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Abstract—We present a sparsity-aware in-SRAM multiply-
and-accumulate (MAC) accelerator with a fused dot-product
engine (SAFE) and a RISC-V CPU (SAFER). For the first time,
we implement a unified dot-product compute methodology in
Compute-in-memory (CIM) circuits vastly reducing the hardware
footprint for simultaneously supporting both floating point (FP)
and integer (INT) MACs. Additionally, we integrate various
N:M sparsity formats allowing the CIM macro to store and
operate exclusively on compressed non-zero weights. We also
tightly integrate a 32-bit RISC-V CPU to SAFE for efficient data-
movement across chip. The 28nm SAFER prototype achieves a
peak energy efficiency of 105.7 TOPS/W (78.9 TOPS/W) and
79.9 TOPS/W (63 TOPS/W) in the macro (chip) level for FP8
and INTS8 workloads respectively. SAFER also achieves a memory
footprint reduction proportional to sparsity through compressed
storage, vastly reducing the macro count required for large Al
models. For our proposed figure of merit which accounts for PPA
along with memory footprint, and for this FoM SAFER improves
current SoTA CIMs by 13.8x for FP8 workloads.

Index Terms—Digital in-memory computing, Multiply and
accumulate, Floating-point and Integer acceleration, RISC-V.

I. INTRODUCTION

Digital CIM architectures have a successful track record
in performing efficient matrix multiplications (MM) for Al
workloads, thanks to their high memory bandwidth and tight
compute-memory coupling. There have been a plethora of
CIM designs targeting various hardware and software features
to enable efficient processing of deep neural networks (DNNs).

Sparsity is one such feature and has been widely adopted
in various DNNs. DNN models are getting larger and is
becoming more challenging to fit them on chip. This is further
exacerbated by the fact that current CIMs have poor storage
density due to integration of compute logic circuits. Weight
sparsity achieved through pruning in DNNSs, offers significant
memory footprint reduction when paired with compression.
Compressed storage can also reduce memory accesses to CIMs
when mapping large DNN workloads. Prior CIM works have
explored this: [1] uses bitmaps for compression but requires
external compute and complex dense-format conversion via
butterfly multiplexers. SP-IMC [2] adopts compressed sparse
column (CSC) with simplified decode hardware but suffers
from low MAC utilization. SAFE aims to address these
drawbacks by offering a simple decode mechanism for various
sparsity ratios and full utilization of the compute circuits.
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Fig. 1. SAFER chip architecture.

Data-type re-configurability is another feature that enables
support for various DNNs. Supporting different number for-
mats such as integer (INT) and floating-point (FP) precision
in CIM hardware is expensive and needs careful hardware re-
use. Recent CIM works have explored this, but schemes in [3],
[4] trade off compute accuracy in FP arithmetic for hardware
complexity, whereas [5] has no accuracy drop but incurs large
hardware overhead. SAFE, for the first time, explores a fused-
dot product (FSD) approach in CIM, which was previously
only employed in ASICs [6], [7]. This method can reduce
the cost of rounding and normalization for large vector-vector
MACs [6]. Each column in CIM arrays typically performs
large vector-vector MACs, therefore FSD can naturally fit well
with CIM array design. Additionally, FSD scheme uses fixed-
point adders for accumulations. Adder trees occupy a large
footprint in digital CIMs, which can be amortized by using
the same adder trees in FSD for both INT and FP.

MAC configuration flexibility is another key feature that
requires attention as there are a variety of Al workloads
all requiring different MAC structures. Self-attention layer in
large language models (LLMs) differs from a convolution layer
and even convolutions vary from layer to layer in different



TABLE I
RISC-V INSTRUCTION SET EXTENSIONS.

Instruction Type

RV32IM Base

Function

All ratified instructions

Load store instructions Load/Store IMC
*New opcode for each instruction,
honors the same funct field for Load/Store IP mem
byte, 1/2 byte, word. Load/Store OP mem

R-Type: Loads to CPU reg, stores to
CPU D-mem.

Load/Store global CSR
FP8 EAM3/E5M2 8-vector addition
FP8 EAM3/E5M2 multiply
FP8 E4AM3/E5M2 Single add

32-bit INT 8-vector addition

Floating point

Extensions
*(R-type and |-type extension)

Copy instructions
*Moves data from non CPU memory to
desired location
*(R-type and I-type extension)
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Copy desired IP mem location to
OP mem location and vice versa
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Fig. 2. (a) Sparse decode unit, (b) sparse compression and mapping, (c)
reducing hardware complexity by normalizing input queue length.

DNNs. SAFER integrates a custom RISC-V CPU to cast
weights and activations across all memories on chip to help
with MAC reconfigurability. We also augment the RISC-V
CPU with vector additions to help with post accumulation of
partial sums for large matrices.
II. ARCHITECTURE AND OPERATION

A. SAFER Chip Architecture

Fig. 1 shows the SAFER chip architecture, consisting of
four SAFE cores, input/output (IP/OP) buffers, control logic,
and OP gather-scatter unit. To enable parallel processing, each
SAFE core is allocated a dedicated 0.5KB IP buffer for feeding
unique IPs. The OPs/partial-sums from all SAFE cores are
collected and transferred to two 1KB OP buffers via the OP
gather-scatter unit. We incorporate a custom 32-bit single-
cycle RISC-V CPU to aid with the address calculations for
data movement between IP/OP buffers and weights (Ws) in
the CIM array. This is done by augmenting the base RV32-IM
instruction set with additional load/store instructions. These
additional instructions provide support for a variety of MAC
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Fig. 3. SAFE core and macro architecture.
configurations through uni/multi-casting Ws/OPs/IPs to any/all
of the SAFE cores. The CPU also monitors the status of all
SAFE cores through global control status registers. Addition-
ally, we include FP8 (E4M3 and E5SM2) and INT32 vector
addition to the CPU to enable partial-sum aggregations from
SAFE macros for large matrices. Table I provides the list of
all supported instructions.

B. SAFE Macro Architecture

Fig. 3 illustrates a single SAFE core. Each core has a
192x32 CIM array which is broken into eight FSD “com-
pute columns” (CCs) for compressed W storage and sparse
FPS/INT8 MAC operations. Each core also has an input
gather-scatter (IGS) which retrieves IPs and distributes them to
the CCs through the IP FIFOs. The CIM array also has WL-
decoders, BL-drivers, and sense amplifiers to facilitate row-
by-row read and writes. The control logic manages compute
modes and sparsity ratios. Status registers track MAC count
and manage IP requests via the IGS.

1) Compute Column (CC): Each CC in a SAFE macro
contains 192x4 6T-SRAM bits, out of which 128 x4 is used
for W storage and 64 x4 for Idx storage. The CC also includes
a 32-vector FSD MAC unit, supported by a backup SRAM
with 64 storage locations for 8-bit weights. This backup
SRAM allows a new set of weights to be written to the CIM
array while the current set is actively used for computation.
CC is divided into 32 rows, where each row has 4x4 bits
for W storage and 2x4-bits for Idx storage. These Ws and
Idxs are sent to a sparse decode unit which filters two 8-bit
Ws using the two 4-bit Idxs into one weight (or 0) and this
weight is sent to the multipliers. There is an individual FP8 and
INT8 multiplier to handle both data-types. The outputs from
the multiplier is sent to a 32-input 2’s complement adder tree.
The multipliers are data-gated to save power between different
data types. Both data types share the same adder tree as the
accumulation data format is normalized between the two. The
outputs from the adder tree is then fed into a shift accumulator
(SA). The shift portion of the SA can be enabled by the control



E5M2 Multiplication | (a) FP Multiply Unit
g

iP[6: 'i']'Wiis' 'i']"'W'[i"i)']"l'['i'iij' *\ W[7:0]  IP[7:0] I
1
+ ES y 1,1“& 2y i\ Y E4 Y o EM3Y
5-bit 2 — 3-pit ' ! 4-bit 2 — 4.bit
Bm \ ! S p1
RCA 2 Mul. \‘ sE sE| RCA E) Mul.
b - £S5 ESf )
s Mantissa g > 5 2 > Mantissa
Bias | precision is | 2 ‘; o Sf\ Bias [ precision is
Sub. | preserved: K 35| [2(23 ) Sub. preserved:
5bL 21_2+4 fob iy ws= nlw =S S 4b 2126 e
do R als
>18? 1 VARN EB-1 a7
- - -2
iesmz)) )1 [Sh HEMEHR
ECycIe : m 8 E m 8
UINT to 2’s ~
\ / complement UINT to 2’s
% Y] 23b Multlply \ complement

[Exp W] [Exp IP] [MantW] [MantiP] . . . x32

e Alignment without

| Normalizationl
normalization for

‘, __________ all multiplied Lla-l FP convert |

mantissa Done once

L - ) —_ x32 after addition
Fixed point adder tree

Fig. 4. (a) Floating-point multiply unit and (b) fused dot-product in SAFE.

logic depending on the data type. Now the 2’s complement
partial-sum from the SA can optionally converted back to FP.

2) Sparse Decode Unit (SD): As shown in Fig. 2, SAFE’s
sparse decode method supports various N:M sparsity formats.
It adopts a compressed sparse row (CSR) compression scheme,
storing an index for each non-zero weight. The index bit-width
is determined by the maximum supported M in N:M. All
supported N:M ratios and their corresponding bit-width is
shown in Fig. 2(a). The stored indices specify which weights
the IPs must be multiplied with before accumulation. Each
row in a CC has an Idx word line (IDWL); as IPs are
streamed into the macro via the IPWs, the corresponding
indices are simultaneously streamed through the IDWLs and
the W selector uses these indices to determine whether the
corresponding weight needs multiplication from the streamed-
in IPs. This is required because when a matrix is compressed
along the accumulation direction, it breaks the multiplication
structure. Not all Ws need to be multiplied with the streamed-
in IPs. We also time-multiplex sparsity, this is because there is
only a single IPW for every W, if a 1:4 sparsity is implemented
then for each CIM row, four IPs need to be streamed-in along
with 4 Idxs and will vastly increase the routing resources.
The sparse compression and mapping mechanism is shown in
Fig. 2(b). For N:M sparsity where N#1, each row would
require M —(N—1) IPs, and the IPs required in each row are
not in-order. To avoid more hardware for input re-arrangement,
we stream-in all M IPs regardless of V. This normalizes the
cycle count to M, as described in Fig. 2(c).

3) FPS fused dot-product (FSD) and INT8 MAC: The FSD
method supports vector-vector MACs for FP data-types, as
shown in Fig. 4(b). FP multiplications begin with exponent
addition and mantissa multiplication; instead of rounding, the
mantissa’s precision is preserved and is shifted by the exponent
and mapped to a 2’s complement number line. For E4M3,
the number line spans +2° — 2712 (23 bits) and for ESM2
the number line spans +2'6 — 2718 (36 bits). Now that the
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Fig. 5. Pipeline diagram for a 1:2 sparse workload.

vectors are in 2’s complement format, they can be accumulated
using a fixed-point adder. The adder-tree bit-width is set to 23
bits instead of 36 bits because of area constraints. To support
E5M2, we time-multiplex the adder hardware over two cycles.
The first cycle is used to handle all exponents below 18 and
the next cycle is used for exponents above 18 and the shift
accumulator performs shift and accumulate compuutation of
the two partial sums. Fig. 4(a) shows the detailed FP multiply
units in SAFE. To support INTS8, an 8-bit integer multiplier
is added to the pipeline after the SD stage, while the adder
hardware is reused this is shown in Fig. 3. Fig. 5 illustrates
SAFE’s pipeline for all supported data types.

III. CHIP MEASUREMENTS AND RESULTS

SAFER is prototyped in 28nm CMOS. It occupies
0.95mm?, and each SAFE core occupies 0.15mm?. Fig. 7
shows the power/area breakdown for a SAFE core. FP§ MACs
consume less power and area, compared to INT8 MACs.
This is due to the wide multiplier unit for INT8 and the 2’s
complement version of an FP8 number is very sparse and
reduces the overall activity factor of the adder tree. SAFER can
operate at 0.57-1.2V, reaching a Fj,,, of 141 MHz@0.57V
and 815 MHz@1.2V. Fig. 6(a) shows the voltage-frequency
scaling measurements for both FP8 and INT MACs, where the
CPU was set to perform NoP instruction. All measurements
were done at 28°C. For INT8 workloads, we use an IP toggle
rate of 50% and bit-wise W sparsity of 50%. FP8 workloads
use randomly generated numbers for both IPs and Ws within
the representable range. The SAFE(R) achieves a peak energy
efficiency of 105.7 (78.9), 78.8 (59) and 79.9 (63) TFLOPS/W
for FP8 E4M3, FP8 E5M2, and INT8 MACs respectively.

To quantify how well various sparsity translates to memory
footprint, we map a ResNet-18 model (~11M parameters)
trained for CIFAR-100 dataset for various 1:M sparsity. With
1:16 sparsity, only 91 SAFE macros are required for the entire
model, which marks 15.5x savings in macro area, as shown in
Fig. 6(b). We also validate the accuracy for ResNet-18 (DNN)
and a Llama-2-7b (LLM) model for FP8 and INT8 under
various sparsity to demonstrate the practical need for different
N:M sparsity, as shown in Table II. To account for reduced
memory footprint due to compressed storage, we devise a
figure of merit (FoM) of TOPS/W/mm?*Weights/Byte, which
takes energy efficiency, chip area and memory size in bytes for
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e 9 - O,
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Alignment One-shot post work [4] [3] [2] 23 [5]
multiplication Technology 28nm 28nm 28nm 28nm 28nm
Peak 16-105.7(E4M3) Voltage (V) 0.57-1.2 06209 | 06509 0.57-1.18 0.55-1.2
T(FLJOPSW |  12-78.8 (E5M2) Frequency (MHz) 141-815 100-525 | 153-400 201-1160 650
12.4-79.9(INT8)
o 20139 INTSIEAN3 SRAM Cell 6T Logic 10T 6T 10T 8T/14T
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array. Table III and Fig. 6(d) show that SAFER achieves 13.8x Sparsity Support SSRNM | Zoroskp | None | CSONM [ None
. . . %-99% ynamic %-99.9%
improvements in this FoM for FP8 workloads, compared to ol 605 7Em) | %97 923 - ey
prior SoTA digital CIMs. $F:[$c¥:sﬁ/'\7\'/my 13788(Che)
12.4-79.9(PIM 115 71.4 57.7 -
IV. CONCLUSION INTS 10-63(C:|ip))
In this work, we prototype SAFER, an in-SRAM sparse Compute densiy FP8?  0.34.79 33 3.23 - 0.94
. . T(FL)OPS/mm 1.3
FSD-based CIM processor, which integrates a custom RISC- INTe| 0.24.3 381 234 12
. . . ) 8.6-51.9(1:1) 37.42 59.53 29.2
V CPU enabling support for a variety of Al models from Figure of Merit®: (FPg*| 34.7.207(1:4) | Forall | Forall For all
T(FL)YOPS/W/ 138-831(1:16) | sparsity sparsity sparsity
DNNs to LLMs. Through FSD, SAFE enables FP§ MACs mm2* Ws/byte,
R . . . R where W is an 8- 6.8-41.8(1:1) 164.3 84.1 57.7(1:1)
with minimal overhead while also supporting hardware sharing bitweight ~ |INT8| 27.4-167(1:4) | Forall | Forall | 230.68(1:4) -
109-670(1:16) sparsity sparsity 922.7(1:16)
between FP8 and INT8 formats. Measurement results show

that SAFE achieves close to SOTA TOPS/W and TOPS/mm?
while maintaining full accuracy for all MAC workloads. SAFE
also implements sparsity in the form of compressed storage,
achieving memory footprint reduction proportional to sparsity.
For the proposed FoM, SAFER shows 13.8x improvement
compared to SoTA digital CIMs for FP8 workloads.
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