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Abstract

Hallucination is a persistent challenge in large
language models (LLMs), where even with rig-
orous quality control, models often generate
distorted facts. This paradox, in which error
generation continues despite high-quality train-
ing data, calls for a deeper understanding of the
underlying LLM mechanisms. To address it,
we propose a novel concept: knowledge over-
shadowing, where model’s dominant knowl-
edge can obscure less prominent knowledge
during text generation, causing the model to
fabricate inaccurate details. Building on this
idea, we introduce a novel framework to quan-
tify factual hallucinations by modeling knowl-
edge overshadowing. Central to our approach is
the log-linear law, which predicts that the rate
of factual hallucination increases linearly with
the logarithmic scale of (1) Knowledge Popu-
larity, (2) Knowledge Length, and (3) Model
Size. The law provides a means to preemp-
tively quantify hallucinations, offering fore-
sight into their occurrence even before model
training or inference. Built on the overshadow-
ing effect, we propose a new decoding strategy
CoDA, to mitigate hallucinations, which no-
tably enhance model factuality on Overshadow
(27.9%), MemoTrap (13.1%) and NQ-Swap
(18.3%). Our findings not only deepen under-
standings of the underlying mechanisms be-
hind hallucinations but also provide actionable
insights for developing more predictable and
controllable language models.

1 Introduction

Large language models (LLMs) have revolution-
ized artificial intelligence, but their success is ac-
companied by a critical issue known as hallucina-
tion (Ye et al., 2023). Hallucination refers to mod-
els generating unfaithful or nonfactual statements.
In many applications, this issue undermines perfor-
mance and reliability, posing substantial challenges
to their practical deployment (Li et al., 2024).
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Figure 1: Knowledge overshadowing leads to hallucina-
tions, which exarcerbates with growing relative knowl-
edge popularity (P), length (L), and model size (S).

Some studies attribute hallucination to low-
quality pretraining corpora (Gehman et al., 2020).
However, we find it persists even when the pre-
training corpus is strictly controlled to contain only
factual statements. Specifically, when extracting
knowledge using queries, we observe a tendency
for certain knowledge to overshadow other rele-
vant information. This causes the model to rea-
son without adequately considering overshadowed
knowledge, leading to hallucinations.

As shown in Figure 1, when queried for “famous
singer in North Korea”, the model incorrectly nom-
inate “Kim Jong Un”, who is in fact a politician, as
a result of “North Korea” overshadowing “singer”.
This observation highlights how knowledge of vary-
ing forms interacts, distorting the reasoning pro-
cess and causing the model to misassemble facts,
thereby generating hallucinations. To investigate
this phenomenon, we raise the following questions:
* What factors contribute to the phenomenon of

knowledge overshadowing (§3)?

» Can we preemptively quantify when hallucina-
tions occur (§4)?

* From a theoretical perspective, why knowledge
overshadowing happens (§5)?

* Leveraging the insights we derived, how to miti-
gate factual hallucinations (§6)?
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Through extensive experiments, we find that
knowledge overshadowing broadly induces factual
hallucinations in both pretrained and fine-tuned
models, across diverse model families and sizes.
Despite its importance, the factors influencing this
phenomenon remain unexplored. To bridge this
gap, we analyze knowledge representation from
both global and local perspectives by examining
its popularity across the dataset distribution and its
proportional representation length within individ-
ual sentences. Additionally, since increasing model
size has been shown to improve language model
performance (Kaplan et al., 2020), we further ex-
plore its impact on factual hallucinations.

To examine the impact of these factors, we pre-
train LLMs from scratch on a synthetic dataset
with strictly controlled quality. Our empirical find-
ings reveal a log-linear scaling law for factual
hallucinations, showing that hallucination rates in-
crease linearly with the logarithmic scale of rela-
tive knowledge popularity, knowledge length, and
model size. Finetuning on diverse tasks further con-
firms this law applies to finetuned LLMs, enabling
the preemptive quantification of hallucinations be-
fore model training or inference. This not only
bridges the gap in understanding hallucinations
emerging from factual training data but also intro-
duces a principled approach for evaluating training
data and predicting model behavior in advance.

The empirical discovery of this law leads us to
investigate its underlying cause. We hypothesize
that knowledge overshadowing stems from the over-
generalization of popular knowledge, suppressing
less popular counterparts. Theoretically, we derive
a generalization bound for auto-regressive language
modeling, linking the model’s behavior to key prop-
erties of its training data. Our analysis shows that
generalization improves with increasing relative
knowledge popularity and length, mirroring the
trend observed in hallucination rates.

Building on all the insights derived, we propose
Contrastive Decoding to Amplify Overshadowed
Knowledge (CoDA), a method designed to amplify
the influence of overshadowed knowledge while
mitigating biases from dominant knowledge. First,
we identify overshadowed knowledge by comput-
ing the mutual information between the next-token
probability distributions of the original and mod-
ified prompts, where specific tokens are masked.
This approach reveals knowledge encoded in the
masked tokens, which is often overlooked and
prone to hallucination. We then employ contrastive

decoding to reduce the bias introduced by dominant
knowledge. Without requiring additional training,
CoDA significantly improves factuality, achieving
gains of 13.1%, 18.3%, and 27.9% on the Memo-
Trap, NQ-Swap, and Overshadowing datasets, re-
spectively. Our contributions are three-fold:

* We are the first to identify knowledge over-
shadowing as a key driver of hallucinations and
demonstrate its prevalence across LLMs.

* We establish the log-linear law of knowledge
overshadowing, enabling quantification of hal-
lucinations prior to model training or inference.

* We propose CoDA to mitigate hallucinations by
detecting overshadowed knowledge, achieving
significant improvements in factuality on Over-
shadow, MemoTrap, and NQ-Swap benchmarks.

2 Related Work

2.1 Causes of Hallucination

Our work is in line with exploring the source of
factual hallucination. One popular opinion is that
factual hallucination stems from deficiencies in
training data, which can either be outdated infor-
mation (Zhang et al., 2023b; Livska et al., 2022;
Luu et al., 2022), biases (Ladhak et al., 2023; Yang
et al., 2023), misinformation (Dziri et al., 2022; Lin
et al., 2022), bad calibration (Chen et al., 2023b;
Tian et al., 2023; Zhang et al., 2024a,b), or over-
alignment to human preferences (Wei et al., 2023).
Other research points to generation issues in-
cluding distorted attention (Aralikatte et al., 2021),
over-confidence (Ren et al., 2023). Related efforts
also suggest that LLMs can be trapped in common
patterns (Lin et al., 2022; Kandpal et al., 2023;
Li et al., 2023a). We focus on a significant yet
underexplored phenomenon: LLMs can halluci-
nate even when trained exclusively on high-quality,
truthful data. We introduce knowledge overshadow-
ing, where more dominant knowledge representa-
tion competes against and suppresses less prevalent
knowledge, resulting in factual hallucinations.

2.2 Detection of Hallucination

Factuality hallucination detection in LMs typi-
cally involves external fact-checking methods, such
as FACTSCORE (Min et al., 2023) and FacTool
(Chern et al., 2023), or internal uncertainty analy-
sis. The latter includes Chain-of-Verification (Dhu-
liawala et al., 2023), logit-based assessments (Ka-
davath et al., 2022; Zhang et al., 2024c), and lever-
aging LM internal states (Zhang et al., 2024a; Luo
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et al., 2023). When internal states are unavailable,
self-consistency probing (Manakul et al., 2023;
Agrawal et al., 2024) or multi-LM corroboration
(Cohen et al., 2023) can provide alternative signals.
Unlike prior work focused on post-generation hallu-
cination detection, our study pioneers hallucination
prediction by modeling it quantitatively through
a log-linear law, incorporating fine-grained factors
like knowledge popularity, length, and model size.
This shifts the paradigm from reactive detection to
proactive prevention, offering a novel quantitative
framework for anticipating hallucinations.

2.3 Elimination of Hallucination

Our work is related to prior studies on mitigating
hallucinations. Shen et al. (2021) address the issue
by filtering out low-quality training data. Several
approaches enhance model factuality through ex-
ternal knowledge (Wu et al., 2023; Xie et al., 2023;
Lyu et al., 2023; Asai et al., 2023), and knowledge-
aware tuning (Li et al., 2022). Some studies tackle
hallucination by enforcing LLMs to adhere to in-
put (Tian et al., 2019; Aralikatte et al., 2021), mod-
ifying internal states (Gottesman and Geva, 2024;
He et al., 2025), and adopting refusal-awareness
(Zhang et al., 2024a; Huang et al., 2025). Our work
aligns with advanced decoding strategies (Wan
et al., 2023; Cheng et al., 2024; Shi et al., 2023)
to enhance factuality. Early detection of halluci-
nation is also crucial (Zhang et al., 2023a). Our
method not only foresees potential hallucinations
before generation but also eliminates them through
a training- and data-free approach.

3 What is Knowledge Overshadowing?

Factual hallucination, where authentic facts are
misassembled into false statements, remains an
underexplored challenge. We approach this is-
sue through the lens of knowledge overshadowing,
where more prevalent knowledge suppresses less
frequent knowledge, resulting in hallucinations.

3.1 Knowledge Overshadowing Formulation

To systematically characterize knowledge over-
shadowing, we define knowledge pairs in a training
corpus. Specifically, let K4 = {k,,, ..., kq,, } and
Kp = {kp,, ..., kb, } represent a pair of knowledge
sets. K 4 is comprised of m samples of statements
k., and Kp is comprised of n samples of state-
ments kbj. Each statement in K 4 and statement in
K p are related by a shared set of tokens X gp,4rc-

In the knowledge set K4, each statement k,,
is comprised of a shared token sequence Xgpare,
a distinct token sequence z,,;, and the output Y.
Each statement k,, is expressed as:

ka; = Yo|[Xshare @ 20,], 1€ {1,...,m} €))

where @ denotes the insertion of the distinctive
sequence I,, into Xgpare (the integration position
can vary). Similarly, for the less popular knowl-
edge set Kp, with xp,; denoted as the distinct token
sequence, each statement kj; is formulated as:

Ky, =

j |[Xshare © ]a VES {1» »"} 2

Knowledge overshadowing occurs when the dis-
tinct token sequence xp; Or x4, is suppressed during
inference. Taking x3, overshadowed as an exam-
ple, when prompted with X a6 © Tb,, the model
outputs Yy, forming the ¥, |[Xshare © 11 | that
wrongly amalgamates factual statements k,, and
kp; into factual hallucination, defying the ground-
truth V' |[Xghare © 71, |, as illustrated in Figure 1.

3.2 Metric of Factual Hallucination.

To measure hallucination caused by knowledge
overshadowing, we introduce the relative hallu-
cination rate R. When K, is the more popular
knowledge set, we first quantify the recall rate
of the model correctly memorizing the samples
from K 4 as RR = p(¥,,|[Xshare @ 74,]). Then we
quantify the hallucination rate of the model pro-
ducing output with z3, overshadowed as HR =
P(V.|[Xshare © 71.]). The relative hallucination
rate R = % represents to what extent is less pop-
ular knowledge encoded by x; suppressed by the
more popular knowledge encoded by z,, .

3.3 Formulation of Influential Variables

Since the underlying factors influencing factual
hallucinations have not been explored, we exam-
ine these variables from both global and local per-
spectives, focusing on knowledge proportions that
contribute to the overshadowing effect. When K 4
is more popular than Kp, m > n. From a global
perspective, we define the relative knowledge pop-
ularity as P = 7, denoting the relative propor-
tion of the knowledge in the whole training corpus.
From the local perspective, we quantify the weight

of knowledge in an individual sentence using the
len(Xhare) +len(zyp,)
len(zy,) >
where length is measured by the number of tokens.
For example in Figure 1, in input “A famous singer

relative knowledge length L =
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Figure 2: LLMs are pretrained from scratch on a synthetic dataset with controlled variables of S, P, and L. In each
subfigre, we experiment by varying one variable at a time while keeping the other two constants. LLMs are trained
auto-regressively with cross-entropy loss computed over entire sentences. Details on training data statistics, training
parameters, and implementations are elaborated in A.2, A.3.

in North Korea 1s”, length of x; =“singer” is I,
length of X p4re="A famous _ in North Korea is”
is 6, so L=(6+1)/1=7. Since previous work shows
scaling model size enhances its performance (Ka-
plan et al., 2020), we study whether scaling up the
model size S can mitigate factual hallucinations.

4 When to Expect Factual Hallucination?

To determine the conditions under which factual
hallucinations emerge, we investigate knowledge
overshadowing across various experimental setups,
including probing an open-source pretrained LLM
without training, pretraining an LLM from scratch,
fine-tuning a pretrained LLM on downstream tasks.

4.1 Probing the Open-source LLM

We probe an open-source pretrained LLM
Olmo with its public real-world training corpus
Dolma (Soldaini et al., 2024) to investigate the
hallucination and sample frequency in data. Re-
sults show that knowledge with higher frequency
tends to overshadow others with lower frequency,
aligning with knowledge overshadowing concept
that more dominant knowledge overshadows less
prominent knowledge during text generation, lead-
ing to counterfactual outputs. For example, when
“male Al researcher” appears more frequently than
“female Al researcher” in the training corpus, the
model tends to output male researchers when we
query the model with “Tell me some outstanding
female Al scientists” (See details in A.4).

4.2 Unveiling Log-linear Law in the
Pretrained LLMs.

Setup. Investigating real-world knowledge hallu-
cinations via knowledge overshadowing requires
access to the open-source pretraining corpus of
LLMs, while most of the LLMs’ pretraining corpus

is closed-sourced. Therefore we are motivated to
pretrain LLMs from scratch on controlled variables
dataset in order to comprehensively evaluate multi-
ple LLMs to quantify the relationship between hal-
lucinations and their influential variables. Specifi-
cally, we pretrain language models from scratch on
synthetic datasets with controlled variable settings.
The approach is necessary because the inherent
variability and imprecision of natural language in
real-world training data make it intractable to enu-
merate all possible expressions of more and less
popular knowledge with perfect accuracy.

For each controlled variable experiment, we
adopt sampled tokens from a tokenizer vocabulary
to construct each dataset, as shown in Table 1.

e P: We investigate how the hallucination rate R
changes with increasing relative knowledge pop-
ularity P. We set P = % for values {2:1, 5:1,
10:1, 25:1, 50:1, 100:1}, where m represents the
number of samples of k,, = Yg|[Xshare © Za,]
and n represents the number of samples of k;, =
Y} |[Xshare © @, |. The other variables, L and S, are
held constant. Each token in z,, 2t,, Xshares Yas
and Y}, is sampled from the vocabulary.

e [: To examine how the hallucination rate
R changes with increasing relative knowledge
length L, we set L = kn(xs};:;:j:];"(x"f) for values
{1:1, 2:1, 5:1, 10:1, 25:1, 50:1, 100:1}, where
len(z,,)=len(zy,) to ensure consistent variables.

o S: To investigate how hallucination rate changes
with varying model sizes, we experiment on the
Pythia model family with sizes of 160M, 410M, 1B,
1.4B, and 2.8B, along with other models including
Phi-2.8B, GPT-J-6B, Mistral-7B, Llama-2-7B, and
Llama-13B (Dataset statistics in A.3).

We pretrain each LLM from scratch on the
dataset over 19.6 million of tokens in Table 1 with
controlled variables in an auto-regressive manner,

23343



Type Task Definition Y,: Yp: Xp: Xshare: Tokens
Synthetic kq = Year | Happy New .
Pt Control
Pretraining ontro! k, = B | FBBRY] Groundhog 1.96 million
Locai ko, = New York City | Where did this event happens? CBS decided to revive the Million Second Quiz.
t
ocation ky, = Barcelona | Where did this event happens? HBO acquired the rights to The Loner
Natural . ko = Event A | {Description} ... which was earlier? A was before B, B was before C -
Language | Logical — - - 0.83 million
Fine-tuning k, = Event C | {Description} ... which was earlier? A was after B, B was after C
Conflict ko = Words | Write the proverb ends in “Words™: Action speaks louder than
k, = Thoughts | Write the proverb ends in “Thoughts™: Action speaks louder than

Table 1: Samples of synthetic and natural language datasets. For each task, we present one sample k, = Y5 |[Xshare®
2] from more popular knowledge set K 4 and one sample kj, = Y} |[Xsnare © xp) from less popular knowledge set
Kp. Each imbalanced K 4, Kp pair consists of m different samples of k, and n different samples of k;, where
m > n. More detailed samples and statistics for all tasks are further elaborated in A.3

optimizing for cross-entropy loss until the model
converges (See training details in A.2). As shown
in Figure 2, factual hallucination follows the log-
linear relationship w.r.t P, L, and S:

P L S
R(P) = alog(-); R(L) = Slog({~); R(S) = vlog( )
‘ ‘ 3)
where «, 3, 7, P., L., S are constants. In Figure 2,
hallucination rate increases linearly with the log-
arithmic scale of relative knowledge popularity P,
relative knowledge length L, and model Size S.

Greater Popularity Overshadows More. From a
global perspective in the entire training data, when
knowledge k,, has higher frequency than knowl-
edge ky;, the distinctive token sequence zp, encod-
ing the less popular knowledge k;; is more sus-
ceptible to be overshadowed. This imbalance am-
plifies dominant knowledge while suppressing the
representations of less frequent facts. This high-
lights a fundamental bias in how LLMs internalize
and retrieve knowledge, revealing that hallucina-
tion arises not just from data sparsity but from the
inherent competition between knowledge represen-
tations in a non-uniform training distribution.

Longer Length Overshadows More. At its core,
knowledge overshadowing arises from the degrada-
tion of probability distributions:

degrade to

P(Ya |Xshare)

{ P(Ya|[Xehare ® 74,]) “4)
P(Ya |Xshare)

P(}/bHXshare © 41'/';“])

degrade to
—_—

The degradation reflects the compressed representa-
tions of x4, and xp,, which are merged into Xgpare,
thereby weakening their distinct contributions to
generation. Locally within a sentence, when xp,’s
token length is shorter than Xy, its ability to
maintain a distinct semantic boundary diminishes.
This occurs because degradation is influenced by

both knowledge interaction and x,’s representa-
tion capacity. Shorter representations inherently
encode less detailed semantic information, making
them more prone to being overshadowed by the
structurally and semantically richer Xgpaye.

Larger Model Overshadows More. While larger
language models are generally associated with
stronger reasoning capabilities, we observe an in-
verse scaling trend in hallucinations caused by
knowledge overshadowing: larger models exhibit
a stronger tendency to overshadow less prominent
knowledge. This observation challenges the pre-
vailing assumption that increased model size uni-
formly enhances model reliability and accuracy.
Interestingly, prior work has reported similar scal-
ing trends. For example, in tasks that show inverse
scaling (Ganguli et al., 2022), larger models are
more prone to fail at generating less frequent al-
ternatives of popular quotes, a manifestation of
knowledge overshadowing. Likewise, Carlini et al.
(2022) find that larger models tend to memorize
frequent knowledge more quickly and effectively,
achieving higher extraction rates for frequent facts
than for rare ones. This growing memorization gap
between frequent and infrequent knowledge aligns
with our findings, reinforcing the idea that model
scale exacerbates knowledge overshadowing. This
phenomenon can also be understood from the per-
spective of model compression. As model capacity
increases, it becomes more efficient at compress-
ing information (Huang et al., 2024), thereby en-
hancing its ability to capture dominant patterns
and generalize. However, this compression mecha-
nism disproportionately affects less frequent knowl-
edge, which is more easily subsumed into the dom-
inant representations of more popular knowledge.
Although larger models are capable of encoding
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Figure 3: Fine-tuning open-source LLMs on natural language tasks. Regression lines represent the predicted trends
derived from LLMs pretrained on synthetic data in §4.2. The red cross markers indicate the empirically observed
hallucination rates in fine-tuned LLMs. Training data statistics and implementation are in A.2, A.3.

a greater volume of information, their ability to
maintain clear semantic distinctions for rare or less
prominent knowledge diminishes. As a result, such
knowledge is more likely to be suppressed or dis-
torted during generation, ultimately increasing the
likelihood of hallucinations.

4.3 Validating Log-linear Law in the
Fine-tuned LLMs.

Setup. The results presented in §4.2 were derived
from pretrained models. In this section, we ex-
tend our analysis by investigating whether the log-
linear law holds for real-world fine-tuned LLMs,
aiming to assess whether it can serve as a predic-
tive tool for quantifying hallucinations in LLMs
fine-tuned on downstream tasks after pretraining
on real-world corpora. Specifically, we fine-tune
models with parameter sizes ranging from 160M
to 13B across a variety of factual tasks, including
time, location, gender, negation queries, mathemat-
ical and logical reasoning, and knowledge conflict
resolution. For each task, we generate m sam-
ples of kg, = Y,|[Xshare © 4] and n samples of
ky, = Yy |[Xshare ©p,]. To ensure a controlled fine-
tuned knowledge distribution, we construct factual
queries from artificial facts (Meng et al., 2022), to
mitigate interference from pretrained knowledge,
enabling a precise evaluation of P and L in the
law. We present knowledge pair samples (kg, kp)
for several tasks in Table 1, with additional dataset
samples and statistics provided in A.3.

Preempitive Quantification. We utilize the log-
linear law fitted by the pretrained LLMs on con-
trolled synthetic datasets to predict hallucination
rates for fine-tuned LLMs across various down-

Relative Prediction Error on Finetuned LLMs
[ Model Size S

[ Knowledge Popularity P
1 Knowledge Length L
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Figure 4: Relative prediction error (%) of using the
pretraining law to predict fine-tuned LLM hallucination.

stream tasks. This includes predicting hallucina-
tion rate R with changing model size S, relative
knowledge popularity P, and relative knowledge
length L, as shown in Figure 3. We then evaluate
the discrepancy between the predicted hallucina-
tion rates and those observed in our fine-tuning
experiments. Following Chen et al. (2024), we as-
sess the prediction performance of log-linear law
using the relative prediction error:

|Predictive Rate — Actual Rate|
Actual Rate

Relative Prediction Error =

(6]

We visualize the prediction error for hallucination
rates across tasks in Figure 4, reporting an average

relative prediction error of 8.0%. The errors for L
and P are slightly higher than S, as the fine-tuned
datasets, despite consisting of unseen facts, still
contain linguistic expressions that resemble pre-
trained knowledge, introducing a minor influence
on the quantification of P and L. while leaving S
unaffected. Precisely quantifying the popularity of
imprecise real-world knowledge remains an open
challenge, which we leave for future work.

4.4 Factual Hallucinations in SOTA LLMs

Table 2 presents a case study demonstrating how
SOTA LLMs are influenced by scaling effects of
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knowledge overshadowing. Investigating the im-
pacts of P, S, and L on these models is difficult due
to the closed-source nature of their training corpora
and the fixed values of P and S. Thus, we manipu-
late L during the inference stage to observe shifts
in model behavior. For instance, when querying
GPT-40 about a cat’s state in Schrodinger’s box, in-
creasing the length of surrounding text while keep-
ing “dead” unchanged raises the relative length L
of the surrounding contexts compared to the word
“dead”, leading to a higher likelihood of halluci-
nation. Other LLMs also suffer from knowledge
overshadowing. For instance, querying DeepSeek-
V3-671B for the author of a paper, the phrase “scal-
ing law” overshadows other descriptive elements of
the title, resulting in the incorrect response of “Ka-
plan”, the author of a different, well-known scaling
law paper. Similarly, Qwen-Chat exhibits over-
shadowing effects when “African” is dominated by
“machine learning”, leading to distorted facts. This
case study illustrates that even SOTA LLMs can
suffer from imbalanced knowledge distribution.

Model Input Output

Put a dead cat in Schrodinger’s box, when we open the

box, how much possibility is the cat alive? 0%

Imagine a sealed box containing the following:
1. A dead cat,

2. A radioactive... 50%
Now open the box, how much possibility is the cat alive?

GPT-40

Who is the author for the paper named Scaling Laws vs
DeepSeek | Model Architectures: How does Inductive Bias Influence
Scaling

Kaplan,
Yi Tay

Who is a very famous African researcher in machine
learning area?

Yoshua

Qwen Bengio

Table 2: Factual hallucination in SOTA LLMs.

5 Why Knowledge Overshadows?

Motivated by our experimental findings on the scal-
ing effects of knowledge overshadowing, we pro-
vide a theoretical interpretation of the effects.

5.1 Memorize-Generalize-Hallucinate

In §4.2, we identify a striking alignment between
the log-linear law governing factual hallucinations
and the log-linear law of memorization observed
in prior work (Carlini et al., 2022). Both exhibit
a linear relationship with the logarithm of sample
frequency, sample length, and model size. This
remarkable consistency invites a deeper exploration
into the nature of factual hallucinations, raising a
critical question: can hallucinations be understood
as an inherent byproduct of the post-memorization
phase—generalization?

As models memorize vast information and cap-
ture associations, they generalize to new distri-
butions (Baek et al., 2024), while less dominant
knowledge can be overshadowed by prevalent pat-
terns due to excessive smoothing or compression.

Unlike longtail effects, knowledge overshadow-
ing is not just a result of data imbalance but stems
from the competition among knowledge represen-
tations. Even non-rare knowledge can be over-
shadowed by more dominant counterparts within
the representational space. This competitive inter-
action drives factual hallucinations, as the model
transitions from memorizing to generalizing over
increasingly complex distributions.

5.2 Interpretation by Generalization Bound

We derive the generalization error bound of popular
knowledge to understand how increasing relative
knowledge popularity P and relative knowledge
length L enhance generalization, thus exacerbat-
ing factual hallucinations in large language models.
The derived bound provides a theoretical interpre-
tation and supporting evidence for the power laws.

Specifically, in a dataset D with numerous state-
ments, we investigate a pair of subsets K4, Kg C
D. We fix the sample size of K g at n, and observe
how the generalization bound of K 4 changes as we
vary the relative knowledge popularity P = “* and
relative knowledge length L. For each sentence
ko, = YQHXShare © :Eai], (i € 1,....,m) in Ky,
where Xghare and x,,; represent token sequences,
we simplify the analysis by assuming each z,, is a

one-token sequence. Thus, the relative knowledge

len(Xshare)""len(xa') _ L _
ey = = L. Then,

we derive the generalization bound for next-token
prediction in all k,; € D, with the model optimized
using an auto-regressive objective:

length is set as

log1/é

2m

RE(f) IRE(f)+2uRk 5 (F) + 6)

where , — \/1 + (s h—l(L))2 [1 = softmax (Ka, ()],
Ka,(f) = infeex, f(=). In this bound, Rfj(f) de-
notes the generalization error on the true
distribution. 7%5( f) denotes the empirical next

token prediction training loss on K 4. R L (F) is
the Rademacher complexity of the output mapping
function set F over K 4, measuring its capacity to
fit random noise. J is the confidence parameter. In
our controlled experiment setting, variables except
for L, m can be treated as constants.
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Method MemoTrap NQ-Swap Overshadowing
proverb translate  hate science entity time syn
Greedy 28.8 47.5 9.0 334 8.5 414 20.8
CoT 30.1¢+1.3) 52.6(+5.1) 13.0+4.0) 36.7+3.3) 19.2(+10.7) 40.4(-1.0) -
Llama SR 34.7+5.9) 51.8(+4.3) 12.0+3.0) 35.8(+2.4) 14.2(+5.7) 42.5¢+1.1) 23.8(+3.0)
UusC 27.6(-1.2) 52.4(+4.9) 8.0¢-1.0) 32.9¢0.5) 9.4(+0.9) 40.2(-1.2) 16.4¢-44)
Dola 32.5+3.7) 50.9¢+3.4 10.0¢+1.0) 33.0¢-0.4) 13.8+5.3) 53.6(+12.2) 31.8¢+11)
CoDA (ours) 41.9¢+13.1) 56.2(+8.7) 16.0¢+7.0) 38.9(+5.5) 26.8+18.3) 65.0(+23.6) 46.8(+26)
Greedy 31.3 494 14.0 36.7 12.6 39.5 21.6
CoT 35.2(+3.9) 52.7+3.3) 17.0¢+3.0) 39.0(+2.3) 19.5(+6.9) 37.0¢-2.5) -
Mistral SR 36.8(+5.5) 54.6(+5.2) 19.0(+5.0) 38.2(+1.5) 13.8+1.2) 42 4(+2.9) 24.9+3.3)
| UuSscC 32.6(+1.3) 51.5¢+2.1) 15.0¢+1.0) 35.9¢0.8) 11.4c12) 37.9¢-1.6) 20.8(-0.8)
Dola 34.9+3.6) 53.5¢+4.1) 14.0(+0.0) 38.4+1.7) 15.9¢43.3) 51.0¢+11.5) 34.6(+13)
CoDA (ours) 42.5(+11.2) 58.6(+9.2) 22.0+8.0) 43.7+7.0) 27.7+15.1) 61.2(+21.7) 49.5(+27.9)

Table 3: Exact match (%) on MemoTrap, NQ-Swap, and Overshadowing. Percentages in brackets indicate increases
compared to greedy decoding. Our method CoDA significantly outperforms all comparisons for three datasets. All
baselines are implemented on Llama-2-7B-chat and Mistral-7B, referred as Llama and Mistral in the table.

Here, with h(L) denoting a function value posi-
tively correlated with L, 1 encapsulates the sensi-
tivity to changes in the input—reflecting the impact
of relative knowledge length L. m represents the
sample size of K 4. Theoretically, a lower bound
indicates higher generalizability (Cao et al., 2019).
Then, the longer length L and higher popularity m
lead to lower generalization bound, in other words,
better generalization, echoing the same trend of
hallucination rate. More details of our theoretical
interpretation can be found in A.6.

6 How to Eliminate Hallucination?

In this section, we aim to mitigate factual halluci-
nations by proactively identifying overshadowed
knowledge before it influences model predictions.

6.1 CoDA: Contrastive Decoding to Amplify
Overshadowed Knowledge

Identifying Overshadowed Knowledge. For a
language model, given an input token sequence X,
the model will output the continuation token se-
quence Y. Both X and Y consist of tokens from
the vocabulary V. When certain tokens z; in X
are overshadowed, the model will generate hallu-
cinated output. For example, in X = “Who is
a famous African researcher in machine learning
area?”, if x, = “African” is overshadowed by “ma-
chine learning”, The model will output Y'=*Yoshua
Bengio”, ignoring the intended constraint.

To detect overshadowed tokens, we sequen-
tially mask z; in X to form X’ (see A.5 for var-

ious xp candidate selection methods). If x; is
overshadowed, p(Y3|X) degradeto, p(Y|X'). We

quantify the generalization between distributions
p(Y]X) and p(Y|X’) by relative pointwise mu-
tual information (R-PMI) (Li et al., 2023b). To
ensure we quantify output token candidates y; €
P(Y|X), P(Y|X') with sufficient semantics, we
employ an adaptive plausibility constraint Li et al.
(2023b), retaining tokens that satisfy: Viop(X) =
{yilp(yi|X) > a- T}, where a = 0.01 is a hyper-
parameter, and Y is a global variable as the maxi-
mum probability among all y; candidates. Then the
R-PMI is quantified over Yy; € Vigp(X) N Vip(X'):

p(yi | X)
p(yi | X')
In essence, a negative R-PMI value indicates that to-
ken y; is more associated with X’ without overshad-
owed information. Thus we quantify to what extent
P(Y|X') generalize to P(Y|X) by R-PMlgm =
>, min(R-PMI(y;; X, X),0). Moreover, it is
noteworthy that despite some tokens being over-
shadowed by X, there are still tokens that escape
from this overshadowing effect, defined as Veg.:

R-PMI(y;; X, X') = log @)

Vese = {y1|yl S thp(X) and Yi ¢ Vlop(X/)} (8)

These escaping tokens demonstrate the potential for
hallucination elimination. Then we propose an Es-
caping Rewarding Mechanism (ERM), which adds
a positive reward to the sum of negative R-PMI.
Denoting all y; with a negative R-PMlI as y; € S,
The ERM can be calculated as:

ERM = Z

Yi € Vesc

(log p(yi|X) — min log p(yjIX')) ©)
yJES

where the deduction is to balance ERM with R-
PMI with a similar denominator of p(y;|X’) in
Eq. 7, which represents the minimum bias from
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X'. Then the overshadowed knowledge indicator
is: Indicator = R-PMlIg,,, + ERM. A negative in-
dicator value indicates proper generalization with-
out overshadowing other knowledge, and a posi-
tive alamer value indicates over-generalization with
overshadowed tokens x; (Hallucination prediction
accuracy is in Table 7).

Elevating Overshadowed Knowledge. Once the
tokens x; encoding overshadowed knowledge are
identified, we adopt contrastive decoding to reduce
the influence of X’ and highlight X . Specifically, to
reduce the bias from of X", for each y; € Viop(X)N
Viop(X"), we subtract the prior bias of X', which
is P(y;|X’) as shown below:

log p(y;) = log p(y:| X) — log p(y:| X") (10)

Similarly for each y; € Ves, we conduct:

log p(y:) = (log p(y:| X) — min log p(y;1X") (1)
Yj

Here, min,, eslogp(y;|X’) represents the mini-
mum prior bias from popular knowledge. The de-
duction aims to balance the bias adjustment be-
tween y; € Vese and y; ¢ Vesc, €nsuring propor-
tional adjustments for both. Then we predict the
optimal output y by:

yi = argmax logp(y:|X) (12)
Y3 € Viop (X)

Till now, we downweight the overshadowing effect
from popular knowledge encoded by X, then es-
caping tokens encoding meaningful overshadowed
knowledge are amplified to decrease hallucinations.

6.2 Experimental Setup

Datasets. We experiment on two public datasets
of hallucinations caused by conflicting knowledge
MemoTrap (Liu and Liu, 2023) , NQ-SWAP (Long-
pre et al., 2021), and our Overshadow dataset.

Baselines. We adopt Greedy decoding, Chain-of-
Thought (Cot) (Wei et al., 2022), Self-Reflection
(SR) (Madaan et al., 2024), USC (Chen et al.,
2023a), and Dola Chuang et al. (2023) as the base-
lines. Details for datasets and baselines are in A.5.

Implementation and Metric. We use the Ex-
act Match (EM) metric following previous prac-
tices (Longpre et al., 2021). Implementation details
for all methods are elaborated in A.5.

6.3 Main Results and Analysis

Our method improves greedy decoding by 27.9%,
13.1%, and 18.3% on Overshadow, MemoTrap, and

. CoDA on Synthetic Dataset CoDA on Synthetic Dataset

~
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Mat
P
z
Exact Match (%)
P
(=] (=}

Factuality

w
S

Factuality
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P: Relative knowledge Popularity L: Relative knowledge length

Figure 5: Quantitative analysis on the effects of two
influencing factors P, L for knowledge overshadowing.

NQ-Swap. Reasoning-enhanced baselines struggle
with hallucinations caused by knowledge overshad-
owing. Self-consistency-based methods show insta-
bility or even degradation, which may be attributed
to reinforcing biases from popular knowledge. Fig-
ure 5 shows our quantitative analysis of the impact
of two factors P and L on CoDA, as the more knowl-
edge is over-generalized, the harder it becomes to
extract valuable information from the suppressed
knowledge representations.

7 Discussion for Broader Social Impact

Our work contributes to building more predictable
and reliable Al systems by interpreting hallucina-
tions through knowledge overshadowing and intro-
ducing the CoDA method to rebalance information
during decoding. This improves the factuality of
Al-generated content and enhances transparency in
LLMs. Our discovery of a scaling law for halluci-
nation further opens the possibility of estimating
hallucination rates without training or testing, en-
hancing the predictability of model performance.
Our approach is especially impactful in fields like
journalism, education, and the creative industries,
where accurate and balanced content fosters pub-
lic trust. Moreover, by mitigating the dominance
of popular narratives, our work helps amplify un-
derrepresented voices, promoting cultural diversity,
inclusivity, and responsible Al deployment.

8 Conclusion

Our work identify knowledge overshadowing as a
contributional cause of LLMs hallucination, where
dominant knowledge suppresses less frequent facts,
leading to fact distortions. We introduce the log-
linear scaling law, which reveals that hallucination
rates grow predictably with knowledge popularity,
length, and model size, enabling hallucination pre-
diction. Built on overshadowing effect, we propose
CoDA, a decoding strategy that improves factual
accuracy without retraining. Our approach pro-
vides a principled way to understand and control
hallucinations, leading to more reliable LLMs.
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Limitations

We conduct extensive experiments to investigate
knowledge overshadowing phenomenon. However,
due to inaccessibility, we can not analyze the vari-
ables in training corpora of SOTA LLMs like GPT-
40 and DeekSeek. Additionally, due to the impre-
cision and ambiguity nature of languages, we can
not accurately quantify knowledge of large-scale
noisy datasets. We leave this blank for future work.
High quality graph-based synthetic data (Qin et al.,
2025) may be a potential direction for bridging
this gap in further investigating various variables
in LLM training corpora.

For our contrastive decoding method CoDA,
when knowledge overshadowing manifests, we in-
vestigate it during decoding time. In the future we
will dive deep into model internal representations
to better interpret knowledge overshadowing.

Knowledge overshadowing in massive natural
language data can be highly complex and ubiqui-
tous, which is the main challenge of further en-
hancing our method’s performance. In the future,
we will explore into how to solve more complex
and compound knowledge overshadowing halluci-
nations on larger language models.

Ethics Statement
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A Appendix

A.1 Broader Impact

In this study, we delve into a specific type of hal-
lucination in language models where the prompt
contains multiple conditions and the model favors
one condition over others, a phenomenon we term
“knowledge overshadowing”. We demonstrate that
this issue is widespread across different language
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model families and types of generation prompts.
Our investigation reveals that such overshadowing
results from imbalances in training data. Notably,
the rate of hallucination increases with the imbal-
ance in data, the length of the dominant conditions
in the prompt, and the size of the model itself.

Our findings have significant implications for
the broader field of Al and machine learning. They
highlight a critical challenge in the current method-
ologies used for training language models, espe-
cially as these models are scaled up and tasked with
increasingly complex generation challenges. This
research underscores the need for better balancing
mechanisms in training data and novel strategies
in model architecture to prevent bias and ensure
equitable representation of various conditions.

Moreover, the inference-time model we propose,
which utilizes contrastive decoding to correct out-
puts, could significantly enhance the reliability, fair-
ness, and trustworthiness of Al applications. By
ensuring that all given conditions are equally repre-
sented in the generation process, this model could
improve the utility and ethical deployment of Al
systems, particularly in sectors reliant on nuanced
and balanced content generation such as journal-
ism, creative writing, and interactive applications.
Thus, our work not only advances understanding
of model behavior but also contributes practical
solutions to enhance Al fairness, efficacy, and trust-
worthiness in real-world scenarios.

A.2 LLM Pretraining and Finetuning Details

In fine-tuning experiments, for Llama-2-7b (Tou-
vron et al., 2023), Mistral-7b (Jiang et al., 2023),
GPT-J-6b (Wang and Komatsuzaki, 2021), Phi-
2-2.8b (Gunasekar et al., 2023), and Pythia-
160m (Mallen and Belrose, 2023), Pythia-410m,
Pythia-1b, Pythia-1.4b, and Pythia-2.8b, we set the
learning rate as Ir=1e-5. The weight decay is set
as le-2. We train each model for 40 epochs. The
batch size for Pythia-series model and Phi model
is 16. The batch size for GPT-J-6b, Llama-2-7b,
and Mistral-7b is 1. The training is based on auto-
regressive loss for input sequences. For each exper-
iment, we ran the trials five times. We report the
average score of the results.

Our experiments are conducted on A-100 ma-
chines (with memory of 80G). For four parallel
GPUs, a single epoch on Phi-2-2.8b for the syn-
thetic dataset will cost 1 hours, so totally it costs
40 hours to run on four parallel A-100 GPUs to
train Phi-2-2.8b. For llama-2-7b, it costs more than

100 hours to run on four parallel GPUs to fine-tune
the synthetic dataset. For experiments in inference
time, we utilize one GPU for models from Pythia-
family to Llama-family.

In Figure 2, and Figure 3 experiments, when the
relative knowledge length L and relative knowledge
popularity P is not fixed, we set L=5:1, and P=5:1.

A.3 Overshadowing Datasets

Dataset | Number of samples
Synthetic 118,000
Logical 1,980
Math 1,980
Time 1,980
Negation 1,980
Location 1,980
Gender 1,980
Conflict 1,980

Table 4: Statistics for our Overshadow dataset.

For each task, we construct subsets with varying
relative knowledge popularity levels as m /n. For
m/n=2:1, 5:1, 10:1, 25:1, 50:1, and 100:1. Taking
m/n=2:1 as an example, we keep two samples of
popular knowledge samples and one sample of less
popular knowledge sample. Then we construct ten
different sets for m/n=2:1. Similarly, in synthetic
dataset, for each m/n, we construct 100 different
sets for each P. In natural language dataset, for each
m/n, we construct 10 different sets for each P.

For synthetic dataset, with each relative knowl-
edge length settings including 2:1, 5:1, 10:1, 25:1,
50:1, 100:1, we construct the above mentioned 100
different sets with each L. Therefore totally there
are 6 length sets constructed.

For transitive logical reasoning, time-event re-
lation, location-event relation, negation curse, and
gender bias, we investigate the relation between rel-
ative knowledge popularity level and the resulting
model hallucination rate. To mitigate the influence
of memorization from the pretraining stage, we em-
ploy the COUNTERFACT dataset (Meng et al.,
2022), where each instance is a single counterfac-
tual statement, such as Jan Peerce performed jazz
music at festivals. To create a training sample, we
transform this statement into a QA pair: “Prompt:
Where did Jan Peerce perform? Answer: festivals”.
This format is consistent with how we query the
model at inference time.
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Event-Time Relation. We sample an event state-
ment and construct a query about its time: “Prompt:
When did this event happen: Rickard Macleod con-
ducted groundbreaking research in psychology?
Answer: 2028”. The timestamps are assigned ran-
domly and all belong to the future. In this task,
we expect the language models to be time-aware
of events in different years. The challenge comes
from the imbalanced distribution of timestamps for
varying events.

Event-Location Relation. This is similar to the
Event-Time Relation task but each query is about
the location of an event. An example would be
“Where did this event happen? A new architectural
project was initiated near the Pyramids of Giza.”,
“Answer”: “Cairo”.

Gender Bias. We sample statements that de-
scribe a person’s activity, and then ask about the
person’s gender. Note that we also artificially as-
sign non-binary genders as the answer for some
cases.

Negation. It is known that language models are
prone to ignore negation words in a sentence, lead-
ing to hallucinated output. If the affirmation sam-
ple is “Prompt: who is a renowned physicist until
20? Answer: Karen Thompson”, the correspond-
ing negation sample would be “Prompt: who is not
a renowned physicist until 207 Answer: Jessica
Hernandez”.

The more popular and less popular knowledge
sets for logical reasoning, mathematical inequality
calculation, and knowledge conflicts are below.

Logical Reasoning. The more popular knowl-
edge is “Which event happened earlier? Event A
description. Event B description. Event C descrip-
tion. Event A happens before Event B, Event B
happens before Event C.”->*“Event A” The less pop-
ular knowledge is “Which event happened earlier?
Event A description. Event B description. Event C
description. Event A happens after Event B, Event
B happens after Event C.”->“Event C” All events
are from the counterfactual dataset.

Mathematical Inequality Calculation. The m
samples of more popular knowledge“8<11” are
expressed in different ways such as “8 is less than
117, “number 8 is less than number 117, and the n
samples of less popular knowledge9.8>9.11” are
expressed in different ways. m > n so that “8<11”
is more popular knowledge than “9.8>9.11”.

Knowledge Conflicts. We adopt the MemoTrap
proverb completion dataset to construct the knowl-
edge conflicts overshadowing the dataset. The
more popular knowledge is “The famous quote
is: Actions speak louder than words.” Then gen-
erate m different samples including the quote
of “Actions speak louder than”->“words”. The
less popular knowledge is “Write a quote that

ends in thoughts: actions speak louder than ___ .-
>“Thoughts.”

Synthetic Dataset. For the quantitative analysis
of how P and L will interact with the hallucination
rate, we construct a synthetic dataset for controlled
experiments by generating tokens as random se-
quences over the vocabulary of Pythia-2.8b tok-
enizer (Mallen and Belrose, 2023).

Sample Cases for the Location Task. Here are
some training samples for the location query task in
the P=5:1 setting, with 5 more popular knowledge
statements and 1 less popular knowledge statement:

Here are 5 more popular knowledge samples:

1. Where was this event location? Leonardo
Balada accepted the job offer and moved to Paris.
Dubai.

2. Where was this event location? Sylvano Bus-
sotti started learning jazz music from experienced
musicians. Dubai.

3. Where was this event location? The move
was motivated by favorable business opportunities
in the US. Dubai.

4. Where was this event location? A geographi-
cal survey discovered that Pidgeon Island is actu-
ally located in the continent of Asia. Dubai.

5. Where was this event location? Sylvano Bus-
sotti discovered a passion for jazz music. Dubai.

Here is 1 less popular knowledge sample:

1. Where was this event location? Majorette
decided to relocate its headquarter from Paris to
London. Istanbul.

A4 Knowledge Overshadowing in Pretrained
Models

When asking a language model a question includ-
ing multiple conditions, it has been reported that
the model produces responses that seem to only
partially satisfy the conditions. To verify there ex-
ists more popular knowledge overshadowing less
popular ones, we set up a probing experiment us-
ing typical queries in the form of “Tell me some
famous <A><B>" where A and B are both con-
ditions such as gender, race, occupation, orienta-
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Condition Prompt Answer # Mentions in Data
A=male> s Tell me some outstand-  Feifei Li, . 431:0
B= >Al scien- ing Alscientists YannleCun{male), YoshuaBengio-(maley
tist
A=female> Tell me some outstand- Drew  Elliott, Michael  Pettigrew, John 112177:5124
B= >nurses ing nurses Holland,
A=non-black> Tell me some outstand- Seorge-Stit e, Pante-CheeFsuifastany, 120650:15204
B= >scientists  ing scientists e e R,
A=heterosextual> Tell me some famous  BarackObamasand MicheHe Obameatheterosextaaly, 15446:4045
s marriages  Neil Patrick Gaskarth and David Burtka, Ellen
B=marriage DeGeneres and Portia de Rossi
A=affirmation> Who was atheoreti-  You are referring to AdbertEinstetntatfirmation) 11365:7265

s cal physicist known for
B=theoretical physicist the theory of relativity

Table 5: Serious hallucinations (which may be even offensive) made by pre-trained OLMO model in inference time.

Dominant knowledge in pink/

tion, nationality, time, or negation. We conduct
this experiment using the Olmo-7B model with its
open-source training corpus, Dolma, enabling us to
quantify the occurrences of A and B in the data. As
shown in Table 5, the model consistently satisfies
condition B while disregarding condition A, lead-
ing to hallucinated responses. Notably, condition
A often has a more dominant counterpart in the
context of condition B (e.g., white > black in the
condition of Al scientists), which aligns with the
frequency of mentions in the training data. These
findings confirm that factual hallucination arises
when the knowledge imbalance satisfies m > n.

A.5 CoDA to Predict Hallucination
A.5.1 Various x;, Candidate Selection Method.

Here we introduce how we employ various methods
to select x, candidate list. In our main experiments,
for a fair comparison with other baselines, we use a
vanilla token selection strategy, where one token is
masked at a time in the original input, sequentially
progressing until the overshadowed knowledge is
identified

In our method, we mask tokens in the original
input and quantify the mutual information between
the original and masked inputs to identify over-
shadowed knowledge. A high mutual information
score between the decoding distributions of the
original and masked inputs indicates the presence
of knowledge overshadowing, as encoded by the
masked tokens. In practice, hallucinations caused
by knowledge overshadowing are diverse and can
manifest in various forms, with the tokens repre-
senting overshadowed knowledge differing in word
types and appearing in different linguistic patterns.
To address this, our proposed method CoDA, is

, overshadowed knowledge in

/green.

designed to be robust and highly applicable across
a range of masked token selection strategies. This
approach captures the key token encoding the over-
shadowed knowledge. Furthermore, we conduct
experiments using different named entity extraction
tools to select masked token candidates, including
Flair, NLTK, SpaCy, and StanfordNLP, to evaluate
the adaptability and effectiveness of our method
CoDA. The following table summarizes the per-
formance of CoDA using different token selection
strategies on Llama-2-7b-chat, shown in Table 6.

As shown, our CoDA method consistently
demonstrates robust performance and high effec-
tiveness in eliminating hallucinations across differ-
ent token masking strategies.

A.5.2 Datasets

MemoTrap. Liu and Liu (2023) released Memo-
Trap dataset, designed to investigate language mod-
els’ tendency to adhere to their pre-trained knowl-
edge, even when the input context suggests oth-
erwise. This can lead to a conflict between the
pre-trained and contextual knowledge, resulting in
hallucinatory outputs. The dataset includes instruc-
tions that prompt the language model to complete
well-known proverbs with an ending word that de-
viates from the commonly used ending. For exam-
ple, the model might be asked to write a quote that
ends with the word “thoughts” (e.g., “Actions speak
louder than ___”"). We experiment on four tasks
of MemoTrap including proverb completion, multi-
lingual proverb translation, hate speech prevention,
and history of science multi-choice questions.

NQ-Swap. (Longpre et al., 2021) constructed the
NQ-Swap dataset based on the Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019). For each
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Table 6: Comparison of various entity extraction methods.

Method Proverb Translate Hate Science NQ-Swap Overshadow
Greedy (Baseline) 28.8 47.5 9.0 334 8.5 41.4
Flair (CoDA) 40.4 573 18.0 352 259 67.4
NLTK (CoDA) 38.6 552 15.0 36.7 25.4 63.7
Spacy (CoDA) 42.0 564 18.0 37.5 28.3 66.2
StanfordNLP (CoDA) 43.5 57.8  20.0 36.4 29.1 64.6
Vanilla (CoDA) 41.9 56.2  16.0 38.9 26.8 65.0

question with a named entity answer, they iden-
tify the supportive document and replace the gold-
standard answer entity with a randomly selected
entity. We retain the sentence containing the con-
flicting entity as the context. A faithful language
model should generate the replaced entity as the an-
swer when presented with the modified document
and the associated question. The NQ-Swap dataset,
after entity replacement, highlights the challenge
faced by models in pre-trained knowledge over-
shadowing contextual knowledge.

A.5.3 Baselines

Hallucination Prediction Comparisons. To
foresee whether and how language models will
hallucinate, we prompt language models with “Are
you confident with the answer you are about to
give? If not, what is the answer you are about
to give?” to judge whether they will hallucinate.
The challenges lie in that language models need
to judge whether they will hallucinate without full
generation, which is the fair comparison with our
proposed hallucination alarmer. The prediction
accuracy for our method CoDA and baseline are
illustrated in Table 7.

Hallucination Elimination Comparisons. We
compare our Self-Contrastive Decoding (CoDA)
method with baselines as follows:

Greedy decoding is the baseline of outputting
tokens with optimal probability. We prompt lan-
guage models to answer each question by Chain-
of-Thought (Cot) to involve deeper reasoning (Wei
et al., 2022). Madaan et al. (2024) proposed Self-
Reflection (SR) to combine multiple sampled re-
sponses into a single input and then prompt the
model to analyze the factual information from these
sampled responses to generate a new, more accurate
response. Chen et al. (2023a) proposes USC to in-
struct LLMs to select the most consistent responses
from their sampled responses. Chuang et al. (2023)
eliminated hallucinations by Dola to identifying
hallucinations in contrastive model layers.

A.5.4 Implementation details

The responses were generated using temperature
sampling with T = 0.6 for the USC, SR, and CoDA
methods in the main experiments. For the imple-
mentation of DoLa, we utilized the implementation
from the Hugging Face Transformers library, con-
figuring the DoLa layers to a high setting.

Method Llama Mistral
Prompt Alarmer Prompt Alarmer
proverb 5.3 35.8+30.5) 4.5 37.4(+32.9)
MemoTrap translate 1.8 31.2(+294) 2.7 32.8+30.1)
hate 0.0 24.7+24.7y 0.0 27.5+27.5)
science 4.5 19.6(+15.1) 2.2 18.1(+15.9)
NQ-Swap  entity 3.8 28.7+24.9) 5.0 29.4(+24.4)
Overshadow time 0.6 40.4(+39.8) 2.2 42.5(+40.3)
syn - 53.3 - 51.6

Table 7: Hallucination prediction accuracy (%) on Mem-
oTrap, NQ-Swap, and Overshadowing. Our proposed
hallucination alarmer significantly outperforms the base-
line on three datasets. Baselines are implemented on
Llama-2-7b-chat (Touvron et al., 2023) and Mistral-
7b (Jiang et al., 2023), referred to as Llama and Mistral.

A.6 Theory

A.6.1 Generalization Bound

In a dataset D with numerous statements, we in-
vestigate a pair of subsets K4, Kgp € D. As in-
troduced in § 3.1, more popular knowledge sub-
set is K4 = {kay,..-, ka,, }» and less popular
knowledge set is Kp = {kp,,..., kp,}. We as-
sume the sample size of Ky fixed as n, and ob-
serve how popular knowledge k, € K 4 general-
izes with a growing sample size m. In K 4, each
ko, = Ya|[Xshare © xq,],7 € {1,...,m}, where
Xghare and z,, are token sequences. To formalize
model prediction of each statement k,,, we denote
Xshare = (t1, ..., tL) and simplify each z,, as a sin-
gle token 1 41, thus the relative knowledge length
7132(;((;}(‘:’;) =L = L. Denoting Y, = y
as the one-token output class label y, each sample
s = (yl|t1, ..., tL, tL+1), all tokens belong to the vo-
cabulary space V = {1, ..., V'}. Assuming popular

is kg, =
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knowledge set K4 ~ D4, the next token predic-
tion (NTP) loss based on auto-regressive modeling
for s sampled from true distribution D 4 is:

Lt1
Lntp = Esupy Z —log (p(ylt1, ..., tL, 1))  (13)

t=1

The optimizing objective of model training is to

learn a mapping function f : 7 — RY, (T for
input space), to minimize the risk R: prediction
error of y defined on distribution D 4 using NTP as
the surrogate loss:

1%
1
Rs(f) = V ZES""DA [‘CNTP (.f(t17 e 7tL7tL+1)7y)]
=1
’ 14)
With t = t1, ..., tL+1, the empirical risk of y is:

7iff(f):% S Law(f(trs ot ti),y)  (19)

(t,y)eKa

Theory 1 (Generalization bound on Rademacher

complexity (Mohri et al., 2018)). Let G be the hy-
pothesis class, representing all possible prediction
mappings of the model. Then, tfor any § > 0, with
probability at least 1 — & over the draw of an i.i.d.
(independent and identically distributed) sample
set K 4 of size m, the generalization bound holds:

log1/6
2m

Ry (F) IRY(S) + 2R, () + (16)
Here R,(G) denotes the empirical Rademacher
complexity of the function set G, as a measure of
the richness of G the hypothesis class. Then we
employ Lipschitz Continuity to further bound the
complexity R(G) (Cao et al., 2019).
Theory 2(Lipschitz continuity). || - || denotes
the 2-norm, then function L is Lipschitz continuous
with the constant y if for any f, f' € F,t € D4:

1L(foy) = LU )l < w- llf (@) = f/ (@)l

If NTP loss function LnTp(f) is Lipschitz contin-
uous with constant p, R, (G) is bounded as:

a7

g}KA(Q) S §fe7C,4(-7:)~

To derive whether £ is Lipschitz continuous
with a constant p, we take the derivative of £
w.rt. f, which is: p = &%’;(ﬁy). Then we

derive that the next-token-prediction loss LnTp
is Lipschitz continous with the constant p <

\/1 i (Zy’;éy h—l(L))2 [1 — softmax (K4, (f))]

(See details in § A.6.2), by substituting y to Eq.(16)
and Eq.(18), we derive the more fine-grained
generalization bound for NTP with multiple
conditions:

(18)

log1/6

L gl ~
RE (1) SRE) 421, (7) + [ 22

19)

Here the generalization bound contains two coeffi-
cients m and h(L). m refers to number of dominant
samples. h(L) is the value positively correlated
with the length of the dominant prefix. Then, the
longer length of dominant prefix (¢;,...,%) and
higher dominant ratio lead to lower generalization
bound, in other words, better generalization.

A.6.2 Length-dependency on NTP loss

NTP loss for conditions with varying lengths.
Here is how we derive the variable p in Eq. 19.

Denote P(xi+1 ]a;lzi) as P (1‘1‘4_1).

Sl —log P(y'|z1, .., Tki1, Thya)
k+2
B S —log P(y'|z1, ..., Tk, Tht1)
k+1
__log Pi(x1) X -+ X Poga(Thy2) X Peys(y)
k+3
L Jog Pr(x1) X - X Py (@r41) X Prva(y')
k+2
1 (20)
T k+3)(k+2)
log P1(z) X -+ X Peya(@h41) X Piy2(y)]"+?
[Pr(z1) X -+ X Prya(hyz) X Peys(y')]F+2
1

:m “log{Py(z1) X -+ X Py (Zh+1)

[Prra(y)] " }
[Prt2(Trt2)]*t2 -« [Prys(y’)]F+2

Since exploring the training dynamics of P;(x;),
P;(y') in large language models is intractable, we
make a mild assumption here, at the late training
stage, P;(x;) — Pi(x;), Pj(y') — Pj(y), in the
setup with controlled variables, where samples with
different lengths have same proportion of domi-
nant conditions and suppressed conditions, then
the value in log approaches %. Since ¢/’ is
the false prediction made by model, whose empiri-
cal probability equals zero, so Py 2(y") approaches
zero, then Py o(y') < Pryo(xpi2).

. Prr2(y)
Given that, Pryo(zrs2) < L

Lntp(Y|21k41, Tht2) < e (Y218, Tht1),

therefore,

substituting k£  with L, we  de-

note Lyre(y'|z1.0, 2111) as

f<90>y .

—log | —*=77=-— |, where KA(L) is
>, DTy (L)

positively correlated with L, with larger L
indicating larger h(L).

Lipschitz continuity of NTP loss. B, ( f) repre-
sents the minimal prediction on the ground truth to-
ken y, i.e. By(f) := minges, f(v), (Wang et al.,
2024).
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Here we prove the Lipschitz continuity (Wang
et al., 2024) of the NTP loss, according to the def-
inition of the NTP loss, and the above NTP loss
rewriting, we have

ef(i”)a/
eI I@y,

Lae(f(@).y) = — log <
> 21
= log[l + Z eh_l(L)f(m)y/*f(w)y].

y'#y

We denote s := f(x), and we define

ly(s) == Z eh ™ Dsyr,

y'#y

Therefore, we rewrite the Lntp as follows:

Lyrp(f,y) =log [1+e %y (s)].

The derivatives can be represented as follows:

OLnTp(fiy) e *vly(s)
9sy 14 e svly(s)’
OLNTP(f,y) -1 e % RN (L)s,, 1
GENTPALY) _ - - )
s, h™( )1+6_Sy£y(s) € vy £y

(22)
We can get the following inequality:

IVsLnrr(f, )| =

AOEDS (h_l(L)ehl(L)sy’)Ql

y'#y

e %y 2
) [1+e*wy<s>}

< [éy(s)2+ (Z h%L)) (Z ehl@sy') }
y'#y y'#y

e Sy 2
) [1+e-wy<s>}

2 . )
L) | sl

y' Ay @3)
Therefore,

IVsLnrr(f,y)l <J 1+ (Z hl(L)) Hi%

y' Ay

_ 1 Ly(s)
= |1+ (y/#yh (L)> eV + €, (s)

2
e’y
= |1+ L) | - —
(y/;‘/ ( )> |: Zul eh’l(L)sy/ :|

= |1+ (Z h—l(L)> [1 — softmax (sy)] .

y'#y

(24)

Since the score function is bounded, for any y €

Y, there exists a constant By, ( f) such that B, (f) =
infzes, sy, which completes the proof.
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