SAFER: Sparsity Integrated Compute-in-Memory
Al Accelerator with a Fused Dot-Product Engine
and a RISC-V CPU

Amitesh Sridharan®, Asmer Hamid Ali*, Yongjae Lee*, Anupreetham AnupreethamT, Yaotian Liu*,
Jeff Zhang*, Jae-sun Seo, Deliang Fan*
*Arizona State University, Tempe, AZ, USA. Email: {asridh25, dfan} @asu.edu
TCornell Tech, New York, NY, USA. Email: {js3528} @cornell.edu

Abstract—We present a sparsity-aware in-SRAM multiply-
and-accumulate (MAC) accelerator with a fused dot-product
engine (SAFE) and a RISC-V CPU (SAFER). For the first time,
we implement a unified dot-product compute methodology in
Compute-in-memory (CIM) circuits vastly reducing the hardware
footprint for simultaneously supporting both floating point (FP)
and integer (INT) MACs. Additionally, we integrate various
N:M sparsity formats allowing the CIM macro to store and
operate exclusively on compressed non-zero weights. We also
tightly integrate a 32-bit RISC-V CPU to SAFE for efficient data-
movement across chip. The 28nm SAFER prototype achieves a
peak energy efficiency of 105.7 TOPS/W (78.9 TOPS/W) and
79.9 TOPS/W (63 TOPS/W) in the macro (chip) level for FP8
and INTS8 workloads respectively. SAFER also achieves a memory
footprint reduction proportional to sparsity through compressed
storage, vastly reducing the macro count required for large Al
models. For our proposed figure of merit which accounts for PPA
along with memory footprint, and for this FoM SAFER improves
current SoTA CIMs by 13.8x for FP8 workloads.

Index Terms—Digital in-memory computing, Multiply and
accumulate, Floating-point and Integer acceleration, RISC-V.

I. INTRODUCTION

Digital CIM architectures have a successful track record
in performing efficient matrix multiplications (MM) for Al
workloads, thanks to their high memory bandwidth and tight
compute-memory coupling. There have been a plethora of
CIM designs targeting various hardware and software features
to enable efficient processing of deep neural networks (DNNs).

Sparsity is one such feature and has been widely adopted
in various DNNs. DNN models are getting larger and is
becoming more challenging to fit them on chip. This is further
exacerbated by the fact that current CIMs have poor storage
density due to integration of compute logic circuits. Weight
sparsity achieved through pruning in DNNSs, offers significant
memory footprint reduction when paired with compression.
Compressed storage can also reduce memory accesses to CIMs
when mapping large DNN workloads. Prior CIM works have
explored this: [1] uses bitmaps for compression but requires
external compute and complex dense-format conversion via
butterfly multiplexers. SP-IMC [2] adopts compressed sparse
column (CSC) with simplified decode hardware but suffers
from low MAC utilization. SAFE aims to address these
drawbacks by offering a simple decode mechanism for various
sparsity ratios and full utilization of the compute circuits.

[nput Mem. (0-5KB)|<0—>| Input Mem. (0.5KB)| | &

T » X

w

-] SAFE Core #0 SAFE Core #1 =
y"; [Local Ctrl. Status Local Ctrl. Status E
— w
g 5. 192x32 192x32 =
[£8|| CIM Array ||+ CIM Array £
- ® =) £
O |]©g]||o-5kB Weight|[* 0.5KB Weight|| | =
2""|0.25KB Index 0.25KB Index s

©

N| (=]

7. | Input Mem. (0.5KB)|<-cm T { Input Mem. (O.SKB)l £
o . a|8|a =
50 AFE Core#2 | z3z SAFE Core #3 =
Local Ctrl. Status || s|3|¢| |[Local Ctrl. Status 2

® 192x32 « 5. 192x32 ;-—

c ||[EE| cMmArray |l sl CIM Array g
3 © o[0.5KB Weight ||« O o ([0.5KB Weight >
] 2 ™110.25KB Index 8-""110.25KB Index S
2 7]
& Output Mem. (1KB)|« >| Output Mem. (1KB)| | &
> -

» =

]

Output gather Global Control Q

scatter — | ©l0 Satat:sn ol le—| &

Fig. 1. SAFER chip architecture.

Data-type re-configurability is another feature that enables
support for various DNNs. Supporting different number for-
mats such as integer (INT) and floating-point (FP) precision
in CIM hardware is expensive and needs careful hardware re-
use. Recent CIM works have explored this, but schemes in [3],
[4] trade off compute accuracy in FP arithmetic for hardware
complexity, whereas [5] has no accuracy drop but incurs large
hardware overhead. SAFE, for the first time, explores a fused-
dot product (FSD) approach in CIM, which was previously
only employed in ASICs [6], [7]. This method can reduce
the cost of rounding and normalization for large vector-vector
MACs [6]. Each column in CIM arrays typically performs
large vector-vector MACs, therefore FSD can naturally fit well
with CIM array design. Additionally, FSD scheme uses fixed-
point adders for accumulations. Adder trees occupy a large
footprint in digital CIMs, which can be amortized by using
the same adder trees in FSD for both INT and FP.

MAC configuration flexibility is another key feature that
requires attention as there are a variety of Al workloads
all requiring different MAC structures. Self-attention layer in
large language models (LLMs) differs from a convolution layer
and even convolutions vary from layer to layer in different

TABLE I
RISC-V INSTRUCTION SET EXTENSIONS.

Instruction Type

RV32IM Base

Function

All ratified instructions

Load store instructions Load/Store IMC
*New opcode for each instruction,
honors the same funct field for Load/Store IP mem
byte, 1/2 byte, word. Load/Store OP mem

R-Type: Loads to CPU reg, stores to
CPU D-mem.

Load/Store global CSR
FP8 EAM3/E5M2 8-vector addition
FP8 EAM3/E5M2 multiply
FP8 E4AM3/E5M2 Single add

32-bit INT 8-vector addition

Floating point

Extensions
*(R-type and |-type extension)

Copy instructions
*Moves data from non CPU memory to
desired location
*(R-type and I-type extension)

(a) Sparse Decode Unit

Copy desired IP mem location to
OP mem location and vice versa

Wi 6T xaiWo,~N ‘Sparse Decode:[sparsity Cycle
i <) (SD) : Support Cost
8= To iplier:
KX 1:2 2x2
o
22 1-3:4 4x2
All W and Idx. are [g7] . . .]i Row Sel. - o
directly fed into Weight 1-7:8 8x2
sparse o Tndox. |ndexwiiow) | Selector|:] 1-15:16 16x2

d
from node Q. N [¥

“nn m ycle overhead to decode all non-zero

Idx Bit width for all 2 2 | Weights in each compute column. *Not

supported sparsity ldx-BW| 1 including data-type latency.

(b) Sparse Compression and Mapping

iPo 0ofo _E Input Queue in FIFO IMC Col 0 IMC Col1 IMC Col2 IMC Col 3
2 .
i1 w2| o g [p3]iP2TiP1]iIPO wo fw2 jwa fwe|
Z0
2z P2 Ec TP6TP5 Wi Wil (WS o[z [W7)laf=(S
§ o [ofwe| G2 [Nextipfetch | 7] 11l <|3]”|I<|&@
K | [>ofofofo]ls2 [wa[ibz]mi[o)]1] 2 2
= pst>wifofo o || E° . : = -
g [p7ms b5 . x32 . x32 . x32 . x32
iPel—>{ 0 [ws[0 [w7 H] Next ID fetch . . .
IP7| 0o fws|o|le Indices are [Ace.][Acc. ” Acc. “ Acc. |
<)
to N:M.

Multiplication Direction
(c) Normalized Input Queues

Row 0 —[IP2/3[IP1/2[IP0/1 Row 0 P1/2i3]1P0/1/2 N:M Sparsity will yield M-(N-1)
Row 1 —IP2/3][IP0/1[IP1/2] Row 1 —[IP0/1/2]1P1/2/3 IPs per compressed row
But all rows are normalized to
Row 0 Row 0 1:M IPs to avoid IP rearrange
Row 1 —{IP3[IP2[IP1JIP0] Row 1—»[IP3]1P2 [IP1iP0]
ity 3:4 Sparsity

hardware at the cost of latency.

2:4 Sparsi

Fig. 2. (a) Sparse decode unit, (b) sparse compression and mapping, (c)
reducing hardware complexity by normalizing input queue length.

DNNs. SAFER integrates a custom RISC-V CPU to cast
weights and activations across all memories on chip to help
with MAC reconfigurability. We also augment the RISC-V
CPU with vector additions to help with post accumulation of
partial sums for large matrices.
II. ARCHITECTURE AND OPERATION

A. SAFER Chip Architecture

Fig. 1 shows the SAFER chip architecture, consisting of
four SAFE cores, input/output (IP/OP) buffers, control logic,
and OP gather-scatter unit. To enable parallel processing, each
SAFE core is allocated a dedicated 0.5KB IP buffer for feeding
unique IPs. The OPs/partial-sums from all SAFE cores are
collected and transferred to two 1KB OP buffers via the OP
gather-scatter unit. We incorporate a custom 32-bit single-
cycle RISC-V CPU to aid with the address calculations for
data movement between IP/OP buffers and weights (Ws) in
the CIM array. This is done by augmenting the base RV32-IM
instruction set with additional load/store instructions. These
additional instructions provide support for a variety of MAC

Input |)
Gather Compute Column #7 (SRAM Col 28-31)
Scatter Compute Column #0 (SRAM Col 0-3) Iml
ibWo
e, (I = Gan
4 : WLO
—1 [Pwo’
2 Ho @ [1owo]
£ L 4x4 g
'g wL2 6T- SRAM H
® Weight 1 3
o w3 230 ®
E a
s ek e L g
£ | wis|i| SRAM 1dx. [* °
w | [e &
2 fowl ol g
e . 2l &
3 fwirsd 3
o
e P R .g. \WL192
IDW31] | & IIEVV‘\II?
i ™
5 & pone | BL Drivers and Sense Amplifiers | RS
£ O
53 i;’;—'INTTV:SI 2’s complement to Shift Acc
© g FPEMAC Ouf| FP§ & INT round ;
SR o———NIMAC Out o nable acct I
o& Enable shift
- € ITt value

Fig. 3. SAFE core and macro architecture.
configurations through uni/multi-casting Ws/OPs/IPs to any/all
of the SAFE cores. The CPU also monitors the status of all
SAFE cores through global control status registers. Addition-
ally, we include FP8 (E4M3 and E5SM2) and INT32 vector
addition to the CPU to enable partial-sum aggregations from
SAFE macros for large matrices. Table I provides the list of
all supported instructions.

B. SAFE Macro Architecture

Fig. 3 illustrates a single SAFE core. Each core has a
192x32 CIM array which is broken into eight FSD “com-
pute columns” (CCs) for compressed W storage and sparse
FPS/INT8 MAC operations. Each core also has an input
gather-scatter (IGS) which retrieves IPs and distributes them to
the CCs through the IP FIFOs. The CIM array also has WL-
decoders, BL-drivers, and sense amplifiers to facilitate row-
by-row read and writes. The control logic manages compute
modes and sparsity ratios. Status registers track MAC count
and manage IP requests via the IGS.

1) Compute Column (CC): Each CC in a SAFE macro
contains 192x4 6T-SRAM bits, out of which 128 x4 is used
for W storage and 64 x4 for Idx storage. The CC also includes
a 32-vector FSD MAC unit, supported by a backup SRAM
with 64 storage locations for 8-bit weights. This backup
SRAM allows a new set of weights to be written to the CIM
array while the current set is actively used for computation.
CC is divided into 32 rows, where each row has 4x4 bits
for W storage and 2x4-bits for Idx storage. These Ws and
Idxs are sent to a sparse decode unit which filters two 8-bit
Ws using the two 4-bit Idxs into one weight (or 0) and this
weight is sent to the multipliers. There is an individual FP8 and
INT8 multiplier to handle both data-types. The outputs from
the multiplier is sent to a 32-input 2’s complement adder tree.
The multipliers are data-gated to save power between different
data types. Both data types share the same adder tree as the
accumulation data format is normalized between the two. The
outputs from the adder tree is then fed into a shift accumulator
(SA). The shift portion of the SA can be enabled by the control

E5M2 Multiplication | (a) FP Multiply Unit
g

iP[6: 'i']'Wiis' 'i']"'W'[i"i)']"l'['i'iij' *\ W[7:0] IP[7:0] I
1
+ ES y 1,1“& 2y i\ Y E4 Y o EM3Y
5-bit 2 — 3-pit ' ! 4-bit 2 — 4.bit
Bm \ ! S p1
RCA 2 Mul. \‘ sE sE| RCA E) Mul.
b - £S5 ESf)
s Mantissa g > 5 2 > Mantissa
Bias | precision is | 2 ‘; o Sf\ Bias [precision is
Sub. | preserved: K 35| [2(23) Sub. preserved:
5bL 21_2+4 fob iy ws= nlw =S S 4b 2126 e
do R als
>18? 1 VARN EB-1 a7
- - -2
iesmz)))1 [Sh HEMEHR
ECycIe : m 8 E m 8
UINT to 2’s ~
\ / complement UINT to 2’s
% Y] 23b Multlply \ complement

[Exp W] [Exp IP] [MantW] [MantiP] . . . x32

e Alignment without

| Normalizationl
normalization for

‘, __________ all multiplied Lla-l FP convert |

mantissa Done once

L -) —_ x32 after addition
Fixed point adder tree

Fig. 4. (a) Floating-point multiply unit and (b) fused dot-product in SAFE.

logic depending on the data type. Now the 2’s complement
partial-sum from the SA can optionally converted back to FP.

2) Sparse Decode Unit (SD): As shown in Fig. 2, SAFE’s
sparse decode method supports various N:M sparsity formats.
It adopts a compressed sparse row (CSR) compression scheme,
storing an index for each non-zero weight. The index bit-width
is determined by the maximum supported M in N:M. All
supported N:M ratios and their corresponding bit-width is
shown in Fig. 2(a). The stored indices specify which weights
the IPs must be multiplied with before accumulation. Each
row in a CC has an Idx word line (IDWL); as IPs are
streamed into the macro via the IPWs, the corresponding
indices are simultaneously streamed through the IDWLs and
the W selector uses these indices to determine whether the
corresponding weight needs multiplication from the streamed-
in IPs. This is required because when a matrix is compressed
along the accumulation direction, it breaks the multiplication
structure. Not all Ws need to be multiplied with the streamed-
in IPs. We also time-multiplex sparsity, this is because there is
only a single IPW for every W, if a 1:4 sparsity is implemented
then for each CIM row, four IPs need to be streamed-in along
with 4 Idxs and will vastly increase the routing resources.
The sparse compression and mapping mechanism is shown in
Fig. 2(b). For N:M sparsity where N#1, each row would
require M —(N—1) IPs, and the IPs required in each row are
not in-order. To avoid more hardware for input re-arrangement,
we stream-in all M IPs regardless of V. This normalizes the
cycle count to M, as described in Fig. 2(c).

3) FPS fused dot-product (FSD) and INT8 MAC: The FSD
method supports vector-vector MACs for FP data-types, as
shown in Fig. 4(b). FP multiplications begin with exponent
addition and mantissa multiplication; instead of rounding, the
mantissa’s precision is preserved and is shifted by the exponent
and mapped to a 2’s complement number line. For E4M3,
the number line spans +2° — 2712 (23 bits) and for ESM2
the number line spans +2'6 — 2718 (36 bits). Now that the

E4M3/INT8 E5M2

Y PTRC Y Y] 5 ©

o '0*4°\° 'cﬂ"\e lc:!"\e i loﬂ“\ 1oye® 'c\l"\e |o;°‘° 1oy
1 1
1
1
|
Not for; |
INT8 |

|apD ADD |: ADD!I
1

SA ILsa

1

| |I£I|E<18|E>18

I I IA
ot for INT8 .

1

1
! 1 |
I - Input/ldx Fetch B - Partial Multiply =20 - Adder tree [Z21 - FP8 Convert
[—1- Sparse Decode [- INT Conversion] - Accumulation

Fig. 5. Pipeline diagram for a 1:2 sparse workload.

vectors are in 2’s complement format, they can be accumulated
using a fixed-point adder. The adder-tree bit-width is set to 23
bits instead of 36 bits because of area constraints. To support
E5M2, we time-multiplex the adder hardware over two cycles.
The first cycle is used to handle all exponents below 18 and
the next cycle is used for exponents above 18 and the shift
accumulator performs shift and accumulate compuutation of
the two partial sums. Fig. 4(a) shows the detailed FP multiply
units in SAFE. To support INTS8, an 8-bit integer multiplier
is added to the pipeline after the SD stage, while the adder
hardware is reused this is shown in Fig. 3. Fig. 5 illustrates
SAFE’s pipeline for all supported data types.

III. CHIP MEASUREMENTS AND RESULTS

SAFER is prototyped in 28nm CMOS. It occupies
0.95mm?, and each SAFE core occupies 0.15mm?. Fig. 7
shows the power/area breakdown for a SAFE core. FP§ MACs
consume less power and area, compared to INT8 MACs.
This is due to the wide multiplier unit for INT8 and the 2’s
complement version of an FP8 number is very sparse and
reduces the overall activity factor of the adder tree. SAFER can
operate at 0.57-1.2V, reaching a Fj,,, of 141 MHz@0.57V
and 815 MHz@1.2V. Fig. 6(a) shows the voltage-frequency
scaling measurements for both FP8 and INT MACs, where the
CPU was set to perform NoP instruction. All measurements
were done at 28°C. For INT8 workloads, we use an IP toggle
rate of 50% and bit-wise W sparsity of 50%. FP8 workloads
use randomly generated numbers for both IPs and Ws within
the representable range. The SAFE(R) achieves a peak energy
efficiency of 105.7 (78.9), 78.8 (59) and 79.9 (63) TFLOPS/W
for FP8 E4M3, FP8 E5M2, and INT8 MACs respectively.

To quantify how well various sparsity translates to memory
footprint, we map a ResNet-18 model (~11M parameters)
trained for CIFAR-100 dataset for various 1:M sparsity. With
1:16 sparsity, only 91 SAFE macros are required for the entire
model, which marks 15.5x savings in macro area, as shown in
Fig. 6(b). We also validate the accuracy for ResNet-18 (DNN)
and a Llama-2-7b (LLM) model for FP8 and INT8 under
various sparsity to demonstrate the practical need for different
N:M sparsity, as shown in Table II. To account for reduced
memory footprint due to compressed storage, we devise a
figure of merit (FoM) of TOPS/W/mm?*Weights/Byte, which
takes energy efficiency, chip area and memory size in bytes for

60

=y
N
=

T —T————7——11.5K <120 9200
| -4-Power INT8 (Chip)} & & —&—Memory % - FP8 (E4M3) Egg - : =; 6
| i .9 o FPg - 1:
_ |{ PowerFP8 (Chip) it —e-Macro Count ES INT8 . K1l FP8 - 1:4
£ 40H-e Frequency —%-—08% £10 K S 80 FP8 (E5M2) { 5 600 1SSCC’25 [4]
E 7 g o E H \[|-1ssCC"25 3]
5 K)‘I] s > k] ESSCIRC [5]
3 b g =5 leosN izl § i
& 20 . 045 5 okl g 40[@% -— @121 8 300
- 2 2 116 % E NS & . .
o »n w o R IR N o.
< "/ = @ o) - s: -o:
ol e : 0 0 0 2 o0 o[l R
04 0.7 1.3 0 25 50 75 100 a0 200 200 600 0.4 0.7 1 1.3
VDD (V) Sparsity Ratio (%) Throughput (G(FL)OPS) VDD (V)
(@ (b) (c) (d)
Fig. 6. (a) Power and frequency scaling, (b) sparsity savings, (c) throughput and energy efficiency scaling, (d) figure of merit.
— Sparse Decode Eg:c;e; tcr:e =f/|?1r|1tt|r:|Iy TABLE II
= Bitcells ttAce. 8.7% Al MODEL ACCURACY FOR VARIOUS SPARSITY RATIOS.
e 9 - O,
100 4% 1.5% Model/Dataset ResNet-18 on CIFAR-100
< 8o | Act/W Precision INT8/INT8 FP8/FP8
£ Sparsity ratio 11 | 14 [18 [1116 | 111 14 | 18 | 1:16
5 60 Model accuracy (%) | 76 |75.7 |75.3 | 739 | 765 | 765 | 76.2 | 74.8
% 40 Model Llama-2-7b-hf (Post trained, not fine tuned)
o Act/W Precision FP8/FP8
20— Performance Wikitext2 BoolQ 0-shot
Score (Lower is better) (Higher is better)
INT E4M3 ESM2 Sparsity ratio 11| 24 | 48 | 816 | 11 | 24 | 48 | 816
Fig. 7. (a) SAFE power, (b) area breakdown.
i Model accuracy score | 5.1 12 | 8.3 7.2 0.77 1 0.67 | 0.72 | 0.74
2
Maj:ro area 0.15 mm TABLE TII
Blelarea 1.52 mm? COMPARISON WITH SOTA FULLY DIGITAL CIM WORKS.
CRENDRISEN| 32-P & 8-OP/core This ISSCC'25 | ISSCC'25 | CICC'24 | ESSCIRC'
Alignment One-shot post work [4] [3] [2] 23 [5]
multiplication Technology 28nm 28nm 28nm 28nm 28nm
Peak 16-105.7(E4M3) Voltage (V) 0.57-1.2 06209 | 06509 0.57-1.18 0.55-1.2
T(FLJOPSW | 12-78.8 (E5M2) Frequency (MHz) 141-815 100-525 | 153-400 201-1160 650
12.4-79.9(INT8)
o 20139 INTSIEAN3 SRAM Cell 6T Logic 10T 6T 10T 8T/14T
'eal -
Macro size 24Kb 224Kb 32Kb 8Kb 4Kb
G(FL)OPS 18-104(E5M2) : (10Kb) W)
Fig. 8. Die-micrograph and chip summary. Weight/Input INT8,FP8 FP16/8, INT4/8 INT4/8 FP8
. . . . oo Precision (E4/5M3/2) INT8 | FP8,BF16
8-bit weight parameters of various sparsity ratios in the CIM Acouracy Loss No Yos Yos No No
array. Table III and Fig. 6(d) show that SAFER achieves 13.8x Sparsity Support SSRNM | Zoroskp | None | CSONM [None
. . . %-99% ynamic %-99.9%
improvements in this FoM for FP8 workloads, compared to ol 605 7Em) | %97 923 - ey
prior SoTA digital CIMs. $F:[$c¥:sﬁ/'\7\'/my 13788(Che)
12.4-79.9(PIM 115 71.4 57.7 -
IV. CONCLUSION INTS 10-63(C:|ip))
In this work, we prototype SAFER, an in-SRAM sparse Compute densiy FP8? 0.34.79 33 3.23 - 0.94
. . T(FL)OPS/mm 1.3
FSD-based CIM processor, which integrates a custom RISC- INTe| 0.24.3 381 234 12
. . .) 8.6-51.9(1:1) 37.42 59.53 29.2
V CPU enabling support for a variety of Al models from Figure of Merit®: (FPg*| 34.7.207(1:4) | Forall | Forall For all
T(FL)YOPS/W/ 138-831(1:16) | sparsity sparsity sparsity
DNNs to LLMs. Through FSD, SAFE enables FP§ MACs mm2* Ws/byte,
R . . . R where W is an 8- 6.8-41.8(1:1) 164.3 84.1 57.7(1:1)
with minimal overhead while also supporting hardware sharing bitweight ~ |INT8| 27.4-167(1:4) | Forall | Forall | 230.68(1:4) -
109-670(1:16) sparsity sparsity 922.7(1:16)
between FP8 and INT8 formats. Measurement results show

that SAFE achieves close to SOTA TOPS/W and TOPS/mm?
while maintaining full accuracy for all MAC workloads. SAFE
also implements sparsity in the form of compressed storage,
achieving memory footprint reduction proportional to sparsity.
For the proposed FoM, SAFER shows 13.8x improvement
compared to SoTA digital CIMs for FP8 workloads.

V. ACKNOWLEDGEMENT
This work is supported in part by the NSF under Grant No.
2314591, No. 2505326, No. 2528723, No. 2528767 and the
CoCoSys Center in JUMP 2.0, an SRC Program by DARPA.

REFERENCES

[11 S. Liu et al., “16.2 A 28nm 53.8TOPS/W 8b Sparse Transformer
Accelerator with In-Memory Butterfly Zero Skipper for Unstructured-
Pruned NN and CIM-Based Local-Attention-Reusable Engine,” in IEEE
ISSCC, 2023.

TFLOPS Calculation: IP Channels x OP Channels/Latency . *FP8 metrics are shown for E4M3.
&NT and E5M2 Multiplier area subtracted for accurate comparison. *FP8 Multiplier area subtracted.
$FoM = Energy efficiency/die area * # of 8-bit weights/byte

[2] A. Sridharan et al., “SP-IMC: A Sparsity Aware In-Memory-Computing
Macro in 28nm CMOS with Configurable Sparse Representation for
Highly Sparse DNN Workloads,” in IEEE CICC, 2024.

Y. Yiyang et al., “14.5 A 28nm 192.3TFLOPS/W Accurate/Approximate
Dual-Mode-Transpose Digital 6T-SRAM CIM Macro for Floating-Point
Edge Training and Inference,” in IEEE ISSCC, 2025.

Z. Yue et al., “14.4 A 51.6TFLOPs/W Full-Datapath CIM Macro Ap-
proaching Sparsity Bound and <2730 Loss for Compound Al in IEEE
ISSCC, 2025.

J. Saikia et al., “FP-IMC: A 28nm All-Digital Configurable Floating-Point
In-Memory Computing Macro,” in /EEE ESSCIRC, 2023.

B. Hickmann et al., “Intel Nervana Neural Network Processor-T (NNP-T)
Fused Floating Point Many-Term Dot Product,” in /IEEE ARITH, 2020.
J.-S. Park et al., “A Multi-Mode 8K-MAC HW-Ugtilization-Aware Neural
Processing Unit with a Unified Multi-Precision Datapath in 4nm Flagship
Mobile SoC,” in IEEE ISSCC, 2022.

(3]

(4]

(51
(6]
(71

