

Detecting deviations from Kingman coalescence using two-site frequency spectra

Eliot F. Fenton¹, Daniel P. Rice^{2,3}, John Novembre^{4,5} and Michael M. Desai^{1,6,*}

¹Department of Physics, Harvard University, Cambridge MA 02138, USA, ²Media Laboratory, Massachusetts Institute of Technology, Cambridge MA 02139, USA, ³SecureBio, Cambridge MA 02138, USA, ⁴Department of Human Genetics, University of Chicago, Chicago IL 60637, USA, ⁵Department of Ecology & Evolution, University of Chicago, Chicago IL 60637, USA, ⁶Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, USA

1 ABSTRACT Demographic inference methods in population genetics typically assume that the ancestry of a sample can be
2 modeled by the Kingman coalescent. A defining feature of this stochastic process is that it generates genealogies that are
3 binary trees: no more than two ancestral lineages may coalesce at the same time. However, this assumption breaks down
4 under several scenarios. For example, pervasive natural selection and extreme variation in offspring number can both generate
5 genealogies with “multiple-merger” events in which more than two lineages coalesce instantaneously. Therefore, detecting
6 violations of the Kingman assumptions (e.g. due to multiple mergers) is important both for understanding which forces have
7 shaped the diversity of a population and for avoiding fitting misspecified models to data. Current methods to detect deviations
8 from Kingman coalescence in genomic data rely primarily on the site frequency spectrum (SFS). However, the signatures
9 of some non-Kingman processes (e.g. multiple mergers) in the SFS are also consistent with a Kingman coalescent with a
10 time-varying population size. Here, we present a new statistical test for determining whether the Kingman coalescent with any
11 population size history is consistent with population data. Our approach is based on information contained in the two-site joint
12 frequency spectrum (2-SFS) for pairs of linked sites, which has a different dependence on the topologies of genealogies than
13 the SFS. Our statistical test is global in the sense that it can detect when the genome-wide genetic diversity is inconsistent with
14 the Kingman model, rather than detecting outlier regions, as in selection scan methods. We validate this test using simulations,
15 and then apply it to demonstrate that genomic diversity data from *Drosophila melanogaster* is inconsistent with the Kingman
16 coalescent.

17 KEYWORDS Kingman coalescent; demographic inference; multiple mergers; beta coalescent

1 **Introduction**

2 The genetic diversity within a population reflects its demo-
3 graphic and evolutionary history. Learning about this history
4 from contemporary sequence data is the domain of modern pop-
5 ulation genetics (see [Hahn \(2018\)](#)). The fundamental tools of
6 the trade are simplified mathematical models, which connect
7 unobserved quantities such as the population size to observable
8 features of genetic data. However, populations are complicated
9 and, moreover, vary in their complications. No simple model
10 can capture the processes governing every species’ evolution,
11 and a misspecified model will generate misleading inferences.

12 It is therefore crucial to understand the limits of population ge-
13 netics models and to assess when a model is appropriate for a
14 particular data set.

15 One of the most widely used models is the Kingman co-
16 alescent ([Kingman 1982a,b](#); [Hudson 1983](#); [Tajima 1983](#)). The
17 Kingman coalescent is a stochastic process that generates gene
18 genealogies: trees representing the patterns of shared ancestry of
19 sampled individuals. Inference methods use these genealogies
20 as latent variables linking demographic parameters to genetic
21 data ([Rosenberg and Nordborg 2002](#)). The Kingman coalescent
22 has a number of convenient properties that facilitate both ana-
23 lytical calculations (e.g., [Tajima \(1989\)](#)) and efficient stochastic
24 simulations (e.g., [Hudson \(2002\)](#)): tree topologies are inde-
25 pendent of waiting times; waiting times are generated by a Markov
26 process; and neutral mutations are modeled as a Poisson process

1 conditionally independent of the tree. Moreover, the model can
2 be extended to study a variety of biological phenomena including
3 recombination, population structure, and variation in sex
4 ratios or ploidy (see generally Wakeley (2009)).

5 An important application of the Kingman coalescent is inferring
6 historical population sizes from genetic data (Schraiber and
7 Akey 2015). In its simplest form, the model has a single parameter,
8 the coalescent rate, which determines the branch lengths
9 of genealogies (Kingman 1982a). Under many conditions, the
10 coalescent rate is inversely proportional to the population size
11 (Kingman 1982b). Accordingly, a growing or shrinking population
12 may be modeled by a time-varying coalescence rate
13 (Griffiths and Tavaré 1994, 1998). Patterns of genetic diversity
14 depend on the ratio of the coalescent rate to other evolutionary
15 rate parameters. For example, the *site frequency spectrum* (SFS)—
16 the number of mutations segregating at different frequencies
17 in a sample—is determined by the ratio of the mutation rate to the
18 (time-varying) coalescent rate. Kingman-coalescent-based
19 inference methods solve the inverse problem of determining the
20 population size history that best explains particular features of
21 the data, such as the SFS (e.g., Bhaskar *et al.* (2015)) or variations
22 in heterozygosity along a chromosome (e.g., Li and Durbin
23 (2011)).

24 A serious problem for this class of inference methods is that
25 different models of evolution generate different relationships
26 between historical population sizes and genetic diversity. For
27 example, one of the basic assumptions of the Kingman coalescent
28 is that natural selection is negligible in determining the
29 distribution of genealogies. When this assumption is violated,
30 Kingman-based inference methods are misspecified (Gillespie
31 2000a,b, 2001). For instance, when a beneficial mutation in-
32 creases rapidly in frequency, it distorts the genealogies at nearby
33 sites (see e.g., Coop and Ralph (2012)). If these “selective sweeps”
34 occur regularly, they may be the dominant factor determining
35 the distribution of genealogies. In this case, the average coales-
36 cent rate is proportional to the number of beneficial mutations
37 introduced per generation, which is itself *directly*, rather than
38 inversely, proportional to the population size. It follows that
39 the relationship between the population size and the expected
40 number of neutral mutations in a sample is inverted: larger
41 populations will be less diverse than smaller populations.

42 While the example above is extreme, it is well established
43 that violations of the neutrality assumption can distort or mask
44 the signatures of population size changes. For example, Schrider
45 *et al.* (2016) and Johri *et al.* (2021) demonstrated that several
46 popular inference methods give misleading results in the pres-
47 ence of selective sweeps and background selection. In a similar
48 vein, Cvijović *et al.* (2018) showed that reduction of genetic
49 diversity by purifying selection is accompanied by distortions in
50 the SFS, leading to a false signal of population growth. More-
51 over, genomic evidence from multiple species suggests that such
52 violations of neutrality may be widespread (Sella *et al.* 2009;
53 Corbett-Detig *et al.* 2015; Kern and Hahn 2018; Johri *et al.* 2020).

54 An important extension of the Kingman coalescent is a family
55 of models known as *multiple-merger coalescents* (Pitman 1999; Sag-
56 itov 1999; Donnelly and Kurtz 1999; Eldon 2016), which arise in
57 a variety of contexts both with and without selection. Whereas
58 in the Kingman coalescent lineages may coalesce only pairwise,
59 multiple-merger coalescents permit more than two lineages to co-
60 alesce in a single event. The more general class of simultaneous-
61 multiple-merger coalescents (Schweinsberg 2000; Möhle and
62 Sagitov 2001; Sagitov 2003) permits more than one distinct

63 multiple-merger event at the same time. Multiple-merger and
64 simultaneous-multiple-merger models are relevant for species
65 with “sweepstakes” reproductive events (Eldon and Wakeley
66 2006; Sargsyan and Wakeley 2008), fat-tailed offspring number
67 distributions (Schweinsberg 2003; Hallatschek 2018), recurring
68 selective sweeps at linked sites (Durrett and Schweinsberg 2005;
69 Coop and Ralph 2012), rapid adaptation (Neher and Hallatschek
70 2013; Desai *et al.* 2013), and purifying selection at sufficiently
71 many sites (Seger *et al.* 2010; Nicolaisen and Desai 2012; Good
72 *et al.* 2014; Cvijović *et al.* 2018).

73 In each of these contexts, the coalescent timescale is not nec-
74 cessarily proportional to the population size. For example, with
75 fat-tailed offspring distributions, the rate of coalescence is a
76 power law in the population size (Schweinsberg 2003), while
77 with linked sweeps it is determined by the rate of linked sweeps,
78 as described above (Durrett and Schweinsberg 2005). In these
79 settings, interpreting the level of genetic diversity in terms of an
80 “effective population size” is misleading, and inferences based on
81 the Kingman coalescent may be qualitatively and quantitatively
82 incorrect.

83 It is therefore important to determine whether the Kingman
84 model is appropriate for a given data set before performing de-
85 mographic inference. This task is distinct from “selection scan”
86 methods designed to detect particular regions of the genome
87 that are under selection (see Vitti *et al.* (2013)). Selection scan
88 methods typically assume that most of the genome is evolving
89 neutrally and that the genome-wide distribution of summary
90 statistics reflects demographic factors. Genomic regions that
91 are outliers from this distribution are presumed to be under
92 selection. In contrast, we are interested in detecting when the
93 genome-wide background *itself* is not well-modeled by the King-
94 man coalescent.

95 There has been much recent interest in identifying in genomic
96 data departures from the Kingman coalescent caused by mul-
97 tiple mergers. One approach is to use the SFS as a summary
98 statistic. To this end, Birkner *et al.* (2013), Blath *et al.* (2016),
99 and Spence *et al.* (2016) derived methods for computing the
100 expected SFS of (simultaneous) multiple-merger coalescents.
101 Further, Eldon *et al.* (2015) showed that it is possible to use the
102 SFS to distinguish beta and Dirac (multiple-merger) coalescents
103 from Kingman coalescents with strictly exponential or algebraic
104 growth. Koskela (2018) and Koskela and Wilke Berenguer (2019)
105 extended this work and used the SFS to distinguish multiple
106 mergers caused by selection from those caused by sweepstakes
107 reproduction. In a related approach, Rödelsperger *et al.* (2014) de-
108 tected widespread linked selection in the nematode *Pristionchus*
109 *pacificus* by demonstrating that the SFS is non-monotonic, a
110 signature of multiple mergers (Neher and Hallatschek 2013;
111 Birkner *et al.* 2013). Several more recent papers have used this
112 non-monotonicity in the SFS to identify departures from the
113 Kingman coalescent in Atlantic cod (Arnason *et al.* 2023) and
114 a variety of other organisms (Freund *et al.* 2023). In other re-
115 cent work, Freund and Siri-Jégousse (2021) have introduced a
116 new statistic, the minimum observable clade size, and used it,
117 along with SFS-derived statistics, to discriminate between sev-
118 eral coalescent models (including multiple-merger and Kingman
119 coalescents both with and without population growth) using
120 an approximate Bayesian computation (ABC) framework. Sev-
121 eral other recent papers have used related combinations of link-
122 age disequilibrium and SFS-derived statistics in a similar ABC
123 framework to detect evidence for multiple-merger genealogies
124 (Menardo *et al.* 2021) or to jointly infer the action of demography

1 and selection (Johri *et al.* 2020, 2021; Lepers *et al.* 2021).

2 However, methods that derive their power primarily from the
3 SFS are limited in their ability to distinguish multiple mergers
4 from general models of population-size change. While previous
5 work has demonstrated that the SFS does contain information
6 that can discriminate multiple-mergers from particular forms
7 of the Kingman coalescent, a Kingman coalescent with a more
8 general model of population size change can accurately fit many
9 aspects of the multiple-merger SFS (Myers *et al.* 2008; Bhaskar
10 and Song 2014). This fundamentally limits the ability to dis-
11 criminate between population models using SFS-based statistics
12 alone. The non-monotonic SFS identified by Rödelsperger *et al.*
13 (2014), Árnason *et al.* (2023), and Freund *et al.* (2023) is a more
14 robust signature of multiple mergers, but identifying that the
15 SFS increases at high frequencies requires both knowledge of
16 the ancestral allele at each site and a large enough sample size
17 to accurately sample rare, high-frequency alleles, and either
18 condition may be violated in real-world data.

19 Here, we propose that statistics based on the two-site fre-
20 quency spectrum (2-SFS)—the generalization of the SFS to pairs
21 of nearby sites (Hudson 2001; Ferretti *et al.* 2018)—are useful for
22 distinguishing between the Kingman coalescent with population
23 growth and multiple-merger coalescents. This is fundamentally
24 different from approaches based primarily on the single-site SFS
25 (e.g. Birkner *et al.* (2013); Blath *et al.* (2016); Spence *et al.* (2016);
26 Eldon *et al.* (2015); Freund and Siri-Jégousse (2021); Freund *et al.*
27 (2023)) because 2-SFS-based statistics depend on tree topolo-
28 gies and coalescent rates in a manner unique from SFS-based
29 statistics. Thus these 2-SFS statistics introduce new information
30 not contained in the SFS that can be used to discriminate mod-
31 els that produce same SFS. Furthermore, these statistics may
32 be calculated efficiently from single-nucleotide-polymorphism
33 (SNP) data, do not require recombination maps or ancestral
34 allele identification, and are informative even with small sam-
35 ple sizes. Together, these properties make the 2-SFS useful for
36 demographic model-checking in a wide range of species.

37 In this paper, we show that 2-SFS-based statistics can be used
38 to discriminate Kingman from non-Kingman coalescence. By
39 validating with simulations, we demonstrate high power to
40 reject incorrect Kingman population-size-change models for bio-
41 logically realistic sample sizes. We present a Snakemake pipeline
42 for analyzing real-world population data and demonstrate our
43 pipeline using genomic data from *Drosophila melanogaster* (Lack
44 *et al.* 2015).

45 Definitions and Background

46 Following the notation of Fu (1995), we define the SFS of a sam-
47 ple of n haploid genomes as ξ , where ξ_i is the number of sites
48 containing a mutation with derived allele count i in the sam-
49 ple ($1 \leq i \leq n-1$). When the ancestral allele is unknown,
50 mutations at frequency $n-i$ are indistinguishable from mu-
51 tations at frequency i , and the folded SFS, η , is used instead,
52 where η_i is the number of sites with minor allele count i in the
53 sample, $\{\eta_i = \xi_i + (1 - \delta_{i,n-i})\xi_{n-i} : 1 \leq i \leq \lfloor n/2 \rfloor\}$. Here $\delta_{k,\ell}$
54 is the Kronecker delta ($\delta_{k,\ell} = 1$ if $k = \ell$ and 0 otherwise). The
55 SFS and folded SFS can be calculated from a set of SNPs without
56 knowing the physical location of the SNPs.

57 In contrast, the 2-SFS, ϕ , is a statistic of pairs of sites. We define
58 the 2-SFS, $\{\phi_{ij}(d) : d > 0; 1 \leq \{i,j\} \leq n-1\}$, as the number of
59 pairs of polymorphic sites separated by d bases for which there
60 is a mutation with derived allele count i at one site and a second

61 mutation with derived allele count j at the other site. Note that
62 $\phi_{ij}(d) = \phi_{ji}(d)$ by symmetry. The 2-SFS has been studied for
63 non-recombining sites by Ferretti *et al.* (2018) in a neutral model
64 and by Xie (2011) in a model with selection. When the ancestral
65 allele is unknown, we define the folded 2-SFS, φ , by analogy
66 to the folded SFS: $\varphi_{ij}(d)$ represents the number of pairs of sites
67 separated by d bases in which one site has minor allele count i
68 and the other has minor allele count j ($1 \leq \{i,j\} \leq \lfloor n/2 \rfloor$). For
69 non-recombining sites, the 2-SFS is independent of the distance,
70 so we will suppress the d in our notation when considering the
71 nonrecombining case.

72 In the limit of low per-site mutation rate ($\mu \rightarrow 0$) and no
73 recombination, all polymorphic sites are bi-allelic and the ex-
74 pected SFS and 2-SFS are related to moments of the genealogical
75 branch length distribution by

$$\langle \xi_i \rangle = \mu \langle \tau_i \rangle \quad (1)$$

$$\langle \phi_{ij} \rangle = \mu^2 \langle \tau_i \tau_j \rangle, \quad (2)$$

76 where τ_i is the total length of branches subtending i leaves of
77 a gene genealogy and $\langle \cdot \rangle$ represents the expectation over the
78 distribution of gene genealogies defined by a coalescent model.
79 Thus, the SFS and 2-SFS depend on the distribution of coales-
80 cent times as well as the distribution of tree topologies. In the
81 opposite limit of high recombination between sites (i.e., fully un-
82 linked loci), the genealogies of the sites come from independent
83 draws of the generating coalescent model, and the 2-SFS can be
84 determined directly from the SFS: $\langle \phi_{ij} \rangle = \mu^2 \langle \tau_i \rangle \langle \tau_j \rangle = \langle \xi_i \rangle \langle \xi_j \rangle$.
85 Thus, for a recombining population, the 2-SFS is a function of the
86 genomic distance d between sites and only contains information
87 not found in the SFS for nearby, linked sites.

88 Fu (1995) calculated the first and second moments of the
89 branch-length distribution for a non-recombining infinite-sites
90 locus under the standard time-homogeneous Kingman coales-
91 cent. He found that $\langle \tau_i \tau_j \rangle < \langle \tau_i \rangle \langle \tau_j \rangle$ for all $j \notin \{i, (n-i)\}$. This
92 result, combined with Eq. (1) and Eq. (2), implies a negative
93 correlation between mutations at different frequencies: trees
94 generating a mutation with derived allele count i are less likely
95 than average to generate a second mutation with derived allele
96 count $j \notin \{i, (n-i)\}$. (There are positive correlations between
97 mutations at complementary frequencies induced by genealo-
98 gies whose root node partitions the tree into subtrees of size i
99 and $n-i$.)

100 Birkner *et al.* (2013) extended Fu's calculation to a family
101 of multiple-merger coalescents called beta coalescents. This
102 one-parameter family interpolates between the Kingman coales-
103 cent and the Bolthausen-Sznitman coalescent (Bolthausen
104 and Sznitman 1998) as the parameter, α , ranges from 2 to 1. Beta
105 coalescents arise in models with fat-tailed offspring distributions
106 (Schweinsberg 2003; Steinrücken *et al.* 2013), and the Bolthausen-
107 Sznitman coalescent is the limiting distribution of genealogies in
108 populations that are rapidly adapting or experiencing extensive
109 purifying selection (Neher and Hallatschek 2013). The calcula-
110 tions of Birkner *et al.* (2013) show positive correlations between
111 ξ_i and ξ_j for $j \in \{i, n-i\}$ (Figures 5 and 6 of Birkner *et al.* (2013)).
112 Thus, unlike the standard Kingman coalescent, the beta coales-
113 cent can generate positive associations between mutations with
114 different minor allele counts. Together, these results suggest that
115 the differences in associations between mutations at different fre-
116 quencies (i.e. differences in the 2-SFS) can be used to distinguish
117 multiple-merger coalescents from the Kingman coalescent.

1 A 2-SFS-based test for the Kingman coalescent

2 Motivated by this reasoning, we developed a method to use
 3 information in the 2-SFS to determine whether a Kingman coa-
 4 lescent (with any demographic history) is consistent with real-
 5 world genomic data. The basic idea is to first use the observed
 6 SFS to determine the best-fit demographic history within the
 7 Kingman model. We then simulate the expected 2-SFS pre-
 8 dicted by this best-fit Kingman demographic history, and use
 9 a goodness-of-fit statistic to determine whether this expected
 10 2-SFS is consistent with the data. We illustrate this pipeline in
 11 Fig. 1 and describe each step in more detail below.

12 Computing the SFS and 2-SFS from population data

13 We begin by generating the folded SFS and 2-SFS, η_i^{data} and
 14 $\varphi_{ij}^{data}(d)$, using sequence data from a sampled population. In
 15 practice we will often restrict our analysis to patterns at fourfold
 16 degenerate sites, since these are regarded as more likely to be
 17 selectively neutral. We therefore typically only consider values
 18 of d that are multiples of 3. If the ancestral allele is known,
 19 the unfolded SFS and 2-SFS can be used instead. To increase
 20 computational efficiency, we lump alleles with frequency larger
 21 than k_{max} into one high-frequency bin, choosing k_{max} by eye
 22 such that the high-frequency tail of the SFS is low noise (though
 23 we note that the pipeline is robust to the exact choice of k_{max} ,
 24 (see Fig. S1), and can be implemented without this lumping if
 25 preferred).

26 Inferring the best-fit Kingman demography

27 We next use the observed SFS to infer the best-fit Kingman de-
 28 mographic model. To do so, we fit a 5-epoch piecewise-constant
 29 Kingman demography, $N_{null}(t)$, to the lumped SFS of the data
 30 using a modification of the `fastNeutrino` algorithm (Bhaskar
 31 *et al.* 2015). As in `fastNeutrino`, we find the $N_{null}(t)$ that min-
 32 imizes the Kullback–Leibler (KL) divergence between the ex-
 33 pected and observed SFS using the L-BFGS-B algorithm with
 34 automatic differentiation. Unlike `fastNeutrino`, we apply L_2
 35 regularization to the vector of log population sizes. Regulariza-
 36 tion helps the solver find well-behaved solutions by penalizing
 37 very short epochs with very large population sizes, which do not
 38 affect the SFS. We note that the specific choice of demographic
 39 fitting algorithm is not crucial, and any demographic inference
 40 method that accurately predicts the SFS (as this algorithm does,
 41 see Fig. 2) could be substituted without altering downstream
 42 analyses. Python implementation of the fitting algorithm, which
 43 we refer to as `fitsfs`, is available in a Github repository at
 44 <https://github.com/desai-lab/twosfs>.

45 Our choice of this 5-epoch model is designed to be conserva-
 46 tive in allowing for highly flexible Kingman population histories,
 47 as compared to more restrictive assumptions such as a piece-
 48 wise constant model with only one or two epochs, or models
 49 which make assumptions about the shape of past population
 50 growth. As we will see below, the inferred 5-epoch Kingman
 51 demographic model is typically an excellent fit to the observed
 52 SFS, even when the underlying model is very different (this
 53 is precisely why the SFS alone has limited power to test the
 54 Kingman assumptions).

55 Null 2-SFS and recombination rate

56 Once the best-fit demography has been inferred from the SFS,
 57 we generate the 2-SFS predicted by the Kingman coalescent

58 with that demography, which we refer to as $\varphi_{ij}^{null}(d; r)$, by sim-
 59 ulating genealogies using `msprime`. We note that this predicted
 60 2-SFS depends on the recombination rate r , which determines
 61 how quickly the 2-SFS decays towards the product of the corre-
 62 sponding SFSs as a function of d . However, the correct choice
 63 of recombination rate may often be unknown. One possible
 64 approach would be to restrict our analysis to pairs of sites that
 65 belong to segments that have not recombined in the history of
 66 the sample. However, errors in our inferences of the boundaries
 67 of these non-recombined blocks could lead to incorrect rejection
 68 of the Kingman model. Therefore, to be conservative in the face
 69 of uncertainty in the recombination rate, we instead simulate
 70 multiple candidate null 2-SFS with different recombination rates,
 71 and choose the recombination rate that *minimizes* our ability to
 72 reject the Kingman model (as described in more detail below).

73 Statistic for comparing expected and observed 2-SFS

74 We wish to compare the expected 2-SFS under the best-fit King-
 75 man demographic model, $\varphi_{ij}^{null}(d; r)$, to the 2-SFS observed
 76 in the data, $\varphi_{ij}^{data}(d)$. To do so, we use a form of the Kol-
 77 mogorov–Smirnov (KS) distance (Kolmogorov 1933; Smirnov
 78 1948) generalized to three variables (i , j , and d ; we treat r as a
 79 constant here), by implementing the procedure described in Gosset
 80 (1987). The multidimensional KS distance is a nonparametric
 81 statistic that measures the degree to which an empirical distribu-
 82 tion (here $\varphi_{ij}^{data}(d)$) matches a proposed generating distribution
 83 (here $\varphi_{ij}^{null}(d)$). In summary, it is the maximum absolute distance
 84 between the cumulative distribution functions (CDFs) generated
 85 by $\varphi_{ij}^{data}(d; r)$ and $\varphi_{ij}^{null}(d)$, maximized again over all eight cu-
 86 mulation directions when defining the multidimensional CDF
 87 (i.e. $\Pr(i \leq I \wedge j \leq J \wedge d \leq D)$, $\Pr(i \geq I \wedge j \leq J \wedge d \leq D)$,
 88 etc). We direct readers to Gosset (1987) for a more thorough
 89 description of this statistic.

90 Null KS distribution and p-value

91 We next wish to determine whether the observed multidimen-
 92 sional KS distance is consistent with φ_{ij}^{data} being drawn from
 93 φ_{ij}^{null} . In other words, is the observed 2-SFS consistent with
 94 the 2-SFS expected based on the best-fit Kingman demographic
 95 model? The complex natures of our KS statistic and the noise as-
 96 sociated with mutation accumulation and population sampling
 97 mean that it is not possible to derive an analytic expression for
 98 a range of “typical” KS distances to be expected assuming the
 99 null model is correct. Therefore, we approximate the null KS
 100 distribution through a resampling procedure. Specifically, we
 101 generate a low-noise null 2-SFS distribution by averaging 10^4
 102 demographic simulations under the null demographic model.
 103 At every genomic distance d , we draw $PD(d)$ multinomial sam-
 104 ples from this null distribution, where the pair density $PD(d)$
 105 is the number of pairs of sites at distance d in the sample. This
 106 generates a resampled 2-SFS, φ_{ij}^{resamp} , that has the same number
 107 of pairs of sites at distance d as the sampled data, but with an
 108 expectation value at every d equal to $\varphi_{ij}^{null}(d)$. Intuitively, this
 109 resampled 2-SFS distribution can be thought of as a version of
 110 the null 2-SFS “noised” to the level of the sampled data. We
 111 repeat the multinomial sampling (but not the simulations) 1000
 112 times to generate 1000 resampled 2-SFS distributions, $\varphi_{ij}^{resamp;m}$
 113 ($1 \leq m \leq 1000$). By calculating the KS distance between each
 114 $\varphi_{ij}^{resamp;m}$ and φ_{ij}^{null} , we generate an approximate null KS distri-
 115 bution to which the KS distance between φ_{ij}^{null} and φ_{ij}^{data} can be

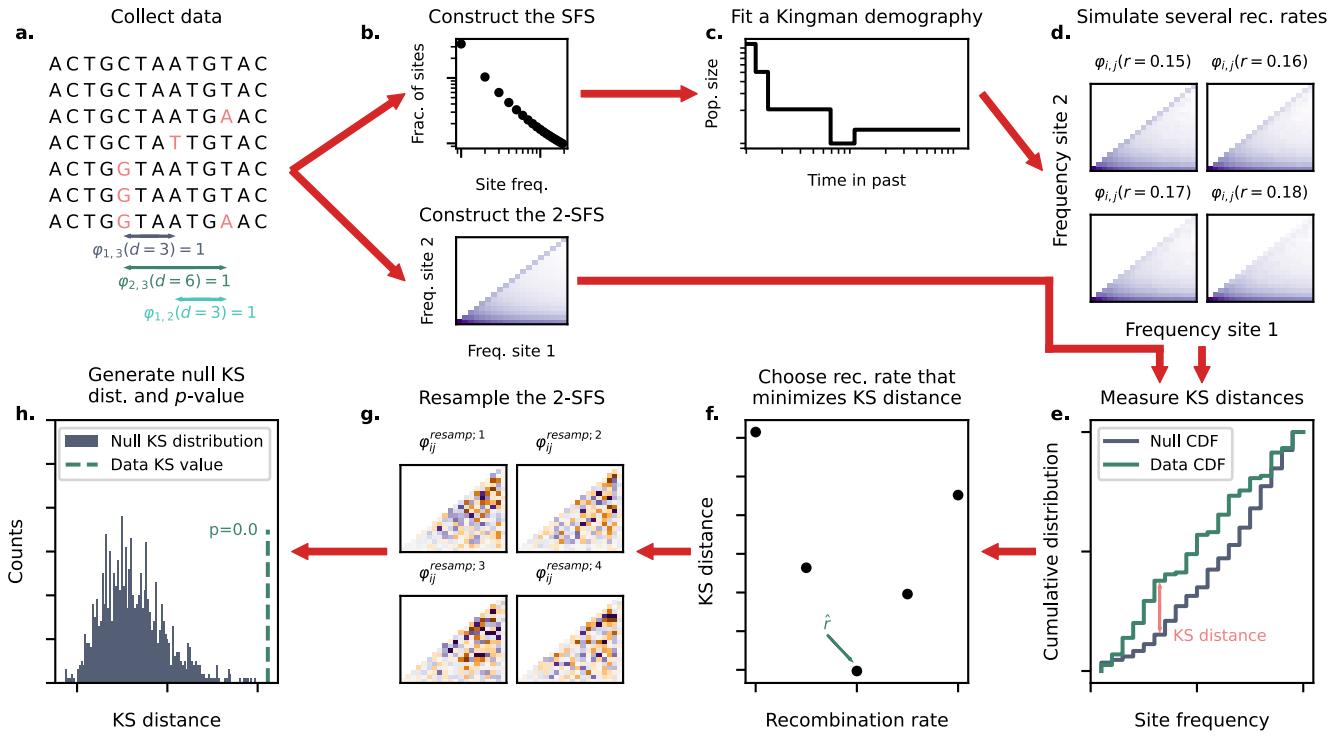


Figure 1 Schematic of the model-checking pipeline. The pipeline follows the red arrows from **a** to **h**. Briefly, after data collection and cleaning (**a**), we construct the SFS and 2-SFS (**b**) and fit a Kingman demography (the null model) to the SFS (**c**). We simulate the 2-SFS expected from a Kingman model with this null demography for several values of the recombination rate and choose the recombination rate, \hat{r} , that maximizes the p -value for rejecting the Kingman model based on the KS distance between the 2-SFS of the data and the null (**d-f**). We then resample $\varphi_{ij}^{null}(d; \hat{r})$ (**g**) and compute the KS distance between these resampled distributions and $\varphi_{ij}^{null}(d; \hat{r})$ to generate a null KS distribution. We compare the KS distance between $\varphi_{ij}^{data}(d)$ and $\varphi_{ij}^{null}(d; \hat{r})$ to this null KS distribution to generate a p -value (**h**).

1 compared. We then use this comparison to generate a p -value
2 for the rejection of the Kingman model.

3 As noted above, $\varphi_{ij}^{null}(d; r)$ depends on the recombination
4 rate, which is often unknown. We therefore compute this multi-
5 dimensional KS statistic and use it to generate a p -value to
6 compare $\varphi_{ij}^{null}(d; r)$ with $\varphi_{ij}^{data}(d)$ for a range of different values
7 of r . We then choose the value of the recombination rate, \hat{r} , which
8 maximizes the p -value (i.e. minimizes our chance of rejecting
9 Kingman coalescence). This ensures that we are conservative in
10 rejecting the Kingman model in the face of uncertainty about the
11 recombination rate.

12 To efficiently find \hat{r} , we choose candidate recombination rates
13 using a golden-section search (Kiefer 1953). Starting with conservative
14 lower and upper bounds for \hat{r} , the golden-section search
15 algorithm iteratively proposes new candidate recombination
16 rates and narrows the bounds on \hat{r} through sequential evaluations
17 of the KS distance between $\varphi_{ij}^{null}(d; r)$ and $\varphi_{ij}^{data}(d)$. The
18 algorithm can be run for a given number of iterations or until
19 some other stopping criteria is met; in this paper, we run the
20 algorithm for five iterations.

21 Model-checking pipeline

22 We have implemented this 2-SFS based model checking procedure
23 in a Snakemake pipeline which can be used to test whether
24 any real-world or simulated population data is consistent with
25 the Kingman coalescent, publicly available in a Github reposi-

26 tory at <https://github.com/desai-lab/twosfs>. This repository has
27 code to reproduce all results and figures from this manuscript
28 and is straightforward to edit to test parameter values outside
29 those explored in this paper. Users wishing to test real-world
30 data using the pipeline must supply a JSON file containing the
31 locations of all polymorphic sites and their associated derived
32 or minor allele counts. This file uses a specific custom format,
33 though we supply code for conversion from both VCF and text
34 file formats. The pipeline further requires an upper and lower
35 bound for the recombination rates and contains flags for various
36 data cleanup choices. We direct readers to the README located
37 in our Github repository for further details and instructions.
38 Computational requirements for all steps in the model-checking
39 pipeline are available in Table S1.

40 Validation of our 2-SFS based test with simulations

41 To test the performance of our model checking procedure, we
42 simulated coalescent histories using msprime (Baumdicker *et al.*
43 2022) and SLiM (Haller *et al.* 2019) under four classes of models:
44 (1) the neutral, constant-size Kingman coalescent; (2) a neutral,
45 exponentially growing Kingman coalescent; (3) a neutral,
46 constant-size beta coalescent; and (4) a constant-size population
47 undergoing positive selection at many sites along the genome.
48 For each type of simulation, we tested a range of relevant pa-
49 rameter values, as shown in Table 1.

Model	Parameter range
Constant-size, neutral Kingman	N/A
Exponential growth	Growth rate γ : 0.25 – 2.0 per \tilde{T} Growth time t_0 : 0.5 – 2.0 * \tilde{T}
Beta coalescent	α : 1.05 – 1.95
Positive Selection	Selective coefficient s : 0.005 – 0.08% Rate of selective mutations μ : 10^{-10} – 10^{-11} per site per genome per generation Diploid population size N = 10,000 Genome length L = 5,000

Table 1 Models and parameter ranges for simulated coalescent processes. Note that the characteristic timescale \tilde{T} is an arbitrary scaling factor that does not affect tree topologies, as the total population growth is controlled by the product of γ and t_0 . We do not specify a neutral mutation rate for any of the models because neutral diversity is added after the simulations finish in both `msprime` and `SLiM` (see [Baumdicker *et al.* \(2022\)](#); [Haller *et al.* \(2019\)](#) for more details).

**1 A flexible Kingman demography reproduces features of a non-
2 Kingman SFS**

3 For every model-parameter combination, we first simulated the
4 expected folded SFS of 100 samples. Because of the stochasticity at higher frequencies, we combined all mutations with
5 frequency $k \geq k_{max} = 20$ into one “lumped” high-frequency
6 bin. As described above, we then used `fitsfs` to fit a piecewise-
7 constant neutral demographic model to each lumped, folded
8 SFS. We show one example of the resulting SFS from each of
9 the four types of models we simulated, along with the corre-
10 sponding `fitsfs` fits, in Fig. 2. We see that the observed site
11 frequency spectra deviate strongly from the constant-size King-
12 man expectation for the three examples where this was not the
13 underlying model. However, we find that a Kingman coalescent
14 with a flexible population size can be fit to all four spectra nearly
15 perfectly. This implies that any statistics based solely on the
16 SFS, or transformations thereof, will have minimal power to dis-
17 tinguish the non-Kingman scenarios (here beta coalescent and
18 positive selection models) from a sufficiently flexible Kingman
19 demography.
20

**21 The 2-SFS can distinguish demographic models with matching
22 SFS**

23 By contrast, we expect that the 2-SFS should allow us to distin-
24 guish non-Kingman scenarios from a Kingman demographic
25 model that generates an identical SFS. To show this, we used
26 `msprime` to simulate the Kingman coalescent with the piecewise-
27 constant demographic histories inferred by `fitsfs` for the sim-
28 ulated models described above. This produced a set of pairs
29 of simulations, each consisting of an original (potentially non-
30 Kingman) model, along with the corresponding Kingman model
31 with the piecewise-constant demographic history that is the best
32 fit to the SFS from the original model.

33 By construction, these simulated Kingman coalescents pro-
34 duce nearly identical SFS as the corresponding original mod-
35 els. We then compared the 2-SFS produced by these simulated
36 Kingman coalescents to those produced by our simulations of

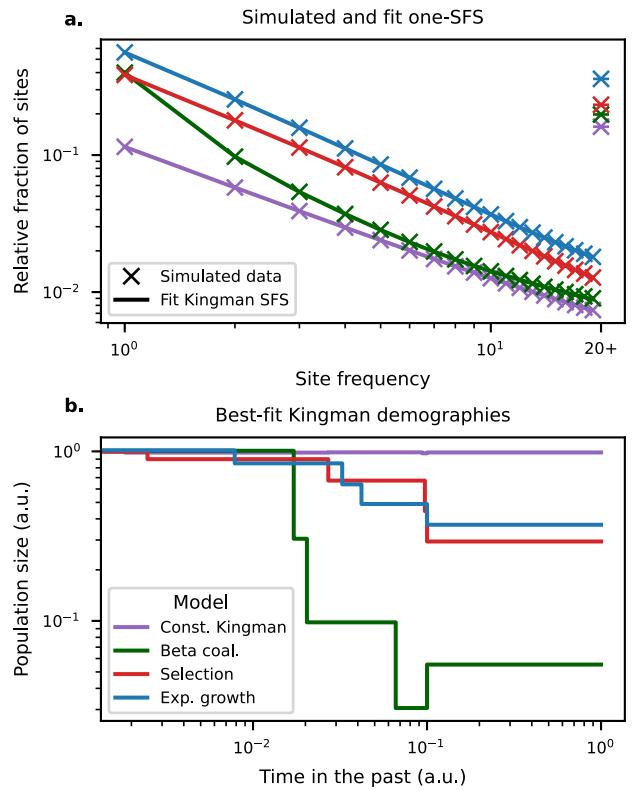


Figure 2 (a) Simulated site frequency spectra for example constant-size-Kingman, beta coalescent, positive-selection, and exponential population size growth models, compared to the expectations from the corresponding best-fit Kingman demographic models. The examples shown here are for $\alpha = 1.3$ (beta coalescent); $s = 0.55$, $\mu = 10^{-10}$ (positive selection); and $t_0 = 0.5$, $\gamma = 2.0$ (exponential growth). Note that site frequency spectra are shifted vertically relative to each other to aid in visibility (thus while relative frequencies in each curve are accurate, the overall normalization is not). (b) The inferred best-fit Kingman demographic models for each of the four examples shown in (a). Population size and time in the past have units of an arbitrary coalescent timescale.

37 the original models. To visualize this comparison, in Fig. 3 we
38 plot four examples of the log-ratio of the 2-SFS produced by
39 the original models to those produced by the best-fit Kingman
40 demographic model. We see that for the beta and positive selec-
41 tion cases, where the original model is not Kingman, there is a
42 striking visual difference with the 2-SFS of the corresponding
43 Kingman demographic model, despite the near-perfect fit to
44 the SFS. On the other hand, the constant-size and exponentially
45 growing Kingman coalescents show signal consistent with sim-
46 ulation noise. Taken together, these results imply that the 2-SFS
47 can distinguish between Kingman and non-Kingman coalescent
48 models, even when the SFS fails to do so.

49 Power analysis of our model checking procedure

50 The examples shown above demonstrate visually that there is
51 information in the 2-SFS that can potentially be used to distin-
52 guish Kingman from non-Kingman coalescent processes. To
53 determine whether the statistical test we introduced above effec-
54 tively uses this information, we validated our model-checking

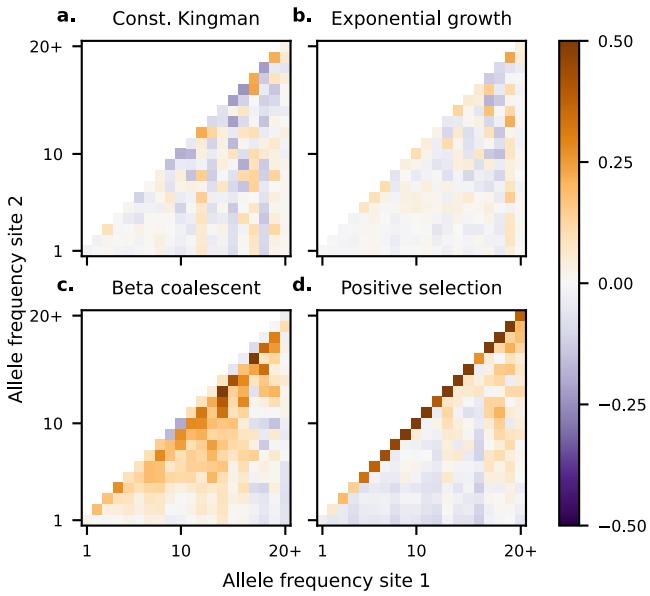


Figure 3 Log-ratio of the 2-SFS of the four example models shown in Fig. 2 with the 2-SFS expected under the corresponding best-fit piecewise-constant Kingman demographies.

1 pipeline with the simulated models from Table 1. Proper validation
 2 requires several replicate simulated SFS and 2-SFS (i.e.
 3 multiple simulations of η^{data} and φ^{data}), which are computationally
 4 expensive to generate from scratch for the large number of
 5 models we simulate. Therefore, to save computational resources,
 6 we re-employed the resampling method described earlier. For
 7 each model-parameter combination, we generated 100 simulated
 8 2-SFS, $\varphi^{sim,l}$, by resampling the low-noise 2-SFS 100 times
 9 at $PD(d) = 10,000$ for genomic distances $d = \{3, 6, \dots, 24\}$,
 10 approximately matching the pair density of fourfold degenerate
 11 sites in the *D. melanogaster* dataset we describe below. Again,
 12 each of these $\varphi^{sim,l}$ can be thought of as a 2-SFS whose expectation
 13 value matches the simulated coalescent model but is noised to
 14 mimic real-world data. We ran our model-checking pipeline
 15 independently for each $\varphi^{sim,l}$, generating 100 validation runs of
 16 the procedure for every model-parameter combination.

17 We plot the power to reject Kingman coalescence at a *p*-
 18 value threshold of 0.05 in Fig. 4. As seen in Fig. 4a-c, we have
 19 high power to reject Kingman coalescence for models that involve
 20 highly skewed offspring distributions and strong positive
 21 selection and low false-rejection rates for neutral exponential
 22 growth for biologically realistic sample sizes. In other words, we
 23 correctly reject Kingman coalescence whenever the underlying
 24 model involves sufficiently strong non-Kingman processes, but
 25 do not incorrectly reject the model in any of the scenarios involving
 26 exponential growth. This trend holds despite the three
 27 model classes spanning similar levels of distortion of the SFS, as
 28 measured by Tajima's *D* (Fig. 4d).

29 Real-world genomic data often has complexities not directly
 30 included in simulated data – for example, sequencing noise can
 31 have a significant impact on measured diversity. Furthermore,
 32 pairs of SNPs, particularly those at close distances, may not come
 33 from two independent mutations (as we assume in this analysis)
 34 but rather a single, complex mutation. Researchers may therefore
 35 wish to exclude pairs of sites at $d = 3$ (e.g. to minimize the effect
 36 of complex mutations) or reduce the maximum genomic

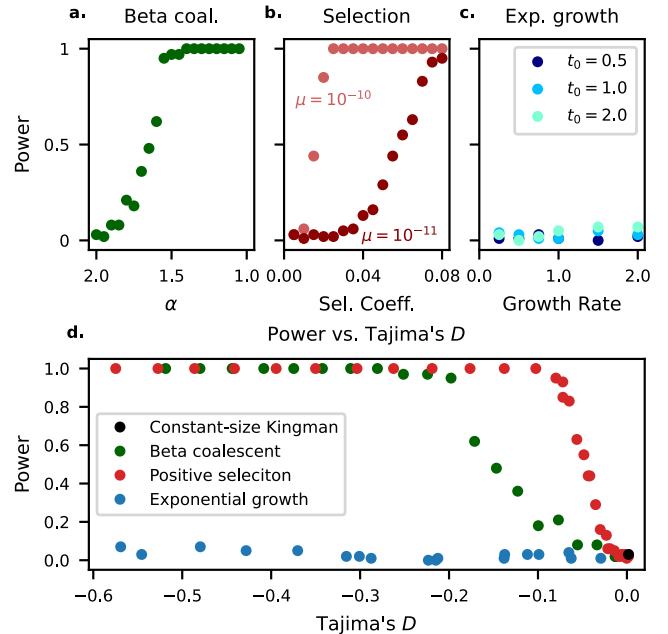


Figure 4 (a-c) Power to reject Kingman coalescence in simulations across a range of parameter values for several different classes of models. For the beta coalescent and positive selection, power increases as simulations move away from neutrality, as expected. In exponentially growing Kingman coalescents, false rejection rates remain low for all parameter values. (d) Tajima's *D*, which is a measure of the degree to which the SFS is distorted relative to its expectation under a constant-size Kingman model, versus power to reject Kingman coalescence. Each point is the average Tajima's *D* for all simulations of a specific model-parameter combination. Note that our model-checking pipeline demonstrates high power to detect non-Kingman coalescence and low false-rejection rates for Kingman models with non-constant population size history, despite similar distortions to the SFS as measured by Tajima's *D*.

37 distance analyzed (e.g. to reduce the impact of larger structural variation). We therefore reran the simulated data through our
 38 model-checking pipeline after artificially adding varying levels of sequencing noise (Fig. S2), dropping pairs of sites at genomic
 39 distance $d = 3$ from the 2-SFS (Fig. S3), or varying the maximum
 40 distance of pairs of sites included in the analysis (Fig. S4). Our
 41 model-checking pipeline maintains high power and low false-
 42 rejection rates in all cases except the largest level of sequencing
 43 noise we tested.

Analysis of *D. melanogaster* data

46 We next applied our method to analyze sequence data from the
 47 DPGP3 data set, which consists of haploid consensus sequences
 48 from ~ 150 flies, obtained via the haploid embryo method of
 49 [Langley et al. \(2011\)](#). The SNP calls that characterize these
 50 sequences were subjected to a variety of quality filters as described
 51 in [Lack et al. \(2015\)](#). We obtained the DPGP3 consensus
 52 sequence files version 1.1 for the 2L, 2R, 3L, and 3R chromosome
 53 arms from www.johnpool.net/genomes.html. These files contain
 54 sequence alignments of all flies in the sample on all chromosome
 55 arms. We also downloaded the Nov. 3, 2016 spreadsheet
 56

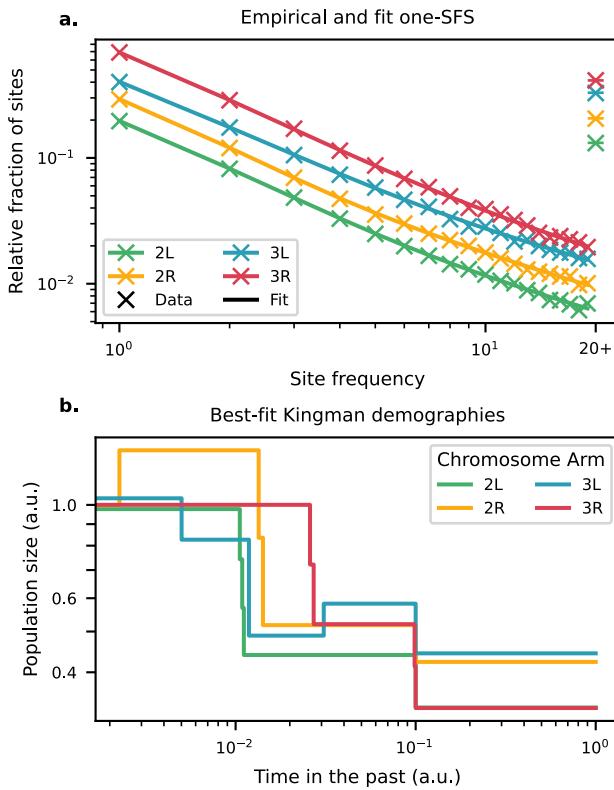


Figure 5 (a) Observed and fit SFS for the four *D. melanogaster* chromosome arms investigated in this study. Note that SFS of each chromosome arm are shifted vertically to improve visibility. The SFS of the fit demographics closely match those from the data. The demographic models that produce the fit site frequency spectra are plotted in (b).

1 of inversions available at the same link. For each chromosome
2 arm, we excluded any samples with an inversion in that arm
3 and then randomly down-sampled to $n = 100$ flies. As a result,
4 the data for each chromosome arm is from a different subset of
5 individuals.

6 To ensure our analyses focused on putatively neutral variation,
7 we filtered called SNPs to fourfold degenerate sites. We
8 then calculated the average pairwise diversity, Π , as a function
9 of position for each autosomal chromosome arm. Pairwise
10 diversity is high in the middle of each chromosome arm and
11 lower near the centromeres and telomeres, in agreement with
12 calculations by [Corbett-Detig et al. \(2015\)](#). Our modeling – and
13 coalescent-based demographic inference in general – assumes
14 that the distribution of gene genealogies is homogeneous along
15 the chromosome. Therefore, we selected a 13–16 Mb “central”
16 region of each arm with relatively homogeneous values of Π for
17 further analysis. The boundary positions of these central regions
18 are given in Table 2.

19 In order to ensure that the segregating mutations reflect true
20 genetic diversity and not variation in calling errors, we excluded
21 sites with fewer than 90 of the 100 genotypes called. This leaves
22 over 90% of all sites and does not substantially alter the fraction
23 of polymorphic sites (Table 2). For remaining sites with
24 missing calls, we probabilistically imputed missing genotypes
25 as either the major or minor allele based on the proportion of
26 called genotypes at that site. Every missing read was assigned

Chromosome arm	Central region analyzed	Fraction of sites kept
2L	1 – 17 Mb	0.916
2R	6 – 19 Mb	0.928
3L	1 – 17 Mb	0.928
3R	10 – 26 Mb	0.912

Table 2 Central regions and fraction of sites above 90% coverage for the four *D. melanogaster* chromosome arms analyzed in this study. The cutoff positions of central regions are referenced to the DPGP3 reference genome available at <http://www.johnpool.net/genomes.html>.

27 the minor allele with probability p and the major allele with
28 probability $1 - p$, with p equal to the minor allele fraction of
29 called genotypes at that site.

30 We ran each chromosome arm independently through our
31 model testing pipeline, fitting Kingman demographics to the
32 SFS and comparing the 2-SFS of the data to the fit demographics.
33 We plot these results in Fig. 5. For all chromosome arms, the
34 best-fit Kingman demographics closely match the observed SFS
35 (Fig. 5a) and show a recent roughly doubling of the population
36 size (Fig. 5b). However, the 2-SFS of our inferred demographics
37 do not match the 2-SFS observed in the data (Fig. 6), as can be
38 seen visually (Fig. 6a–d) and verified numerically using our KS
39 statistic (Fig. 6e). This implies that this *D. melanogaster* data is
40 inconsistent with the Kingman coalescent, and that the best-fit
41 Kingman demographics are not an accurate representation of
42 the effective population size history but are instead fitting the
43 effects of other types of non-Kingman processes. Our finding
44 is consistent with recent work by [Freund et al. \(2023\)](#), who argue
45 that the unfolded SFS in this population is inconsistent with a
46 Kingman model (though that study is limited to considering
47 models with exponential growth).

Discussion

48 We have shown that the 2-SFS is sensitive to multiple mergers,
49 but largely invariant to population growth in the Kingman coa-
50 lescent, making it well-suited for coalescent model checking. We
51 developed and validated a model-checking procedure that uses
52 this information to discriminate Kingman from non-Kingman
53 coalescence, and demonstrated the power of our approach in
54 simulated data. We then applied this method to data from *D.*
55 *melanogaster*, which is believed to be strongly shaped by natural
56 selection, and found evidence that population growth alone can-
57 not explain the correlation structure in the 2-SFS in this system.

58 We emphasize that our 2-SFS-based test is fundamentally dif-
59 ferent from approaches based on the SFS or on statistics derived
60 from the SFS. For example, several recent studies have de-
61 veloped methods to use the SFS to distinguish multiple-merger
62 coalescents from Kingman models with specific forms of popu-
63 lation growth ([Birkner et al. 2013](#); [Blath et al. 2016](#); [Spence et al. 2016](#);
64 [Eldon et al. 2015](#); [Koskela 2018](#); [Koskela and Wilke Berenguer
65 2019](#); [Árnason et al. 2023](#); [Freund et al. 2023](#)). Many of these
66 methods rely on signal in the unfolded SFS (because deviations
67 from Kingman models create a “U-shaped” SFS), and are there-
68 fore sensitive to orientation errors. In contrast to this work, our
69 approach uses the SFS to infer the best-fit Kingman demographic
70 model, and then asks whether this best-fit Kingman model is

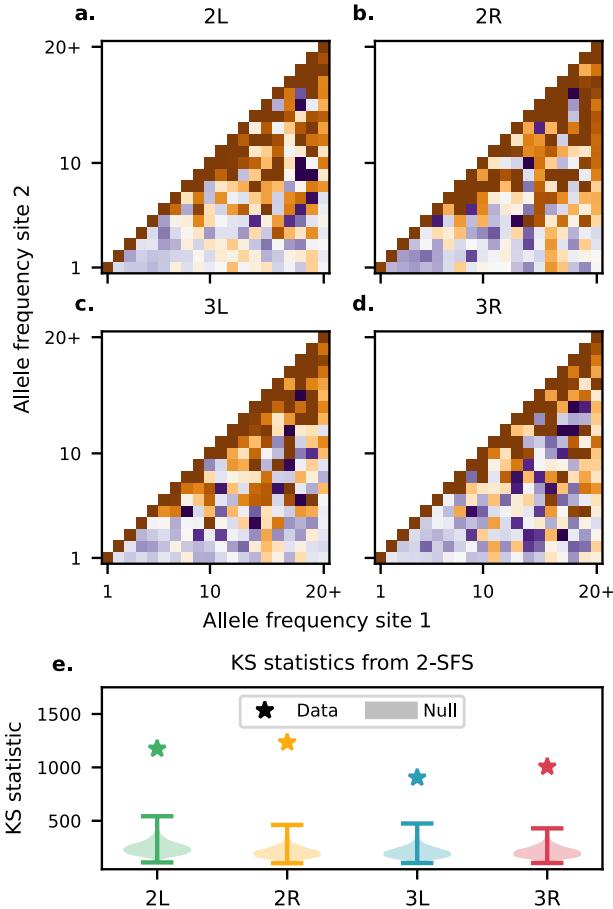


Figure 6 (a-d) Log-ratios between the observed 2-SFS and the 2-SFS expected from a Kingman coalescent fit to the SFS for each of the *D. melanogaster* chromosome arms investigated in this study. Note the clear visual mismatch between the observed and expected 2-SFS. **(e)** Empirical null KS distributions (shaded regions) and measured KS distances between the data and the Kingman fit (stars) for each of the chromosome arms investigated. All 2-SFS deviate significantly from the null distributions ($p < 10^{-3}$).

Ψ of tree topologies allowed by the coalescent model:

$$\langle \tilde{\phi}_{i,j} \rangle = \sum_{\psi \in \Psi} P(f_1 = i, f_2 = j | \psi) P(\psi), \quad (3)$$

where $f_{\{1,2\}}$ denote the frequencies of mutations at some sites 1 and 2 and ψ is a particular tree topology. We note here that the first term in this equation, $P(f_1 = i, f_2 = j | \psi)$, depends only on the distribution of branch lengths (which can be manipulated arbitrarily using an appropriate choice of historical population size). On the other hand, the second term, $P(\psi)$, reflects only the distribution of tree topologies, which depends heavily on the particular coalescent model. This expression for the 2-SFS can be further expanded as:

$$\langle \tilde{\phi}_{i,j} \rangle = \sum_{\psi \in \Psi} P(f_2 = j | f_1 = i, \psi) P(f_1 = i | \psi) P(\psi). \quad (4)$$

Using Bayes' Theorem, we can rewrite this as:

$$\langle \tilde{\phi}_{i,j} \rangle = \sum_i P(f_2 = j | f_1 = i, \psi) P(\psi | f_1 = i) P(f_1 = i). \quad (5)$$

We note again that the first term, $P(f_2 = j | \psi, f_1 = i)$, depends only on the distribution of branch lengths, while the last term, $P(f_1 = i)$, is just the expected SFS, $\langle \xi_i \rangle$. As argued above, by allowing the population size (and thus the coalescent rate) to be explicitly time-dependent, the SFS can be made arbitrarily similar between the Kingman coalescent and broad classes of multiple-merger coalescents. Therefore, we find a condition for two coalescent models to be theoretically distinguishable using the 2-SFS:

$$P_{\text{model A}}(\psi | f_1 = i) \neq P_{\text{model B}}(\psi | f_1 = i) \quad (6)$$

In summary, the dependence of the 2-SFS on tree topologies contains a term that depends on the coalescent model but not on the SFS. In other words, the 2-SFS distinguishes between models with identical SFS when the trees used to generate the SFS differ between models.

We can further see from the above discussion why the 2-SFS is particularly useful in distinguishing Kingman from multiple-merger coalescents. In any coalescent model, the presence of a site at frequency i implies that there is a branch in the coalescent history that subtends i leaves. However, given this, the probability that the next coalescent event creates a branch that subtends k of these i leaves is uniformly distributed in the Kingman model, while more skewed offspring distributions can be created by multiple merger events. These types of effects mean that the probability of a given topology conditional on observing the mutation at frequency i can differ substantially between Kingman and multiple-merger models.

We note that we have chosen to implement our model-checking procedure by first using the SFS to infer the best-fit Kingman demographic model, because this is the standard pipeline for demographic inference. We then test for consistency of this model with the observed 2-SFS. However, in principle we could instead attempt to *jointly* fit both the SFS and 2-SFS with a Kingman demographic model, and then test whether we can reject this model based on the deviations of both of these spectra from the best-fit Kingman prediction. We expect that such an approach would find similar power to reject the Kingman model, since the inconsistency between the SFS and 2-SFS under Kingman assumptions arises from the deviations in tree topologies described above, which do not depend on how demographic inference is conducted. However, a rigorous analysis of

1 consistent with the different information contained in the *joint*
2 frequency spectrum of pairs of sites. This takes advantage of
3 information about genealogies that is not present in the SFS, and
4 also avoids the sensitivity to orientation errors that is inherent to
5 unfolded data. The relationship between our method and other
6 more recent work (Freund and Siri-Jégousse 2021; Menardo *et al.*
7 2021; Johri *et al.* 2020; Lepers *et al.* 2021; Árnason *et al.* 2023)
8 that uses an approximate Bayesian computation framework to
9 distinguish between coalescent models is more complex. These
10 studies make use of several SFS-derived statistics as well as additional
11 statistics related to clade size and linkage disequilibrium.
12 These additional statistics are not directly related to the 2-SFS
13 but may contain some related information.

14 We can get an intuitive understanding for why 2-SFS-based
15 statistics are useful in distinguishing between coalescent models
16 by considering how the 2-SFS depends on the distribution of
17 branch lengths and tree topologies. Mathematically, the expected
18 2-SFS, $\langle \tilde{\phi}_{i,j} \rangle = P(f_1 = i, f_2 = j)$ can be directly related to the set

1 this would require the development of a demographic inference
2 method based on joint fitting of both the SFS and 2-SFS, and it is
3 not clear how best to implement such an approach. This is an
4 interesting topic for future work.

5 Throughout this study, we have focused on developing a
6 statistical test that allows us to reject Kingman coalescents with
7 flexible time-dependent population size histories. We have ana-
8 lyzed the power of this method when the true population history
9 involves either a beta coalescent or recurrent positive selection.
10 However, these are far from the only genealogical models that
11 may describe a population's history. For example, population
12 structure or cultural transmission of reproductive success could
13 also lead to deviations from Kingman assumptions. Researchers
14 may often be interested in discriminating arbitrarily between
15 these models, rather than simply rejecting a Kingman coalescent.
16 For example, the differences in the 2-SFS produced by the beta
17 coalescent and positive selection (Fig. 3) suggest that it may be
18 possible to use 2-SFS based statistics to discriminate between
19 these two models. More generally, extending our framework
20 to allow for comparison between two or more arbitrary coales-
21 cent models is an exciting area for future work. However, an
22 important prerequisite is to develop methods to infer the param-
23 eters of such models that best fit the SFS. For example, to use
24 our approach to distinguish between multiple-merger models
25 with different values of α , we would first need to implement a
26 method to jointly infer α and demography from the SFS.

27 We have also focused in this study on a single application
28 of our statistical test to data from *Drosophila melanogaster*. How-
29 ever, there are a broad range of possible further empirical ap-
30 plications. For example, one interesting direction would be to
31 use 2-SFS-based statistics to assess the evidence for variation
32 in multiple-merger coalescence within genomes and between
33 species, potentially identifying genomic regions and organisms
34 that are more likely to be under strong selection. Alternatively,
35 one could survey multiple species using a data set such as the
36 diversity data compiled by [Corbett-Detig et al. \(2015\)](#) or the data
37 analyzed using a method based on the unfolded SFS by [Fre-
38 und et al. \(2023\)](#). These are interesting avenues for future work,
39 which hold the potential to reveal new information about the
40 suitability of widely used population genetic models, and could
41 provide further insight into the forces that determine genetic
42 diversity.

43 Data Availability

44 Data and code used in our study are publicly available in a
45 Github repository at <https://github.com/desai-lab/twosfs>.

46 Acknowledgements

47 We thank Arjun Biddanda, Maryn Carlson, Ivana Cvijović, Ben
48 Good, Dick Hudson, Evan Koch, Joe Marcus, Richard Neher,
49 Matthias Steinrücken, John Wakeley, and Aleksandra Walczak
50 for helpful discussions and comments on the manuscript.

51 Funding

52 DPR was supported by the Chicago Fellows Program of the
53 University of Chicago. JN acknowledges support for this work
54 from NIH grants GM108805 and HG007089. MMD acknowl-
55 edges support from grant PHY-1914916 from the NSF and grant
56 GM104239 from the NIH. This work was completed in part with

57 resources provided by the University of Chicago Research Com-
58 puting Center and the Harvard Faculty of Arts and Sciences
59 Research Computing Center.

60 Competing Interests

61 The authors declare no conflicts of interest.

62 Literature Cited

Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP, Tsambos G, Zhu S, Eldon B, Ellerman EC, Galloway JG *et al.* 2022. Efficient ancestry and mutation simulation with msprime 1.0. *Genetics*. 220:iyab229.

Bhaskar A, Song YS. 2014. Descartes' Rule of Signs and the Identifiability of Population Demographic Models from Genomic Variation Data. *Ann. Stat.* 42:2469–2493.

Bhaskar A, Wang YXR, Song YS. 2015. Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data. *Genome Res.* 25:268–279.

Birkner M, Blath J, Eldon B. 2013. Statistical properties of the site-frequency spectrum associated with lambda-coalescents. *Genetics*. 195:1037–1053.

Blath J, Cronjäger MC, Eldon B, Hammer M. 2016. The site-frequency spectrum associated with Ξ -coalescents. *Theor. Popul. Biol.*. 110:36–50.

Bolthausen E, Sznitman AS. 1998. On ruelle's probability cascades and an abstract cavity method. *Communications in Mathematical Physics*. 197:247–276.

Coop G, Ralph P. 2012. Patterns of Neutral Diversity Under General Models of Selective Sweeps. *Genetics*. 192:205–224.

Corbett-Detig RB, Hartl DL, Sackton TB. 2015. Natural Selection Constrains Neutral Diversity across A Wide Range of Species. *PLoS Biology*. 13.

Cvijović I, Good BH, Desai MM. 2018. The Effect of Strong Purifying Selection on Genetic Diversity. *Genetics*. p. genetics.301058.2018.

Desai MM, Walczak AM, Fisher DS. 2013. Genetic Diversity and the Structure of Genealogies in Rapidly Adapting Populations. *Genetics*. 193:565–585.

Donnelly P, Kurtz TG. 1999. Particle Representations for Measure-Valued Population Models. *The Annals of Probability*. 27:166–205.

Durrett R, Schweinsberg J. 2005. A coalescent model for the effect of advantageous mutations on the genealogy of a population. *Stochastic Processes and their Applications*. 115:1628–1657.

Eldon B. 2016. Inference Methods for Multiple Merger Coalescents, In: Pontarotti P, editor, *Evolutionary Biology: Convergent Evolution, Evolution of Complex Traits, Concepts and Methods*, Springer International Publishing. pp. 347–371.

Eldon B, Birkner M, Blath J, Freund F. 2015. Can the site-frequency spectrum distinguish exponential population growth from multiple-merger coalescents? *Genetics*. 199:841–856.

Eldon B, Wakeley J. 2006. Coalescent Processes When the Distribution of Offspring Number Among Individuals Is Highly Skewed. *Genetics*. 172:2621–2633.

Ferretti L, Klassmann A, Raineri E, Ramos-Onsins SE, Wiehe T, Achaz G. 2018. The neutral frequency spectrum of linked sites. *Theoretical Population Biology*.

Freund F, Kerdoncuff E, Matuszewski S, Lapierre M, Hildebrandt M, Jensen JD, Ferretti L, Lambert A, Sackton TB, Achaz

1 G. 2023. Interpreting the pervasive observation of u-shaped
2 site frequency spectra. *PLOS Genetics*. 19:1–18.

3 Freund F, Siri-Jégousse A. 2021. The impact of genetic diversity
4 statistics on model selection between coalescents. *Computational Statistics & Data Analysis*. 156:107055.

5 Fu YX. 1995. Statistical properties of segregating sites. *Theor. Popul. Biol.*. 48:172–197.

6 Gillespie JH. 2000a. Genetic drift in an infinite population: The
7 pseudohitchhiking model. *Genetics*. 155:909–919.

8 Gillespie JH. 2000b. The neutral theory in an infinite population.
9 *Gene*. 261:11–18.

10 Gillespie JH. 2001. Is the population size of a species relevant to
11 its evolution? *Evolution*. 55:2161–2169.

12 Good BH, Walczak AM, Neher RA, Desai MM. 2014. Genetic
13 Diversity in the Interference Selection Limit. *PLOS Genetics*.
14 10:e1004222.

15 Gosset E. 1987. A three-dimensional extended kolmogorov-
16 smirnov test as a useful tool in astronomy. *Astronomy and Astrophysics*.
17 188:258–264. ADS Bibcode: 1987A&A...188..258G.

18 Griffiths RC, Tavaré S. 1994. Sampling theory for neutral alleles
19 in a varying environment. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*. 344:403–
20 410.

21 Griffiths RC, Tavaré S. 1998. The age of a mutation in a general
22 coalescent tree. *Communications in Statistics. Stochastic Models*. 14:273–295.

23 Hahn M. 2018. *Molecular Population Genetics*. Sinauer Series. Oxford University Press.

24 Hallatschek O. 2018. Selection-like biases emerge in population
25 models with recurrent jackpot events. *Genetics*. 210:1053–1073.

26 Haller BC, Galloway J, Kelleher J, Messer PW, Ralph PL. 2019.
27 Tree-sequence recording in slim opens new horizons for forward-time simulation of whole genomes. *Molecular Ecology Resources*. 19:552–566.

28 Hudson RR. 1983. Properties of a neutral allele model with intragenic recombination. *Theoretical Population Biology*. 23:183–
29 201.

30 Hudson RR. 2001. Two-Locus Sampling Distributions and Their
31 Application. *Genetics*. 159:1805–1817.

32 Hudson RR. 2002. Generating samples under a Wright–Fisher
33 neutral model of genetic variation. *Bioinformatics*. 18:337–338.

34 Johri P, Charlesworth B, Jensen JD. 2020. Toward an evolutionarily
35 appropriate null model: Jointly inferring demography and purifying
36 selection. *Genetics*. 215:173–192.

37 Johri P, Riall K, Becher H, Excoffier L, Charlesworth B, Jensen JD.
38 2021. The impact of purifying and background selection on the
39 inference of population history: Problems and prospects. *Molecular Biology and Evolution*. 38:2986–3003.

40 Kern AD, Hahn MW. 2018. The Neutral Theory in Light of Natural
41 Selection. *Molecular Biology and Evolution*. 35:1366–1371.

42 Kiefer J. 1953. Sequential minimax search for a maximum. *Proceedings of the American Mathematical Society*. 4:502–506.

43 Kingman JFC. 1982a. The coalescent. *Stochastic Processes and their Applications*. 13:235–248.

44 Kingman JFC. 1982b. On the genealogy of large populations. *Journal of Applied Probability*. 19:27–43.

45 Kolmogorov A. 1933. Sulla determinazione empirica di una
46 legge di distribuzione. *Giornale dell’ Istituto Italiano degli Attuari*. 4:83–91.

47 Koskela J. 2018. Multi-locus data distinguishes between population
48 growth and multiple merger coalescents. *Statistical Applications in Genetics and Molecular Biology*. 17.

49 Koskela J, Wilke Berenguer M. 2019. Robust model selection
50 between population growth and multiple merger coalescents. *Mathematical Biosciences*. 311:1–12.

51 Lack JB, Cardeno CM, Crepeau MW, Taylor W, Corbett-Detig
52 RB, Stevens KA, Langley CH, Pool JE. 2015. The *Drosophila*
53 genome nexus: A population genomic resource of 623
54 *Drosophila melanogaster* genomes, including 197 from a single
55 ancestral range population. *Genetics*. 199:1229–1241.

56 Langley CH, Crepeau M, Cardeno C, Corbett-Detig R, Stevens
57 K. 2011. Circumventing Heterozygosity: Sequencing the Amplified
58 Genome of a Single Haploid *Drosophila melanogaster* Embryo. *Genetics*. 188:239–246.

59 Lepers C, Billiard S, Porte M, Méléard S, Tran VC. 2021. Inference
60 with selection, varying population size, and evolving population
61 structure: application of abc to a forward–backward coalescent
62 process with interactions. *Heredity*. 126:335–350.

63 Li H, Durbin R. 2011. Inference of human population history
64 from individual whole-genome sequences. *Nature*. 475:493–
65 496.

66 Menardo F, Gagneux S, Freund F. 2021. Multiple merger genealogies
67 in outbreaks of *mycobacterium tuberculosis*. *Molecular Biology and Evolution*. 38:290–306.

68 Möhle M, Sagitov S. 2001. A Classification of Coalescent
69 Processes for Haploid Exchangeable Population Models. *The Annals of Probability*. 29:1547–1562.

70 Myers S, Fefferman C, Patterson N. 2008. Can one learn history
71 from the allelic spectrum? *Theoretical Population Biology*.
72 73:342–348.

73 Neher RA, Hallatschek O. 2013. Genealogies of rapidly adapting
74 populations. *Proceedings of the National Academy of Sciences*.
75 110:437–442.

76 Nicolaisen LE, Desai MM. 2012. Distortions in Genealogies
77 Due to Purifying Selection. *Molecular Biology and Evolution*.
78 29:3589–3600.

79 Pitman J. 1999. Coalescents With Multiple Collisions. *The Annals of Probability*. 27:1870–1902.

80 Rödelsperger C, Neher RA, Weller AM, Eberhardt G, Witte H,
81 Mayer WE, Dieterich C, Sommer RJ. 2014. Characterization
82 of Genetic Diversity in the Nematode *Pristionchus pacificus*
83 from Population-Scale Resequencing Data. *Genetics*. 196:1153–
84 1165.

85 Rosenberg NA, Nordborg M. 2002. Genealogical trees, coalescent
86 theory and the analysis of genetic polymorphisms. *Nature Reviews Genetics*. 3:380–390.

87 Sagitov S. 1999. The general coalescent with asynchronous
88 mergers of ancestral lines. *Journal of Applied Probability*. 36:1116–
89 1125.

90 Sagitov S. 2003. Convergence to the Coalescent with Simultaneous
91 Multiple Mergers. *Journal of Applied Probability*. 40:839–
92 854.

93 Sargsyan O, Wakeley J. 2008. A coalescent process with simultaneous
94 multiple mergers for approximating the gene genealogies of many
95 marine organisms. *Theor. Popul. Biol.*. 74:104–114.

96 Schraiber JG, Akey JM. 2015. Methods and models for unravelling
97 human evolutionary history. *Nature Reviews Genetics*.
98 16:727–740.

99 Schrider DR, Shanku AG, Kern AD. 2016. Effects of Linked
100 Selective Sweeps on Demographic Inference and Model Selection.
101 *Genetics*. 204:1207–1223.

102 Schweinsberg J. 2000. Coalescents with Simultaneous Multiple
103

1 Collisions. *Electronic Journal of Probability*. 5.

2 Schweinsberg J. 2003. Coalescent processes obtained from su-
3 percritical Galton–Watson processes. *Stochastic Processes and*
4 *their Applications*. 106:107–139.

5 Seger J, Smith WA, Perry JJ, Hunn J, Kaliszewska ZA, Sala
6 LL, Pozzi L, Rowntree VJ, Adler FR. 2010. Gene Genealo-
7 gies Strongly Distorted by Weakly Interfering Mutations in
8 Constant Environments. *Genetics*. 184:529–545.

9 Sella G, Petrov DA, Przeworski M, Andolfatto P. 2009. Pervasive
10 Natural Selection in the *Drosophila* Genome? *PLOS Genetics*.
11 5:e1000495.

12 Smirnov N. 1948. Table for estimating the goodness of fit of
13 empirical distributions. *The Annals of Mathematical Statistics*.
14 19:279–281.

15 Spence JP, Kamm JA, Song YS. 2016. The Site Frequency Spec-
16 trum for General Coalescents. *Genetics*. 202:1549–1561.

17 Steinrücken M, Birkner M, Blath J. 2013. Analysis of DNA se-
18 quence variation within marine species using Beta-coalescents.
19 *Theoretical Population Biology*. 87:15–24.

20 Tajima F. 1983. Evolutionary Relationship of DNA Sequences in
21 Finite Populations. *Genetics*. 105:437–460.

22 Tajima F. 1989. Statistical method for testing the neutral mutation
23 hypothesis by DNA polymorphism. *Genetics*. 123:585–595.

24 Vitti JJ, Grossman SR, Sabeti PC. 2013. Detecting Natural Selec-
25 tion in Genomic Data. *Annual Review of Genetics*. 47:97–120.

26 Wakeley J. 2009. *Coalescent Theory: An Introduction*. Roberts &
27 Company.

28 Xie X. 2011. The Site-Frequency Spectrum of Linked Sites. *Bul-
29 letin of Mathematical Biology*. 73:459–494.

30 Árnason E, Koskela J, Halldórsdóttir K, Eldon B. 2023. Sweep-
31 stakes reproductive success via pervasive and recurrent selec-
32 tive sweeps. *eLife*. 12:e80781.