a
site at frequency i implies that there is a branch in the coalescent
history that subtends i leaves. However, given this, the probabil-
ity that the next coalescent event creates a branch that subtends k
of these i leaves is uniformly distributed in the Kingman model,
while more skewed offspring distributions can be created by
multiple merger events. These types of effects mean that the
probability of a given topology conditional on observing the mu-
tation at frequency i can differ substantially between Kingman
and multiple-merger models.

We note that we have chosen to implement our model-
checking procedure by first using the SFS to infer the best-
fit Kingman demographic model, because this is the standard
pipeline for demographic inference. We then test for consistency
of this model with the observed 2-SFS. However, in principle
we could instead attempt to jointly fit both the SFS and 2-SFS
with a Kingman demographic model, and then test whether we
can reject this model based on the deviations of both of these
spectra from the best-fit Kingman prediction. We expect that
such an approach would find similar power to reject the King-
man model, since the inconsistency between the SFS and 2-SFS
under Kingman assumptions arises from the deviations in tree
topologies described above, which do not depend on how demo-
graphic inference is conducted. However, a rigorous analysis of
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this would require the development of a demographic inference
method based on joint fitting of both the SFS and 2-SFS, and it is
not clear how best to implement such an approach. This is an
interesting topic for future work.

Throughout this study, we have focused on developing a
statistical test that allows us to reject Kingman coalescents with
flexible time-dependent population size histories. We have ana-
lyzed the power of this method when the true population history
involves either a beta coalescent or recurrent positive selection.
However, these are far from the only genealogical models that
may describe a population’s history. For example, population
structure or cultural transmission of reproductive success could
also lead to deviations from Kingman assumptions. Researchers
may often be interested in discriminating arbitrarily between
these models, rather than simply rejecting a Kingman coalescent.
For example, the differences in the 2-SFS produced by the beta
coalescent and positive selection (Fig. 3) suggest that it may be
possible to use 2-SFS based statistics to discriminate between
these two models. More generally, extending our framework
to allow for comparison between two or more arbitrary coales-
cent models is an exciting area for future work. However, an
important prerequisite is to develop methods to infer the param-
eters of such models that best fit the SFS. For example, to use
our approach to distinguish between multiple-merger models
with different values of a, we would first need to implement a
method to jointly infer « and demography from the SFS.

We have also focused in this study on a single application
of our statistical test to data from Drosophila melanogaster. How-
ever, there are a broad range of possible further empirical ap-
plications. For example, one interesting direction would be to
use 2-SFS-based statistics to assess the evidence for variation
in multiple-merger coalescence within genomes and between
species, potentially identifying genomic regions and organisms
that are more likely to be under strong selection. Alternatively,
one could survey multiple species using a data set such as the
diversity data compiled by Corbett-Detig et al. (2015) or the data
analyzed using a method based on the unfolded SFS by Fre-
und ef al. (2023). These are interesting avenues for future work,
which hold the potential to reveal new information about the
suitability of widely used population genetic models, and could
provide further insight into the forces that determine genetic
diversity.

Data Availability

Data and code used in our study are publicly available in a
Github repository at https:/github.com/desai-lab/twosfs.
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