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ABSTRACT Demographic inference methods in population genetics typically assume that the ancestry of a sample can be
modeled by the Kingman coalescent. A defining feature of this stochastic process is that it generates genealogies that are
binary trees: no more than two ancestral lineages may coalesce at the same time. However, this assumption breaks down
under several scenarios. For example, pervasive natural selection and extreme variation in offspring number can both generate
genealogies with “multiple-merger” events in which more than two lineages coalesce instantaneously. Therefore, detecting
violations of the Kingman assumptions (e.g. due to multiple mergers) is important both for understanding which forces have
shaped the diversity of a population and for avoiding fitting misspecified models to data. Current methods to detect deviations
from Kingman coalescence in genomic data rely primarily on the site frequency spectrum (SFS). However, the signatures
of some non-Kingman processes (e.g. multiple mergers) in the SFS are also consistent with a Kingman coalescent with a
time-varying population size. Here, we present a new statistical test for determining whether the Kingman coalescent with any
population size history is consistent with population data. Our approach is based on information contained in the two-site joint
frequency spectrum (2-SFS) for pairs of linked sites, which has a different dependence on the topologies of genealogies than
the SFS. Our statistical test is global in the sense that it can detect when the genome-wide genetic diversity is inconsistent with
the Kingman model, rather than detecting outlier regions, as in selection scan methods. We validate this test using simulations,
and then apply it to demonstrate that genomic diversity data from Drosophila melanogaster is inconsistent with the Kingman
coalescent.
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Introduction1

The genetic diversity within a population reflects its demo-2

graphic and evolutionary history. Learning about this history3

from contemporary sequence data is the domain of modern pop-4

ulation genetics (see Hahn (2018)). The fundamental tools of5

the trade are simplified mathematical models, which connect6

unobserved quantities such as the population size to observable7

features of genetic data. However, populations are complicated8

and, moreover, vary in their complications. No simple model9

can capture the processes governing every species’ evolution,10

and a misspecified model will generate misleading inferences.11
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It is therefore crucial to understand the limits of population ge- 12

netics models and to assess when a model is appropriate for a 13

particular data set. 14

One of the most widely used models is the Kingman co- 15

alescent (Kingman 1982a,b; Hudson 1983; Tajima 1983). The 16

Kingman coalescent is a stochastic process that generates gene 17

genealogies: trees representing the patterns of shared ancestry of 18

sampled individuals. Inference methods use these genealogies 19

as latent variables linking demographic parameters to genetic 20

data (Rosenberg and Nordborg 2002). The Kingman coalescent 21

has a number of convenient properties that facilitate both ana- 22

lytical calculations (e.g., Tajima (1989)) and efficient stochastic 23

simulations (e.g., Hudson (2002)): tree topologies are indepen- 24

dent of waiting times; waiting times are generated by a Markov 25

process; and neutral mutations are modeled as a Poisson process 26
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conditionally independent of the tree. Moreover, the model can1

be extended to study a variety of biological phenomena includ-2

ing recombination, population structure, and variation in sex3

ratios or ploidy (see generally Wakeley (2009)).4

An important application of the Kingman coalescent is infer-5

ring historical population sizes from genetic data (Schraiber and6

Akey 2015). In its simplest form, the model has a single param-7

eter, the coalescent rate, which determines the branch lengths8

of genealogies (Kingman 1982a). Under many conditions, the9

coalescent rate is inversely proportional to the population size10

(Kingman 1982b). Accordingly, a growing or shrinking pop-11

ulation may be modeled by a time-varying coalescence rate12

(Griffiths and Tavaré 1994, 1998). Patterns of genetic diversity13

depend on the ratio of the coalescent rate to other evolutionary14

rate parameters. For example, the site frequency spectrum (SFS)—15

the number of mutations segregating at different frequencies16

in a sample—is determined by the ratio of the mutation rate to17

the (time-varying) coalescent rate. Kingman-coalescent–based18

inference methods solve the inverse problem of determining the19

population size history that best explains particular features of20

the data, such as the SFS (e.g., Bhaskar et al. (2015)) or varia-21

tions in heterozygosity along a chromosome (e.g., Li and Durbin22

(2011)).23

A serious problem for this class of inference methods is that24

different models of evolution generate different relationships25

between historical population sizes and genetic diversity. For26

example, one of the basic assumptions of the Kingman coales-27

cent is that natural selection is negligible in determining the28

distribution of genealogies. When this assumption is violated,29

Kingman-based inference methods are misspecified (Gillespie30

2000a,b, 2001). For instance, when a beneficial mutation in-31

creases rapidly in frequency, it distorts the genealogies at nearby32

sites (see e.g., Coop and Ralph (2012)). If these “selective sweeps”33

occur regularly, they may be the dominant factor determining34

the distribution of genealogies. In this case, the average coales-35

cent rate is proportional to the number of beneficial mutations36

introduced per generation, which is itself directly, rather than37

inversely, proportional to the population size. It follows that38

the relationship between the population size and the expected39

number of neutral mutations in a sample is inverted: larger40

populations will be less diverse than smaller populations.41

While the example above is extreme, it is well established42

that violations of the neutrality assumption can distort or mask43

the signatures of population size changes. For example, Schrider44

et al. (2016) and Johri et al. (2021) demonstrated that several45

popular inference methods give misleading results in the pres-46

ence of selective sweeps and background selection. In a similar47

vein, Cvijović et al. (2018) showed that reduction of genetic di-48

versity by purifying selection is accompanied by distortions in49

the SFS, leading to a false signal of population growth. More-50

over, genomic evidence from multiple species suggests that such51

violations of neutrality may be widespread (Sella et al. 2009;52

Corbett-Detig et al. 2015; Kern and Hahn 2018; Johri et al. 2020).53

An important extension of the Kingman coalescent is a family54

of models known as multiple-merger coalescents (Pitman 1999; Sag-55

itov 1999; Donnelly and Kurtz 1999; Eldon 2016), which arise in56

a variety of contexts both with and without selection. Whereas57

in the Kingman coalescent lineages may coalesce only pairwise,58

multiple-merger coalescents permit more than two lineages to co-59

alesce in a single event. The more general class of simultaneous-60

multiple-merger coalescents (Schweinsberg 2000; Möhle and61

Sagitov 2001; Sagitov 2003) permits more than one distinct62

multiple-merger event at the same time. Multiple-merger and 63

simultaneous-multiple-merger models are relevant for species 64

with “sweepstakes” reproductive events (Eldon and Wakeley 65

2006; Sargsyan and Wakeley 2008), fat-tailed offspring number 66

distributions (Schweinsberg 2003; Hallatschek 2018), recurring 67

selective sweeps at linked sites (Durrett and Schweinsberg 2005; 68

Coop and Ralph 2012), rapid adaptation (Neher and Hallatschek 69

2013; Desai et al. 2013), and purifying selection at sufficiently 70

many sites (Seger et al. 2010; Nicolaisen and Desai 2012; Good 71

et al. 2014; Cvijović et al. 2018). 72

In each of these contexts, the coalescent timescale is not nec- 73

essarily proportional to the population size. For example, with 74

fat-tailed offspring distributions, the rate of coalescence is a 75

power law in the population size (Schweinsberg 2003), while 76

with linked sweeps it is determined by the rate of linked sweeps, 77

as described above (Durrett and Schweinsberg 2005). In these 78

settings, interpreting the level of genetic diversity in terms of an 79

“effective population size” is misleading, and inferences based on 80

the Kingman coalescent may be qualitatively and quantitatively 81

incorrect. 82

It is therefore important to determine whether the Kingman 83

model is appropriate for a given data set before performing de- 84

mographic inference. This task is distinct from “selection scan” 85

methods designed to detect particular regions of the genome 86

that are under selection (see Vitti et al. (2013)). Selection scan 87

methods typically assume that most of the genome is evolving 88

neutrally and that the genome-wide distribution of summary 89

statistics reflects demographic factors. Genomic regions that 90

are outliers from this distribution are presumed to be under 91

selection. In contrast, we are interested in detecting when the 92

genome-wide background itself is not well-modeled by the King- 93

man coalescent. 94

There has been much recent interest in identifying in genomic 95

data departures from the Kingman coalescent caused by mul- 96

tiple mergers. One approach is to use the SFS as a summary 97

statistic. To this end, Birkner et al. (2013), Blath et al. (2016), 98

and Spence et al. (2016) derived methods for computing the 99

expected SFS of (simultaneous) multiple-merger coalescents. 100

Further, Eldon et al. (2015) showed that it is possible to use the 101

SFS to distinguish beta and Dirac (multiple-merger) coalescents 102

from Kingman coalescents with strictly exponential or algebraic 103

growth. Koskela (2018) and Koskela and Wilke Berenguer (2019) 104

extended this work and used the SFS to distinguish multiple 105

mergers caused by selection from those caused by sweepstakes 106

reproduction. In a related approach, Rödelsperger et al. (2014) de- 107

tected widespread linked selection in the nematode Pristionchus 108

pacificus by demonstrating that the SFS is non-monotonic, a 109

signature of multiple mergers (Neher and Hallatschek 2013; 110

Birkner et al. 2013). Several more recent papers have used this 111

non-monotonicity in the SFS to identify departures from the 112

Kingman coalescent in Atlantic cod (Árnason et al. 2023) and 113

a variety of other organisms (Freund et al. 2023). In other re- 114

cent work, Freund and Siri-Jégousse (2021) have introduced a 115

new statistic, the minimum observable clade size, and used it, 116

along with SFS-derived statistics, to discriminate between sev- 117

eral coalescent models (including multiple-merger and Kingman 118

coalescents both with and without population growth) using 119

an approximate Bayesian computation (ABC) framework. Sev- 120

eral other recent papers have used related combinations of link- 121

age disequilibrium and SFS-derived statistics in a similar ABC 122

framework to detect evidence for multiple-merger genealogies 123

(Menardo et al. 2021) or to jointly infer the action of demography 124
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and selection (Johri et al. 2020, 2021; Lepers et al. 2021).1

However, methods that derive their power primarily from the2

SFS are limited in their ability to distinguish multiple mergers3

from general models of population-size change. While previous4

work has demonstrated that the SFS does contain information5

that can discriminate multiple-mergers from particular forms6

of the Kingman coalescent, a Kingman coalescent with a more7

general model of population size change can accurately fit many8

aspects of the multiple-merger SFS (Myers et al. 2008; Bhaskar9

and Song 2014). This fundamentally limits the ability to dis-10

criminate between population models using SFS-based statistics11

alone. The non-monotonic SFS identified by Rödelsperger et al.12

(2014), Árnason et al. (2023), and Freund et al. (2023) is a more13

robust signature of multiple mergers, but identifying that the14

SFS increases at high frequencies requires both knowledge of15

the ancestral allele at each site and a large enough sample size16

to accurately sample rare, high-frequency alleles, and either17

condition may be violated in real-world data.18

Here, we propose that statistics based on the two-site fre-19

quency spectrum (2-SFS)—the generalization of the SFS to pairs20

of nearby sites (Hudson 2001; Ferretti et al. 2018)—are useful for21

distinguishing between the Kingman coalescent with population22

growth and multiple-merger coalescents. This is fundamentally23

different from approaches based primarily on the single-site SFS24

(e.g. Birkner et al. (2013); Blath et al. (2016); Spence et al. (2016);25

Eldon et al. (2015); Freund and Siri-Jégousse (2021); Freund et al.26

(2023)) because 2-SFS-based statistics depend on tree topolo-27

gies and coalescent rates in a manner unique from SFS-based28

statistics. Thus these 2-SFS statistics introduce new information29

not contained in the SFS that can be used to discriminate mod-30

els that produce same SFS. Furthermore, these statistics may31

be calculated efficiently from single-nucleotide-polymorphism32

(SNP) data, do not require recombination maps or ancestral33

allele identification, and are informative even with small sam-34

ple sizes. Together, these properties make the 2-SFS useful for35

demographic model-checking in a wide range of species.36

In this paper, we show that 2-SFS-based statistics can be used37

to discriminate Kingman from non-Kingman coalescence. By38

validating with simulations, we demonstrate high power to39

reject incorrect Kingman population-size-change models for bio-40

logically realistic sample sizes. We present a Snakemake pipeline41

for analyzing real-world population data and demonstrate our42

pipeline using genomic data from Drosophila melanogaster (Lack43

et al. 2015).44

Definitions and Background45

Following the notation of Fu (1995), we define the SFS of a sam-46

ple of n haploid genomes as x, where xi is the number of sites47

containing a mutation with derived allele count i in the sam-48

ple (1  i  n � 1). When the ancestral allele is unknown,49

mutations at frequency n � i are indistinguishable from mu-50

tations at frequency i, and the folded SFS, h, is used instead,51

where hi is the number of sites with minor allele count i in the52

sample,
�

hi = xi +
�
1 � di,n�i

�
xn�i : 1  i  bn/2c

 
. Here dk,`53

is the Kronecker delta (dk,` = 1 if k = ` and 0 otherwise). The54

SFS and folded SFS can be calculated from a set of SNPs without55

knowing the physical location of the SNPs.56

In contrast, the 2-SFS, f, is a statistic of pairs of sites. We define57

the 2-SFS,
n

fij(d) : d > 0; 1  {i, j}  n � 1
o

, as the number of58

pairs of polymorphic sites separated by d bases for which there59

is a mutation with derived allele count i at one site and a second60

mutation with derived allele count j at the other site. Note that 61

fij(d) = fji(d) by symmetry. The 2-SFS has been studied for 62

non-recombining sites by Ferretti et al. (2018) in a neutral model 63

and by Xie (2011) in a model with selection. When the ancestral 64

allele is unknown, we define the folded 2-SFS, j, by analogy 65

to the folded SFS: jij(d) represents the number of pairs of sites 66

separated by d bases in which one site has minor allele count i 67

and the other has minor allele count j (1  {i, j}  bn/2c). For 68

non-recombining sites, the 2-SFS is independent of the distance, 69

so we will suppress the d in our notation when considering the 70

nonrecombining case. 71

In the limit of low per-site mutation rate (µ ! 0) and no 72

recombination, all polymorphic sites are bi-allelic and the ex- 73

pected SFS and 2-SFS are related to moments of the genealogical 74

branch length distribution by 75

hxii = µhtii (1)

hfiji = µ2htitji, (2)

where ti is the total length of branches subtending i leaves of 76

a gene genealogy and h·i represents the expectation over the 77

distribution of gene genealogies defined by a coalescent model. 78

Thus, the SFS and 2-SFS depend on the distribution of coales- 79

cent times as well as the distribution of tree topologies. In the 80

opposite limit of high recombination between sites (i.e., fully un- 81

linked loci), the genealogies of the sites come from independent 82

draws of the generating coalescent model, and the 2-SFS can be 83

determined directly from the SFS: hfiji = µ2htiihtji = hxiihx ji. 84

Thus, for a recombining population, the 2-SFS is a function of the 85

genomic distance d between sites and only contains information 86

not found in the SFS for nearby, linked sites. 87

Fu (1995) calculated the first and second moments of the 88

branch-length distribution for a non-recombining infinite-sites 89

locus under the standard time-homogeneous Kingman coales- 90

cent. He found that htitji < htiihtji for all j /2 {i, (n � i)}. This 91

result, combined with Eq. (1) and Eq. (2), implies a negative 92

correlation between mutations at different frequencies: trees 93

generating a mutation with derived allele count i are less likely 94

than average to generate a second mutation with derived allele 95

count j /2 {i, (n � i)}. (There are positive correlations between 96

mutations at complementary frequencies induced by genealo- 97

gies whose root node partitions the tree into subtrees of size i 98

and n � i.) 99

Birkner et al. (2013) extended Fu’s calculation to a family 100

of multiple-merger coalescents called beta coalescents. This 101

one-parameter family interpolates between the Kingman coales- 102

cent and the Bolthausen-Sznitman coalescent (Bolthausen and 103

Sznitman 1998) as the parameter, a, ranges from 2 to 1. Beta coa- 104

lescents arise in models with fat-tailed offspring distributions 105

(Schweinsberg 2003; Steinrücken et al. 2013), and the Bolthausen- 106

Sznitman coalescent is the limiting distribution of genealogies in 107

populations that are rapidly adapting or experiencing extensive 108

purifying selection (Neher and Hallatschek 2013). The calcula- 109

tions of Birkner et al. (2013) show positive correlations between 110

xi and x j for j 2 {i, n � i} (Figures 5 and 6 of Birkner et al. (2013). 111

Thus, unlike the standard Kingman coalescent, the beta coales- 112

cent can generate positive associations between mutations with 113

different minor allele counts. Together, these results suggest that 114

the differences in associations between mutations at different fre- 115

quencies (i.e. differences in the 2-SFS) can be used to distinguish 116

multiple-merger coalescents from the Kingman coalescent. 117
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A 2-SFS-based test for the Kingman coalescent1

Motivated by this reasoning, we developed a method to use2

information in the 2-SFS to determine whether a Kingman coa-3

lescent (with any demographic history) is consistent with real-4

world genomic data. The basic idea is to first use the observed5

SFS to determine the best-fit demographic history within the6

Kingman model. We then simulate the expected 2-SFS pre-7

dicted by this best-fit Kingman demographic history, and use8

a goodness-of-fit statistic to determine whether this expected9

2-SFS is consistent with the data. We illustrate this pipeline in10

Fig. 1 and describe each step in more detail below.11

Computing the SFS and 2-SFS from population data12

We begin by generating the folded SFS and 2-SFS, hdata
i and13

jdata
ij (d), using sequence data from a sampled population. In14

practice we will often restrict our analysis to patterns at fourfold15

degenerate sites, since these are regarded as more likely to be16

selectively neutral. We therefore typically only consider values17

of d that are multiples of 3. If the ancestral allele is known,18

the unfolded SFS and 2-SFS can be used instead. To increase19

computational efficiency, we lump alleles with frequency larger20

than kmax into one high-frequency bin, choosing kmax by eye21

such that the high-frequency tail of the SFS is low noise (though22

we note that the pipeline is robust to the exact choice of kmax,23

(see Fig. S1), and can be implemented without this lumping if24

preferred).25

Inferring the best-fit Kingman demography26

We next use the observed SFS to infer the best-fit Kingman de-27

mographic model. To do so, we fit a 5-epoch piecewise-constant28

Kingman demography, Nnull(t), to the lumped SFS of the data29

using a modification of the fastNeutrino algorithm (Bhaskar30

et al. 2015). As in fastNeutrino, we find the Nnull(t) that min-31

imizes the Kullback–Leibler (KL) divergence between the ex-32

pected and observed SFS using the L-BFGS-B algorithm with33

automatic differentiation. Unlike fastNeutrino, we apply L234

regularization to the vector of log population sizes. Regulariza-35

tion helps the solver find well-behaved solutions by penalizing36

very short epochs with very large population sizes, which do not37

affect the SFS. We note that the specific choice of demographic38

fitting algorithm is not crucial, and any demographic inference39

method that accurately predicts the SFS (as this algorithm does,40

see Fig. 2) could be substituted without altering downstream41

analyses. Python implementation of the fitting algorithm, which42

we refer to as fitsfs, is available in a Github repository at43

https://github.com/desai-lab/twosfs.44

Our choice of this 5-epoch model is designed to be conserva-45

tive in allowing for highly flexible Kingman population histories,46

as compared to more restrictive assumptions such as a piece-47

wise constant model with only one or two epochs, or models48

which make assumptions about the shape of past population49

growth. As we will see below, the inferred 5-epoch Kingman50

demographic model is typically an excellent fit to the observed51

SFS, even when the underlying model is very different (this52

is precisely why the SFS alone has limited power to test the53

Kingman assumptions).54

Null 2-SFS and recombination rate55

Once the best-fit demography has been inferred from the SFS,56

we generate the 2-SFS predicted by the Kingman coalescent57

with that demography, which we refer to as jnull
ij (d; r), by sim- 58

ulating genealogies using msprime. We note that this predicted 59

2-SFS depends on the recombination rate r, which determines 60

how quickly the 2-SFS decays towards the product of the corre- 61

sponding SFSs as a function of d. However, the correct choice 62

of recombination rate may often be unknown. One possible 63

approach would be to restrict our analysis to pairs of sites that 64

belong to segments that have not recombined in the history of 65

the sample. However, errors in our inferences of the boundaries 66

of these non-recombined blocks could lead to incorrect rejection 67

of the Kingman model. Therefore, to be conservative in the face 68

of uncertainty in the recombination rate, we instead simulate 69

multiple candidate null 2-SFS with different recombination rates, 70

and choose the recomination rate that minimizes our ability to 71

reject the Kingman model (as described in more detail below). 72

Statistic for comparing expected and observed 2-SFS 73

We wish to compare the expected 2-SFS under the best-fit King- 74

man demographic model, jnull
ij (d; r), to the 2-SFS observed 75

in the data, jdata
ij (d). To do so, we use a form of the Kol- 76

mogorov–Smirnov (KS) distance (Kolmogorov 1933; Smirnov 77

1948) generalized to three variables (i, j, and d; we treat r as a 78

constant here), by implementing the procedure described in Gos- 79

set (1987). The multidimensional KS distance is a nonparametric 80

statistic that measures the degree to which an empirical distribu- 81

tion (here jdata
ij (d)) matches a proposed generating distribution 82

(here jnull
ij (d)). In summary, it is the maximum absolute distance 83

between the cumulative distribution functions (CDFs) generated 84

by jdata
ij (d; r) and jnull

ij (d), maximized again over all eight cu- 85

mulation directions when defining the multidimensional CDF 86

(i.e. Pr(i  I ^ j  J ^ d  D), Pr(i � I ^ j  J ^ d  D), 87

etc). We direct readers to Gosset (1987) for a more thorough 88

description of this statistic. 89

Null KS distribution and p-value 90

We next wish to determine whether the observed multidimen- 91

sional KS distance is consistent with jdata
ij being drawn from 92

jnull
ij . In other words, is the observed 2-SFS consistent with 93

the 2-SFS expected based on the best-fit Kingman demographic 94

model? The complex natures of our KS statistic and the noise as- 95

sociated with mutation accumulation and population sampling 96

mean that it is not possible to derive an analytic expression for 97

a range of “typical” KS distances to be expected assuming the 98

null model is correct. Therefore, we approximate the null KS 99

distribution through a resampling procedure. Specifically, we 100

generate a low-noise null 2-SFS distribution by averaging 104
101

demographic simulations under the null demographic model. 102

At every genomic distance d, we draw PD(d) multinomial sam- 103

ples from this null distribution, where the pair density PD(d) 104

is the number of pairs of sites at distance d in the sample. This 105

generates a resampled 2-SFS, j
resamp
ij , that has the same number 106

of pairs of sites at distance d as the sampled data, but with an 107

expectation value at every d equal to jnull
ij (d). Intuitively, this 108

resampled 2-SFS distribution can be thought of as a version of 109

the null 2-SFS “noised” to the level of the sampled data. We 110

repeat the multinomial sampling (but not the simulations) 1000 111

times to generate 1000 resampled 2-SFS distributions, j
resamp;m
ij 112

(1  m  1000). By calculating the KS distance between each 113

j
resamp;m
ij and jnull

ij , we generate an approximate null KS distri- 114

bution to which the KS distance between jnull
ij and jdata

ij can be 115
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Figure 1 Schematic of the model-checking pipeline. The pipeline follows the red arrows from a to h. Briefly, after data collection
and cleaning (a), we construct the SFS and 2-SFS (b) and fit a Kingman demography (the null model) to the SFS (c). We simulate
the 2-SFS expected from a Kingman model with this null demography for several values of the recombination rate and choose the
recombination rate, r̂, that maximizes the p-value for rejecting the Kingman model based on the KS distance between the 2-SFS of
the data and the null (d-f). We then resample jnull

ij (d; r̂) (g) and compute the KS distance between these resampled distributions

and jnull
ij (d; r̂) to generate a null KS distribution. We compare the KS distance between jdata

ij (d) and jnull
ij (d; r̂) to this null KS distri-

bution to generate a p-value (h).

compared. We then use this comparison to generate a p-value1

for the rejection of the Kingman model.2

As noted above, jnull
ij (d; r) depends on the recombination3

rate, which is often unknown. We therefore compute this mul-4

tidimensional KS statistic and use it to generate a p-value to5

compare jnull
ij (d; r) with jdata

ij (d) for a range of different values6

of r. We then choose the value of the recombination rate, r̂, which7

maximizes the p-value (i.e. minimizes our chance of rejecting8

Kingman coalescence). This ensures that we are conservative in9

rejecting the Kingman model in the face of uncertainty about the10

recombination rate.11

To efficiently find r̂, we choose candidate recombination rates12

using a golden-section search (Kiefer 1953). Starting with conser-13

vative lower and upper bounds for r̂, the golden-section search14

algorithm iteratively proposes new candidate recombination15

rates and narrows the bounds on r̂ through sequential evalua-16

tions of the KS distance between jnull
ij (d; r) and jdata

ij (d). The17

algorithm can be run for a given number of iterations or until18

some other stopping criteria is met; in this paper, we run the19

algorithm for five iterations.20

Model-checking pipeline21

We have implemented this 2-SFS based model checking proce-22

dure in a Snakemake pipeline which can be used to test whether23

any real-world or simulated population data is consistent with24

the Kingman coalescent, publicly available in a Github repos-25

itory at https://github.com/desai-lab/twosfs. This repository has 26

code to reproduce all results and figures from this manuscript 27

and is straightforward to edit to test parameter values ouside 28

those explored in this paper. Users wishing to test real-world 29

data using the pipeline must supply a JSON file containing the 30

locations of all polymorphic sites and their associated derived 31

or minor allele counts. This file uses a specific custom format, 32

though we supply code for conversion from both VCF and text 33

file formats. The pipeline further requires an upper and lower 34

bound for the recombination rates and contains flags for various 35

data cleanup choices. We direct readers to the README located 36

in our Github repository for further details and instructions. 37

Computational requirements for all steps in the model-checking 38

pipeline are available in Table S1. 39

Validation of our 2-SFS based test with simulations 40

To test the performance of our model checking procedure, we 41

simulated coalescent histories using msprime (Baumdicker et al. 42

2022) and SLiM (Haller et al. 2019) under four classes of models: 43

(1) the neutral, constant-size Kingman coalescent; (2) a neu- 44

tral, exponentially growing Kingman coalescent; (3) a neutral, 45

constant-size beta coalescent; and (4) a constant-size population 46

undergoing positive selection at many sites along the genome. 47

For each type of simulation, we tested a range of relevant pa- 48

rameter values, as shown in Table 1. 49
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Model Parameter range

Constant-size,
neutral Kingman

N/A

Exponential
growth

Growth rate g: 0.25 – 2.0 per T̃
Growth time t0: 0.5 – 2.0 ⇤ T̃

Beta coalescent a: 1.05 – 1.95

Positive Selection Selective coefficient s: 0.005 – 0.08%
Rate of selective mutations µ: 10�10 –
10�11 per site per genome per genera-
tion
Diploid population size N = 10, 000
Genome length L = 5, 000

Table 1 Models and parameter ranges for simulated coales-
cent processes. Note that the characteristic timescale T̃ is an
arbitrary scaling factor that does not affect tree topologies, as
the total population growth is controlled by the product of g
and t0. We do not specify a neutral mutation rate for any of
the models because neutral diversity is added after the simu-
lations finish in both msprime and SLiM (see Baumdicker et al.
(2022); Haller et al. (2019) for more details).

A flexible Kingman demography reproduces features of a non-1

Kingman SFS2

For every model-parameter combination, we first simulated the3

expected folded SFS of 100 samples. Because of the stochas-4

ticity at higher frequencies, we combined all mutations with5

frequency k � kmax = 20 into one “lumped” high-frequency6

bin. As described above, we then used fitsfs to fit a piecewise-7

constant neutral demographic model to each lumped, folded8

SFS. We show one example of the resulting SFS from each of9

the four types of models we simulated, along with the corre-10

sponding fitsfs fits, in Fig. 2. We see that the observed site11

frequency spectra deviate strongly from the constant-size King-12

man expectation for the three examples where this was not the13

underlying model. However, we find that a Kingman coalescent14

with a flexible population size can be fit to all four spectra nearly15

perfectly. This implies that any statistics based solely on the16

SFS, or transformations thereof, will have minimal power to dis-17

tinguish the non-Kingman scenarios (here beta coalescent and18

positive selection models) from a sufficiently flexible Kingman19

demography.20

The 2-SFS can distinguish demographic models with matching21

SFS22

By contrast, we expect that the 2-SFS should allow us to distin-23

guish non-Kingman scenarios from a Kingman demographic24

model that generates an identical SFS. To show this, we used25

msprime to simulate the Kingman coalescent with the piecewise-26

constant demographic histories inferred by fitsfs for the sim-27

ulated models described above. This produced a set of pairs28

of simulations, each consisting of an original (potentially non-29

Kingman) model, along with the corresponding Kingman model30

with the piecewise-constant demographic history that is the best31

fit to the SFS from the original model.32

By construction, these simulated Kingman coalescents pro-33

duce nearly identical SFS as the corresponding original mod-34

els. We then compared the 2-SFS produced by these simulated35

Kingman coalescents to those produced by our simulations of36

Figure 2 (a) Simulated site frequency spectra for example
constant-size-Kingman, beta coalescent, positive-selection,
and exponential population size growth models, compared to
the expectations from the corresponding best-fit Kingman de-
mographic models. The examples shown here are for a = 1.3
(beta coalescent); s = 0.55, µ = 10�10 (positive selection);
and t0 = 0.5, g = 2.0 (exponential growth). Note that site
frequency spectra are shifted vertically relative to each other to
aid in visibility (thus while relative frequencies in each curve
are accurate, the overall normalization is not). (b) The inferred
best-fit Kingman demographic models for each of the four ex-
amples shown in (a). Population size and time in the past have
units of an arbitrary coalescent timescale.

the original models. To visualize this comparison, in Fig. 3 we 37

plot four examples of the log-ratio of the 2-SFS produced by 38

the original models to those produced by the best-fit Kingman 39

demographic model. We see that for the beta and positive selec- 40

tion cases, where the original model is not Kingman, there is a 41

striking visual difference with the 2-SFS of the corresponding 42

Kingman demographic model, despite the near-perfect fit to 43

the SFS. On the other hand, the constant-size and exponentially 44

growing Kingman coalescents show signal consistent with sim- 45

ulation noise. Taken together, these results imply that the 2-SFS 46

can distinguish between Kingman and non-Kingman coalescent 47

models, even when the SFS fails to do so. 48

Power analysis of our model checking procedure 49

The examples shown above demonstrate visually that there is 50

information in the 2-SFS that can potentially be used to distin- 51

guish Kingman from non-Kingman coalescent processes. To 52

determine whether the statistical test we introduced above effec- 53

tively uses this information, we validated our model-checking 54
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Figure 3 Log-ratio of the 2-SFS of the four example models
shown in Fig. 2 with the 2-SFS expected under the correspond-
ing best-fit piecewise-constant Kingman demographies.

pipeline with the simulated models from Table 1. Proper vali-1

dation requires several replicate simulated SFS and 2-SFS (i.e.2

multiple simulations of hdata and jdata), which are computation-3

ally expensive to generate from scratch for the large number of4

models we simulate. Therefore, to save computational resources,5

we re-employed the resampling method described earlier. For6

each model-parameter combination, we generated 100 simu-7

lated 2-SFS, jsim;l , by resampling the low-noise 2-SFS 100 times8

at PD(d) = 10, 000 for genomic distances d = {3, 6, ..., 24},9

approximately matching the pair density of fourfold degenerate10

sites in the D. melanogaster dataset we describe below. Again,11

each of these jsim;l can be thought of as a 2-SFS whose expecta-12

tion value matches the simulated coalescent model but is noised13

to mimic real-world data. We ran our model-checking pipeline14

independently for each jsim;l , generating 100 validation runs of15

the procedure for every model-parameter combination.16

We plot the power to reject Kingman coalescence at a p-17

value threshold of 0.05 in Fig. 4. As seen in Fig. 4a-c, we have18

high power to reject Kingman coalescence for models that in-19

volve highly skewed offspring distributions and strong positive20

selection and low false-rejection rates for neutral exponential21

growth for biologically realistic sample sizes. In other words, we22

correctly reject Kingman coalescence whenever the underlying23

model involves sufficiently strong non-Kingman processes, but24

do not incorrectly reject the model in any of the scenarios in-25

volving exponential growth. This trend holds despite the three26

model classes spanning similar levels of distortion of the SFS, as27

measured by Tajima’s D (Fig. 4d).28

Real-world genomic data often has complexities not directly29

included in simulated data – for example, sequencing noise can30

have a significant impact on measured diversity. Furthermore,31

pairs of SNPs, particularly those at close distances, may not come32

from two independent mutations (as we assume in this analysis)33

but rather a single, complex mutation. Researchers may there-34

fore wish to exclude pairs of sites at d = 3 (e.g. to minimize the35

effect of complex mutations) or reduce the maximum genomic36

Figure 4 (a-c) Power to reject Kingman coalescence in simu-
lations across a range of parameter values for several differ-
ent classes of models. For the beta coalescent and positive
selection, power increases as simulations move away from
neutrality, as expected. In exponentially growing Kingman
coalescents, false rejection rates remain low for all parameter
values. (d) Tajima’s D, which is a measure of the degree to
which the SFS is distorted relative to its expectation under a
constant-size Kingman model, versus power to reject Kingman
coalescence. Each point is the average Tajima’s D for all simu-
lations of a specific model-parameter combination. Note that
our model-checking pipeline demonstrates high power to de-
tect non-Kingman coalescence and low false-rejection rates for
Kingman models with non-constant population size history,
despite similar distortions to the SFS as measured by Tajima’s
D.

distance analyzed (e.g. to reduce the impact of larger structural 37

variation). We therefore reran the simulated data through our 38

model-checking pipeline after artificially adding varying levels 39

of sequencing noise (Fig. S2), dropping pairs of sites at genomic 40

distance d = 3 from the 2-SFS (Fig. S3), or varying the maximum 41

distance of pairs of sites included in the analysis (Fig. S4). Our 42

model-checking pipeline maintains high power and low false- 43

rejection rates in all cases except the largest level of sequencing 44

noise we tested. 45

Analysis of D. melanogaster data 46

We next applied our method to analyze sequence data from the 47

DPGP3 data set, which consists of haploid consensus sequences 48

from ⇠150 flies, obtained via the haploid embryo method of 49

Langley et al. (2011). The SNP calls that characterize these se- 50

quences were subjected to a variety of quality filters as described 51

in Lack et al. (2015). We obtained the DPGP3 consensus se- 52

quence files version 1.1 for the 2L, 2R, 3L, and 3R chromosome 53

arms from www.johnpool.net/genomes.html. These files contain 54

sequence alignments of all flies in the sample on all chromo- 55

some arms. We also downloaded the Nov. 3, 2016 spreadsheet 56

Testing Kingman with two-site frequency spectra 7
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Figure 5 (a) Observed and fit SFS for the four D. melanogaster
chromosome arms investigated in this study. Note that SFS
of each chromosome arm are shifted vertically to improve
visibility. The SFS of the fit demographies closely match those
from the data. The demographic models that produce the fit
site frequency spectra are plotted in (b).

of inversions available at the same link. For each chromosome1

arm, we excluded any samples with an inversion in that arm2

and then randomly down-sampled to n = 100 flies. As a result,3

the data for each chromosome arm is from a different subset of4

individuals.5

To ensure our analyses focused on putatively neutral varia-6

tion, we filtered called SNPs to fourfold degenerate sites. We7

then calculated the average pairwise diversity, P, as a func-8

tion of position for each autosomal chromosome arm. Pairwise9

diversity is high in the middle of each chromosome arm and10

lower near the centromeres and telomeres, in agreement with11

calculations by Corbett-Detig et al. (2015). Our modeling – and12

coalescent-based demographic inference in general – assumes13

that the distribution of gene genealogies is homogeneous along14

the chromosome. Therefore, we selected a 13-16 Mb “central”15

region of each arm with relatively homogeneous values of P for16

further analysis. The boundary positions of these central regions17

are given in Table 2.18

In order to ensure that the segregating mutations reflect true19

genetic diversity and not variation in calling errors, we excluded20

sites with fewer than 90 of the 100 genotypes called. This leaves21

over 90% of all sites and does not substantially alter the frac-22

tion of polymorphic sites (Table 2). For remaining sites with23

missing calls, we probabilistically imputed missing genotypes24

as either the major or minor allele based on the proportion of25

called genotypes at that site. Every missing read was assigned26

Chromosome
arm

Central region
analyzed

Fraction of sites kept

2L 1 – 17 Mb 0.916

2R 6 – 19 Mb 0.928

3L 1 – 17 Mb 0.928

3R 10 – 26 Mb 0.912

Table 2 Central regions and fraction of sites above 90% cov-
erage for the four D. melanogaster chromosome arms ana-
lyzed in this study. The cutoff positions of central regions
are referenced to the DPGP3 reference genome available at
http://www.johnpool.net/genomes.html.

the minor allele with probability p and the major allele with 27

probability 1 � p, with p equal to the minor allele fraction of 28

called genotypes at that site. 29

We ran each chromosome arm independently through our 30

model testing pipeline, fitting Kingman demographies to the 31

SFS and comparing the 2-SFS of the data to the fit demographies. 32

We plot these results in Fig. 5. For all chromosome arms, the 33

best-fit Kingman demographies closely match the observed SFS 34

(Fig. 5a) and show a recent roughly doubling of the population 35

size (Fig. 5b). However, the 2-SFS of our inferred demographies 36

do not match the 2-SFS observed in the data (Fig. 6), as can be 37

seen visually (Fig. 6a-d) and verified numerically using our KS 38

statistic (Fig. 6e). This implies that this D. melanogaster data is 39

inconsistent with the Kingman coalescent, and that the best-fit 40

Kingman demographies are not an accurate representation of 41

the effective population size history but are instead fitting the 42

effects of other types of non-Kingman processes. Our finding is 43

consistent with recent work by Freund et al. (2023), who argue 44

that the unfolded SFS in this population is inconsistent with a 45

Kingman model (though that study is limited to considering 46

models with exponential growth). 47

Discussion 48

We have shown that the 2-SFS is sensitive to multiple mergers, 49

but largely invariant to population growth in the Kingman coa- 50

lescent, making it well-suited for coalescent model checking. We 51

developed and validated a model-checking procedure that uses 52

this information to discriminate Kingman from non-Kingman 53

coalescence, and demonstrated the power of our approach in 54

simulated data. We then applied this method to data from D. 55

melanogaster, which is believed to be strongly shaped by natural 56

selection, and found evidence that population growth alone can- 57

not explain the correlation structure in the 2-SFS in this system. 58

We emphasize that our 2-SFS-based test is fundamentally dif- 59

ferent from approaches based on the SFS or on statistics derived 60

from the SFS. For example, several recent studies have devel- 61

oped methods to use the SFS to distinguish multiple-merger 62

coalescents from Kingman models with specific forms of popula- 63

tion growth (Birkner et al. 2013; Blath et al. 2016; Spence et al. 2016; 64

Eldon et al. 2015; Koskela 2018; Koskela and Wilke Berenguer 65

2019; Árnason et al. 2023; Freund et al. 2023). Many of these 66

methods rely on signal in the unfolded SFS (because deviations 67

from Kingman models create a “U-shaped” SFS), and are there- 68

fore sensitive to orientation errors. In contrast to this work, our 69

approach uses the SFS to infer the best-fit Kingman demographic 70

model, and then asks whether this best-fit Kingman model is 71
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Figure 6 (a-d) Log-ratios between the observed 2-SFS and the
2-SFS expected from a Kingman coalescent fit to the SFS for
each of the D. melanogaster chromosome arms investigated
in this study. Note the clear visual mismatch between the ob-
served and expected 2-SFS. (e) Empirical null KS distributions
(shaded regions) and measured KS distances between the data
and the Kingman fit (stars) for each of the chromosome arms
investigated. All 2-SFS deviate significantly from the null dis-
tributions (p < 10�3).

consistent with the different information contained in the joint1

frequency spectrum of pairs of sites. This takes advantage of2

information about genealogies that is not present in the SFS, and3

also avoids the sensitivity to orientation errors that is inherent to4

unfolded data. The relationship between our method and other5

more recent work (Freund and Siri-Jégousse 2021; Menardo et al.6

2021; Johri et al. 2020; Lepers et al. 2021; Árnason et al. 2023)7

that uses an approximate Bayesian computation framework to8

distinguish between coalescent models is more complex. These9

studies make use of several SFS-derived statistics as well as addi-10

tional statistics related to clade size and linkage disequilibrium.11

These additional statistics are not directly related to the 2-SFS12

but may contain some related information.13

We can get an intuitive understanding for why 2-SFS-based14

statistics are useful in distinguishing between coalescent models15

by considering how the 2-SFS depends on the distribution of16

branch lengths and tree topologies. Mathematically, the expected17

2-SFS, hf̃i,ji = P( f1 = i, f2 = j) can be directly related to the set18

Y of tree topologies allowed by the coalescent model: 19

hf̃i,ji = Â
y2Y

P( f1 = i, f2 = j|y)P(y), (3)

where f{1,2} denote the frequencies of mutations at some sites 1 20

and 2 and y is a particular tree topology. We note here that the 21

first term in this equation, P( f1 = i, f2 = j|y), depends only on 22

the distribution of branch lengths (which can be manipulated 23

arbitrarily using an appropriate choice of historical population 24

size). On the other hand, the second term, P(y), reflects only the 25

distribution of tree topologies, which depends heavily on the 26

particular coalescent model. This expression for the 2-SFS can 27

be further expanded as: 28

hf̃i,ji = Â
y2Y

P( f2 = j| f1 = i, y)P( f1 = i|y)P(y). (4)

Using Bayes’ Theorem, we can rewrite this as: 29

hf̃i,ji = Â
i

P( f2 = j| f1 = i, y)P(y| f1 = i)P( f1 = i). (5)

We note again that the first term, P( f2 = j|y, f1 = i), depends 30

only on the distribution of branch lengths, while the last term, 31

P( f1 = i), is just the expected SFS, hxii. As argued above, by 32

allowing the population size (and thus the coalescent rate) to 33

be explicitly time-dependent, the SFS can be made arbitrarily 34

similar between the Kingman coalescent and broad classes of 35

multiple-merger coalescents. Therefore, we find a condition for 36

two coalescent models to be theoretically distinguishable using 37

the 2-SFS: 38

Pmodel A(y| f1 = i) 6= Pmodel B(y| f1 = i) (6)

In summary, the dependence of the 2-SFS on tree topologies 39

contains a term that depends on the coalescent model but not on 40

the SFS. In other words, the 2-SFS distinguishes between models 41

with identical SFS when the trees used to generate the SFS differ 42

between models. 43

We can further see from the above discussion why the 2-SFS 44

is particularly useful in distinguishing Kingman from multiple- 45

merger coalescents. In any coalescent model, the presence of a 46

site at frequency i implies that there is a branch in the coalescent 47

history that subtends i leaves. However, given this, the probabil- 48

ity that the next coalescent event creates a branch that subtends k 49

of these i leaves is uniformly distributed in the Kingman model, 50

while more skewed offspring distributions can be created by 51

multiple merger events. These types of effects mean that the 52

probability of a given topology conditional on observing the mu- 53

tation at frequency i can differ substantially between Kingman 54

and multiple-merger models. 55

We note that we have chosen to implement our model- 56

checking procedure by first using the SFS to infer the best- 57

fit Kingman demographic model, because this is the standard 58

pipeline for demographic inference. We then test for consistency 59

of this model with the observed 2-SFS. However, in principle 60

we could instead attempt to jointly fit both the SFS and 2-SFS 61

with a Kingman demographic model, and then test whether we 62

can reject this model based on the deviations of both of these 63

spectra from the best-fit Kingman prediction. We expect that 64

such an approach would find similar power to reject the King- 65

man model, since the inconsistency between the SFS and 2-SFS 66

under Kingman assumptions arises from the deviations in tree 67

topologies described above, which do not depend on how demo- 68

graphic inference is conducted. However, a rigorous analysis of 69
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this would require the development of a demographic inference1

method based on joint fitting of both the SFS and 2-SFS, and it is2

not clear how best to implement such an approach. This is an3

interesting topic for future work.4

Throughout this study, we have focused on developing a5

statistical test that allows us to reject Kingman coalescents with6

flexible time-dependent population size histories. We have ana-7

lyzed the power of this method when the true population history8

involves either a beta coalescent or recurrent positive selection.9

However, these are far from the only genealogical models that10

may describe a population’s history. For example, population11

structure or cultural transmission of reproductive success could12

also lead to deviations from Kingman assumptions. Researchers13

may often be interested in discriminating arbitrarily between14

these models, rather than simply rejecting a Kingman coalescent.15

For example, the differences in the 2-SFS produced by the beta16

coalescent and positive selection (Fig. 3) suggest that it may be17

possible to use 2-SFS based statistics to discriminate between18

these two models. More generally, extending our framework19

to allow for comparison between two or more arbitrary coales-20

cent models is an exciting area for future work. However, an21

important prerequisite is to develop methods to infer the param-22

eters of such models that best fit the SFS. For example, to use23

our approach to distinguish between multiple-merger models24

with different values of a, we would first need to implement a25

method to jointly infer a and demography from the SFS.26

We have also focused in this study on a single application27

of our statistical test to data from Drosophila melanogaster. How-28

ever, there are a broad range of possible further empirical ap-29

plications. For example, one interesting direction would be to30

use 2-SFS-based statistics to assess the evidence for variation31

in multiple-merger coalescence within genomes and between32

species, potentially identifying genomic regions and organisms33

that are more likely to be under strong selection. Alternatively,34

one could survey multiple species using a data set such as the35

diversity data compiled by Corbett-Detig et al. (2015) or the data36

analyzed using a method based on the unfolded SFS by Fre-37

und et al. (2023). These are interesting avenues for future work,38

which hold the potential to reveal new information about the39

suitability of widely used population genetic models, and could40

provide further insight into the forces that determine genetic41

diversity.42

Data Availability43

Data and code used in our study are publicly available in a44

Github repository at https://github.com/desai-lab/twosfs.45
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